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Abstract
This paper presents a new checkpointing algorithm for systems using reliable
communication channels. The new algorithm requires O(n + m) communication
messages, where n is the number of participating processes, and m is the number
of late messages. The algorithm is non-blocking, requires minimal message
logging, and has minimal stable storage requirements. This algorithm is also “
scalable, simple, transparent to the user, and facilitates fast recovery. By
introducing sutable delay in the checkpointing process, the parameter m can be
made small. We also describe a variant of the algorithm that requires only O(n)
messages, at a cost of O(n) additional storage for each process.

This paper also presents an efficient coordination mechanism, called the Process
Order. The Process Order mechanism can be used for grouping processes in
arbitrary structures in order to solve various problems, including scalability,
failure detection, and coordinator election. The Process Order mechanism groups
the processes transparent to the user, and automatically adjusts to the changes in
system topology.

1 Introduction

Distributed systems consisting of a network of workstations or personal computers are an attractive way to
speed up large computations. These systems have a much higher performance-to-price ratio than large
parallel computers, and they are also more widely available.

The computing nodes in a distributed system may fail. As some applications may require hours to execute, it
is important to be able to continue computation in the presence of the node failure. Recovery from failures
becomes more important for large systems, since the possibility of a node failure increases with the number
of computing nodes.

Failure recovery may be achieved with a rollback-recovery mechanism. A rollback-recovery mechanism
consists of three parts: checkpointing, fault detection, and failure recovery. During checkpointing the states

of the participating processes are periodically saved on a stable storage. The saved process state is called a
checkpoint. When a node failure occurs, the recovery mechanism uses saved checkpoints to recover the
system to the consistent system state and continue execution from that state. The number of processes that
have to be rolled back to the previous checkpoint varies, depending on the recovery algorithm. It may be
necessary for one [9], some [8], or all [17] processes to roll back to the previous checkpoint.
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It is useful for the checkpointing algorithm to take a checkpoint of each
process so that the set of the local checkpoints represents a consistent

system state, also called a consistent system snapshot. This facilitates fast lT
recovery, since a consistent system snapshot does not have to be derived Pl PRy >
from uncoordinated local checkpoints. It also simplifies memory f ¥
management, since as a new consistent snapshot is taken, the previous one P2 — g —>
can be discarded.

P3 p —>

In this paper, we present a new algorithm for checkpointing in distributed

systems with reliable communication channels. The algorithm is simple, Figure 1

efficient, and scalable. The organization of the paper is as follows.

Section 2 discusses the notion of a consistent system state in the context

of distributed systems with reliable communication channels. In Section 3, we present a list of useful
properties for a checkpointing algorithm, and we briefly survey existing checkpointing algorithms. The new
algorithm is presented in Section 4. In section 5, we present a simple mechanism for arranging processes in
groups that does not require the exchange of additional messages; this is useful for forming the hierarchical
structure used by our algorithm, and it has other uses as well.

2 Consistent System State

The system state at time T consists of the state of each participating process, plus every message in transit.
This is illustrated in figure 1. The horizontal lines represent the progress of processes P1, P2, and P3 in time.
Diagonal arrows represent messages exchanged by the processes, and the vertical line represents the time 7.
All the processes alive at T and all messages transferred at T belong to the system state at time T, as shown
by stars.

The definition of a consistent system state varies, depending on the underlying communication channels.
Reliable communication channels guarantee that every message that was sent will also be delivered to its
destination. Unreliable communication channels dont provide such a guarantee. Intuitively, a consistent

system state is one that may occur in a legal execution of a distributed computation [1]. For systems using
unreliable communication channels a consistent system state is one in which every message that has been
received is also shown to have been sent in the state of the sender [2]. In distributed systems using reliable
communication channels a consistent system state also includes in-transit messages since they will always
be delivered to their destination in any legal execution of the program. Hence, we add to the above definition
that a cosistent system state is one in which every message that has been sent is also shown to be received in
the state of the receiver. '

Reliable communication channels are harder to provide than unreliable channels. The guaranteed message
delivery may be provided by the hardware, by communication protocol, or by a user program. Supporting
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reliable communication channels places a more stringent requirement on the checkpointing algorithm. If the

checkpoints are taken on the level relying on the guaranteed message delivery, then the checkpointing
algorithm must guarantee that all the messages that were sent were also received. The examples of such

checkpoints include application-level rollback-recovery, or distributed systems relying on reliable
communication channels.

Figure 2 shows the types of inconsistencies that checkpointing algorithms should avoid in order to take a
consistent system snapshot. In these diagrams, checkpointing is represented by a dashed line. The
checkpointing line is not strait because clocks of different computing nodes are not synchronized. Instead
checkpointing is synchronized by message exchanges, and message transmission in asynchronous systems
can take arbitrary time. When the system snapshot line crosses the process line, the checkpoint of the
process is taken.

When a snapshot is taken as in figure 2a, message m2 will be registered as received by P2, but will not be
registered as sent by P1. This is called a received-not-sent inconsistency. Figure 2b illustrates a sent-not-
received inconsistency; m3 is registered as sent by P3, but it is not registered as received by P2. This type of
inconsistency applies only to systems with reliable communication channels, since in systems that use
unreliable channels message loss is allowed. The snapshot shown in figure 2c is an example of a consistent
system snapshot. :

3 Related Work

The goal of this project is to design a checkpointing algorithm with the following characteristics:

1. It should-work correctly for systems that use reliable communication channels.

2. Tt should be non-blocking, meaning that the execution of the main computation is not blocked

between steps of the checkpointing protocol. The reasons for it are discussed below.

3. The algorithm should incur as little overhead as possible during failure-free computation, where
overhead accumulates from message logging, checkpoint coordination messages, and any other
checkpoint-specific computations that need to be performed.

The algorithm should be scalable.

It should be general, i.e., it should not rely on any system-specific features.

It should be simple. This is important for the practical implementation of the algorithm, as well
as for proving its correctness.

AR

Depending on the system size, network delays, and the frequency with which checkpoints are taken,
blocking may cause a system slowdown. In some cases the delay caused by blocking renders blocking
algorithms unusable at all.

For example, as explained in [19], in the MESSENGERS system the execution thread is compiled to a set of
the function blocks, so that the state of the process between the function blocks consists of the set of the
local variables and the index of the next function to be executed. This allows to take checkpoints both
independent of the computing platform, and also transparent to the user application. There are many

advantages of such checkpointing when used in heterogeneous distributed system. To implement such
checkpointing, the process state has to be saved between the function blocks. This means the process will
not respond to the checkpointing message until it finishes executing the function block. Blocking algorithms
will cause the whole system to halt, which might cause large delays.

There has been much research in designing checkpointing algorithms [2, 4-8, 10-17]. However, all known
algorithms fail to satisfy one or more of the above requirements. Algorithms [2, 7, 10] are designed for
systems that use unreliable communication channels. Algorithms presented in [7, 8, 11, 12, 17] are blocking.
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Algorithms [14, 15] rely on the assumption that all the processor clocks are approximétely synchronized,
which limits the generality of these algorithms.

Some of these algorithms [2, 4, 5] require O(r?) communication messages, where »n is the number of
processors in the system. This makes them unnecessarily slow as the number of participating nodes grows.
In Wojciks algorithm [13] each process has to log each message sent to other processes, which makes this

algorithm inefficient.

Several non-blocking algorithms {6, 16] require less than O(r°) communication messages. The Kai Li
algorithm [6] performs well on multicomputers. It requires O(nlogn) messages for hypercube connected
multicomputers and O(n) for mesh connected multicomputers. However, this algorithm depends on the
knowledge of the process interconnection topology, which is unusable in systems where the pattern by
which processors are connected varies, as in systems constructed by interconnecting PCs or workstations.
Furthermore, this algorithm requires communication channels to be FIFO.

The Silva algorithm [16] requires only O(n) communication messages. However, it relies on the knowledge
of fault detection latency, and message latency, which might be difficult to determine in case of the internet-
based distributed system.

This paper describes a simple, scalable, non-blocking algorithm that requires O(n + m) coordination
messages, where m is the number of late messages (as explained below), which can be made small ‘as
described in section 4.2.3. The new algorithm requires minimal message logging. It does not require any
system-specific information, and it works correctly in the presence of message reordering. The algorithm has
minimal stable storage requirements, allows fast failure recovery, and provides simple garbage collection
mechanism. These characteristics make this algorithm attractive for practical use.

4 Checkpointing Algorithm

The algorithm is presented incrementally. In section 4.1 we describe the algorithm designed for unreliable

communication channels that was presented in [10], which forms the basis for the proposed algorithm. In
section 4.2 we present an algorithm for checkpointing with reliable communication channels, using a central
coordinator. Finaly, in section 4.3, we present the decentralized algorithm.

4.1  Algorithm For Unreliable Communication Channels

One distinguished checkpoint server acts as a checkpoint coordinator. Each process maintains one
permanent checkpoint, belonging to the most recent consistent checkpoint. During each run of the protocol,
each process takes a tentative checkpomt which replaces the permanent one only if the protocol terminates
successfully [7]. Each checkpomt is identified by a monotonically increasing Checkpoint Number (CN).
Every application message is tagged with the CN of its sender, enabling the protocol to run in the presence
of message re-ordering or loss [18].

The protocol proceeds as follows:

1. The coordinator starts a new consistent checkpoint by incrementing CN and sending an Initiate
message that contains its CN to each process in the system.

2. Upon receiving an Initiate message, a process takes a tentative checkpoint, increments its local CN
and sends a cpTaken message to the coordinator.
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If a process receives an application message with a CN greater than its own, it alsp takes a
checkpoint before processing the message and then sends a cpTaken message to the coordinator.

3. When the coordinator has received a ¢pTaken message from all processes, and if all tentative
checkpoints have been successful, it broadcasts a Commit message.

4. When a process receives a Commit message, it makes the tentative checkpoint permanent and
discards the previous permanent checkpoint. |

4.1.1 Message Loss

With the checkpointing algorithm described above, application messages can be lost. Consider the
distributed system in figure 3 with four interconnected processes. Suppose that PO is a coordinator and that it
initiates checkpointing by broadcasting Initiate message ( checkpointing messages cml, cm2, cm3). P3
sends an application message aml to P1. The message cm3 arrives at P3' after aml is sent. P3 takes a
checkpoint that registers that aml was sent. The message cml arrives at P1 before aml. P1 takes a
checkpoint that does not register aml as a received message. If the system recovers from this snapshot,
message aml will be lost.

To resolve this problem, messages arriving at the node after checkpoint was taken, or late messages, have
to be included into the system state. Since a checkpoint is not completed until all late messages arrived at
their destination, the algorithm also needs to decide when the checkpoint is completed and could be
committed. '

4.2 Algorithm For Reliable Communication Channels

In the new algorithm, when a late message arrives at a node, a copy of a

message is appended to the corresponding checkpoint. A late message is PO >
identified by the checkpoint number attached to it. If the messages CN is ¢ml
less than the receiver process CN, then the message has to be appended to the Pl
checkpoint identified by the message CN. m2

P2 >
Another task of the algorithm is to determine when the checkpoint can be am%mB
committed. The checkpoint can be committed when there are no more late P3 >

messages in transit. To determine when a checkpoint can be committed we

use the following observation: when all the messages that were sent in the Figure 3
given checkpoint interval have also been received, there are no more late

messages in the system.

An additional variable is added to each process. This variable is used to store the difference between the
number of messages sent and the number of messages received by the given process for a given checkpoint.
We will refer to this variable as srDelta (sent/received delta). Every time when a message is sent, the
srDelta is incremented. When a message is received, srDelta is decremented. When the sum of all srDeltas
equals to zero, the checkpoint can be committed. When the sum is greater than zero, some messages that
are recorded as being sent are not received yet. Note, that srDelta sum is never less than zero.

The resulting algorithm is presented below. The additions to the algorithm from section 4.1 are printed in
italic.



The coordinator starts a new consistent checkpoint by incrementing CN and sending an [nitiate
message that contains CN to each process in the system.

Upon receiving an [nitiate message, a process takes a tentative checkpoint, increments its local CN, and
sends a cpTaken message to the coordinator, including its srDelta.

If a process receives an application message with a CN greater than its own, it also takes a checkpoint
before processing the message.

When the coordinator receives a cpTaken message, it adds the srDelta from the message to its own
srDelta. When the coordinator receives the cpTaken message from all processes, and if its srDelta is
zero, it broadcasts a Commit message.

Handling late messages: when a message arrives whose CN is less than the current CN, a copy of the
message is appended to the log file of the checkpoint identified by the message CN. An Update message
is sent to the coordinator.

When the coordinator
receives an Update message,
it decrements its srDelta. If
srDelta equals zero, the
coordinator  broadcasts a
Commit message.

Steps 4 and 5 are repeated
until all messages that were
sent with a given CN are also
received,

When a pr ocess receives
Commit message, it makes its

tentative checkpoint
permanent and discards its
previous permanent
checkpoint.

Figure 4 summarizes this algorithm graphically.

4.2.1 Eliminating Inconsistencies

Figure 5 shows how this algorithm captures a consistent system state. Figure 5a shows how received-not-
sent inconsistencies are eliminated: message m2 has a higher CN than the process P2. This forces P2 to take
a checkpoint before processing m2. Figure 5b shows how sent-not-received inconsistencies are eliminated:
message m3 has a lower CN than P2s CN. As a result a copy of m3 (m3a) is appended to checkpoint log
identified by m3s CN. During this operation the order in which messages m3 and m2 arrive to P2 is
changed. However, these messages are not causally dependent and could arrive in the different order in the
regular execution of the program. Therefore global consistency is preserved. This is the only possible change
in message order introduced by the algorithm.
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We use the following terminology based on tree structures: processes that are being coordinated are called
children, their coordinator is called the parent of the coordinated processes, the processes that have no
children are called leavs, and the unique process that has no coordinator is called the root. The extended
algorithm using a hierarchical coordination is shown below, where the added parts are written in italic.

1. The root process starts a new consistent checkpoint by taking a tentative checkpoint, incrementing CN,
and sending an [nitiate message that contains CN to its child processes.

2. Upon receiving an Initiate message, a process takes a tentative checkpoint, and increments its local CN.
If the process is a leaf process, it sends a cpTaken message to its parent, including its srDelta.
Otherwise, it propagates the checkpoint initiation to its children.

If a process receives an application message with CN greater than its own, it also takes a checkpoint
before processing the message.

3. When a process receives a cplaken message from its child, it adds the srDelta from the message to its
own srDelta. When has received the cpTaken message from all its children, it sends the cpTaken
message to its coordinator.

When the root process receives a cpTaken message from all its children, and if its srDelta is zero, it
broadcasts a Commit message to its children.

4. Handling late messages: when a message arrives whose CN is less than the current CN, a copy of the
message is appended to the log file of the checkpoint identified by the message CN. An Update
message is sent to the root process.

5. When the root process receives an Update message, it increments its srDelta. If srDelta equals zero, the
root broadcasts a Commit message to its children.

Steps 4 and 5 are repeated until all messages that were sent with a given CN are also received.

6. When a process receives a Commit message, it makes its tentative checkpoint permanent, discards the
previous permanent checkpoint, and propagates the message to its children.

Note that the Update message in step 4 is sent directly to the root. If the number of late messages grows
proportionally with the number of nodes in the system, then the root process will still be a bottleneck.
However, using techniques explained in section 4.2.3 this problem can be avoided.

It is hard to compare the speed of this algorithm with the speed of the centralized version without
implementing both algorithms in a large system. However, since both algorithms are non-blocking, the time
it takes for the algorithm to complete is not important. Instead we are concerned with the overhead induced
by the algorithm. The hierarchical algorithm needs the same number of coordination messages as the
centralized one. The only change is that the function of the coordinator is spread over multiple processes.
This algorithm also does not perform any additional computations compared with the centralized version.
Hence we conclude that the hierarchical algorithm induces as much overhead on the system as the
centralized version. The next section presents a mechanism that can be used to organize the processes in the
hierarchy.
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5 Process Order

In distributed systems it is often desirable to arrange processes in some form of a structure such as a ring,
group, or hierarchy. As some processes enter the system and others leave, efficient and transparent schemes
to create and maintain these structures are needed. We propose a Process Order mechanism to address this

problem.

Each process in the computation has a unique

system id. It may consist of two integers: the POID Name (P

process id and the IP address. The process id 0{PO 20
provides uniqueness in the machine, and the TP 11P2 24
address provides uniqueness in the network. (If 2i1P1 37
there is only one process per physical node, the 3/P3 44

IP address is sufficient to provide a unique
system id.) Figure 6

The processes in the system exchange their system ids during the initialization phase. Then each process
sorts all processes by their system ids, which can be represented by integers. After the processes are sorted,
each process is given a Process Order Id (POID) according to its place in the sorted list, starting from 0. This
information is stored in a Process Order Table. An example of a Process Order Table is shown in figure 6.

In order for the Process Order scheme to work, all processes in the system must have the same information
about the system topology. All the processes have to have the same set of elements in their PO Table, and in
the same order. Since the system is fully connected, it should provide mechanisms to add and remove
processes to the system. These mechanisms are sufficient to maintain the correct set of elements in the PO
Table. The order of processes is maintained since every PO Table is sorted by unique process ids.

The cost of maintaining the Process Order Table consists of inserting and deleting elements in a sorted list.
Even with the most straightforward algorithm this operation is of order O(n). Maintaining the PO Table also
requires extra space. In a fully connected system each process has a data structure per each process that
contains its name and connection information, such as socket port. The PO Table can be represented as an
array of pointers to these data structures. Assuming that unique process identifier is already included in these
structures, the pointer in the array is the only additional space required to maintain Process Order.

All the structures, such as groups, rings, trees that are constructed based on the Process Order dont have any
additional costs, and can be described by the simple formulas as will be explained next. The following

subsections demonstrate how Process Order can be used to address scalability of checkpointing algorithm,
for fault detection, and for election of the coordinator.

5.1 Process Hierarchy

To address scalability problems in protocols requiring a central coordinator, processes can be arranged in a
hierarchy. The Process Order can be used to compute the hierarchy with the formula

POID,yrq = POID,, s DIV K,

where K is the number of coordinated processes.

n



Using this scheme each process can identify its coordinator without exchanging any messages with othf.:r
processes. Figure 7a shows a centralized system with a single coordinator. Figure 7b illustrates how this
scheme works when the number of coordinated processes is set to three. The number in each process name is

POID

€00

POID

coord

= POID,,,,DIVK

i POID,, DIV K

a) centralized system b) hieraarchical organization ¢) process b exited the system

Figure 7

the process POID, and the letter is a symbolic name of the process. This scheme, as any other structure
based on Process Order, can dynamically adapt to the changes in the system topology. Figure 7c shows the
situation where process b exits the computation. The system automatically rearranges itself in the new
hierarchy.

5.2 Fault Detection

For the purposes of fault detection, the participating processes are generally arranged in a logical ring. Each
process sends a heartbeat message to the next process in the ring. Depending on the communication
protocol, failures can be detected either by the sender of the heartbeat message or by the receiver. TCP/IP
generates an interrupt on the sender side if the receiver socket is down. Otherwise failures can be detected by
the receiver, based on a timeout. Processes can be arranged into a ring with Process Order using the formula

POID,.iver = (POID.render + ])mOd n,

10

|

a) system before the failure b) PO exited ¢) PO restarted on another machine
POID Name iP POID Name IP
0/P0 20| [FOP 5 'l;]gme IP ” o[P2 24
1/P2 24 1P 37 1/P1 37
2:P1 37 2/ p3 a4 21P0 38
3:P3 44 3{P3 44
Figure 8




where # is a number of nodes (n > 1)

5.3 Electing a new coordinator

system, a new coordinator needs to be elected. A simple rule for electing a new coordinator using the Process
Order is Coordinators POID = 0. When a process receives a notification that another process has left the
system, it updates its Process Order Table, removing the exiting process from it. If this was the coordinator,
the process next in line moves up to the top position. It is assigned POID = 0 and those becomes the new
coordinator. Similarly, a new process can be added to the table and could displace the current coordinator if
its system id is smaller than the coordinators.

Some protocols used during distributed system execution require a coordinator. If a coordinator leaves the

Figure 8 illustrates this election mechanism. Figure 8a shows the system before any failure. Figure 8b shows
how a new coordinator is chosen in the case when a process exits the system. Figure 8c shows how a
coordinator is elected when a failed process is restarted on a different machine. This scheme does not require
any additional messages to be exchanged.

6 Summary .

In this paper we have presented a new checkpointing algorithm for systems that use reliable communication
channels. The algorithm is non-blocking, has minimal stable storage requirements, requires O(n + m)
communication messages, and minimal message logging. It does not require the channels to deliver
messages in FIFO order. This algorithm is scalable, simple, efficient, transparent to the user, and facilitates
fast recovery. The combination of these characteristics makes this algorithm attractive for practical
implementation.

We also presented a Process Order mechanism that facilitates organizing processes in a fully connected
system into different logical structures to solve various problems. These include scalability, failure detection,
and coordinator election. The Process Order mechanism groups the processes transparently to the user, and
can automatically adjust to changes in system topology. The important characteristic of the Process Order
mechanism is that its cost is independent of the number of structures it is supporting.

Using the Process Order mechanism together with the checkpointing algorithm combines the benefits of
simplicity and efficiency in coordinated checkpointing. It also eliminates the drawbacks of a central
coordinator, i.e., coordinator bottleneck in large systems and a single point of failure.

The work presented here has been partially implemented in the MESSENGERS system [3].
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