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ABSTRACT

Gene-environment interactions are increasingly understood to be a primary contributing factor in
the etiology of cardiovascular disease. Environmental factors include person and societal-level
variables. Genome factors include sequence variation and mechanisms controlling genome
expression. These regulatory mechanisms are the nexus of gene-environment interactions, and
can be transient or adaptive; the latter are termed epigenetics. Some genetic characteristics are
highly homogeneous within ethnic groups, due to a combination of geographically derived
natural selection and environmental factors. South Asians are a population with
disproportionately high cardiovascular disease burden. A prevalence study of cardiovascular risk
factors in this population provides evidence that common risk factors are alterations in cholesterol
metabolism; specifically low high-density lipoprotein cholesterol with elevated triglycerides.
These initial observations led to a second study yielding evidence that abdominal adiposity is not
a necessary precursor to the development of this dyslipidemia, challenging previous assumptions.
A third study found pro-atherogenic risk profiles in South Asians are present decades earlier than
in other populations. While these risk factors have genetic underpinnings, the added effects of a
changing environment (i.e., Westernization of South Asians) are not known. MicroRNA are an
epigenetic post-transcriptional regulatory mechanism of messenger RNA translation, and are
potential biomarkers of pathophysiology and response to interventions. MicroRNA in human
blood are differentially expressed in numerous disease conditions, and in vitro studies indicate
that microRNA play a role in regulation of cholesterol metabolism in response to the extracellular
environment. Methods to quantify microRNA include microarray, in which a large number of
microRNA targets are screened. Microarray results are then validated with the more sensitive
guantitative polymerase chain reaction method. Using microRNA arrays and a case-control
design of pooled bio-specimens, a fourth study identified 16 candidate microRNA biomarkers of
this atherogenic profile, which were then verified by quantitative polymerase chain reaction.
Several of these are known to target messenger RNA involved in cholesterol metabolism. These
results are promising evidence for translational application of microRNA as clinical biomarkers
elucidating underlying genetic determinants of atherogenic risk in South Asians. Further research
is needed to determine whether microRNA expression in blood is sensitive to cardiovascular risk
reduction interventions.
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PROLOGUE
My research interests include epigenetic regulation of gene expression and the development of
risk factors for chronic disease, such as cardiovascular disease and type-2 diabetes, in response to
social determinants of health. Prior to becoming a nurse, | worked as a research assistant on a
pharmacogenetic study of medications for high cholesterol and hypertension, comparing response
in Caucasians and African-Americans. As a result of this experience, | became attentive to the
differences between these ethnic groups in health literacy and health status, and became very
interested in knowing more about the impact of social determinants on health. During nursing
school, | worked alongside a public health nurse performing home visits for people managing
chronic disease, such as heart failure and asthma. Seeing patients in their home setting made it
acutely clear to me that the environment has a profound effect on individual health status. I also
witnessed first-hand the limitations to performing health-promoting behaviors that result from
society-level factors such as neighborhood, access to care, education, and transportation. |
subsequently developed a dissertation proposal aimed at studying mechanisms underlying
cardiovascular risk in South Asians, an ethnic group disproportionately afflicted with elevated
cardiovascular risk. This research has resulted in an enhanced description of the specific risk
profile of South Asians living in the United States, contradicted a commonly held paradigm for
the pathophysiologic mechanisms underlying cardiovascular risk in this population, and provided
the first description of microRNA expression in peripheral blood in individuals with the common

atherogenic dyslipidemia risk phenotype.



CHAPTER 1
INTRODUCTION

Over the past three decades, the debate regarding the role of nature versus nurture in
disease etiology has given way to more complex models that accommodate a larger number of
causal pathways and allow for interactions between risk factors on many levels. These pathways
include both individual and environmental level factors, and incorporate the influences of both
nature and nurture into a single comprehensive model. The examination of known environmental
causes of disease, coupled with the recent scientific advances allowing for rapid and affordable
detection of genetic variation, are improving our understanding of the individual and combined
roles of genetic predisposition and environmental influences on cardiovascular disease.
Interactions, including those occurring between an individual’s psychosocial and physical
environment and their unique genetic “makeup,” are now accepted to have an important role in
nearly all cardiovascular disease conditions and underlying biological processes.

Chapter 2 introduces the theoretical framework for this body of work. Unaccounted for
gene-environment interactions are hypothesized to be a common alternative explanation for
paradoxical findings about the etiology and prevention of cardiovascular disease. Environmental
exposures can increase or decrease the effect of genetic predisposition, and vice versa. Lifestyle
interventions to prevent and treat cardiovascular disease and its risk factors are in part
unsuccessful because of incomplete understanding of the underlying biology of the disease and
how manifestation of a disease is moderated by the environment. Thus, increasing the
effectiveness of interventions may be possible through a more comprehensive understanding of
the biology of cardiovascular disease, including interactions between genetic predisposition and
environmental components such as lifestyle and behavioral variables.

One pathway to improving cardiovascular risk reduction is through community-based
interventions like health coaching. Health coaching is a tool to engage patients in their health

behaviors. As opposed to the traditional method of health care providers prescribing behavioral



recommendations, which is widely shown to result in poor adherence, coaching engages the
patient in the process of recognizing their readiness to adopt new behaviors, reasons for
ambivalence, and engaging in behavior change. Although previous studies of coaching
interventions have been primarily conducted in Caucasian populations, there is growing interest
in assessing the efficacy of this type of intervention for decreasing cardiovascular risk in other
ethnic groups. The effects of ethnicity on health are complex, and likely arise from both genetic
characteristics of individual ethnic groups and common cultural practices. Gene-environment
interactions are almost certainly at play. One approach to cultural modification of a coaching
intervention is to incorporate behaviors and beliefs common to a specific ethnic group. Chapter 3
describes an example of a culturally tailored community-based program aimed at reducing
cardiovascular risk in South Asians. This program provides individualized, culturally specific
dietary, physical activity, and stress reduction recommendations, and encouragement of behavior
change and improvement in modifiable cardiovascular risk factors through regular discourse
between participants and individually assigned coaches.

Compared to other ethnic groups, South Asians have at least two-fold increased risk for
cardiovascular disease, making primary prevention of paramount importance in this population.
Increased risk has been observed in both native and immigrant populations, and onset of risk
factors and cardiovascular events often occurs as much as a decade earlier than in other ethnic
groups, indicating that genetic predisposition plays a significant role. South Asians represent an
increasingly large proportion of the United States population, with the highest concentrations
living in urban areas. As described in greater detail in Chapter 4, many South Asians residing in
the United States are first generation immigrants with a number of demographic characteristics
that are typically protective from disease risk, such as marriage and a high level of education. Yet
this group appears to have equal frequency of cardiovascular risk factors as the multi-ethnic

United States population.



The causes underlying this risk are not fully understood, however atherogenic
dyslipidemia, characterized by low level of high-density lipoprotein cholesterol (HDL-c)
accompanied by elevated triglycerides, occurs far more commonly than other traditional
cardiovascular risk factors (i.e., elevated low-density lipoprotein cholesterol, elevated blood
pressure). Atherogenic dyslipidemia is associated with impaired insulin metabolism, leading to
hyperglycemia and the development of type-2 diabetes. The clustering of these metabolic
abnormalities, with or without the addition of hypertension, is termed Metabolic Syndrome. The
underlying strata for development of Metabolic Syndrome is a topic of debate. Previous
definitions of the Metabolic Syndrome necessitated abdominal obesity (measured by waist
circumference) accompanied by at least two of four additional risk factors (low HDL-c, elevated
triglycerides, elevated blood glucose, elevated blood pressure). More recently, a consensus
statement from a number of national and international organizations defines the condition as three
of the five risk factors listed above, without the prerequisite of abdominal adiposity.

Further complicating the picture, measures of adiposity may not perform equally well
across ethnic groups. Asian populations appear to have a higher proportion of harmful visceral
abdominal fat that is not readily measured by common measures of adiposity such as waist
circumference. The relative excess of visceral adipose tissue compared to subcutaneous adipose
tissue is hypothesized to be a mechanism by which South Asians are particularly susceptible to
the development of metabolic abnormalities. As described in Chapter 5, we found evidence to the
contrary, showing a significant proportion of overweight and obese individuals of South Asian
ethnicity are metabolically normal, while multiple metabolic risk factors frequently occur in
normal weight individuals. Thus the mechanisms underlying cardiovascular risk in this ethnic
group may be unique and have yet to be fully elucidated.

Although South Asians are particularly susceptible to cardiovascular disease, and a
common risk phenotype is present, the condition is still complex and undoubtedly arises from a

combination of both genetic and environmental risk factors. As described in detail in Chapter 6,



microRNA (miR) are small molecules that mediate the relationship between the demands placed
on an organism by the environment and expression of genes. Commonly categorized as an
epigenetic mechanism, miR cause changes in gene expression and ultimately the phenotype
without a requisite alteration of the underlying genetic code, and are hypothesized to regulate the
development of complex chronic conditions like the metabolic syndrome. Preliminary data
suggest a role for miR in the development and progression of obesity, dyslipidemia, elevated
blood pressure, and impaired glucose metabolism. These observations beg the question of
whether studies of miR may begin to disentangle the interplay between genetic predisposition and
environmental exposures in the onset and progression of cardiovascular risk factors.

MIiR are the subject of great interest, as they have potential to provide novel insights into
mechanisms of disease, and have tremendous clinical translational potential. There are three
implications for miR in clinical practice: (1) measurement of risk for significant clinical
outcomes; (2) assessment of expression before and after risk reduction interventions (e.g.,
medication, diet, physical activity) to determine whether expression is differential, and whether
miR are biomarkers for changes in clinical risk profile; and (3) as an intervention via either
inhibition of endogenous miR or augmentation of miR levels with synthetic mimics. All three are
relevant to cardiovascular risk factors, including atherogenic dyslipidemia. Prior studies provide
strong support for the latter two applications, with exciting translational findings showing
significant changes in cholesterol levels in large primates treated with a miR inhibitor. However
to date, there is a dearth of research on miR as a biomarker for cardiovascular risk humans.
Studies of this nature are the logical precursor to conduct of intervention studies in which miR are
used as measures of response or as the intervention itself.

Standards for accurate and precise measurement are an important consideration in studies
of miR expression, and are described in Chapter 7. The first level is collection from an
appropriate tissue source and preservation of unstable miR molecules. They highly dynamic and

specific nature of miR means that expression is variable between tissue types within a single



organism. Although measurement of miR from liver, for example, might be useful for
understanding mechanisms of dyslipidemia, accessing human liver tissue is invasive and incurs
health risk. However, blood, being a signaling medium that is routinely accessed in clinical care
with minimal risk, is a realistic candidate for translational studies of miR expression. The second
step is isolation of miR from other cellular components and larger RNA molecules. Once miR of
acceptable quality and quantity is obtained, there are three common methods by which it can be
guantified: Northern blot, quantitative polymerase chain reaction (QPCR), and microarray. Each
method has strengths and weaknesses that are described in chapter seven. The selected
measurement method also has implications for analysis, including standardization of starting
quantity of miR isolated from tissue, and adjustment for comparison of up to 1,000 discrete miR
species.

Chapter 8 describes a study comparing miR expression in blood between individuals with
and without cardiovascular risk factors. Based on the finding that atherogenic dyslipidemia, with
or without abdominal adiposity, is the most common cardiovascular risk phenotype in South
Asians, this was selected as the phenotype of interest to begin investigating the role of miR in this
unique population. The study utilized array-based methods to screen blood for prevalent and
differentially expressed miR, followed by qPCR validation of targets with biologically plausible
function. Eighty-five miR targets were screened, and 16 (19%) displayed at least two-fold
differential expression that was statistically significant. Of those, expression differences were
validated for three miR that likely target genes regulating lipid metabolism: miR-106b, miR-125b,
and miR-21. The findings of this study support the hypothesis that miR expression in blood is a
biomarker for cardiovascular risk factors. Future directions include delving into the specific
molecular pathways targeted by these miR, longitudinal studies with repeated measures of miR
expression and cardiovascular risk factors, and measuring miR before and after risk reduction

interventions.
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Abstract

Background: Historically, models to describe disease were exclusively nature-based or nurture-based. Current theoretical models for complex
conditions such as cardiovascular disease acknowledge the importance of both biologic and non-biologic contributors to disease. A critical
feature is the occurrence of interactions between numerous risk factors for disease. The interaction between genetic (1.e. biologic, nature) and
environmental (i.e. non-biologic, nurture) causes of disease is an important mechanism for understanding both the etiology and public health
impact of cardiovascular disease.

Objectives: The purpose of this paper is to describe theoretical underpinnings of gene—environment interactions, models of interaction,
methods for studying gene—environment interactions, and the related concept of interactions between epigenetic mechanisms and the
environment.

Discussion: Advances in methods for measurement of genetic predictors of disease have enabled an increasingly comprehensive
understanding of the causes of disease. In order to fully describe the effects of genetic predictors of disease, it is necessary to place genetic
predictors within the context of known environmental risk factors. The additive or multiplicative effect of the interaction between genetic and
environmental risk factors is often greater than the contribution of either risk factor alone.

© 2011 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Keywords: Confounding:; Environment and public health; Gene expression; Genetic variation; Methods; Phenotype

1. Introduction lifestyle and behavioral change. Although progress has been

made in treating cardiovascular disease and its risk factors,

Health promotion and disease prevention is a primary
component of nursing practice. The cardiovascular disease
pandemic necessitates that nursing practice focuses on
prevention and treatment of cardiovascular disease through
risk assessment and stratification, and risk reduction through
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the prevalence of this largely preventable condition world-
wide remains unacceptably high.

Over the past three decades, the nature versus nurture
debate over disease etiology has given way to more complex
models that accommodate a larger number of causal pathways
and allow for interactions between risk factors on many levels.
These pathways include both individual and environmental
level factors, and incorporate the influences of both nature and
nurture into a single comprehensive model. The examination
of known environmental causes of disease, coupled with the
recent scientific advances allowing for rapid and affordable
detection of genetic variation, is advancing our understanding
of the individual and combined roles of genetic predisposition

2011 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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and environmental influences on cardiovascular disease.
Interactions, including those occurring between an individ-
ual’s psychosocial and physical environment and their unique
genetic “makeup,” are now accepted to have an important role
in nearly all cardiovascular disease conditions and underlying
biological processes.

Unaccounted gene—environment interactions are hypothe-
sized to be a common alternative explanation for paradoxical
findings about the etiology and prevention of cardiovascular
disease [1]. Environmental exposures can increase or decrease
the effect of genetic predisposition, and genetic predisposition
can modify the effects of the environment [2,4]. Lifestyle
interventions to prevent and treat cardiovascular disease and its
risk factors are in part unsuccessful because of incomplete
understanding of the underlying biology of the disease and
how manifestation of disease is moderated by the environ-
ment. Increasing the effectiveness of interventions may be
possible through a more comprehensive understanding of the
biology of cardiovascular disease, including interactions
between genetic predisposition and environmental compo-
nents such as lifestyle and behavioral variables. The aim of this
paper is to describe theoretical underpinnings supporting the
interaction between genetics and the environment and the
onset and progression of cardiovascular disease.

2. Gene—environment interactions

Evidence supports the existence of gene—environment
interactions for nearly every disease condition, including
mental health disorders [5,6], cardiovascular and metabolic
disease [7-12], infectious disease [13,14], and trauma and
injury [15]. While the field of quantitative genetics aims to
identify specific gene loci responsible for disease, genetic
epidemiology places what is known about genetic predictors of
disease in the context of a population, searching for mechanisms
of disease that include both genetic predisposition and
environmental factors. The purposes of studying gene—
environment interactions are to understand the complete
etiology of a disease inclusive of multiple discrete and
interacting pathways, and to determine the public health impact
of individual factors within a specific population so that
interventions can be designed to maximize health and minimize
disease.

When an interaction between the genotype and environ-
mental factors is present, this interaction is said to exert a
main effect on the likelihood of developing disease.
Additional marginal effects result from the independent
contributions of the genotype and the environmental factors.
Studies of genetic determinants of disease or environmental
risk factors for disease are often designed to assess marginal
effects only; however in many cases, the main effect of the
interaction is hypothesized to be a far greater contributor to
disease than either marginal effect alone [1]. Inconsistent and
inconclusive findings from studies of the marginal effects of
genetic determinants of disease are common. Failure to
identify the presence of a gene—environment interaction with

significant main effects is a likely alternative explanation for
incongruous findings [1].

2.1. Models of interaction

There are two commonly discussed types of interaction:
statistical and biologic [3]. Statistical interaction is strictly a
mathematical phenomenon, in which the measured effects of
one variable depend on the level of a second variable. By
contrast, biologic interaction refers to the intersection of what
are considered to be discrete pathways relevant to the
maintenance of homeostasis or even the onset and progression
of a physiologic condition. Both of these concepts are central
to consideration of gene—environment interactions. Because
the aim of studying gene—environment interactions is to
discover new mechanisms of disease or describe the causes of
deviation from expected expression of disease, biologic
interaction is the very definition of gene—environment
interaction. In order to quantify the presence of biologic
interaction and make meaningful inferences about observa-
tions of interactions, incorporation of statistical interaction
should be included during data analysis in order to accurately
model the true underlying condition.

Gene—environment interactions can be either complementa-
ry or antagonistic [16]. In the case of complementary
interactions, both factors (Le. environmental exposure and
genetic predisposition) work in the same direction on disease
risk. For example, an allele for the familial hypercholesterolemia
(FH) gene might increase susceptibility to atherosclerosis by up-
regulating the production of low-density lipoprotein cholesterol,
and high intake of saturated fat may increase the likelihood of
atherosclerosis by increasing low-density lipoprotein cholester-
ol levels. These two factors act in complement to increase an
individual’s risk of developing atherosclerosis. In contrast,
antagonist interaction occurs when the direction of effect of two
variables opposes each other. In the case of hypertension,
carrying one of the known risk alleles for essential hypertension
will increase an individual’s likelihood of developing high
blood pressure, whereas engaging in moderate physical activity
most days of the week exerts the opposing effect of decreasing
lifetime risk of hypertension.

2.1.1. Gene-gene interactions

Implicit in the definition of multi-factorial traits is that
risk factors, be they environmental or genetic, can interact.
The interaction of two or more genes is termed epistasis.
Procedurally, studying gene—gene interactions is similar to
studying gene—environment interactions. Although epistasis
is related to gene—environment interactions and shares
underlying principles, it is beyond the scope of this paper,
and will not be discussed in further detail. An excellent
review of epistasis can be found elsewhere [17].

2.1.2. Gene—environment correlations
A similar but distinct phenomenon from gene—environment
interactions is gene—environment correlations. Correlations

ejenurse.2011.06.001
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occur when a genetic marker is highly associated with, and
possibly causal of, a behavioral characteristic or exposure that
predisposes the outcome of interest [18]. A thorough
description of work describing gene—environment correla-
tions, including clinical examples, can be found elsewhere

[19].
2.2. Models of disease risk

The risk of disease in the presence of environmental and
genetic risk factors can be depicted using a classic 2 x 2 table
(Table 1). For simplicity, we consider both environmental
and genetic predictors and the disease outcome to be
dichotomous. When genetic and environmental risk factors
interact, four scenarios are possible (Table 2).

There are two primary mathematical models of risk that
describe the relationship between multiple predictors of
human disease: additive and multiplicative. Additive models
assert that the effects of each predictor are summed in order
to determine an individual’s likelihood of disease. Predictors
can still be complementary or antagonistic, however the net
effect of all predictors is the sum of each predictor’s effect on
the disease outcome. In the case of gene—environment
interactions, the effect of the environment depends on the
genotype of an individual [2], and a statistical interaction is
considered to be present when there is departure from the
simple additive model [4]. We can return to the atheroscle-
rosis example from above and assume a simplified scenario
in which there are only two predictors of disease: saturated
fat intake and the FH risk allele (this example is chosen for
simplicity only, and the following discussion does not
encompass the entirety of biological mechanisms describing
atherosclerosis risk). If no interaction is present, then an
individual’s relative risk of atherosclerosis (RR,) is equal to
the risk associated with their FH genotype (RR,) plus the risk
associated with their saturated fat intake (RR.), which can be
expressed mathematically as RR,=RR,+RR,. Note that the
mathematical term in this equation can be addition or
subtraction, depending on whether the two effects are
complementary or antagonistic. If an interaction is present,
then a person who has a high saturated fat intake with no

Table 1
Effects of genetic and environmental risk factors on relative risk of disease
(RR)™".

High risk High risk

genotype present genotype absent
Environmental risk factor present RRge > 1 S RR.>1°¢
Environmental risk factor absent RR,>1° RR=1¢

* Assumes a simple scenario in which the exposure and the genotype are
dichotomous and result in a synergistic effect of both factors to increase the
risk of disease.

b Adapted from Ottman, R. (1996). Gene—environment interaction:
definitions and study designs. Prev Med, 25(6), 764-770.

© A relative risk of one is the level of risk for the general population.

Table 2
possible interaction effects between multiple risk factors on relative risk of
disease (RR) "

Model of disease risk

Additive Multiplicative

No interaction RR,=RR +RR.~1 RR,=RR *RR.~1
Complementary interaction  RR,.>RR,+RR.—1 RR,>RR,*RR.—1
RRu.<RR,+RR.—1 RRu<RR,;*xRR.—1

Antagonistic interaction

RR; = relative risk of disease when genetic risk factor is present.
RR, = relative risk of disease when environmental risk factor is present.
RR,, = relative risk of disease when both genetic and environmental risk

factors are present.
* Adapted from Ottman, R. (1996). Gene—environment interaction:
definitions and study designs. Prev Med, 25(6), 764-770.

copies of the risk allele will have a relative risk for
atherosclerosis equal to the harmful effect of saturated fat
(RR,=RR,). However, for an individual who does carry the
FH risk allele, the risk of saturated fat may no longer be
significant, and atherosclerosis relative risk will be equal to
the risk of the FH risk allele (RR,=RR,). In the presence of
an interaction, the risk for atherosclerosis associated with
saturated fat depends on FH genotype.

In contrast, multiplicative models assert that the effects of
the genotype depend on the environment [2]. In the presence
of a biologic interaction, departure from the multiplicative
model will be observed [4]. If we apply a multiplicative model
to the dichotomous atherosclerosis example for gene—
environment interaction and again simplify to assume only
two predictors, we can say that the effect of the FH risk allele
depends on saturated fat intake. If no interaction is present,
then an individual’s relative risk of developing atherosclerosis
is equal to the sum of the risk associated with their FH
genotype and the risk associated with their saturated fat intake
(RR,=RR,+RR,). In the case of an interaction, the effect of
the FH risk allele will depend on saturated fat intake. For an
individual who consumes a large amount of saturated fat,
carrying the FH risk allele would have no effect on the risk of
atherosclerosis (RR,=RR, x RR,).

An alternative example for a continuous trait is blood
pressure in individuals who experience a high level of
autonomic stimulation during the workday (e.g. firefighters,
air traffic controllers). An individual with no genetic
predisposition to hypertension may have a normal blood
pressure (e.g. 110/70 mmHg) even in the presence of a high
level of autonomic stress. In contrast, the blood pressure of
an individual who is genetically predisposed to hypertension
will depend on the level of autonomic work-related stress. In
the absence of autonomic stress, the relative risk of
hypertension (RR,) is equal to the genetic risk for
hypertension (RR,=RR,), which may result in a moderately
elevated blood pressure (e.g. 145/90 mmHg). For the
individual who is genetically predisposed to hypertension
and exposed to a high level of work-related autonomic stress,
the relative risk of hypertension could be multiplicative
(RR,=RR_*RR,), and blood pressure may be significantly
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elevated beyond the expected effects of either risk factor
alone (e.g. 180/100 mmHg).

The choice of which model to consider depends on two
primary considerations. Although a comprehensive discussion
of model selection is available elsewhere [20], each will be
summarized briefly here. The first is the biologic relationship
between the predictors. Commonly, when two predictors act
on the same pathway, a simple additive model is assumed
[20]. Conversely, when two factors are thought to act on
discrete physiologic pathways, the effect is often more than
additive, and a multiplicative model is assumed [3,20]. In
addition, the research question and aim of a study determine
how a model is selected [2,20]. In the development of
predictive models of disease for public health purposes and
clinical decision-making, the underlying mechanisms of
disease are not as important as the predictive capability of
observable risk factors. In this scenario, an additive model that
includes surrogate non-causal markers' will often suffice [3].
For studies of disease etiology, the aim is to understand the
mechanisms by which disease is occurring, and multiplicative
models may be necessary in order to correctly specify the
relationship between predictors [3,20]. Often statistical
modeling of both additive and multiplicative relationships is
performed in order to determine the possible implications of
model misspecification. In the case where additive and
multiplicative models do not differ, the additive model is
usually selected for simplicity and ease of interpretability.

2.2.1. Timing and spectrum of exposure

The occurrence of a gene—environment interaction is
dynamic. As a result of changes in both gene expression and
environmental exposure, interactions can occur at one time-
point during the lifespan, periodically throughout life, or for
longer durations. With regard to genetic exposure, a copy of
the full genome is present in every cell of an organism;
however not all genes are expressed at all times. Numerous
genes are involved only during development and maturation,
and once the adult stage is reached, expression of these genes
is silenced. In contrast, some genes are only expressed in
response to an environmental exposure or trigger. For
example, a traumatic event such as a fracture will prompt
localized expression of genes involved in inflammation and
bone growth and remodeling that are not normally expressed
in healthy osteocytes. Thus, the timing of an exposure can
determine whether a gene—environment interaction occurs.

An organism’s environment is typically in a state of
constant flux. For humans, environmental factors can change
throughout the day as well as over the course of a lifetime.
Returning to the example of blood pressure and autonomic
stimulation, work-related stress exerts immediate effects on
hemodynamics and inflammatory processes, and individuals

' A known genetic locus or environmental measure that is not directly
causal of disease but highly correlated with the causal region or exposure.
Surrogate markers may be selected for reasons of cost or ease of
measurement.

who are genetically predisposed to hypertension may be
more likely to experience elevations in blood pressure during
stressful work hours. In the case that this stress resolves at
the completion of the workday, some physiologic phenom-
ena, (e.g. hemodynamics) may return to a non-stressed
baseline state, whereas others, (e.g. inflammation-induced
damage to the arterial wall) are permanent. Repeated
exposure to the environmental stimuli can result in
cumulative permanent physiologic changes.

Alternatively, some individuals are exposed to second-
hand cigarette smoke during childhood, and subsequently
this exposure is removed from the environment during
adulthood. Others will grow up in a smoke free environment
but then partner with a smoker of cigarettes during
adulthood. The effects of secondhand smoke exposure may
differ for the developing pediatric vascular endothelium
compared to adult vascular endothelium, and irreversible
damage could occur during a critical developmental period
that will not affect the adult exposed to second-hand smoke
in the same way.

The spectrum of both genetic and environmental
exposures can also determine whether an interaction occurs.
Genetic dose is variable between individuals, and the
individual’s genotype will affect the level of exposure:
some genes have dominant and recessive patterns of
inheritance while others are co-dominant [21]. For the
dominant inheritance pattern, an individual will be affected if
they carry just one copy of the risk allele, whereas the
recessive pattern of inheritance requires two copies of a risk
allele for an individual to be affected. In the case of co-
dominance, differing alleles for a given gene are equally
expressed. Similarly, differing doses of environmental
exposures exert differing effects. In some cases, there 1s a
threshold effect in which no adverse consequences are
observed until a threshold level of exposure is reached. In
other cases, environmental exposure is continuous, and
increasing doses will exert a linear increase in harmful or
protective effects. Thus, quantifying the dose of both genetic
and environmental exposure is important in order to detect
the presence of gene—environment interactions.

2.3. Methodological issues

2.3.1. Study design

There are three primary epidemiologic study designs that
are appropriate for studies of this nature: cohort, cross-
sectional, and case-only (Table 3). The selection of study
design depends on the aim of the study (i.e. investigations of
disease etiology compared to assessing the impact of
environmental exposure in the context of genetic predispo-
sition), what is known about genetic determinants of the
outcome of interest, the prevalence and/or incidence of the
disease, and the resources required to perform the study.
Prospective population-based cohort studies are the gold
standard for gene—environment interaction studies, offering
substantially decreased risk of measurement error and
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Table 3

Gene—environment interaction study designs.

Study design Features Pros Cons

Cohort ® Selection of sample occurs ® A priori knowledge of causal * Time—consuming

before onset of disease
(case status unknown at outset of study)
® Longitudinal follow up of entire sample

of environmental exposure
Decreases likelihood of survivor

regions of the genome not required
® Can infer causal relationships
between exposure and outcome
® Accurate measurement timing

(often requires years of follow-up time)
Expensive

Require extremely large

sample sizes to study rare

or heterogeneous conditions

and recall biases

Case—control ® Purposeful sampling of
individuals with outcome of
interest and controls typically
matched on pre-specified criteria

® Can be cross-sectional or longitudinal

Inereased power to

study rare conditions

® A priori knowledge of
causal regions of the genome
not required

Less expensive and

Cannot make causal inferences
with cross-sectional time-frame

Difficult to determine selection
criteria for appropriate controls
Possible confounding due to
population stratification

time-consuming than
cohort design

Case-only ® Sample consists of only individuals
known to have outcome of interest

® (Case status determined by genotype
(presence of known genetic determinants
of disease)

Highly useful for studies

of gene—environment interaction
Smaller sample size often possible
Eliminates problem of appropriate
control selection in case—control design
® Less expensive and time consuming
than cohort design

Requires knowledge of causal
regions of the genome
Does not allow for estimation of

the main effects of environmental
and genetic exposure
Cannot make causal inferences

with cross-sectional timeframe

subsequent bias, however they are generally extremely
resource-intensive [22]. The classic case—control design can
also be used for studies of gene—environment interactions,
but are more susceptible to confounding compared to other
study designs. For genetic association studies and gene—
environment interaction studies, controls can be selected
from among family members, which typically decreases the
potential for confounding due to population stratification and
can increase the power to detect an effect, but can result in
the detection relationships that are less relevant at the
population level [22,23]. A modification of the classic case—
control design that is well suited to studies of gene—
environment interactions is the case-only design. In case-
only studies, inclusion criteria limit sample selection to
individuals with the outcome of interest [24,25]. A limitation
of the case-only design is that a priori knowledge of causal
regions of the genome is required. A complete discussion of
study designs appropriate for investigation of gene—
environment interactions is available elsewhere [22-25].

2.3.2. Measurement

For studies of gene—environment interactions, the most
common sources of measurement bias arise from mis-
classification of both environmental and genetic exposure.
As discussed above, environmental exposures can vary
over the course of a lifetime, which poses a challenge to
accurate measurement (i.e., recall bias, biomarker stabili-
ty). In some instances, individuals with a disease may be
more likely to recall and/or report exposure because of their
disease, resulting in differential misclassification and thus
biased estimates of association and interaction [26,27].

Genotype is also subject to misclassification. When
stringent quality control standards are implemented during
laboratory analysis, the likelihood of misclassification is
diminished for studies of relatively rare disorders (e.g.,
phenylketonuria) for which functional polymorphisms in
single genes can be quantified [2.4]. However for disease
conditions that are multifactorial, the principle of linkage
disequilibrium is often exploited in order to identify
regions of the genome that are associated with the outcome
of interest. Genotype measurement by linkage disequilib-
rium is efficient and decreases genotyping costs. The
principle of linkage disequilibrium is dependent on
population substructure, or sub-populations determined
by geographic ancestry that have shared common allele
frequencies. The correlation between a region of the
genome and an outcome is a group-averaged statistic for
a given sub-population, which can result in misclassifica-
tion of the genotype for an individual if they differ from the
group norm [2.4]. When cases and controls are sampled
from the same study base (sub-population), this type of
misclassification is likely to occur with equal frequency,
which will not result in biased estimates of association, but
may decrease the likelihood of detection of a true
interaction [26,27]. The least accurate method of quanti-
fying genetic exposure is family history, which is also
subject to misclassification as the actual genotype of the
individual in unknown, and recall of family history can be
incorrect [2,4]. Similar to recall of environmental exposure,
accuracy of recall of family history may be differential
between cases and controls, resulting in biased measures of
association and interaction [26,27].
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2.4. Epigenetics and gene—environment interactions

Epigenetics is the study of mechanisms that result in
changes to the phenotype or appearance of an organism that
do not result from underlying changes to the genetic
sequence. Commonly studied epigenetic mechanisms can
affect the DNA, as in the case of DNA methylation® or
histone acetylation,” or post-transcriptional modifications
such as microRNA* regulation of gene expression. Tradi-
tional gene—environment interactions occur when the protein
encoded by a particular gene interacts with an environmental
exposure. Similarly, expression of a gene can be affected by
exposure to an environmental factor, resulting in silencing or
increased or decreased expression of a gene that may persist
due to lasting but potentially reversible changes. For
example, exposure to tobacco smoke may result in up-
regulation of genes associated with platelet activation, and
increased expression of these genes will persist while
tobacco smoke is present at regular intervals. However,
when this stimulus is removed for an extended period of
time, epigenetic up-regulation of inflammatory genes will
cease, and platelet activity will return to a normal, healthy
physiologic state. In contrast, concomitant changes in genes
mediating inflammation may not return to baseline due to
changes in DNA methylation or histone acetylation. With
regard to platelet activation, the deleterious effects of
exposure to tobacco smoke are reversible; however for
inflammation, there can be long-lasting or permanent
alterations in genes expression, resulting in cumulative
physiologic damage over the lifespan. The same principles
that apply to gene—environment interactions, including
timing and spectrum of environmental exposure, apply to
interactions between epigenetic mechanisms and environ-
mental exposures.

3. Conclusion

Humans exist within a dynamic environment and are
subject to factors exerting effects on health outcomes on a
number of levels. The current paradigm for understanding
causes of cardiovascular disease within a complex system
suggests that these conditions are rarely, if ever, the result of
a single causal factor. The conceptual frameworks underly-
ing cardiovascular disease postulate that these conditions
oceur in the presence of numerous genetic and environmen-
tal risk factors, that interactions between these factors occur
on several levels, and that these interactions account for
significant primary effects on the likelihood of disease
occurrence [1,28,29]. In some cases, an interaction between
individual gene loci and environmental exposure is believed

2 Addition of a methyl group to DNA that silences expression of some
genes.

* Changes to the protein-DNA folding structure that prevent transcription
of select regions of the genome.

* Small interfering RNA molecule that represses transcription of a
messenger RNA sequence preventing polypeptide formation.

to have a greater effect than the individual marginal effects of
either factor alone [1]. Failing to account for the presence of
a gene—environment interaction can result in incorrect
conclusions about the etiology of cardiovascular disease,
and is often attributed as a cause of incongruous study
findings.

Gene—environment interactions have important implica-
tions for both nurse-clinicians and nurse-researchers.
Worldwide, a current emphasis of nursing practice is to
identify and treat individuals suffering from cardiovascular
risk factors in order to prevent the onset and sequelae of
cardiovascular disease. Throughout the twentieth century,
nursing practice has focused largely on behavioral in-
terventions and modification of the environment. The
genomic era of healthcare both facilitates and necessitates
that nurses also understand genetic predisposition for
cardiovascular disease, and most importantly, place genetic
predisposition within the context of an individual's
environment.
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CHAPTER 3
A CULTURALLY SPECIFIC HEALTH COACHING PROGRAM TO REDUCE

CARDIOVASCULAR RISK IN SOUTH ASIANS

Background

Health coaching is a tool to engage patients in their health behaviors. As opposed to the
traditional method of health care providers prescribing behavioral recommendations, which is
widely shown to have poor adherence, coaching engages the patient in the process of recognizing
their readiness to adopt new behaviors, reasons for ambivalence, and engaging in behavior
change (1). The use of health coaching has been shown to be an effective strategy for reducing
cardiovascular risk factors. A large randomized control trial in Australia found that telephone-
based coaching by health personnel (hurses and dieticians) was effective at decreasing total
cholesterol and other cardiovascular risk factors after one year compared to the usual care group
(2). The coaching program was an iterative process of developing and executing a plan for
behavior change (i.e. diet and physical activity), and did not directly involve prescription of
medications (2). A randomized control trial in the United States provided a similar intervention
delivered by nurse practitioners and community health workers, with incorporation of aggressive
medication management, and also found significant improvement in cardiovascular risk factors in
the intervention group (3). Preliminary evidence suggests that coaching strategies are also
effective in management of related disease conditions, including type 2 diabetes (4) and obesity
(5), and studies to determine the efficacy and required intensity of coaching interventions are

ongoing (6, 7).
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Compared to other ethnic groups, South Asians have at least two-fold increased risk for
cardiovascular disease (8), making primary prevention of paramount importance in this
population. Increased risk has been observed in both native and immigrant populations (9), and
onset of risk factors and cardiovascular events often occurs as much as a decade earlier than in
other ethnic groups (10, 11). The Indian sub-continent was projected to account for 60% of global
cardiovascular burden by 2010 (9), and South Asians in the United States and Europe have a
disproportionately high prevalence of cardiovascular risk factors (12, 13), despite the presence of
protective demographic factors (14). In India, the cost of cardiovascular medications alone is
estimated to be $450 million per year, with a projected cost of $3.8 billion annually if optimal
therapy was achieved (15). Coaching performed by non-medically trained personnel is a
promising and cost-effective complement to medical treatment for primary prevention of risk
factors for cardiovascular disease.

Previous studies of coaching interventions have been primarily conducted in Caucasian
populations (2, 16). There is growing interest in assessing the efficacy of this type of intervention
for decreasing cardiovascular risk in ethnic sub-groups (4, 17), however to our knowledge, no
prior studies have conducted a coaching intervention in the high risk South Asian population.
Further, there is a paucity of evidence on the effect of providing culturally specific coaching that
is tailored towards an individual’s typical dietary and lifestyle patterns. The South Asian Heart
Center has developed a coach-based cardiovascular risk reduction intervention called Heart
Health Coaching. The aims of this intervention are two-fold: (1) to provide individualized,
culturally specific dietary, physical activity, and stress reduction recommendations, and (2) to
encourage behavior change and improvement in modifiable cardiovascular risk factors through
regular discourse between participants and individually assigned coaches. The purpose of this
paper is to describe the Heart Health Coaching intervention and report the number and

characteristics of participants enrolled over five years.

15



Methods
Setting and Sample

The South Asian Heart Center, located at a community hospital in the Bay Area region of
California, is a primary prevention program aimed at reducing cardiovascular risk in South
Asians. Participants are recruited to the program through outreach events at community centers
and corporations, physician referral, and word-of-mouth. Adults who self-identify as South Asian
are eligible to undergo the cardiovascular disease risk screening process and participate in the
coaching program.
Baseline Data Collection

Participants indicate their interest in the program by self-registering on the South Asian
Heart Center’s internet-based database. The initial screening consists of three components: Heart-
Health Risk Assessment questionnaire, anthropometric measurements, and laboratory testing
(Figure 1). The questionnaire consists of 70 questions regarding demographics, personal and
family medical history, and behavioral and lifestyle information, and is obtained by via scripted
telephone interview between the participant and a volunteer coach. This is a pre-scheduled
conversation, lasting approximately 30 minutes. Trained staff members complete anthropometric
measurements (height, weight, and waist circumference) and blood pressure and heart rate.
Laboratory measurements are performed by Berkeley HeartLab (Alameda, CA) and include
advanced lipoprotein testing, including low density lipoprotein cholesterol (LDL-c) sub-fractions,
high density lipoprotein cholesterol (HDL-c) sub-fractions (segmented gradient gel
electrophoresis), Apolipoprotein-B and Lipoprotein (a) (immunoturbidimetric assay), and other
biomarkers associated with cardiovascular risk, including glucose, insulin, fibrinogen,
homocysteine, and C-reactive protein. Participants pay insurance co-pay or subsidized full cost of
the laboratory testing, depending on individual insurance coverage. At this initial visit,

participants are asked if they would like to provide informed consent to participate in research.
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All data reported here were obtained under the approval of the EI Camino Hospital Institutional
Review Board.
Risk Assessment and Recommendations

The South Asian Heart Center employs a Health Educator/Dietician, who uses the data
collected in the initial questionnaire, labs, and anthropometric measurements to create an
individual risk report. For the highest-risk patients, the Medical Director is also consulted.
Participants return for a 30-minute results and recommendations consultation (Figure 1). During
the results and recommendations consultation, the Health Educator reviews cardiovascular risk
factors and makes specific lifestyle modification recommendations based on the participant’s
current reported diet and physical activity. Dietary recommendations are tailored to the
participant’s typical diet (i.e. South Asian versus Western). Every participant receives a Wellness
Packet, providing information about nutrition, exercise, Type-A behavior modification, smoking
cessation, Transcendental Meditation, and yoga. It also includes information on wellness
programs offered in the local community. Although recommendations are individually tailored,
the overall goals for diet are consumption of at least three fruits per day and at least four
vegetables per day, and performing at least 150 minutes of physical activity per week. The
physical activity goal is based on the United States Department of Health and Human Services’
recommendation of performing at least 150 minutes of moderate intensity physical activity per
week (18) and the American Heart Association/American College of Sports Medicine
recommendation to perform at least 30 minutes of moderate-intensity physical activity five days
per week (19). Dietary goals are taken from the United States Department of Agriculture and
American Heart Association recommendations to consume 4-5 servings each of fruits and
vegetables each day (20, 21).

At the completion of the results and recommendations consultation, participants are
scheduled for an additional phone consultation with a registered dietitian for further review and

planning, and have the opportunity for a phone follow-up with an exercise physiologist and a
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group orientation with a Transcendental Meditation teacher. A follow-up testing schedule for
laboratory measurements is determined from initial risk profile, ranging from three months to five
years. Results of the baseline screening and the risk assessment are recorded in an internet-based
database that is accessible to the South Asian Heart Center’s staff and coaches. At the consent of
the participant, results are also sent to the primary health care provider. The South Asian Heart
Center does not prescribe medications, however all participants are strongly encouraged to follow
up with their primary health care provider, particularly when medication may be indicated. For
participants with at least one clinical risk factor, the health educator recommends participation in
the one-year coaching program (Figure 1). Participants are provided with information about the
role of the coaches, which includes tracking progress, providing help with overcoming barriers to
making lifestyle changes, assessing adherence, and providing reminders about follow-up blood
tests. The coaching program is provided at no cost to the particpant.
Coaching

The coaching program utilizes volunteer coaches, who either initiate a relationship with
the South Asian Heart Center, or are recruited by current volunteers. Coaches are expected to
commit to a minimum of eight hours per week for one year. Some coaches have previous
experience in healthcare settings, but none are trained healthcare professionals. Coaches attend
training sessions delivered by Berkeley HeartLab clinical personnel, during which multiple case
studies are analyzed and discussed. New coaches are assigned to a mentor who provides one-on-
one training for 1-2 months. Additional training is provided by lectures from experts on health
behavior change and motivation, including curriculum on therapeutic lifestyle changes offered by
the South Asian Heart Center’s Medical Director. Each coach has a caseload of approximately 40
participants. Individuals who opt in to the coaching program are assigned to a coach based on the
level of risk, level of coaching required, and workload distribution.

Participants choose whether they would like to be contacted by their coach via phone or

email. The coaches’ initial contact with a participant occurs 2-4 weeks after the results and
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recommendations consultation (Figure 2). During this initial email or phone call,
participants are asked specific questions regarding their success in incorporating the
Health Educator’s suggested lifestyle changes, and coaches troubleshoot any reported
difficulties. The coaches use several templates and scripts that are then personalized with
relevant details for an individual participant. The South Asian Heart Center Medical
Director and Health Educator compose and review all the information provided to
participants. Coaches record participant responses in progress note format in the internet-
based database.

Depending on the number of risk factors, subsequent communication between
coaches and participants occurs in intervals of every 4-6 weeks or every 3 months for one
year (Figure 2). At each point of contact, coaches continue to assess progress with
behavioral recommendations, help troubleshoot obstacles, and provide encouragement.
Troubleshooting includes identifying reasons why participants are not meeting goals, and
providing alternative suggestions or short-term intermediate goals. For example, a commonly
reported obstacle is lack of time to meet physical activity recommendations. Coaches will suggest
three shorter brisk walks per day as an alternative to a dedicated 30-minute session; if this sounds
difficult, the coach might suggest starting with one short walk per day, increasing to two and then
three after several week intervals. For dietary recommendations, coaches will remind participants
that they will benefit from an increase of one fruit or vegetable serving per day, and similar to
physical activity, will suggest increasing the number of servings again after several weeks of
successfully adding one serving per day. Information collected at each point of contact is
recorded in the internet-based database in the form of coach-assessed level of adherence for five
categories. Four are objective measures (adhering to dietary recommendations, performing
physical activity, performing stress reduction activities, medication adherence (when relevant)),

based on the goal of consuming at least three fruits per day, at least four vegetables per day, and
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performing at least 150 minutes of physical activity per week (Table 1). Coaches subjectively
score the fifth measure, which is overall adherence (Table 1). In the case of non-response by a
participant, the coach makes three contact attempts before the participant is removed from
the coaching program (Figure 2). Documentation of contact attempts is recorded in the
internet-based database.
Follow Up Data Collection

For participants who opt in to the coaching program, the questionnaire is repeated after
one year, again by a scheduled, scripted telephone interview (Figure 1). Participants who were
not eligible or did not elect to engage in the coaching program are also re-contacted after one year,
and a follow-up questionnaire is collected if the participant is willing. Repeated laboratory and
anthropometric measures are offered to all participants on an annual basis.
Statistical Analysis
Descriptive statistics, Student’s t-test, and Chi-square test of independence were performed using

Stata version 11 (College Station, TX).

RESULTS
Participant Flow and Follow-Up

Over five years, 3,287 individuals completed baseline screening, including questionnaire,
anthropometric measurements and blood pressure, laboratory tests, and the results and
recommendations consultation. The great majority, 3,132 (98%) were candidates for the coaching
program. Of those, 2,726 (87%) elected to participate in the coaching program, and 1,359 (50%)
followed through with their participation. Among the non-participants, 112 (8%) dropped out
during the first year, while 1,255 (92%) did not respond to the coaches’ three attempts at contact,

and were therefore removed from the coaching program. Over five years, 1,051 (39%) individuals
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who opted in to the program have completed one year of coaching, and an additional 308 (11%)
are active participants in the first year.

Participant Characteristics

The majority of participants in the coaching program are married (93%) immigrants from South
Asia (92%) with college-level education (96%) in their forties (43 years + 10) (Table 2). Few
participants report a history of cardiovascular disease (3%) or type-2 diabetes (9%), but there is a
very high prevalence of family history of these conditions (cardiovascular disease 37%, type-2
diabetes 57%). The prevalence of smoking is very low (4%). Few participants meet the
recommended daily intake of fruits (17%) and vegetables (9%) or time spent each week
performing physical activity (35%). With the exception of body mass index (26kg/m”+ 5), mean
values for clinical variables are within normal ranges. Consistent with the eligibility criteria for
the coaching program of having at least one cardiovascular risk factor, the coached group had
more abnormal clinical values than the non-coached group. Compared to the coached group, the
non-coached group is less likely to have college level education (90% versus 96%, p<0.05), and
more likely to have been born in the United States (19% versus 4%, p<0.05). The non-coached
group also has a lower prevalence of family history of cardiovascular disease (19% versus 37%,

p<0.05) and type 2-diabetes (29% versus 57%, p<0.05).

Discussion

We described a culturally specific coaching intervention aimed at decreasing
cardiovascular risk in South Asians. A convenience sample of individuals underwent a
comprehensive risk assessment, and those with at least one cardiovascular risk factor were invited
to participate in the coaching program. Accordingly, the group of people who were referred to,
and elected to participate in the program had a higher level of cardiovascular risk than those who
were not eligible or opted out. This program provided coaching by non-medically trained

personnel at regular intervals over the course of one year to facilitate improvement in behavioral
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risk factors, namely diet, physical activity, stress reduction, and medication adherence when
appropriate. We found that a large number of people were interested in and completed the
program, indicating this is a feasible and appealing intervention in this population. Attrition
primarily occurred at initiation of the intervention, and only 4% of participants who enrolled
failed to complete the program. Additional studies with a longitudinal time-frame are needed to
determine whether this intervention is also effective at improving clinical risk factors and
decreasing incidence of cardiovascular disease in the high-risk South Asian population.

To our knowledge, this is the first adaptation of a health coaching model to incorporate
culturally-specific components with non-medically trained coaches, and the first program targeted
the high risk South Asian population. While a general approach to effecting change in behavior
through coaching is effective (22), we do not know if additional improvements might result from
the tailoring of coaching interventions to address specific cultural dietary and behavioral patterns,
or whether interest and adherence of participants would be improved. Cultural specification, or
tailoring, of other health-related interventions, including education, prevention, screening, and
provider communication, has been widely implemented. Strategies to successfully adapt practices
and interventions to be culturally specific continue to be to subject of research. Coaching
interventions can learn from the knowledge base on cultural specificity developed in other health-
related programs, and outcomes data from culturally specific coaching interventions such as the
program described here can add a new and novel facet to this knowledge base.

We found that the non-coached group, who by eligibility definition were at lower risk for
cardiovascular disease, also had a markedly lower prevalence of family history of cardiovascular
disease and type-2 diabetes. This suggests that either genetics or learned familial behaviors, or
likely a combination of both, predispose cardiovascular risk in the South Asian population. The
interaction between genetic predisposition and the environment, including learned behavior, is
increasingly thought to be equally as important as either of these factors alone in the development

of cardiovascular disease and it’s risk factors (23-28). However, this interaction has not been
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specifically studied in South Asians, taking into account culturally specific aspects of diet and
behavior. Interestingly, we also observed that the non-coached group were slightly less likely to
have a college-level education, and more likely to have been born in the United States. While the
impact of these factors on other populations has been studied (29, 30), further research is needed
to disentangle the impact of social determinants of health, such as education level, socioeconomic
status, and immigration, in the South Asian population.

Coaching interventions like the Heart Health Coaching program have the potential for
tremendous cost savings in prevention and treatment of cardiovascular disease. Given the
substantial financial burden of cardiovascular disease, as well as the increasing global incidence,
determining financially sound methods of prevention and treatment are of paramount importance.
As evidenced by the high global incidence and prevalence of cardiovascular disease, current
modalities for prevention, in addition to being costly, have less than desirable efficacy (31, 32). In
contrast, preliminary data from trials of coaching interventions indicate significant improvements
in health, meaning coaching interventions have the dual promise of being effective in both
clinical outcomes and cost measures (2, 4, 5). Longitudinal data are needed to determine whether
coaching strategies can effect long-lasting improvement in health status, and whether these
improvements will be associated with decreased incidence of cardiovascular disease and related

costs.
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Table 1. Adherence Assessment by Coaches

Behavior

Description

DIET AND NUTRITION

No New Input
0-4 Meals/Week
5-17 Meals/Week
> 18 Meals/Week

Participant did not address diet and nutrition questions in responses to coach
Participant is eating 0-4 meals/week in accordance with recommendations
Participant is eating 5-17 meals/week week in accordance with recommendations

Participant is eating more than 18 meals/week week in accordance with recommendations

PHYSICAL ACTIVITY

No New Input
No Routine

1-2 Times/Week
3 Times/Week
4-5 Times/Week
6-7 Times/Week

Participant did not address exercise questions in responses to coach
Participant is not exercising

Participant is exercising 1-2 times/week

Participant is exercising 3 times/week

Participant is exercising 4-5 times/week

Participant is exercising 6-7 times/week

STRESS REDUCTION

No New Input Participant did not address stress questions in responses to coach

None Participant is not interested in practicing recommended stress reduction techniques
Planned Participant is planning to practice recommended stress reduction techniques in near future
Sometimes Participant sometimes practices recommended stress reduction techniques

Mostly Participant often practices recommended stress reduction techniques

Regularly Participant regularly practices recommended stress reduction techniques

MEDICATION

No New Input Participant did not address medication questions in responses to coach

No Change Medications have not changed since last point of contact

No Medication

Participant is not taking any medication

Dosage Change Participant has changed medication dosage

Added Medication Participant has added started taking new medication(s)
OVERALL

Not Assessed Coach did not assess overall adherence

Low (<20%) Low adherence with recommendations

Some (20-80%) Some adherence with recommendations

Mostly (>80%) High adherence with recommendations

No Plan No plan was recommended
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Table 2. Baseline demographic, behavioral, and clinical characteristics

Characteristic Co_aghed Non-Coached Non-_Co_ached
Mean + SD or n (%) Participants Opted Out Ineligible* p-value
B (n =2726) (n = 406) (n=48)
Age (years) 43 +10 43+10 36+11 0.4
Gender (men) 1868 (69) 232 (57) 18 (38) <0.05
Birth country
South Asia 2502 (92) 367 (90) 35 (73) <0.05
United States 96 (4) 23 (6) 9 (19) <0.05
Education
Bachelor’s or higher 2616 (96) 384 (95) 43 (90) <0.05
Married 2525 (93) 368 (91) 40 (83) <0.05
Medical History
Cardiovascular disease 87 (3) 10 (2) 0 (0) 0.3
Type 2 diabetes 233 (9) 35 (9) 1(2) 0.2
Family History
Cardiovascular disease 1082 (37) 159 (39) 9 (19) <0.05
Type 2 diabetes 1392 (57) 205 (54) 13 (29) <0.05
Behaviors
Current smoking 107 (4) 14 (3) 1(2) 0.7
>4 Vegetable servings/day 252 (9) 50 (12) 5 (10) 0.1
>3 Fruit servings/day 473 (17) 82 (20) 12 (25) 0.2
>150 Minutes physical 951 (35) 172 (42) 21 (44) <0.05
activity
Stress reduction practice 892 (33) 155 (38) 10 (21) <0.05
Clinical Variables
TC (mmol/L) 49+1.0 4.7+0.9 44+06 <0.05
LDL (mmol/L) 3.0+£0.38 28+0.8 2505 <0.05
HDL (mmol/L) 1.2+0.3 1.3+04 1.5+0.3 <0.05
TG (mmol/L) 16+10 1.4+0.8 09+05 <0.05
Glucose (mmol/L) 51+10 5009 46+05 <0.05
Systolic blood pressure 121+ 16 119+ 17 113+ 14 0.2
(mmHg)
Diastolic blood pressure 76 £ 10 73+10 708 0.2
(mmHg)
BMI (kg/m?) 265 25+ 4 23+3 <0.05
Waist circumference (cm) 89+ 10 87+ 10 797 <0.05

*no cardiovascular risk factors

TC, total cholesterol

LDL, low-density lipoprotein cholesterol
HDL, high-density lipoprotein cholesterol

TG, triglycerides
BMI, body mass index
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South Asian Heart Center
Heart Health Coaching Recruitment and Retention

Risk Factor Assessments
(HRA, LAB, EXAM, RAR)
3,180

¥
Eligible for HHC Program
{1 or more risk factors®)
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Opted in
HHC Program
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308 (a.7%) 1,051 (33.1%) 112 (35%) 1,255 [39.5%) 406 (12.8%) 48 (15%)

Figure 3. Number of participants in each category

*Risk factors include elevated total cholesterol, elevated LDL, low HDL, elevated triglycerides,
elevated glucose, overweight, type 2 diabetes, family history of cardiovascular disease, smoking,
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Abstract

Aimslhypothesis: The aim of this study was to define the prevalence of the metabolic syndrome and its com-
ponent risk factors among individuals of South Asian origin living in the United States.

Methods: We analyzed baseline data from 1,445 participants enrolled in a cohort study investigating risk factors
for cardiovascular disease in South Asians. We defined the metabolic syndrome using the International Diabetes
Federation criteria for waist circumference (>90 cm for men; >80 cm, women), triglycerides (>>150 mg/dL), high-
density lipoprotein cholesterol (HDL-C) (<40mg/dL (men), <45mg/dL (women)), blood pressure (>135/
80 mmHg), and fasting glucose (>100 mg/dL).

Results: The mean age was 43 =10 years, and 30% of participants were women. The prevalence of metabolic
syndrome was 27% (31% men vs. 17% women, P < 0.05). Fifty-nine percent of the cohort had high waist
circumference (58% men vs. 62% women, P =not significant [N.S.]), 47% had low HDL-C [46% men vs. 48%
women (NS)], 19% had elevated triglycerides (23% men vs. 8% women, P < 0.05), 14% had hypertension (16%
men vs. 9% women, P < 0.05), and 13% had elevated fasting glucose (18% men vs. 11% women, P < 0.05). The
most common metabolic syndrome phenotype is low HDL-C with elevated triglycerides.

Conclusions: Although the prevalence of the metabolic syndrome is lower than previous reports of South
Asians, the prevalence is still unacceptably high despite the presence of protective demographic factors.

Introduction

SOL'TH ASIANS ARE INDIVIDUALS whose racial origins
come from the Indian subcontinent, which includes India,
Pakistan, Sri Lanka, Nepal, and Bangladesh. Compared to
other ethnicities, South Asians have at least a two-fold in-
creased risk of cardiovascular disease, myocardial infarction,
type 2 diabetes, and cardiovascular death.”™* The Indian sub-
continent accounts for 60% of the global cardiovascular bur-
den® High cardiovascular risk has been observed in both
native and immigrant South Asian populations, indicating a
genetic predisposition in addition to environmental effects.®®
'” Risk has been attributed to an excess of common risk factors
that are more prevalent at a younger age.'" A common met-
abolic and cardiovascular risk phenotype in South Asians in-

cludes components of the metabolic syndrome, a complex
multifactorial precursor to cardiovascular disease and type 2
diabetes also arising from a combination of genetic and envi-
ronmental risk factors."* The International Diabetes Federation
(IDF) criteria define the essential component of the metabolic
syndrome as high waist circumference, accompanied by at
least two of four additional risk factors: Elevated fasting glu-
cose, decreased high-density lipoprotein cholesterol (HDL-C),
elevated triglycerides, and elevated blood pressure.'”
Although the prevalence of the metabolic syndrome and
obesity in the United States have increased over the past
decade,'*" all U.S. studies have enrolled low numbers of
South Asians.'>'® Similarly, South Asian cohort studies have
enrolled relatively few participants of South Asian origin
from North America,11 although there are over 2 million
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individuals of South Asian origin in the United States. The
aim of this study was to define the prevalence of the meta-
bolic syndrome and its components among individuals of
South Asian origin living in the United States.

Methods
Design

The Bay Area South Asian Study is an ongoing prospec-
tive cohort study investigating risk factors for cardiovascular
disease in South Asians. Between June, 2006, and December,
2008, 1,859 consecutive participants were enrolled in the
South Asian Heart Center (SAHC) program at El Camino
Hospital (Mountain View, CA). The SAHC is a not-for-profit
organization that provides a screening cardiovascular risk
evaluation, including a health risk assessment, physical ex-
amination, comprehensive laboratory testing, counseling,
and case management for risk factor reduction.'” Individuals
are self-referred or referred by their health care providers. A
total of 1,445 individuals (1,012 men, 433 women) completed
the initial screening program, including laboratory testing,
and are the subjects of this study. The study was approved
by the local Institutional Review Board.

Measurements

As part of the SAHC clinical evaluation, demographic
characteristics, medication use, habits including smoking,

FLOWERS ET AL.

physical activity, and personal and family history including
cardiovascular disease and risk factors, were measured by
self-report using a standardized, scripted 30-min question-
naire administered via telephone by trained study personnel.
Trained nurse practitioners and study personnel measured
anthropometric and clinical variables including waist cir-
cumference, height, weight, and blood pressure. Hypercho-
lesterolemia, hypertension, and type 2 diabetes were defined
as abnormal clinical value (total cholesterol >200mg/dL,
systolic blood pressure >140mmHg or diastolic blood
pressure >90 mmHg, or fasting blood glucose >125mg/dL),
or self-reported lipid-lowering therapy, antihypertensive
medication use, or diabetes medication use. Baseline lipid
measurements were obtained by peripheral venipuncture
after 12 h of fasting. All laboratory assays were performed by
a single Clinical Laboratory Improvement Amendments
(CLIA)-certified laboratory (Berkeley Heart Lab, Berkeley,
CA). Lipid fractionation was performed using a calorimetric
method: Total cholesterol (TC), HDL-C, triglycerides, and
glucose were measured using reagents from Roche Diag-
nostics (Indianapolis, IN) and performed on the Roche
Modular PPP Analyzer.'® Low-density lipoprotein cholester-
ol (LDL-C) was calculated using the Friedewald formula."”
The metabolic syndrome components were defined using the
IDF consensus definition of waist circumference >90cm
(men) or 80 cm (women), triglycerides >150mg/dL, HDL-C
<40mg/dL (men) or 45mg/dL (women), blood pressure
>130/85 mmHg, and fasting glucose >100 mg/dL."

TaerLe 1. DeEmocraPHIC AND CLINICAL CHARACTERISTICS (N = 1445)

Characteristics Mean 4+ SD or n (%) Men (n=1,012) Womnen (n =433) P value
Age (years) 43+10 43+10 43 +11 0.6
Birth Country (n = 849)

India 749 (88) 514 (69) 235 (31) <0.05

Pakistan 9 (1) 7 (78) 2(22) 0.1

Sri Lanka 5(1) 5 (100) 0(0)

United States 40 (5) 26 (65) 14 (35) 0.07
Married 1343 (93) 947 (94) 396 (91) 0.2
Education

Less than Bachelor’s degree 52 (4) 21 (<1) 31 (7) <0.05

Bachelor’s degree 326 (23) 175 (17) 151 (35) <0.05

Graduate/Master’s degree 932 (65) 707 (70) 225 (52) <0.05

Ph.D./post-graduate degree 132 (9) 106 (11) 25 (6) <0.05
Behaviors

Current smoking 54 (4) 49 (5) 5(1) <0.05

Former smoking 187 (13) 177 (17) 10 (2) <0.05
Family history of cardiovascular disease

Parent 811 (56) 560 (55) 251 (58) 0.3

Sibling (1 = 678) 274 (40) 181 (39) 93 (43) 0.5
Clinical variables

TC (mg/dL) 190 +£37 1924+ 37 185+35 <0.05

LDL-C (mg/dL) 116 £31 118+ 32 111+£29 <0.05

HDL-C (mg/dL) 45+12 42410 53+13 <0.05

TG (mg/dL) 144 +93 159 + 100 110+ 63 <0.05

Glucose (mg/dL) 90 +16 92418 87+£12 <0.05

Systolic blood pressure (mmHg) 118£17 120 £17 113 +£17 <0.05

Diastolic blood pressure (mmHg) 76 £11 78+11 72411 <0.05

BMI (kg/m?) 257437 258435 25.6+4.1 03

Waist circumference (cm) 88 +13 91+12 82412 <0.05

Metabolic syndrome 387 (27) 315 (31) 72 (17) <0.05

Abbreviations: TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG,

triglycerides; BMI, body mass index.
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TABLE 2. PROPORTION OF PARTICIPANTS WITH ABNORMAL CLINICAL CHARACTERISTICS (N =1,445)

Characteristic n (%) Men m=1,012) Women (n=433) P value
TC > 200mg/dL 544 (38) 414 (41) 130 (30) <0.05
LDL-C > 160 mg/dL 129 (9) 110 (11) 19 (4) <0.05
HDL-C 674 (47) 468 (46) 206 (48) 0.6
<40 mg/dL (men)
<50mg/dL (women)
TG >200mg/dL 272 (19) 238 (23) 34 (8) <0.05
Glucose > 126 mg/dL 44 (3) 39 (4) 5(1) <0.05
Blood pressure > 140/90 mmHg 203 (14) 165 (16) 38 (9) <0.05
BMI > 25 kg/m” 778 (54) 570 (56) 208 (48) <0.05
Waist circumference 858 (59) 591 (58) 267 (62) 0.2
=90 ¢cm, men
>80 cm, women
Metabolic syndrome 387 (27) 315 (31) 72 (17) <0.05

Abbreviations: TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG,

triglycerides; BMI, body mass index.

Statistical analysis

The Student f-test was used for comparison of continuous
variables and the chi-squared test for proportions. Logistic
regression was used to compare the odds of metabolic syn-
drome and its components in men and women. Two-sided
P values were calculated for all test statistics and P < 0.05
was considered significant unless otherwise indicated. Sta-
tistical analyses were performed using STATA Version 10
(College Station, TX).

Results

Demographic and clinical characteristics are shown in
Table 1. The mean age was 43 £ 10 years and 30% of par-
ticipants were women. The cohort primarily consisted of

first-generation immigrants to the United States, with 89%
born in South Asia. Sixty-nine percent reported a parent or
sibling history of cardiovascular disease or cardiovascular
risk. Four percent of men and 1% of women reported current
smoking (P <0.05) and 17% of men and 2% of women
(P <0.05) reported previous smoking. Ninety-three percent
of participants are married. Overall, the cohort was highly
educated, with 96% of the cohort reporting a Bachelor’s-level
education or higher, and 74% reporting a graduate-level
education, defined as a Master’s degree or doctorate. Men
had a higher level of education than women. Other demo-
graphic characteristics were similar.

Self-reported prevalence of high total cholesterol was 56%,
hypertension 22%, and type 2 diabetes 9%. The measured
prevalence of clinical risk factors is shown in Table 2.

TABLE 3. DISTRIBUTION OF THE METABOLIC SYNDROME COMPONENTS

Total Men Women
n=_854 n=>589 n=265
n (%) n (%) n (%) P value
Pre — metabolic syndrome Waist circumference (WC) only 213 (25) 106 (18) 107 (40) <0.05
Two risk factors
WC +HTN 62 (7) 46 (8) 16 (6) 0.5
WC + HDL-C 102 (12) 59 (10) 43 (16) <0.05
WC+TG 64 (7) 46 (8) 18 (7) 0.7
WC+glu 30 (4) 19 (3) 11 (4) 0.4
Metabolic syndrome Three risk factors
WC +HTN + HDL-C 37 (4) 27 (5) 10 (4) 0.7
WC+HTN + TG 28 (3) 23 (4) 5(2) 0.2
WC+HTN+glu 19 (2) 15 (3) 4(2) 0.4
WC +HDL-C + TG 138 (16) 112 (19) 26 (10) <0.05
WC+HDL-C +glu 15 (2) 10 (2) 5(2) 0.8
WC + TG + glu 23 (3) 17 (3) 6(2) 0.7
Four risk factors
WC+HTN + HDL-C + TG 57 (7) 48 (8) 9(3) <0.05
WC +HTN + HDL-C + glu 10 (1) 9(2) 1(<1) 0.2
WC+HTN+ TG +glu 14 (2) 12 (2) 2(<1) 0.2
WC +HDL-C + TG + glu 22 (3) 20 (3) 2(1) <0.05
Five risk factors
WC+HTN+HDL-C+TG+glu 24 (3) 22 (4) 2(1) <0.05

Abbreviations: WC, waist circumference (cm); HTN, hypertension (mmHg); HDL-C, high-density lipoprotein cholesterol (mg/dL); glu,

fasting plasma glucose (mg/dL); TG, triglycerides (mg/dL).
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Twenty-seven percent of the sample (31% men vs. 17% wo- & =
men, P <0.05) meet the IDF criteria for the metabolic syn- SEa E
drome.”” The most prevalent clinical risk factors were high S Rl = & g
waist circumference (59%, 58% men vs. 62% women, P =not In i E
significant [N.S.]), high body mass index (BMI) (54%, 56% <
men vs. 48% women, P < 0.05), low HDL-C (47%, 46% men ‘2
vs. 48% women, P=N.S.), and high TC (38%, 41% men vs. = T = E
30% women, P<0.05). Although the proportion of high =N - 2 )
waist circumference in men and women was similar, men = E
had a significantly higher prevalence of the metabolic syn- < E
drome and its components (P < 0.05) (Table 2). Prevalence of Z I = z
the metabolic syndrome and cardiovascular and metabolic g 2 £ Q‘; g E E(
risk factors did not differ by country of origin or marital E [<Hall s &= <
status. HDL-C levels were lower among college-educated U 7
participants (454 11) than in those with less than a college g - §
level education (51 =15, P < 0.05); no other differences were 2 R ) %
found by education status. z ;—c i |e Y =
We also analyzed the frequencies of the components of the < =R - =
metabolic syndrome among participants with the sentinel £ g
characteristic of high waist circumference (1 = 854; Table 3). 2 '50
Among those with metabolic syndrome, high waist circum- LS = @ = g ‘g
ference with low HDL-C and elevated triglycerides was the Z @% sz s £ 0
most common phenotype for men and women. Low HDL-C = Tge |7 s = £
is the most common risk factor, with 48% prevalence among ﬁ - = £
the subgroup of participants with high waist circumference, = 2
followed by elevated triglycerides (44%). Hypertension 3 Al N ;
(29%) and elevated blood glucose (20%) were less common. = 3 3 ] 2 £
Overall, women most commonly presented with high waist i S5 o & £
circumference alone (40%), whereas men most commonly = B o g
presented with metabolic syndrome (19%) determined by > ® ¢
high waist circumference, low HDL-C, and elevated tri- g Sla = 3 2
glycerides. b o E 2 g 5
Previous reports of cardiovascular risk in South Asians g = H g’ & 8 g :9;
living in California from the Cardiovascular Health Among a o = £ Eg
Asian Indians (CHAI) and California Health Interview Sur- = = &%
vey (CHIS) have calculated a cardiovascular risk score in- L: g, £ B2E
cluding  hypertension, hypercholesterolemia, diabetes, ° E “—; % % z :T:
history of myocardial infarction or coronary artery disease, 2 TEEE © £ g3
and history of smoking.® To compare cardiovascular risk 8 E®E E% = ; E:| g
qualitatively in the SAHC cohort to previous population- & e o _%Q e
based estimates, we calculated the same risk score (Table 4). 5 o g '§ g E < 2=
We found the SAHC cohort to be at greater risk than pre- g kS =8¢ EEZE = ?E_
vious observations from the CHAI and CHIS studies, with a : = =& E § E § i é é E
higher proportion of participants having at least one car- E §, g £: SEZE g g §
diovascular risk factor (67%). t = S 7 T3
£ =
_—_— s g g L
Discussion > S - g 2 Ee
3 & g 4 s 23
To our knowledge, this is the largest cohort study of South Z E £ i f )
Asians in North America. The principal finding is a 27% 2l ;%” E“:
prevalence of the metabolic syndrome among South Asians - 5 £ E = e K :,5"‘.,5“
living in the United States. Although women have a higher = == | e EEE B 2 b i
prevalence of abdominal adiposity (as measured by waist 2 is|E22 = g 408 &g
circumference) without the presence of components of the [l iE ?é g §..g TSE g é E;i
metabolic syndrome, men have a higher prevalence of most = ; g 45 :'E £ :g: i £, 8 é TC: E
of the additional metabolic syndrome components and car- EE|E énﬁ 3 'g B E g 5 §~.§ 2 2T
diovascular risk factors (Table 2). Dyslipidemia is common, - g? LSEBEEPED T 52‘ E
with abnormal levels of HDL-C and triglycerides in addition ! S & = E"z a3
to elevated total cholesterol and LDL-C, closely mirroring the 37g ]
metabolic syndrome phenotype. In contrast, the prevalence n . é 2 4 g ,g
of hypertension among South Asians is low.'#%! s ok EEEE S
In the presence of abdominal adiposity, dyslipidemia g2 g& 838 53:_‘5; oF
characterized by low HDL-C with accompanying elevated syl z = =
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triglycerides appears to be the driving component of onset of
the metabolic syndrome for both men and women (Table 3).
The high prevalence of this dyslipidemia pattern has previ-
ously been observed in individuals of South Asian origin,
suggesting an important possible causal mechanism for
cardiovascular risk in this ethnic group.” South Asians
commonly are afflicted with abdominal adiposity accompa-
nied by insulin resistance in addition to a dyslipidemia
pattern characterized by the presence of high triglycerides
and small, dense, dysfunctional HDL-C.”*"* Women appear
to be somewhat protected from developing the combined
low HDL-C and elevated triglyceride dyslipidemia pheno-
type compared to men, which is also consistent with previ-
ous reports of cardiovascular and metabolic risk in South
Asians,” and may indicate the need for important differ-
ences in risk assessment between men and women.

The prevalence of the metabolic syndrome in the SAHC
cohort was modestly lower compared to other South Asian
cohorts from the United States and Europe and to the overall
U.S. population (Table 5). The differences were greater in
women. There are several potential explanations. First, the
SAHC cohort differs demographically from previous studies,
with an increased prevalence of marriage and education,
which are generally protective.” ™ Second, there may be
secular trends; recent U.S. data suggest a plateau in the rate
or rise of obesity in America.®® In men, the prevalence of the
metabolic syndrome is higher in the SAHC cohort than in
population studies of the country of India (Table 5). For
many ethnic groups, acculturation to a Westernized lifestyle
is associated with increased risk for coronary artery disease,
obesity, and type 2 diabetes, with markedly higher preva-
lence of disease among first-generation offspring of immi-
grants than their pa\rentz:._”’36 In contrast, the prevalence in
women is lower in the SAHC cohort than in native Indians
(Table 5). The majority of women in the cohort are pre-
menopausal (71%), which may in part explain the observed
differences in risk by gender; however, our findings also
indicate that characteristics of South Asian immigrants in-
cluding education level and smoking habits may differ be-
tween men and women (Table 1).

Nonetheless, the prevalence of the metabolic syndrome in
South Asians is still unacceptably high, and the causes of this
high prevalence are unclear. Further study of the differences
between the SAHC cohort and other groups provides an
opportunity to investigate protective factors for cardiovas-
cular and type 2 diabetes risks in this highly susceptible
population.

Limitations

This was a cross-sectional prevalence study and was not
designed to assess the risk of the metabolic syndrome on
cardiovascular events. All participants were enrolled from a
screening program. Therefore, sampling bias may be a po-
tential concern. However, our estimates are similar to pre-
vious population-based estimates for cardiovascular events
and type 2 diabetes in immigrant South Asians residing the
same geographic region,” suggesting that this source of bias
is unlikely or modest. Measurement of demographics, per-
sonal and family history, medication use, and habits were
done by self-report. However, we validated self-reported
data of medical history with the reported medications
and laboratory values and found 96% agreement for self-

FLOWERS ET AL.

reported dyslipidemia, diabetes, and hypertension (data not
shown).

In conclusion, we found that South Asians in the United
States have a high prevalence of cardiovascular and meta-
bolic risk factors at a young age despite seemingly protective
demographic characteristics. Early screening of this popula-
tion for obesity, hypertension, insulin resistance, lipid dis-
orders, and the metabolic syndrome is advisable for early
risk factor modification. Further research investigating the
specific mechanisms of risk in South Asians is needed to
develop ethnicity-specific screening parameters for cardio-
vascular and metabolic risk, to determine how lifestyle and
behavioral factors are affected by immigration and accul-
turation, and to understand if lifestyle and behavioral
interventions may be adequate to decrease risk among in-
dividuals with moderately elevated cardiovascular risk or
substantially decrease risk as adjuvant therapy to medication
among high-risk individuals.

Author Disclosure Statement

The authors have nothing to disclose.

References

-

. Anand SS, Yusuf S, Vuksan V, Devanesen S, Teo K, Mon-
tague P, Kelemen L, Yi C, Lonn E, Gersteinet H. Differences
in risk factors, atherosclerosis, and cardiovascular disease
between ethnic groups in Canada: The Study of Health As-
sessment and Risk in Ethnic groups (SHARE). Lancet
2000;356:279-284.

. Mather HM, Chaturvedi N, Fuller JH. Mortality and mor-
bidity from diabetes in South Asians and Europeans: 11-year
follow-up of the Southall Diabetes Survey, London, UK.
Diabet Med 1998;15:53-59.

. Tillin T, Forouhi N, Johnston DG, McKeigue PM, Chaturvedi
N, Godsland IF. Metabolic syndrome and coronary heart
disease in South Asians, African-Caribbeans and white Eu-
ropeans: A UK population-based cross-sectional study. Dia-
betologia 2005;48:649-656.

. Wilkinson P, Sayer ], Laji K, Grundy C, Marchant B, Ko-
pelman P, Timmis AD. Comparison of case fatality in south
Asian and white patients after acute myocardial infarction:
observational study. BMJ 1996;312:1330-1333.

. Lopez AD, Disease Control Priorities Project. Global burden of
disease and risk factors. New York, Washington, DC: Oxford
University Press; World Bank; 2006.

. Deepa M, Farooq S, Datta M, Deepa R, Mohan V. Prevalence
of metabolic syndrome using WHO, ATPIII and IDF defi-
nitions in Asian Indians: The Chennai Urban Rural Epide-
miology Study (CURES-34). Qughetes Metgh Bec Bep 2007;23:
127-134.

. Enas EA, Mohan V, Deepa M, Farooq S, Pazhoor S, Chen-

nikkara H. The metabolic syndrome and dyslipidemia

among Asian Indians: a population with high rates of dia-
betes and premature coronary artery disease. [ Cardiometah

Syndr 2007;2:267-275.

Ivey SL, Mehta KM, Fyr CL, Kanaya AM. Prevalence and

correlates of cardiovascular risk factors in South Asians:

Population-based data from two California surveys. Ethn Dis

2006;16:886-893.

Misra R, Patel T, Kotha P, Raji A, Ganda O, Banerji MA,

Shah V, Vijay K, Mudaliar S, Iyer D, Balasubramanyam A.

Prevalence of diabetes, metabolic syndrome, and cardio-

vascular risk factors in US Asian Indians: results from a

]

w

',

o

o

~

>

=

37



PREVALENCE OF THE METABOLIC SYNDROME IN SOUTH ASIANS 423

1

11.

s

1

1

14.

1

1

17.

1

19.

20.

21.

-

2

23.

w

e

~

ol

«

o

®

N

national study. | Diabetes Complications Mar 18, 2009,
doi:10.1016/j.jdiacomp.2009.01.003.

Rianon NJ, Rasu RS. Metabolic syndrome and its risk factors
in Bangladeshi immigrant men in the USA. | Immigr Minor
Health Feb 19, 2009, doi 10.1007 /s10903-009-9233-z.

Joshi P, Islam S, Pais P, Reddy S, Dorairaj P, Kazmi K,
Pandey, Haque S, Mendis S, Rangarajan S, Yusuf S. Risk
factors for early myocardial infarction in South Asians
compared with individuals in other countries. [AMA 2007;
297:286-294.

Alberti KG, Zimmet P, Shaw ]. Metabolic syndrome—a new
world-wide definition. A Consensus Statement from the In-
ternational Diabetes Federation. Diabet Med 2006;23:469-480.
Ervin R. Prevalence of Metabolic Syndrome Among Adults 20
Years of Age and Over, by Sex, Age, Race and Ethnicity, and Body
Mass Index: United States, 2003-2006. Hyattsville, MD: Na-
tional Center for Health Statistics; 2009.

Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic
syndrome among US adults: Findings from the third Na-
tional Health and Nutrition Examination Survey. JAMA
2002;287:356-359.

Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV,
Folsom AR, Greenland P, Jacobs DR Jr, Kronmal R, Liu K,
Nelson JC, O’'Leary D, Saad MF, Shea S, Szklo M, Tracy RP.
Multi-ethnic study of atherosclerosis: Objectives and design.
Au L Lpidemiol 2002;156:871-881.

Cutter GR, Burke GL, Dyer AR, Friedman GD, Hilner JE,
Hughes GH, Hulley 5B, Jacobs DR Jr, Liu K, Manolio TA,
et al. Cardiovascular risk factors in young adults. The
CARDIA baseline monograph. e m“ﬂ‘ g im “W‘ ‘ﬁ 1991;12(1
Suppl):15-775.

South Asian Heart Center. l\ttp://www.snuthasianheart
center.org/. Accessed June 9, 2009.

Berkeley Heart Labs L Clinical Implications Reference
Manual Version 1.2. http://www .bhlinc.com/clin_references
php/.

Friedewald WT, Levy R1, Fredrickson DS. Estimation of the
concentration of low-density lipoprotein cholesterol in plas-
ma, without use of the preparative ultracentrifuge. Clin Chem
1972;18:499-502.

Lyratzopoulos G, McElduff P, Heller RF, Hanily M, Lewis
PS. Comparative levels and time trends in blood pressure,
total cholesterol, body mass index and smoking among
Caucasian and South-Asian participants of a UK primary-
care based cardiovascular risk factor screening programme.
BMC Dyblic Heglth 2005;5:125.

Mohan V, Deepa M, Farooq S, Datta M, Deepa R. Pre-
valence, awareness and control of hypertension in Chennai-
The Chennai Urban Rural Epidemiology Study (CURES-52).
dasee Blusicigus udiz. May 2007;55:326-332.

Karthikeyan G, Teo KK, Islam S, McQueen M], Pais P, Wang
X, Sato H, Lang CC, Sitthi-Amorn C, Pandey MR, Kazmi K,
Sanderson, JE, Yusuf S. Lipid profile, plasma apolipopro-
teins, and risk of a first myocardial infarction among Asians:
An analysis from the INTERHEART Study. LAz Coll Cardiol
20 2009;53:244-253.

Bhalodkar NC, Blum S, Rana T, Bhalodkar A, Kitchappa R,
Kim K, Enas E. Comparison of levels of large and small high-
density lipoprotein cholesterol in Asian Indian men com-

2:

25.

26.

27.

2i

2

30.

=]

31.

=

3

3

3

3

36.

=

.

bt

~

«

=~

“

pared with Caucasian men in the Framingham Offspring
Study. Am [ Cardiol 2004;94:1561-1563.
Bhalodkar NC, Blum S, Rana T, Kitchappa R, Bhalodkar AN,
Enas EA. Comparison of high-density and low-density lipo-
protein cholesterol subclasses and sizes in Asian Indian
women with Caucasian women from the Framingham Off-
spring Study. Clin Cardiol 2005;28:247-251.
Deepa M, Faronq S, Deepa R, Manjula D, Mohan V. Pre-
valence and significance of generalized and central body
obesity in an urban Asian Indian population in Chennai,
India (CURES: 47). Eyr L Clin Nufr 2007; 63:259-267.
Hoogeveen RC, Gambhir JK, Gambhir DS, Kimball KT,
Ghazzaly K, Gaubatz JW, Vadugar\athan M, Rao RS, Ko-
schinsky M, Morrisett JD. Evaluation of Lp[a] and other in-
dependent risk factors for CHD in Asian Indians and their
USA counterparts. [ Lipid Res 2001;42:631-638.
Superko HR, Enas EA, Kotha P, Bhat NK, Garrett B. High-
density lipoprotein subclass distribution in individuals of
Asian Indian descent: The National Asian Indian Heart
Disease Project. Lregp Cardiol 2005;8:81-86.
Misra A, Khurana L, Isharwal S, Bhardwaj S. South Asian
diets and insulin resistance. Br | Nutr 2009;101:465-473.
Ford ES, Ahluwalia 1B, Galuska DA. Social relationships and
cardiovascular disease risk factors: findings from the third
national health and nutrition examination survey. Prev Med
2000;30:83-92.
Johnson NJ, Backlund E, Sorlie PD, Loveless CA. Marital
status and mortality: The national longitudinal mortality
study. idemjol 2000;10:224-238.
Venters M, Jacobs DR, Jr., Pirie P, Luepker RV, Folsom AR,
Gillum RF. Marital status and cardiovascular risk: the Min-
nesota Heart Survey and the Minnesota Heart Health Pro-
gram. Prep Med 1986;15:591-605.
Winkleby MA, Fortmann SP, Barrett DC. Social class dis-
parities in risk factors for disease: eight-year prevalence
patterns by level of education. Pren Med 1990;19:1-12.
Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence
and trends in obesity among US adults, 1999-2008. JAMA
20;303:235-241.
Singh GK, Miller BA. Health, life expectancy, and mortality
patterns among immigrant populations in the United States.
2004;95:114-121.
Singh GK, Siahpush M. All-cause and cause-specific mor-
tality of immigrants and native born in the United States. Am
LLublic Heglth 2001;91:392-399.
Sundquist ], Winkleby MA. Cardiovascular risk factors in
Mexican American adults: A transcultural analysis of
NHANES 111, 1988-1994. Agp [ Publc Heglth 1999,89:723-730.

Address correspondence to:
Mintu Turakhia, M.D., M.A.S.
Division of Cardiovascular Medicine
Stanford University

VA Palo Alto Health Care System
3801 Miranda Avenue - 111C

Palo Alto, CA 94304

E-mail: mintu@stanford.edu

38



CHAPTER 5

ADIPOSITY AND HEART DISEASE RISK CLUSTERING IN SOUTH ASIANS

Introduction

Wildman and associates [1] used data from the National Health and Nutrition
Examination Surveys 1999-2004, and six criteria, to analyze the relationship between different
degrees of adiposity and cardio-metabolic risk factors associated with insulin resistance in three
different racial groups. Four of the criteria of cardio-metabolic risk were those, excluding waist
circumference (WC), used to diagnose the metabolic syndrome [2], with the other two being high
sensitivity C-reactive protein (hs-CRP) and homeostasis model assessment of insulin resistance
(HOMA-IR). If two or more of the criteria were met, the subject was classified as being abnormal.
Their results demonstrated that a substantial number of subjects whose body mass index (BMI)
was < 25 kg/m? were abnormal, and a comparable number whose BMI was > 30 kg/m? were
normal; findings consistent with previous publications [3, 4]. What makes the findings of
Wildman, et. al. [1] unique is that the heterogeneity they described in the relationship between
adiposity and cardio-metabolic risk was reasonably comparable in all three of the racial groups
studied.

The current analysis is an effort to extend the findings of Wildman and associates [1], and
had three major goals that differentiate it from their study. Firstly, we believed it important to
evaluate the relationship between degree of adiposity and cardio-metabolic risk in apparently
healthy individuals and for that reason excluded subjects with known cardiovascular disease
(CVD), diabetes, hypertension, or dyslipidemia. Secondly, we wished to consider the possibility
that the overall thrust of the findings of Wildman and colleagues [1] might have been somewhat
confounded by their use of BMI as the primary index of adiposity, rather than waist
circumference (WC). For example, It has been argued by Despres, et. al. [5] that WC can differ

significantly at a given BMI, and that the greater the WC, the more visceral adiposity —
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presumably, the major factor leading to insulin resistance and associated metabolic abnormalities.
Thus, we thought it worthwhile to address the relationship between adiposity and cardio-
metabolic risk with both BMI and WC as our primary indices of adiposity, using ethnic specific
criteria for abdominal obesity. Thirdly, it seemed important to evaluate a different ethnic/racial
group than the three studied by Wildman, et. al. [1], and, in particular, a group in whom the
findings might vary as a function of index of adiposity. We chose South Asians for this purpose
as they have an increased prevalence of CVD, insulin resistance, hyperinsulinemia, and high
triglycerides (TG), and low high-density lipoprotein cholesterol (HDL-C) concentrations [6-8],
and it has been suggested that abdominal obesity accounts for these metabolic abnormalities and

increased risk of CVD in these individuals [9-11].

Methods
Study Subjects

The study sample consisted of 463 women and 552 men, part of a larger group of
volunteers (n = 4797) evaluated for cardio-metabolic risk at the South Asian Heart Center; a not-
for-profit organization providing CVD risk assessment and counseling to South Asians in the San
Francisco Bay Area. The Institutional Review Board of EI Camino Hospital, Mountain View,
California approved the study. The authors of this manuscript have certified that they comply
with the Principles of Ethical Publishing in the International Journal of Cardiology: Shewan LG
and Coats AJ. Ethics in the authorship and publishing of scientific articles. Int J Cardiol
2010;144:1-2. All participants were in generally good health and older than 18 years. Individuals
taking drugs to lower blood pressure, glucose, or lipid levels were excluded, as were those not
fasting for at least 10 hours. Glucose tolerance tests were not performed, but volunteers whose
fasting plasma glucose concentration > 7.0 mmol/L were considered to have diabetes and
excluded from analysis, as were participants with a known history of hypertension, abnormal

cholesterol, or CVD.
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Anthropometric Measurements

Height and weight were determined with subjects in light clothing and without shoes, and
BMI calculated by dividing weight (kilograms) by height (meter squared). WC was measured
using the National Health and Nutrition Examination Survey |1l protocol during normal minimal
respiration by placing a measuring tape around the waist just above the uppermost lateral border
of the iliac crest [12]. Participants were classified as being normal weight, overweight, or obese
on the basis of their BMI, and abdominally obese or abdominally normal on the basis of their WC
[1, 2,12]. Blood pressure was measured with an automatic blood pressure recorder, using an
appropriately sized cuff, with subjects sitting in a chair with feet on the floor and arm supported
at heart level.
Laboratory Measurements

After an overnight fast, blood samples were drawn for measurement of plasma glucose,
insulin, TG, HDL-C, and hs-CRP concentrations at the Berkeley Heart Lab [13]. Specifically,
glucose concentrations were measured by enzymatic rate reaction; insulin by
electrochemiluminescence immunoassay; triglycerides by blanked enzymatic method; HDL-C by
a homogeneous direct assay, and hs-CRP by particle-enhanced immunoturbidimetric assay. The
insulin assay had 100% cross-reactivity with human insulin and 5% with human pro-insulin. The
total and within-run precisions (%) of the laboratory assays were as follows: glucose (2.03, 0.82);
insulin (2.67, 1.35); TG (2.43, 0.90); HDL-C (3.25, 0.98); and hs-CRP (1.96, 0.52). HOMA-IR
was calculated from fasting glucose and insulin concentrations using the formula: ([fasting insulin
(nU/ml)]*[fasting glucose (mmol/L)])/22.5 [14]. The six criteria for identifying a cardio-
metabolic abnormality were those used by Wildman, et al [1]. Criteria and cut-points are given in
Table 1, and subjects were classified as metabolically healthy (<2 abnormal findings) or
metabolically abnormal (>2 abnormities) on the basis of these definitions.

Statistical Analysis
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Descriptive statistics were used to provide means, ranges, standard deviations, and
proportions for demographic and clinical variables. Student's t-test was used to assess for
differences between continuous variables, and Pearson’s Chi-square was used to test for
differences in proportions. All statistical tests were performed using STATA version 11 (College

Station, TX).

Results

Table 2 lists the demographic and metabolic characteristics of the metabolically healthy
and metabolically abnormal groups based on their BMI category. Approximately one quarter of
the population was metabolically abnormal, and 32% of these individuals were of normal weight.
Of the 75% of individuals classified as metabolically healthy, 37% were overweight/obese. It can
be seen that the vast majority of subjects were non-smokers, did not consume alcohol, and
participated in some degree of physical activity on a weekly basis. Not surprisingly, the values of
the 6 risk factors being evaluated were higher in the metabolically abnormal group. It should also
be noted that essentially all of the overweight/obese individuals, metabolically healthy or
abnormal, were also abdominally obese (elevated WC).

Table 3 lists the demographic and metabolic characteristics of the metabolically healthy
and abnormal groups based on their WC category. In general, the comparisons are similar to
those presented in Table 2 when BMI was used to classify individuals. Thus, 28% of the
metabolically abnormal individuals had a normal WC, and 42% of the metabolically healthy
group was abdominally obese. As in Table 1, values of the 6 risk factors were higher in the
metabolically abnormal group

Figure 1 illustrates the prevalence of metabolically healthy and metabolically abnormal
men (Panel A) and women (Panel B) when classified on the basis of BMI. The data in Panel A
demonstrate that 23% of normal weight men are metabolically abnormal, and 21% of obese men

are metabolically healthy. It can also be seen that the prevalence of metabolically abnormal
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individuals essentially doubles as you go from normal weight to overweight, and again going
from overweight to obese.

The data in Panel B show a quite different pattern of prevalence of the metabolically
healthy and abnormal groups in women. At the simplest, the prevalence of metabolically
abnormal women is much less in any BMI category when compared to men; thus only 7% of
normal weight women are metabolically abnormal vs. 23% of men, and more than twice as many
obese women are metabolically healthy as compared to obese men (50% vs. 21%).

Figure 2 compares the prevalence of metabolically healthy and metabolically abnormal
men (Panel A) and women (Panel B) when classified on the basis of WC. In certain respects these
findings reflect the results in Figure 1. Thus, 21% of men with a normal WC were metabolically
abnormal, as compared to 23% of men with a normal BMI (Figure 1, Panel A). Furthermore, the
prevalence of being metabolically abnormal was again much less in women than in men; 6% vs.
21% in those with a normal WC and 23% vs. 55% in individuals with an abnormal WC.

Figure 3 displays the relationship between measure of adiposity and humber of
abnormalities. Not surprisingly, the more abnormalities present, the more obese the individual.
Thus, approximately one-third of those without any abnormality were obese/overweight by BMI
classification or abdominally obese on the basis of their WC. At the other extreme, approximately
90% of those with 5 abnormalities were obese/overweight or abdominally obese. Intermediate
were those with two abnormalities, and it can be seen that approximately two-thirds of the group
with only two abnormalities had either an abnormal BMI or WC.

The results in Table 4 provide a more extensive analysis of the participants with 2
abnormalities by displaying the prevalence of the risk factor clustering that defined them as being
metabolically abnormal. These data clearly identify dyslipidemia as the most common
abnormality. Thus, the combination of a high TG and a low HDL-C concentration were present in
approximately one-third of this population, and one or the other of these abnormalities was

present in another approximately one-third of individuals with two abnormalities.
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Discussion

At the simplest level the current results generally support the findings of the relationship
between adiposity and presence of cardio-metabolic risk in non-Hispanic whites, non-Hispanic
blacks, and Mexican-Americans described by Wildman, et. al. [1] in a fourth racial group — South
Asians. Specifically, their results and our findings demonstrate that substantial numbers of
individuals who are overweight/obese by BMI criteria can be metabolically healthy, and
individuals with a normal BMI can be metabolically abnormal.

On the other hand, there are differences between the two studies. In the first place, we
stratified participants into degrees of adiposity using conventional criteria based on both BMI and
WC [1, 2]. This decision was based on the view that abdominal obesity is more powerful than
overall obesity as the link between excess adiposity and cardio-metabolic risk in South Asians [9-
11]. By so doing so, our results differed somewhat from what we had anticipated in that
measurements of WC did not seem particularly advantageous as compared to determining BMI in
identifying South Asians who were metabolically abnormal. Specifically, 502 participants were
abdominally obese (an elevated WC), and 189 of them were metabolically abnormal (38%).
Somewhat fewer (455) of the population were classified as being either overweight or obese by
BMI criteria, and a similar proportion — 179 (39%) of them were metabolically abnormal. We
cannot entirely place these data into the context of the findings of Wildman, et. al. [1] in the 3
racial/ethnic groups they studied, but they appear to be somewhat different. For example,
Wildman, et. al. [1] state that “36.4 % of individuals with abdominal obesity expressed the
metabolically healthy phenotype.” By implication, it appears that ~64% of those with abdominal
obesity were metabolically abnormal as compared to the ~40% abdominally obese South Asians
who were metabolically abnormal in our study. In any event, it appears that measurements of
BMI or WC in South Asians provide similar information as to the adverse impact of excess

adiposity on cardio-metabolic risk.
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A more dramatic difference between our results and those of Wildman, et. al. [1] is the
apparent impact of sex on the relationship between adiposity and cardio-metabolic risk. Thus,
Wildman, et. al. [1] found that “normal-weight men were 34% more likely than normal-weight
women to have 2 or more metabolic abnormalities.” In contrast, the comparisons in Figure 1A
and 1B indicate that normal-weight South Asian men are approximately 3-times more likely to be
metabolically abnormal (23% vs. 7%) than normal-weight, South Asian women. Furthermore,
South Asian men with a normal WC were also approximately 3-times more likely to be
metabolically abnormal than were South Asian women with a normal WC (21% vs. 6%). Thus, in
this relative young group of South Asians (mean age of approximately 40 years), the adverse
impact of excess adiposity on cardio-metabolic risk was greatly attenuated in women, whether
estimated by BMI or WC.

Another, and not unexpected, difference between our findings in South Asians and those
of Wildman, et. al. [1] in the 3 racial/ethnic groups they analyzed were the specific abnormalities
that clustered together. Thus, they state that the 2 most common combinations were “a high
triglyceride level/low HDL-C level and high blood pressure/high glucose level”. It is obvious
from Table 4 that our findings were similar in regards to the high TG and low HDL-C cluster, but
without any predilection of the glucose and blood pressure combination. Given the increased
prevalence of these lipid changes in South Asians [6-11] it is not surprising that they were
commonly present in the metabolically abnormal individuals in the current study. It should also
be noted that we excluded patients with known hypertension and diabetes from our study group,
and this may well explain why did not observe an increased clustering of high glucose with high
blood pressure.

Although our findings seem relatively straight-forward, they need to be in viewed within
the limitations of our study protocol. Thus, the population was not selected at random, but had
responded based on their awareness of a screening program being conducted to identify cardio-

metabolic risk factors in South Asians. Although we were able to use ethnic specific criteria for
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classifying individuals on the basis of WC [2], we are unaware of any alternative, generally
accepted BMI criteria to classify South Asians as being normal-weight, overweight, or obese.
Furthermore, the decision to use the six criteria employed to define cardio-metabolic risk was
based on the prior publication of Wildman, et. al. [1], and there is no a priori evidence that this is
the “best” approach to evaluate the relationship between excess adiposity and cardio-metabolic
risk. Finally, limiting our analysis to apparently healthy individuals had the advantage of
identifying disease risk, rather than disease, but it contributed to the relatively young age of our
study group. Thus, they had a mean age of ~40 years, and at least 80% of the women were pre-
menopausal.

On the other hand, to the best of our knowledge, our report represents the largest study in
which standard values for cardio-metabolic risk have been reported in South Asians, and the
relationship of these abnormities to both BMI and WC quantified. Furthermore, by excluding
subjects with known disease, and of relatively young age, we have been able to provide an
estimate of cardio-metabolic risk in an apparently healthy population of South Asians, a group
recognized to be at high risk to develop type 2 diabetes and/or CVD [6-11]. Finally, from a public
health perspective, our data support two clinically useful conclusions that seem to apply to a
relatively young and apparently healthy population of South Asians: 1) measurements of BMI or
WC are comparable in identifying those with a metabolically abnormal phenotype; and 2) at a

given index of BMI or WC, men are at much greater cardio-metabolic risk than women.
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Table 1. Criteria for Defining a Cardio-Metabolic Abnormality

Measurement Cut-point

Elevated blood pressure Systolic/diastolic blood pressure >130/85 mm Hg

Elevated glucose level Fasting plasma glucose concentration >100 mg/dL
Elevated triglyceride level Fasting plasma triglyceride concentration >150 mg/dL
Decreased HDL-C Fasting plasma HDL-C < 40 (men) or <50 mg/dL (women)
Insulin resistance HOMA-IR>3.77 (upper 10" percentile)

Systemic inflammation hsCRP>5.5mg/L (upper 10" percentile)

High-density lipoprotein cholesterol: HDL-C
Homeostasis model assessment insulin resistance;: HOMA-IR

High sensitivity C-reactive protein: hsCRP
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Table 2. Demographic and Cardio-Metabolic Characteristics by Body Mass Index (Mean +

SD or n (%))

Metabolically Normal

Metabolically Abnormal

Characteristics Overall Normal Weight ~ Overweight Obese Normal Weight ~ Overweight Obese
n=1015 n=477 n =240 n=236 n=283 n=116 n==63
Age (years) 39+9 39+9 39+9 41+7 39+8 39+8 40+9
Men (%) 526 (52) 213 (45) 115 (48) 10 (28) 63 (76) 88 (76) 37 (59)
Smoking Status
None 911 (90) 444 (93) 220 (92) 32(89) 72 (87) 93 (80) 50 (79)
Former 65 (6) 23 (5) 12 (5) 2(6) 7(8) 15 (13) 6 (10)
Current 39 (4) 10 (2) 8(3) 3(6) 4 (5) 8(7) 7(11)
Alcohol Intake
<1 drink/day 977 (96) 456 (96) 234 (98) 36 (100) 81 (98) 110 (95) 60 (97)
1 drink per day 12 (1) 6 (1) 3() 0 0 1(1) 2(3)
>1 drink per day 24 (2) 14 (3) 3(1) 0 2(2) 5(4) 0
Physical Activity
None 198 (20) 83 (18) 43 (19) 12 (35) 20 (26) 25(23) 15 (25)
1-2 days/week 213 (22) 105 (23) 51 (22) 2(6) 23 (30) 23(21) 9 (15)
3 days/week 222 (23) 108 (23) 49 (21) 8(24) 12 (15) 31(28) 14 (23)
>4 days/week 344 (35) 166 (36) 88 (38) 12 (35) 23(29) 32 (29) 23 (38)
Systolic blood pressure (mmHg) 116 £ 14 110+ 10 115+ 12* 120 £ 11** 121+15 126 + 15* 129 + 14*
Diastolic blood pressure (mmHg) 73+9 69 7 73 £8** T3 £7** 76 £10 78 +£10 79 £10*
Elevated blood pressure * *
(>130/85 mmHg) 194 (19) 42 (9) 26 (11) 6 (17) 26 (31) 57 (49) 37 (59)
HDL-C (mg/dL) 48 +13 52+ 13 49 + 10* 52+11 39+9 40+8 40+9
Low HDL-C
(<40mg/dL men, <50mg/dL women) 260 (26) 60 (13) 28 (12) 1(3) 58 (70) 72 (62) 41 (65)
Triglycerides (mg/dL) 114 + 63 90 + 36 100 + 42* 110 + 39* 185+ 85 165+ 79 170+ 71
Elevated triglycerides (=150mg/dL) 210 (21) 22 (5) 21 (9)* 6 (17)* 57 (69) 70 (60) 34 (54)
Glucose (mg/dL) 86 + 10 84+9 85+8 84+ 10 89+11 90+11 93 +10*
Elevated Glucose (>=100mg/dL) 85 (8) 15(3) 4(2) 1(3) 19 (23) 32(28) 14 (22)
Insulin (uU/mL) 9.7+57 73+34 9.4+3.9%  115+48%* 114+51 13.9+6.8* %Béif
HOMA-IR 21+13 15+0.7 2.0+0.9** 24 +1.0%* 25+12 3.1+15* 43 +£2.1%*
Elevated HOMA-IR (>3.77) 96 (10) 4(1) 7(3)* 5 (14)** 17 (20) 33(28) 30 (48)**
Body mass index (kg/m?) 25+4 22+2 27 £ 1** 33+ 3** 23+2 27 £ 1** 33+ 3**
Waist circumference (cm) 86 + 11 78+8 89 + 8** 98 + 10** 85+7 93 £ 6** 104 + 10**
Elevated waist circumference
(290cm men, >80cm women) 502 (49) 106 (22) 172 (72)** 35 (97)** 28 (34) 98 (84)** 63 (100)
hsCRP (mg/L) 25+37 1.7+238 2.7 +£3.9** 34+31* 26+42 34+38 5.8 +52**
Elevated hsCRP (>5.5mg/L) 98 (10) 13 (3) 22 (9)** 7 (19)** 11 (13) 21(18) 24 (38)*

Metabolically healthy: 0-1 cardio-metabolic abnormalities
Metabolically abnormal: 2-6 cardio-metabolic abnormalities
Cardio-metabolic abnormalities include blood pressure > 130/85mmHg, triglycerides >

150mg/dL, HDL-C < 40mg/dL (men) or < 50mg/dL (women), blood glucose > 100mg/dL,

HOMA-IR > 3.77 (90" percentile), and C-reactive protein > 5.5mg/dL (90" percentile)
Normal weight: BMI>25kg/m?
Overweight: BMI 25-30kg/m?

Obese: BMI>30kg/m?

*p<0.05 compared to normal weight group
**p<0.001 compared to normal weight group
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Table 3. Demographic and Metabolic Characteristics by Waist Circumference (Mean + SD
or n (%))

Metabolically Healthy Metabolically Abnormal
Normal Elevated Normal Elevated
Characteristics Waist Circumference Waist Circumference Waist Circumference ~ Waist Circumference
n =440 n=313 n=73 n=189
Age (years) 38+8 41 + 9** 37+8 40 + 8*
Men (%) 232 (53) 106 (34) 60 (82) 128 (68)
Smoking Status
None 407 (93) 289 (92) 65 (89) 150 (79)
Former 22 (5) 15 (5) 3(4) 25 (13)
Current 11 (3) 9(3) 5(7) 14 (7)
Alcohol Intake
<1 drink/day 422 (96) 304 (97) 70 (96) 181 (96)
1 drink per day 5() 4(1) 1(2) 2(1)
>1 drink per day 12 (3) 5(2) 2(3) 5(3)
Physical Activity
None 68 (16) 70 (23)* 15 (22) 45 (25)
1-2 days/week 104 (24) 54 (18)* 21 (30) 34 (19)
3 days/week 97 (23) 68 (23) 11 (16) 46 (25)
>4 days/week 160 (37) 106 (36)* 22 (32) 56 (31)
Systolic blood pressure (mmHg) 113+12 114+ 12 122+ 14 126 £ 15
Diastolic blood pressure (mmHg) 70+8 72 £8* 76+9 78 +£10
Elevated blood pressure
(>130/85 mmHg) 40 (9) 34 (11) 27 (37) 93 (49)
HDL-C (mg/dL) 52+13 51+11 40+9 39+8
Low HDL-C
(<40mg/dL men, <50mg/dL women) 55(13) 84D 43 (59) 128 (68)
Triglycerides (mg/dL) 91 +37 98 + 40* 181 +90 169 £ 75
Elevated triglycerides (>150mg/dL) 21 (5) 28 (9)* 50 (68) 111 (59)
Glucose (mg/dL) 84+9 85+9 89+11 91+10
Elevated Glucose (>100mg/dL) 12 (3) 8(3) 17 (23) 48 (25)
Insulin (uU/mL) 72+33 9.5 +4.2*%* 11.3+5.1 15.3+7.8**
HOMA-IR 15+0.7 2.0+ 0.9** 25+12 3.4+18**
Elevated HOMA-IR (>3.77) 4(1) 12 (4)* 16 (22) 64 (34)*
Body mass index (kg/m?) 23+2 27 £ 3** 24+2 29 £ 4**
Waist circumference (cm) 78+7 90 £ 7** 83+6 97 £ 9**
Elevated waist circumference
(=90cm men, >80cm women) 0 313 (100) 0 189 (100)
hsCRP (mg/L) 1.7+£29 2.7+3.6%* 23+36 43+ 4.6*
Elevated hsCRP (>5.5mg/L) 12 (3) 30 (10)** 9(12) 47 (25)*

Metabolically healthy: 0-1 metabolic abnormalities

Metabolically abnormal: 2-6 metabolic abnormalities

Metabolic abnormalities include blood pressure > 130/85mmHg, triglycerides > 150mg/dL, HDL-
C < 40mg/dL (men) or < 50mg/dL (women), blood glucose > 100mg/dL, HOMA-IR > 3.77 (90"
percentile), and C-reactive protein > 5.5mg/L (90™ percentile)

Normal waist circumference < 90 cm (men), <80 cm (women)

Elevated waist circumference > 90 cm (men), > 80 cm (women)

*p<0.05 compared to normal weight group

**p<0.001 compared to normal weight group
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Table 4. Clustering of Two Cardio-Metabolic Risk Factors

Cardio-Metabolic Risk Factor Cluster Frequency (n (%))
Low HLD-c and elevated triglycerides 59 (34)
Low HDL-c and elevated blood pressure 14 (8)
Low HLD-c and elevated blood glucose 14 (8)
Elevated triglycerides and elevated blood pressure 14 (8)
Low HDL-c and insulin resistance 11 (7)
All other combinations 57 (34)

Elevated blood pressure >130/85 mmHg

Low HDL-c <40mg/dL men, <50mg/dL women
Elevated triglycerides >150mg/dL

Elevated Glucose >100mg/dL

Elevated HOMA-IR >3.77 (upper 10" percentile)
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Figure 1. Prevalence of Cardio-Metabolically Healthy and Cardio-Metabolically Abnormal

by BMI Group (panel A, men; panel B, women)
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Figure 2. Prevalence of Cardio-Metabolic Healthy and Cardio-Metabolically Abnormal by

Waist Circumference. (panel A, men; panel B, women).
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Figure 3. Number of Cardio-Metabolic Abnormalities by Adiposity (panel A, body mass
index, panel B waist circumference)
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MicroRNAs are structural components of an epigenetic mechanism of post-transcriptional
regulation of messenger RNA translation. Recently, there is significant interest in the
application of microRNA as a blood-based biomarker of underlying physiologic conditions,

and the therapeutic administration of microRNA inhibitors and mimics. The purpose of this

review is to describe the current body of knowledge on microRNA regulation of genes

Keywords: involved in lipid metabolism, and to introduce the role of microRNA in development and
MicroRNA progression of atherosclerosis.

Dyslipidemia @ 2012 Elsevier Inc. All rights reserved.
1. Introduction is limited, we will include miR findings from both in vitro and

Dyslipidemia is a major risk factor for atherosclerosis, and
reductions in levels of atherogenic lipoproteins substantially
decrease risk. The current selection of behavioral and
pharmacological interventions has variable and often inade-
quate effects on improving lipoprotein profiles. MicroRNA
(miR) is a regulatory mechanism effecting mRNA translation,
with downstream alterations in lipoprotein synthesis, reverse
cholesterol transport and insulin signaling, making miR a
potential biomarker of underlying pathology and therapeutic
target and/or agent for regulating lipoprotein metabolism.
Thus far, two miRs are proven to have a direct role in
lipoprotein metabolism [1,2], and a number of others have
been implicated and warrant investigation. This paper will
summarize the current knowledge of miR expression and
function in lipid metabolism. Because the body of knowledge

in vive studies of animal models and humans.

2, MicroRNA Biogenesis

MicroRNAs are nucleotide sequences 18-25 nucleotides in
length that are composed of ribonucleic acid and possess a
regulatory role in mRNA translation. The first observation of
miR described binding of short antisense RNA to mRNA in the
cellular cytoplasm of Caenorhabditis elegans [3]. Subsequently,
numerous miRs have been found in diverse species, including
humans, the sequences of which are highly conserved across
species, supporting a critical role of these molecules in post-
transcriptional gene regulation [4-6]. The first description of
miR in metabolic processes in animals was in Drosophila
melanogaster [7].

Abbreviations: miR, microRNA; mRNA, messenger RNA; RNA, ribosomal nucleic acid; pri-miR, primary microRNA; DGCR8, DiGeorge
syndrome critical region gene 8; RISC, ribonucleoprotein miR-induced silencing complex; LDL-c, low density lipoprotein cholesterol; HDL-
¢, high density lipoprotein cholesterol; SREBF, Sterol Regulatory Binding Element Factor; ABCA1, Adenosine Triphosphate Binding

Cassette Transporter.
* Corresponding author. Tel.: +1 415 606 9285.
E-mail address: eflowers@ucsf.edu (E. Flowers).

0026-0495/$% - see front matter © 2012 Elsevier Inc. All rights reserved.

doi:10.1016/j.metabol.2012.04.009

j.metabol.2012.04.009

Please cite this article as: Flowers E, et al, MicroRNA regulation of lipid metabolism, Metabolism (2012), doi:10.1016/

58



2 METABOLISM CLINICAL A

NDEXPERIMENTAL XX (2012} XXX-XXX

MiR sequences originate in the cell nucleus, where miR
encoding genes are transcribed, generating miR precursors
(Fig. 1). Initially, a primary miR (pri-miR) transcript several
thousand base pairs in length is formed, which adopts a
double strand stem-loop structure for stability [8]. Pri-miR is
processed into a 60-70 nucleotide molecule called pre-miR by
a nuclear ribonuclease called Drosha [9,10]. Pre-miR is then
exported to the cytoplasm where it is further modified by the
Dicerribonuclease into a double stranded nucleotide sequence
18-25 nucleotides in length [11]. This double stranded mole-
cule is cleaved into a functional strand called the “guide
strand” and the complementary strand termed the “passenger
strand,” which is subsequently degraded by the DiGeorge
syndrome critical region gene 8 (DGCRS8) protein, commonly
called Pasha [12], yielding the mature single strand miR [13,14].
In order to preserve these molecules from degradation in the
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cytoplasm, the functional miR is bound to DGCRS8 protein to
form a ribonucleoprotein called the ribonucleoprotein miR-
induced silencing complex (RISC). RISCs accumulate in cyto-
plasmic foci called P-bodies [15-17]. In addition to storing miR
molecules, RISCs contain enzymes necessary for mRNA
degradation following cleavage caused by miR binding [17].
Ultimately, RISCs bind to the 3’ un-translated region of mRNA
in order to inhibit initiation of translation, thus acting to
modulate the quantity and rate of protein translation [18].
MiRs that are perfectly complimentary to the mRNA sequences
cause mRNA cleavage, whereas imperfect complementarity
causes reversible inhibition of mRNA translation [19].
Individual MiR species are assigned a numeric name in
sequential order by date of discovery and classification [20].
The full name of a miR species is preceded by a three-letter
prefix designating the species (e.g., hsa-miR-101 was the 101st
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Fig. 1 - MicroRNA processing pathways in the nucleus and cytoplasm. Dotted lines: segments of RNA that are cleaved from
precursor molecules during processing of mature microRNA. Solid lines: segments of RNA that are retained during processing
and incorporated in mature microRNA. RISG: ribonucleoprotein miR induced silencing complex. DGCRS8 protein: DiGeorge
syndrome critical region gene 8, whish is an essential cofactor protein for primary miR processing.
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miR to be reported in Homo sapiens) [20]. Orthologous, or
identical miR sequences found in multiple species are
assigned the same numeric value with a species-specific
prefix [20]. For example, the mouse orthologue to the human
example given above is mmu-miR-101 (Mus musculus miR-
101). MiR species whose sequence differs at only one or two
locations are called paralogues and are given a single letter
suffix (e.g. hsa-miR-30a, hsa-miR30b, hsa-miR30c) [20].

MiRs regulate numerous disease processes, including cell
differentiation and proliferation in cardiac tissue during fetal
cardiac development and cardiac hypertrophy, conduction
physiology via potassium channels, angiogenesis in myocar-
dium, glucose metabolism, lipid metabolism, and adipocyte
differentiation [21,22]. The first studies of miR and metabolism
were performed in fruit flies and determined that dme-miR-14
regulates fat metabolism by down-regulating the production
of triacylglycerol and diacylglycerol [7]. Further work demon-
strated that flies lacking dme-miR-278 become insulin resis-
tant with an increased insulin production accompanied by
elevated circulating glucose [23]. MiR expression patterns can
differ by tissue type, suggesting that this mechanism of gene
expression regulation is dynamic and can be highly specific
[24]. Because miR regulation of mRNA translation is a highly
dynamic process, it is thought that miR activity may be
triggered by external stimuli, mediating an organism's re-
sponse to changes in its environment. Thus there is potential
for miRs to be biomarkers for disease progression and/or
response to therapy, and ultimately targets of therapeutics for
cardiovascular and metabolic disorders.

3. MiR-33

The miR showing the greatest therapeutic promise to date is
miR-33 [25]. The transcripts for the two hsa-miR-33 isoforms
(a and b) are located in a non-coding region of Sterol
Regulatory Binding Element Factor (SREBF) genes, which
regulate cholesterol synthesis by several mechanisms, in-
cluding transcriptional regulation of LDL-c receptors (Table 1,
Fig. 2) [2]. MiR-33 is highly conserved across species, and can
be found in numerous cell types, including macrophages,
hepatocytes, and endothelial cells [2]. Microarray experiments
found hsa-miR-33 to be differentially expressed in response to
cholesterol enrichment or depletion in human macrophage
cells in vitro [2]. Hsa-miR-33-a expression is directly correlated
with levels of SREBF-2, and inversely correlated with expres-
sion of Adenosine Triphosphate Binding Cassette Transporter
(ABCA1), a cholesterol efflux pump [2]. Similar findings were
observed in mouse models of hypercholesterclemia (ie.,
homozygous LDL-c receptor knockout and homozygous
apolipoprotein E knockout) [2]. Also, mmu-mir-33 was in-
versely associated with serum cholesterol, with decreased
expression in homozygous LDL-c receptor knockout mice fed
high fat diets compared to normal diet. Corresponding
changes in SREBF-2 (positive) and ABCA1 (negative) were
observed. Importantly, these findings prove that miR-33 is
responsive to environmental changes (i.e. alterations in
cholesterol levels secondary to diet or medication), making
miR potential biomarkers of response to environmental
stimuli and targets of therapeutic interventions Additional

putative binding sites for miR-33 occur on ATP-Binding
Cassette, Sub-Family G (ABCG1) and Neimann Pick type C1
(NPC1) mRNA. In vitro transfection studies demonstrated that
miR-33 decreased ABCA1l and NPC1 mRNA, but not ABCG1
mRNA, in human macrophages. Finally, lentivirus transfec-
tion of mice with mmu-miR-33 substantially decreased
ABCA1, resulting in 22% decrease in plasma high-density
lipoprotein cholesterol (HDL-c), while transfection of mmu-
miR-33 inhibitor resulted in increased expression ABCA1 and
accompanying 25% increase in HDL-c [2]. Increased HDL-c in
response to miR-33 inhibitors corresponds with several anti-
atherogenic events, including changes in reverse cholesterol
transport, decreased plaque size and lipid accumulation in
foam cells, decreased number of macrophages, and increased
plaque stability in the aortic root of mouse hearts [26]. An
intriguing observation is that the transfected miR-33 in-
hibitors were found to actually enter atherosclerotic lesions,
and increase expression of ABCA1 in macrophages residing in
the plaque [26]. The same macrophages displayed changes in
expression of inflammatory gene [26].

MiR-33 also regulates mRNA associated with ;-oxidation of
fatty acids, including Hydroxylacyl-CoA Dehydrogenase/3
Ketoacyl-CoA Thiolase (HADHB), Carnitine O-Octanoyltrans-
ferase (CROT), and Carnitine Palmitoyltransferase 1A (CPT1A)
(Table 1) [27]. Overexpression of miR-33b in radiocactively
labeled hepatocytes (Huh7 and HepG2) decreased the rate of
oxidation, while inhibition induced p-oxidation [27]. In Huh7
cells, transfection with miR-33b also led to accumulation of a
greater number of triglycerides and larger lipid droplets [27].

Until recently, studies of miR-33 function were stymied by
the lack of the presence of both the miR-33b isoform and the
SREBF1 gene in mice. A recent study of African green monkeys,
who, like humans, have the SREBF1 gene and sae-miR-33b
isoform, found substantial alterations in gene expression and
lipoprotein levels after sae-miR-33-b inhibition [28]. Animals
receiving sae-miR-33b inhibitor had decreased triglycerides
(50%) and increased HDL-c (50%) after 12 weeks of treatment,
with no apparent side effects [28]. Numerous corresponding
changes in mRNA involved in regulation of lipoprotein levels
with putative binding sites for sae-miR-33b, including ABCA1,
CROT, HADHB, SREBF1, Protein Kinase AMP-Activated 1
(AMPK), and CPT1A were associated with changes in lipopro-
tein levels (Table 1, Fig. 2) [28].

In both in vitro studies of Huh7 cells and in vive studies of
mice, miR-33 appears to inhibit translation of Insulin Receptor
Substrate 2 (IRS2) mRNA, with accompanying downstream
alterations in IRS2 targets (Table 1) [27]. Similarly, the
expression of IRS2 is increased in African Green Monkeys
treated with sae-miR-33b inhibitor [28]. IRS2 is a mediator of
insulin and insulin-like growth factor 1, and decreased levels
are associated with development of insulin resistance [29].
Impaired insulin metabolism is widely known to be a risk
factor for cardiovascular disease, and is associated with
lipoprotein metabolism in that impaired insulin secretion
resulting from insulin resistance also leads to decreased
lipoprotein lipase response and accumulation of plasma
fatty acids [30]. Correspondingly, in vitro inhibition of miR-
33a and miR-33b up-regulates fatty acid oxidation and
hepatocyte insulin response [27]. Similar to studies of miR-
mediated lipoprotein metabolism, further studies of insulin
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Table 1 - Gene Targets of MicroRNA Regulating Metabolism.

miR Direction
species of Effect

Observed Targets

Target Gene Function

Citation

33 1 Adenosine Triphosphate Binding Cholesterol efflux pump; initiation of HDL- Rayner et al, 2010, Rayner,
Cassette Transporter (ABCA1) ¢ formation Sheedy, et al, 2011, Rayner, Esau,
etal, 2011
E8) 1 Neimann Pick Type C1 (NPC1) Transports LDL-c to endosomes/lysosomes Rayner et al, 2010
for hydrolysis to free cholesterol
33 1 Hydroxylacyl-CoA Dehydrogenase/3 Mitochondrial oxidation of fatty acids Rayner, Esau, et al, 2011; Davalos
Ketoacyl-CoA Thiolase, beta subunit et al, 2011
(HADHB)
33 1 Carnitine O-Octanoyltransferase (CROT) Mitochondrial oxidation of fatty acids Rayner, Esau, et al, 2011; Davalos
etal, 2011
33 1 Carnitine Palmitoyltransferase 1A Mitochondrial oxidation of fatty acids Rayner, Esau, et al, 2011; Davalos
(CPT1A) et al, 2011
33 t Sterol Regulatory Element Binding Regulates transcription of LDL receptor, Rayner, Esau, et al, 2011
Transcription Factor (SREBF) fatty acids, and cholesterol synthesis
pathways
33 ] AMP Kinase (AMPK) Regulates ATP-consuming biopathways to Rayner, Esau, et al, 2011; Davalos
prevent cellular ATP depletion et al, 2011
33 1 Insulin Receptor Substrate 2 (IRS2) Mediates effects of insulin Rayner, Esau, et al, 2011; Davalos
et al, 2011
122 ] Glycogen Synthase 1(GYS1) Catalyzes the addition of glucose to Esau et al, 2006
glycogen
122 1 Solute Carrier Family 7 (SLC7A1, CAT1) Transport of cationic amino acids in Esau et al, 2006; Cirera et al, 2010
hepatic cells
122 ] Misshapen/NIK-Related Kinase 1 Activates JNK and p38 pathways, which are Esau et al, 2006
(MINK1) involved in stress response
122 1 Aldoase A, Fructose-Biphosphate Catalyzes conversion of fructose to Esau et al, 2006
(ALDOA) glyceraldehydes
122 1 Cyclin G1 (CCNG1) DNA repair Esau et al, 2006
122 1 Procollagen-Proline, 2-Oxoglutarate-4- Post-translational modification of Esau et al, 2006
Dioxygenase (PAHA1) collagens
122 t Sterol Regulatory Element Binding Regulates transcription of LDL receptor, lliopoulos et al, 2010
Transcription Factor (SREBF) fatty acids, and cholesterol synthesis
pathways
122 T Diacylglycerol O-Acyltransferase 2 Catalyzes synthesis of triglycerides Iliopoulos et al, 2010
(DGAT?)
122 i Fatty Acid Synthase (FASN) Synthesis of long chain fatty acids Iliopoulos et al, 2010
122 T Nuclear Receptor Subfamily 1, group H, Cholesterol homeostasis Iliopoulos et al, 2010
member 3/Liver X Receptor a (NR1H3)
122 t Acetyl-CoA Carboxylase o (ACACA) Fatty acid synthesis Iliopoulos et al, 2010
122 i Cholesterol 7a-hydroxylase (CYP7A1) Bile acid production, absorption of Song et al, 2010
cholesterol
370 1) Carnitine Palmitoyltransferase 1A Mitochondrial oxidation of fatty acids Iliopoulos et al, 2010
(CPT1A)
370 i Sterol Regulatory Element Binding Regulates transcription of LDL receptor, lliopoulos et al, 2010
Transcription Factor 1c (SREBF1c) fatty acids, and cholesterol synthesis
pathways
370 t Diacylglycerol O-Acyltransferase 2 Catalyzes synthesis of triglycerides lliopoulos et al, 2010
(DGAT2)
370 T Fatty Acid Synthase (FASN) Synthesis of long chain fatty acids Iliopoulos et al, 2010
370 T Nuclear Receptor Subfamily 1, group H, Cholesterol homeostasis Iliopoulos et al, 2010
member 3/Liver X Receptor a (NR1H3)
370 T Acetyl-CoA Carboxylase o (ACACA) Fatty acid synthesis Iliopoulos et al, 2010
758 1 Adenosine Triphosphate Binding Cholesterol efflux pump; initiation of HDL- Ramirez et al, 2011

Cassette Transporter (ABCA1) ¢ formation

metabolism in animal models are limited by the lack of miR-
33b in traditional animal models of diabetes (Le. mice, rats).

vertebrate mammals [24,31]. Several experimental studies
of miR-122 indicate a regulatory role in lipid metabolism.
Transfection of an anti-sense oligonucleotide inhibitor of
mmu-miR-122 into a mouse hepatocyte-derived cell line
(AML12) caused an increase in six mRNA (Glycogen Synthase
1 (GYS1), Solute Carrier Family 7 (SLC7A1), Misshapen/NIK-
Related Kinase 1 (MINK1), Aldoase A, Fructose-Biphosphate
(ALDOA), Cyclin G1 (CCNG1), and Procollagen-Proline, 2-

4. MiR-122

MiR-122 accounts for 70% of all miRs in the adult mouse
liver and is conserved in species ranging from fish to
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PERIPHERAL CELLS

SREBPF

SLC7A1
GYS1

CYP7AL

ADIPOCYTES

Fig. 2 - Messenger RNA targets of microRNA that are involved in regulation of lipoprotein metabolism. Pointed tip arrows: up-
regulation of target mRNA expression. Blunted tip arrows: down-regulation of target mRNA expression. ABCA1: Adenosine
Triphosphate Binding Cassette Transporter, SREBPF: Sterol Regulatory Element Binding Transcription Factor; DGAT2:
Diacylglycerol O-Acyltransferase 2; CYP7A1: Cholesterol 7a-hydroxylase. FASN: Fatty Acid Synthase; NRIH3: Nuclear Receptor
Subfamily 1, group H, member 3/Liver X Receptor a; ACAGA: Acetyl-CoA Carboxylase o; SLG7A1: Solute Carrier Family 7; GYS1:

Glycogen Synthase 1.

Oxoglutarate-4-Dioxygenase, Alpha Subunit, Isoform 1
(P4HA1)) [1], some of which may have indirect effects on
lipid metabolism (Table 1, Fig. 2). The same results were
observed with mmu-miR-122 inhibition in mice, and in both
experiments, an inhibitor dose-dependent response of
mRNA expression was observed [1]. Importantly, the mmu-
miR-122 inhibited mice had a significant decrease in plasma
total cholesterol and plasma triglycerides compared to
controls [1].

Similarly, hsa-miR-122, along with hsa-miR-422, inhibits
translation of the Cholesterol 7a-hydroxylase (CYP7A1)
mRNA, and therefore bile acid synthesis [32]. In a human
hepatocyte-derived cell line (HepG2), cells treated with hsa-
miR-122 inhibitor displayed increased bile acid concentrations
compared to untreated controls, implicating hsa-miR-122
regulation of CYP7A1 as a possible mechanism for decreasing
serum cholesterol and triglycerides [32]. In addition, inhibition
of hsa-miR-122 in Hep2G cells decreased the expression of
SREBF-1c, a gene that regulates transcription of the low
density lipoprotein cholesterol (LDL-c) receptor and choles-
terol synthesis pathway, along with other enzymes known to
regulate fatty acid and triglyceride accumulation in the liver
[33]. The activity of hsa-miR-122 in this context appears to be
regulated by hsa-miR-370, making the latter an additional
potential therapeutic target [33]. In a porcine model of obesity,
liver levels of ssc-miR-122 were down regulated in response to
a high cholesterol diet compared to normal diet, and
corresponding increases in body weight, total cholesterol,
and HDL-c were observed [34]. However, no changes in

SLC7A1, a target of miR-122 with a regulatory role in
endothelial function, were cbserved.

5. MiR-370

As described above, miR-370 has an indirect effect on lipid
metabolism via its up-regulation of miR-122 and its targets.
Hsa-miR-370 has a direct inhibitory effect on CPT1A in Hep2G
cells, which facilitates p-oxidation and is also a target of miR-
122, as well as direct effects on SREBF-1c (Table 1, Fig. 2) [33].
Inhibition of three enzymes (diacylglycerol O-acyltransferase
2 (DGAT2), fatty acid synthase (FASN), and acetyl-CoA
carboxylase 1 (ACACA)) is also seen in Hep2G cells in vitro,
and it appears that changes in FASN and ACACA are mediated
by the effects on SREBF and DGAT2 (Table 1, Fig. 2) [33].
Transfection of mmu-miR-370 in mice resulted in increased
hepatic triglyceride and cholesterol levels, but corresponding
changes in mRNA targets were not described [33].

6. Emergent Candidate MiR and Lipoprotein
Regulation

Several additional miRs show preliminary evidence of arole in
the regulation of lipoprotein metabolism. MiR-758 was a
biocinformatically predicted regulatory agent for ABCA1, the
protein enabling cellular cholesterol efflux by apolipoprotein
Al containing particles (i.e., HDL-c). In vitro studies of mouse
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(774 cells) and human (THP-1 cells) macrophages revealed
miR-758 is inversely associated with ABCA1, with inhibition of
miR-758 causing increased ABCA1 expression, and adminis-
tration of a miR-758 mimic causing decreased expression [35].
Further study of an animal model found expression of mmu-
miR-758 was decreased in peritoneal macrophages from mice
fed a high fat diet, with accompanying increases in the
expression of ABCA1 [35].

MiR-106b also appears to target ABCA1, impairing cellular
cholesterol efflux in mouse neuroblastoma (Neuro2a) cells
treated with radioactively labeled cholesterol [36]. This miR
shows important neurologic implications as amyloid p
peptide, a precursor to Alzheimer's Disease that appears to
be regulated by ABCAL, is substantially increased by transfec-
tion of miR-106b in vitro [36].

7. Emergent Candidate MiR and
Atherosclerosis

A primary consequence of dyslipidemia (ie., elevated non-
HDL-c) is the development of atherosclerosis. Thus miR-
modulated regulation of lipid metabolism influences the
development of atherosclerotic lesions. Several studies show
that miRs influence the development and progression of
atherosclerotic lesions via a number of mechanisms, includ-
ing inflammation of macrophages and foam cell develop-
ment, smooth muscle cell proliferation and migration, and
apoptosis. Here we provide a brief summary of miRs involved
in atherosclerosis. Additional review of this body of literature
can be found elsewhere [37].

The hypothesis that miR may have overlapping regulatory
functions in lipid metabolism and atherosclerosis is sup-
ported by the observation that miR-21 is a prevalent miR in
cardiomyocytes, regulating apoptosis and vascular smooth
muscle cell proliferation [38]. MiR-21 also appears to have a
role in liver function and cholesterol regulation. Hepatic
expression of miR-21 is up-regulated by free unsaturated
fatty acids, with increased expression in the livers of rats fed a
high fat diet and human liver tissue of obese individuals [39].
The mechanism of action of miR-21 in this setting is down-
regulation of expression of the Phosphatase and Tensin
Homolog protein, a tumor suppressor involved in early
hepatic insulin hypersensitivity [39]. These findings provide
additional evidence for dynamic activity of miR in response to
environmental stimuli, resulting in alterations of metabolic
function. In humans, has-miR-21 is detectable in blood [40,41],
and therefore feasibly measured in a research context, making
this an ideal target for testing whether variable expression is
associated with risk reduction interventions.

Microarray measurement of miR in human monocytes in
vitro exposed to oxidized LDL-c showed differential expression
of several miRs, with as much as 11-fold change in expression
(hsa-miR-125-5p) in exposed cells versus controls [42]. Oxi-
dized LDL-c is a pro-atherogenic species that has a high
affinity for macrophages, facilitating in the development of
foam cells and atherosclerotic lesions. Administration of hsa-
miR-125-5p inhibitors in human monocytic leukemia (THP-1)
cells results in significant increases in total cholesterol after
exposure to oxidized LDL-c, as well as decreased oxidized LDL-

c uptake in macrophages [42]. Inhibition studies also show
alterations in inflammatory markers associated with athero-
sclerosis, including Interleukin-6, Interleukin-2, Transforming
Growth Factor-3, and Tumor Necrosis Factor-a [42]. Ischemia-
induced arterial injury is associated with changes in miR
expression in endothelial cells in rats, including up-regulation
of mo-miR-21 and down-regulation of rmo-miR-125 [43].
Numerous additional studies report that miR expression is
associated with changes in vascular smooth muscle cell
function in mammalian species, particularly mmu-miR-143,
mmu-miR-145, rno-miR-145 [44-47], rno-miR-221, and rno-
miR-222 [48].

Further research is needed to identify where atherosclero-
sis-associated differential expression of miR occurs in tissues
associated with this disease (e.g. endothelial cells, smooth
muscle cells, macrophages). Furthermore, understanding of
all of the regulatory effects of miR on expression of genes
associated with atherosclerosis mechanisms, including which
mRNA are targeted, remains incomplete. And finally, the
temporally and spatially (i.e., tissue type, cell type) specific
expression represents a critical additional layer of complexity
that warrants detailed study.

8. Conclusions

MiRs are a class of small RNA molecules with reversible
regulatory actions on gene expression. MiRs regulate a wide
variety of physiclogic processes including dyslipidemia, a major
risk factor for atherosclerosis. MiR-33 targets ABCA1, and has
tremendous prospective therapeutic implications, given its
direct role on HDL-¢, non-HDL-c, and triglycerides. Importantly,
exogenous miR-33 treatment has recently been studied in large
primates, with dramaticimprovementsin lipoprotein levels and
no apparent short-term side effects. In addition, inhibition of
miR-33 appears to improve insulin sensitivity.

MiR-122 is the most prevalent miR in the livers of many
species, and targets several genes that control cholesterol
metabolism. Moreover, miR-122 appears to act in tandem with
other miR (i.e. mir-370) to modify lipoprotein metabolism in the
liver. The aggregate effects of miR-122 appear to be decreased
total cholesterol and triglycerides and decreased production of
the LDL-c receptor. There are several additional miRs with early
evidence suggesting functional roles in cholesterol metabolism,
and the activity of miRs appears to be responsive to changes in
the environment. Thus, these miRs may represent plausible
anti-atherogenic therapeutic targets.

9. Clinical implications

There are three potential implications for miR in clinical
practice. The first is measurement of risk for significant
clinical outcomes. Taking miR-33 as an example, differential
expression is observed in genetically altered mice lacking LDL-
c receptors compared to controls. Importantly, these differ-
ences were observed in hepatic tissue. However, in order for
miR expression to be clinically practical in humans, differen-
tial expression must be observed in readily accessible tissue,
such as blood. Measurement of miR in peripheral blood
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leukocytes for a wide array of conditions including cancer
[49,50], myocardial infarction and injury [51,52], stroke [53],
and sepsis [54], shows distinct patterns of expression in
disease states compared to controls. These findings suggest
that use of differential miR expression patterns in peripheral
blood of humans with abnormal lipid metabolism is a
plausible clinical biomarker. To our knowledge, no studies of
human miR expression in dyslipidemia have been reported
(Table 2). There are three possible implications for measure-
ment of miR profiles in peripheral blood: (1) indirect markers
of underlying pathology, (2) direct markers of pathology, and
(3) reflective makers of pathology. In order to study the latter,
studies measuring simultaneous expression of miR in blood
and organs are needed. No studies comparing miR expression
levels in blood to organ specific (e.g. macrophages and liver)
expression were found, however comparative studies in
animals have been reported for other disease processes [55].
Secondly, a translational application for blood-based miR
measurement is to assess expression before and after risk
reduction interventions (e.g., medication, diet, physical
activity) to determine whether blood-based expression is
differential, and whether miRs are biomarkers for changes in
clinical risk profile. Data suggest that miRs are highly
responsive to changes in the in vitro cellular environment
and to an organisms environment. Keeping with the miR-33
example provided above, differential expression has been
observed between mice fed high fat compared to normal
diets. Studies report encouraging preliminary findings sup-
porting environment-induced response in human-derived
cell lines in vitro (Table 2). Future studies employing repeated
measures designs for miR expression in humans are

warranted in order to determine whether miR can serve as
a meaningful measure of the effects of interventions and
underlying physiologic changes.

Finally, there are currently two plausible mechanisms for
miR as an intervention. The first is administration of
antisense oligonucleotide inhibitors to specific miR (also
termed antagomiRs), into the peripheral circulation. Inhibi-
tors block the activity of the endogenously occurring miR,
resulting in alteration of gene expression at a specific location.
Animal studies have demonstrated successful inhibition of
miR-33 activity following inhibitor administration, accompa-
nied by substantial changes in lipoprotein profile. The second
application is miR mimics, which are synthesized and
chemically modified copies of miR species that can be
administered into the peripheral circulation in order to
enhance the overall effect of a specific miR. Both applications
are effective in in vitro studies of human-derived cells
(Table 2). A review of these methods is described in detail
elsewhere [56].

10.  Strengths and weaknesses

Significant strengths of miR research are the potential for an
important complementary approach to assessing cardiovas-
cular risk, measurement of response to behavioral and
pharmacologic interventions, and as therapeutic targets for
cardiovascular risk reduction. MiRs are highly dynamic, and
alterations in expression are likely to precede changes in
current standard clinical biomarkers. A limitation to clinical
translation of miR research to the clinical setting is that the

Table 2 - Evidence for Cl

of Humans and Related Primates.

s of microRNA in in vitro Studies of Human-Derived Cell Lines and

miR Markers of response Targeted interventions
species
33 miR-33 is down regulated by cholesterol miR-33 inhibition decreased serum triglycerides and increased HDL-c in

enrichment in human THP-1 macrophages
in vitro (Rayner et al, 2010)

African Green Monkeys and upregulated fatty acid oxidation and hepatic
insulin response in Huh2 hepatocytes in vitro (Rayner et al, 2011); miR-33
inhibition decreased expression of Insulin Receptor Substrate 2 mRNA in
HepG2 hepatocytes in vitro (Davalos, et al, 2011)
122 miR-122 inhibition decreased expression of Sterol Regulatory Element
Binding Factor 1c mRNA (Iliopoulos, et al, 2010) and increased bile acid
concentrations in HepG2 hepatocytes in vitro (Song et al, 2010)
370 miR-370 transfection upregulated Sterol Regulatory Binding Factor 1c,
Diacylglycerol O-Acyltransferase 2, Fatty Acid Synthase, and acyl-CoA
carboxylase 1in HepG2 hepatocytes in vitro (Iliopoulos et al, 2010)
758 Inhibition of miR-758 decreased Adenosine Triphosphate Binding Cassette
Transporter mRNA in THP-1 macrophages in vitro
(Ramirez et al, 2011)
21 miR-21 is upregulated by elevated free fatty acids
secondary to obesity in human liver
(Vinciguerra et al, 2009)
125-5p miR125-5p is upregulated in THP-1 monocytes Inhibition of mir-125-5p increased total cholesterol and oxidized LDL-c
exposed to oxidized LDL-c in vitro (Chen et al, 2008) uptake, and altered expression of inflammatory markers in THP-1 monocytes
in vitro (Chen et al, 2009)

microRNA (miR).

High-density lipoprotein cholesterol (HDL-c).
Messenger RNA (mRNA).

Low-density lipoprotein cholestercl (LDL-c).
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majority of experiments on miR expression and lipoprotein
metabolism were performed on tissues that are not feasible to
access in routine clinical care (e.g. liver, endothelium). In order
for a biomarker to be clinically useful, the tissue source must
be easily obtained, and further research on feasibility and
utility of blood-based detection in humans is needed.
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Abstract

MicroRNAs (miRs) are epigenetic regulators of messenger RNAs' (mRNA) expression of polypeptides. As such, miRs represent
an intriguing mechanism by which gene—environment interactions are hypothesized to occur on the level of epigenetic control
over gene expression. In addition to promising findings from in vitro studies indicating that miRs have the potential to
function as therapeutic agents in modifying the course of pathophysiologic conditions, recent human studies revealed changes
in miR expression patterns in response to behavioral interventions. The authors provide an overview of how miRs are
preserved and isolated from other genetic material and describe commonly used methods for measuring miR in the research
setting, including Northern blot, polymerase chain reaction, and microarray. The authors also introduce bioinformatic
approaches to analysis of high-throughput miR expression and techniques used to create predictive models of miR-mRNA binding

to describe possible physiclogic pathways affected by specific miRs.
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Gene-environment interactions are increasingly recognized as
an important mechanism in the development and progression of
all disease conditions, ranging from common, complex disease
(e.g., cardiovascular disease, type 2 diabetes) to mental health
disorders (e.g., schizophrenia, antisocial personality disorder)
to trauma (e.g., gunshot wounds). The theory of gene—environ-
ment interaction posits that the expression and effects of the
individual genome can be modified by environmental stimuli.
These interactions can occur at the gene level, when specific
risk or protective alleles are present and interact with environ-
mental factors, or at the epigenetic1 level, when the expression
of genes controlling normal physiologic processes is up- or
downregulated in response to environmental factors.

A primary purpose of studying gene—environment interac-
tions is to determine the public health impact of individual risk
factors within a specific population, facilitating development of’
targeted interventions to maximize health and minimize dis-
ease. Importantly, however, population-based interventions to
target risk factors for adverse health outcomes often show less
than desirable effectiveness. Improved risk stratification and
carly detection of risk may help to prevent onset of disease and
prevent secondary outcomes. While clinical outcomes associ-
ated with interventions to change lifestyle and behavioral
characteristics have been well described, the mechanisms by
which health outcomes are modified are not fully understood.
A deeper understanding of the mechanisms by which risk

factors act, including epigenetic modification of gene expres-
sion, may guide therapies and interventions in order to increase
efficacy. This type of health promotion and disease prevention
1s a primary component of nursing practice.

MicroRNAs (miRs), a recently described epigenetic phe-
nomenon, regulate gene expression. MiR activity regulates
numerous disease conditions in humans, including cardiovas-
cular and metabolic diseases, cancers, and sequelae from
trauma. Insights from miR studies have confirmed previously
hypothesized physiologic mechanisms and shed light on possi-
ble new pathways of disease. MiR activity often reflects change
in a physiologic condition before overt effects are observed in
the clinical setting and may serve as a sensitive biomarker for
these conditions. Importantly, miR activity is highly dynamic
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Figure I. MicroRNA (miR) processing in the nucleus and cytoplasm, which portrays the origination of miR from deoxyribonucleic acid (DNA)
in the nucleus, modification into mature miR, and activity in the cytoplasm.

and responds to environmental stimuli, resulting in alterations
of gene expression. This characteristic of miR activity makes it
particularly appealing for further study as a marker for response
to therapies and interventions, an important and promising
frontier in nursing research.

Qur purpose in this article is to describe methods for detec-
tion and quantification of miR. Reliable and valid methods for
measurement of miR are available in the research setting. MiR
is a short, single-strand sequence of nucleotides found most
commonly in the cytoplasm of cells. MiR measurement in
humans requires access to a source of cells, from which miRs
are isolated and preserved to ensure stability during storage
prior to measurement. Methods of accessing the miR sources
can be noninvasive (e.g., with saliva) or invasive (e.g., with
neural tissue). We describe three methods for detection and
quantification of specific miR species: Northern blot, targeted
polymerase  chain (PCR), and
Simultaneous detection and quantification of numerous miR
species are possible with high-throughput PCR and microarray
methods. These methods result in vast amount of data, present-
ing analytic and computational challenges. Thus, we also
briefly present methods for decreasing the likelihood of false
positives while maintaining high sensitivity and clustering

reaction microarray.

algorithm methods to allow for rational categorization and
interpretation of large amount of data.

miR

MiRs are short sequences (18-25 nucleotides) of RNA found in
the cellular cytoplasm. MiRs originate from the transcription of
deoxyribonucleic acid (DNA) in the cell nucleus (Figure 1).
The initial single-stranded product that forms a stem-loop
structure that includes a double-strand region is modified by
a series of enzymatic reactions into the mature single-strand
miR molecule. Mature miRs bind to stabilizing proteins to form
structures called ribonucleoprotein miR—induced silencing
complexes, which collect in the cytoplasm in structures termed
p-bodies. MiRs exert their regulatory effects by binding to
messenger RNA (mRNA), inhibiting translation of mRNA into
polypeptides.

MiRs are highly dynamic, showing variable expressivity
over time, which is associated with variable concentrations of
protein products regulated by miR. The triggers of variation
in miR expression are not fully understood, however, changes
to both the intracellular and the external environment appear to
have important effects. This property makes miR an important
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candidate for studies of gene—environment interactions. Studies
of miR activity in cells isolated from the pancreases of mice
exposed to a high glucose stimulus showed threefold changes
in individual miR’s expression (Tang, Muniappan, Tang, &
Ozcan, 2009), and similarly, rats fed a high-fat diet and over-
weight humans exhibit elevations in concentrations of specific
miRs compared to normal-weight controls (Vinciguerra et al.,
2009). Healthy humans exhibit changes in the expression of
miRs in circulating neutrophils following an exercise interven-
tion (Radom-Aizik, Zaldivar, Oliver, Galassetti, & Cooper,
2010). These findings further support the role of miR as a
mediator of gene expression changes in response to the
environment and substantiate the possibility of using miR to
measure the effects of behavioral changes, permitting a deeper
understanding of the mechanisms by which behavioral changes
function.

Studies of the role of miR regulation in disease most
commonly incorporate two aims. The first is to detect which
of several hundred known miR species are present in a given
tissue, in effect determining the miR fingerprint that charac-
terizes a specific tissue. The type and number of miRs present
depends on the physiologic needs of the tissue, and this finger-
print differs between individuals with normal physiologic func-
tion and individuals with a pathologic condition predisposing
to or causing a disease. Therefore, the second aim is to quantify
the level of prevalent miR species so that comparative analysis
between individuals can be performed. In order to accomplish
these aims, the researcher must first obtain tissue. The choice of
tissue source depends on the disease condition of interest and
feasibility of access. The extracted tissue must then be pre-
served, and the miRs must be isolated from other cellular and
genetic material before detection and quantification.

Tissue Sources of miR

The central dogma of molecular biology (Figure 2) tells us that
genes exist as sequences of nucleotides that are transcribed to
an intermediate messenger molecule aptly called mRNA,
which is then translated into amino acids and synthesized into
polypeptides, the building blocks of proteins. However, not all
genes are expressed at all times. Some genes, known as house-
keeping genes, are essential to cellular function, regardless of
cell type, whereas other genes encode for specific polypeptides
forming proteins only needed in certain physiologic states or
tissues. Further, the function of some genes is to express RNA
(including miR) that is never translated into polypeptides. For
example, some genes encode for the machinery necessary to
perform transcription and translation. A form of RNA called
transfer RNA (tRNA) binds individual amino acids and facili-
tates polypeptide synthesis during transcription of mRNA.
Ribosomal RNA (rRNA) is another helper in the process of
transcription, and both tRNA and rRNA are created by the pro-
cess of transcription and translation of their specific genes. In
contrast, melanin, a protein that causes skin pigmentation, is
continually expressed in dermal cells but is not expressed in
neural cells where its function would be inappropriate. We

DNA >SN

Transcription
Synthesis of a single
strand RNA copy of a

DNA sequence
(reverse transcription of RNA to
DNA oceurs in some species)

-—-3

MRANA N~

Translation
Decoding of
nucleotides sequences
to assemble amino
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polypeptides .
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l Numerous polypeptides
are assembled into a 3-
dimensionally structured
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Figure 2. Central dogma of molecular biology, which depicts the pro-
cess by which deoxyribonucleic acid (DNA) is converted into RNA
and polypeptides, the building blocks of amino acids and proteins.

observe varying degrees of skin pigmentation between differ-
ent ethnic and geographic populations, suggesting that melanin
expression is variable among individuals and is dependent on
some degree of predetermined genetic control as well as envi-
ronmental exposure in the form of ultraviolet radiation that
composes sunlight. Melanin, then, is an example of dynamic
gene expression that is tissue specific, as well as an interaction
between genetic predisposition and the environment.

Because of the specific nature of gene expression associ-
ated with discrete physiologic pathways, studies of gene
expression require access to tissues in which these pathways
are occurring. Early investigation of gene expression and epi-
genetic mechanisms regulating gene expression are generally
performed in cultured cells in vitro followed by studies in
animal models in tightly controlled experimental settings. For
numerous disease conditions, miR expression varies within an
organism by tissue type (lkeda et al., 2007; Kloting et al.,
2009; Lagos-Quintana et al., 2002; Liu & Kohane, 2009; Poy
et al., 2004). Translation of these findings to human patho-
physiology is often limited by feasibility of access to tissues
involved in specific pathways of interest. For example, stud-
ies of genes expressed in heart failure can be performed on
cardiomyocyte cell lines in vitro, but translation to human
studies requires cardiac biopsy, involving extremely invasive
cardiac catheterization. In some settings, cardiac biopsies
may be performed on individuals with heart failure; however,
it would be ethically inappropriate to expose healthy controls
to the same procedure, making comparative analysis of cases
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and controls in order to determine pathophysiologic miR pro-
files infeasible.

The practical and ethical challenges associated with acces-
sing tissue sources limit the clinical utility of measuring RNA.
However, most disease conditions involve signaling, increased
systemic inflammation, and/or physiologic stress in the periph-
eral circulation. Preliminary data indicate that plasma measure-
ments of miR expression can effectively detect differences
between diseased and healthy individuals for a number of dis-
ease conditions.

Investigators in studies of numerous disease conditions have
quantified miR expression in blood. MiRs in peripheral blood
can be isolated from leukocytes, which may capture miR func-
tion in immune activity. However, miRs have also been
detected in the plasma component of blood (Chen et al.,
2008). Measurement studies of plasma demonstrated that miR
is stable and reproducible using common RNA quantification
methods (Chen et al., 2008). Much of the work describing miR
expression in plasma to date has been performed on humans
and other animals with cancer, and researchers have observed
differential expression of miRs between humans with and with-
out cancer (Lodes et al., 2009). In one example, investigators
observed that miR expression in plasma differed between indi-
viduals with and without pancreatic cancer, and a panel of four
miR species exhibited a sensitivity of 64% and sensitivity of
89% for detecting pancreatic cancer compared to controls
(Wang et al., 2009). Preliminary research has shown that miR
expression also differs in the plasma of humans with disease
conditions other than cancer (Liu et al., 2009; Tan et al,
2009; Vasilescu et al., 2009), including diabetes (Chen et al.,
2008). Chen et al. (2008) observed unique expression of 17
(serum) and 27 (blood cell) miRs in individuals with diabetes
compared to healthy controls. They also found that the serum
miR expression better differentiated diabetic individuals from
healthy controls than miR expression from blood cells. Based
on the studies cited above, blood-based measurement of miR
expression appears to be feasible and shows promise for detec-
tion and discrimination of disease states.

Preservation

MiR is an unstable molecule, prone to degradation by ubiqui-
tous ribonuclease enzymes that rapidly degrade RNA. As a
result, studies of RNA, including miR, require immediate pre-
servation of tissue specimens in order to accurately capture
miR levels present at the time of sample collection. Common
preservation techniques include freezing complete specimens
in liquid nitrogen or on dry ice or placing the specimen in an
aqueous salt buffer, which precipitates ribonuclease enzymes,
preventing degradation of RNA, including miR (Allewell &
Sama, 1974). Freezing methods have limitations including the
need for specialized equipment and resources, trained person-
nel, and cold storage. Salt-buffer preservation methods are sim-
ple to perform and have shown comparable results from RNA
isolation and quantification methods when compared to fresh-

frozen methods (Brown & Smith, 2009; Florell et al., 2001;

Mutter et al., 2004). Salt-buffer-preserved RNA specimens can
be stored under standard refrigeration (4 °C) for up to 30 days
or indefinitely at —20 °C or —80 °C (Ambion, 2008b).

Isolation

Commercial kits are widely used for isolation of total RNA
from tissues and other materials. Briefly, the methods
employed by these kits are as follows: (a) incubation of tissue
with a lysis buffer to disrupt cell membranes, (b) extraction of
RNA with acid guanidinium thiocyanate-phenol-chloroform
reagent (commercially available as Trizol [Invitrogen, Carls-
bad, CA] or TRI-Reagent [Sigma-Aldrich, St. Louis, MQ]),
(c) washing of the precipitate with an ethanol solution, (d) cen-
trifugation in a spin column tube containing a filter to isolate
RNA precipitate, and (e) elution of the precipitate in
ribonuclease-free water resulting in an aqueous solution of iso-
lated RNA (Ambion, 2008a; Chomeczynski & Sacchi, 1987).
Extraction of small RNA molecules including miR requires
some modification of this procedure by altering the concentra-
tion of ethanol wash and using a different column filtration
device containing a glass fiber filter (Ambion, 2008a; Mraz,
Malinova, Mayer, & Pospisilova, 2009). A higher concentra-
tion of ethanol renders larger RNA molecules (>200 nucleo-
tides) immobilized and unable to pass through the filter
(Ambion, 2008a). The ethanol concentration of this small
RNA-enriched solution is increased again and passed through
a second filter, rendering the small RNA immobilized and iso-
lated above the filter. Quantitative analyses of miR expression
in fresh compared with properly preserved and stored tissue
samples have shown comparable results (Mraz et al., 2009).
Properly isolated and preserved miRs can then be further ana-
lyzed in order to detect the presence of and quantify the indi-
vidual miR species.

Detection and Quantification

In order to investigate the role of miR regulation of gene
expression in a given pathological process, it is typically nec-
essary to first determine which of the several hundred individ-
ual miR species are present in a specific tissue source. Second,
investigators must quantify prevalent miR species in order to
compare expression levels between tissue types and between
individuals with differing phenotypes. There are three primary
methods for detecting and quantifying miR expression: North-
ern blot, PCR, and microarray. Selection of an appropriate
method depends on the aim of the research study and type of
data sought for downstream analysis (Table 1).

Northern Blot

Northern blotting is an electrophoretic method for separating
individual RNA molecules on the basis of size, shape, and/or
electrical charge and detecting individual RNA sequences
using binding to radioactive or chemiluminescent-labeled® oli-
gonucleotides® called probes (Alwine, Kemp, & Stark, 1977;
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Table |. Comparison of MicroRNA (miR) Measurement Methods

Method

Strengths

Weaknesses

Northern blot

Polymerase chain
reaction (PCR)

Microarray

Allows for detection of miR size

Multiplex simultaneous amplification of several miR species

Small amount of starting material required

Comparative analysis of quantity of several miRs possible

Can be automated, decreasing human error

Improved sensitivity and specificity compared to Northern
blot

Multiplex simultaneous amplification of several miR species

Hypothesis-free study of hundreds of known miR species

Comparative analysis of quantity of several miRs possible

Can be automated, decreasing human error

Improved sensitivity and specificity compared to Northern
blot

Requires a large amount of starting material

Requires stringent oligonucleotide® hybridization

Only semiquantitative; poorest sensitivity and specificity

Targeted study of hypothesized miRs only

Specially shaped specific sequence primers required for
amplification to occur

Often decreased specificity compared to PCR

Note. *Synthesized short strands of nucleic acids (generally <20 nucleotides in length) designed to be used as probes that will bind to a specific complementary

DNA or RNA sequence.

Kevil et al., 1997; Valoczi et al., 2004). Isolated RNA 1s loaded
onto a polyacrylamide or agarose gel and placed in a buffer
solution (Alwine et al., 1977; Kevil et al., 1997). An electrical
current is applied to the buffer solution, causing miR molecules
to migrate through the gel matrix. The rate of movement
depends on the size, shape, and/or electrical charge of each miR.
The miRs are then transferred from the gel to a nylon membrane
and hybridized to radioactive or chemiluminescent-labeled
probes. This property of the probes allows miRs to be visualized
and quantified to determine the concentration of each miR
species present.

A benefit of Northern blotting 1s that it allows for not only
detection but also quantification of miR size. However, the
Northern blotting method requires a large amount of RNA rela-
tive to other measurement methods and stringent hybridization
of oligonucleotides to enable detection of molecules as small as
miRs (Lu et al., 2005). Because of hybridization limitations,
Northern blotting is less sensitive than PCR and microarray
methods; however, modifications to oligonucleotides have
been shown to increase the sensitivity of Northern blotting
without decreasing specificity (Valoczi et al., 2004). These
modifications involve the addition of a “locked” nucleic acid*
to every third nucleotide position in the oligonucleotide.
Nonetheless, because of its limitations, Northern blotting is less
frequently used compared to alternative methods for detection
and quantification or miR.

PCR

PCR is a method for identifying and amplifying a specific
nucleotide sequence (Figure 3). PCR works by thermal cycling,
or repeatedly heating and cooling target sequences of nucleic
acids that have been combined with oligonucleotide primers,
DNA polymerase enzyme, and free single nucleotides in a buf-
fered solution (Mullis & Faloona, 1987). When heated to
approximately 95 °C, double-stranded DNA will denature as

the bonds holding nucleotide strands together are disrupted
(Hartl & Jones, 2005). When the solution is cooled to approx-
imately 55 °C, these single strands will bind with specially
designed primers that are complementary to the sequence of
interest. The solution is then heated to approximately 70 °C,
and the Thermus aquaticus (Tag) polymerase enzyme” sequen-
tially adds free nucleotides to this newly initiated double
strand, elongating it until a full complementary sequence has
been created, in effect doubling the number of target nucleic
acid sequences present (Hartl & Jones, 2005; Holland,
Abramson, Watson, & Gelfand, 1991). This process is repeated
numerous times (typically 30-45 cycles), resulting in exponen-
tial amplification of the target sequence (Hartl & Jones, 2003).
The exact temperatures used for a PCR (i.e., denaturation,
annealing, and extension) depend on the nucleotide composi-
tion of the primers and the specific enzymes used.

A variation of PCR is reverse transcriptase PCR (RT-PCR),
which is performed in order to amplify RNA sequences into a
complementary strand of DNA (cDNA). In RT-PCR, 5’ pri-
mers® target the terminal sequence of the RNA molecule to
initiate replication. The reverse transcriptase enzyme then adds
complementary nucleotides to create a ¢cDNA molecule. Pri-
mers used for amplification of miR sequences are often struc-
tured in a stem—loop formation in which a portion of the primer
folds back and binds to itself, creating a double-stranded
molecule (Chen et al., 2005). This method increases stability
by preventing binding between two primers, improving the
efficiency of the PCR.

Simultaneous amplification of several unique nucleotide
sequences in one PCR is possible with multiplex techniques
that include multiple primers targeted toward different
sequences of interest. Multiplex PCR enables miR amplifica-
tion when stem—loop structured primers are used as described
above (Lao et al., 2006; Tang, Hajkova, Barton, Lao, & Surani,
2006). More recently, researchers have carried out numerous
individual PCRs for multiple samples in discrete wells on
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PCR options

Figure 3. Polymerase chain reaction (PCR). Panel A illustrates the PCR method for amplifying nucleic acids. Panel B highlights aspects of PCR
specific to measurement of microRNAs (miRs), including the use of reverse transcriptase enzyme to elongate the complementary deoxyribo-
nucleic acid (DNA) strand and use of stem—loop primers which bind at the 3’ end of the parent strand. Panel C depicts a multiwell plate used for
multiplex PCR. Panel D depicts binding of fluorescence-labeled probes used in Thermus aquaticus (Tag) polymerase (TaqMan assay by Applied
Biosystems, Foster City, CA) quantitative PCR (qPCR) methods and graphic representation of the signal produced during qPCR quantification.
Probes consist of a reporter and quencher component: the quencher silences expression of the fluorescence until the probe is digested by Taq

polymerase during the PCR.

multiwell plates (e.g., TagMan low-density array by Applied
Biosystems, Foster City, CA). Each well is loaded with starting
material (i.e., extracted and isolated RNA) for one sample
along with primers, enzymes, nucleotides, and buffer. This
method allows for rapid detection and quantification of numer-
ous target sequences from multiple samples simultaneously.
A modification of PCR is real-time or quantitative PCR
(qPCR), in which quantification of the number of PCR prod-
ucts can be made at the PCR end point, or the completion of
each PCR thermal cycle (Chiang et al., 1996; Gibson, Heid,
& Williams, 1996; Heid, Stevens, Livak, & Williams, 1996).
qPCR requires the addition of a fluorescently labeled probe that
will bind with cDNA PCR products. Measurement of the inten-
sity of fluorescence during each PCR cycle reveals the quantity
of cDNA product present. The intensity of the fluorescence sig-
nal is compared to a background signal or threshold. Intensity
or quantity is quantified by a cycle threshold (C}) value, which
describes the PCR cycle at which signal intensity of the PCR

product exceeds the threshold background signal. A higher
concentration of starting target sequence results in a lower
C,. cDNA quantity can be reported as an absolute or relative
value (Schmittgen et al., 2000). Comparative analysis of C, lev-
els between two PCR products can be performed in order to
determine the relative values of two target sequences. The
mathematical derivation of this calculation is described in
detail elsewhere (Livak & Schmittgen, 2001). qPCR is the
method most commonly used in comparative expression stud-
ies of miR species. A complete description and protocol for
qPCR amplification of RNA sequences can be found elsewhere
(Nolan, Hands, & Bustin, 2006).

With the first application of PCR in miR analysis, research-
ers described amplification of an miR precursor called
pre-miR, finding that detection of these molecules using a
fluorescence gPCR method was identical to comparative detec-
tion of mature miR using Northern blot analysis (Schmittgen,
Jiang, Liu, & Yang, 2004). This method was validated and also
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shown to work for multiplex PCR performed on plates
containing up to 384 wells in which discrete experiments for
individual miR species are performed (Jiang, Lee, Gusev, &
Schmittgen, 2005). In this setting, qPCR amplification of
mature miR is highly sensitive and easily performed using
widely available instruments (Lu et al,, 2005; Raymond,
Roberts, Garrett-Engele, Lim, & Johnson, 2005; Shi & Chiang,
2005). qPCR 1s a useful method for detecting the presence of
computationally predicted or validating the presence of previ-
ously observed miR. PCR is often considered the gold standard
for detection and quantification of miR. Benefits of the PCR
method are that creation and amplification of cDNA allows for
comprehensive analysis even when the starting quantity of cel-
lular genetic material is limited, as is often the case with miR,
and increased sensitivity and specificity compared to Northern
blot. Quantification is a particularly important aspect of this
method of miR detection, allowing for analysis of comparative
expression between tissue types and during various physiologic
states.

Microarray

Microarray is a multiplex method for simultaneous detection of
numerous target nucleotide sequences. As opposed to PCR,
which is often used to identify specific miR sequences of inter-
est, microarray is used to simultaneously detect a large number
of miR species present in a sample. The precursor to microar-
ray was the dot-blot method, in which antisense oligonucleo-
tide probes for sequences of interest were bound to a nylon
membrane. Researchers used this method in early miR analysis
to study miR expression from mouse brain tissue during
development (Krichevsky, King, Donahue, Khrapko, & Kosik,
2003). However, the dot-blot method is limited by poor sensi-
tivity. Improvement on the dot-blot method came with robotic
spotting of oligonucleotide probes onto glass slides, often
called “chips,” creating a microarray platform with improved
precision of placement of antisense oligonucleotides’ (Liu
et al., 2004; Zhao et al., 2006). In order to perform microarray,
cDNA are created for all miR species in a sample using nonspe-
cific primers in a PCR and are fluorescently labeled (Liu et al.,
2004; Shingara et al., 2005; Sun et al., 2004). The cDNA is
washed over the probe-spotted chips. When a nucleotide
sequence match between the probe and an miR sequence is
present, the cDNA will hybridize to the probe. Detection of the
strength of the fluorescence signal from the hybridized cDNA
describes the quantity of cDNA present in the sample, which
reflects the number of copies of miR in the original sample (Liu
et al., 2004; Sun et al., 2004).

Microarray chips for miR analysis most often contain sev-
eral hundred probes. “Housekeeping™ probes are included for
quality control. Until recently, the housekeeping probes
selected for miR microarray were small noncoding RNAs that
are ubiquitously and abundantly expressed across species and
tissues. More recently, however, tissue- and species-specific
miR have been identified for use as housekeeping probes in
microarray analysis (Carlsson et al., 2010; Neville, Collins,

Gloyn, McCarthy, & Karpe, 2011). The remaining probes are
chosen based on known commonly occurring and pathway-
specific miR and computationally predicted target miR for a
specific physiologic process of interest. Microarray chips for
miR analysis containing prespecified miR probes are commer-
cially available. Similarly to PCR, both absolute and relative
quantities of miR can be calculated. For absolute detection, the
intensity of each individual miR probe signal is compared to
signals for oligonucleotides of known abundance (Dudley,
Aach, Steffen, & Church, 2002). In order to compare relative
miR quantities between two samples, each is labeled with
different color fluorescent dye and washed over the same chip,
then signal intensity for each probe location is compared. Until
recently, microarray has been limited by decreased sensitivity
for absolute quantification compared to PCR. One technique
to enhance the capabilities of this method is the use of a
universal reference containing oligonucleotides of known
concentration in addition to test samples in a microarray (Bis-
sels et al., 2009). The strength of the microarray method is
high-throughput parallel measurement of known miR in com-
parative analysis in order to generate hypotheses about specific
miR species for further study. However, high-throughput also
comes with a cost: it limits the sensitivity of the parallel mea-
surements. Targets of interest revealed by microarray analyses
should be verified with target-specific and more sensitive
methods of quantitation (i.e., qPCR).

Bioinformatics
Comparative Analysis

Typically, miR expression levels are compared between two
sources (e.g., cases and controls). In order to compare expres-
sion levels of single miR species, which are measured on a
continuous scale, between two sources, the Student’s ¢ test or
two-sample 7 test can be used (Pagano & Gauvreau, 2000). This
test can be performed using mean expression values for an indi-
vidual case compared to an individual control or averaged
expression level for a group of cases compared to a group of
controls. This type of analysis is useful for targeted investiga-
tion of a specific miR species that appears to be associated with
the physiologic function of interest. However, studies of miR
expression are often exploratory, and measurement of numer-
ous miR species is performed simultaneously, requiring more
complex analytic methods.

Quantitative comparison of relative expression of a large
number of miR species requires statistical methods that account
for multiple comparisons and can accommodate a large amount
of data. When many hypothesis tests are performed simultane-
ously, as is the case with comparative microarray analysis, a
type [ error of finding significant differences by chance alone
is likely. In order to conclude that statistically meaningful dif-
ferences in expression between two samples exist, it is neces-
sary to make adjustments to the significance threshold to
minimize the likelihood of false positives without increasing
the probability of type I errors.® For microarray analysis, this
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Figure 4. Venn diagram and dendogram. Graphic representation of clusters, or families, of microRNA species determined by clustering algo-
rithms. Individual microRNA species are represented by letters, which either uniquely characterize clusters or are common to multiple clusters.

adjustment is most often accomplished with the establishment
of a false discovery rate, a prespecified threshold defining an
acceptable proportion of false positives from the total number
of significant differences detected. There are several widely
used methods for establishing a false discovery rate, including
the Benjamini-Hochberg procedure (Hochberg & Benjamini,
1990) and the Bayesian statistics—based Efron—Tibshirani—
Storey procedure (Efron & Tibshirani, 2002). Mathematical
derivation and application of these methods is described in
detail elsewhere (Efron & Tibshirani, 2002; Hochberg &
Benjamini, 1990).

Data analysis methods that organize a large number of data
points, known generally as hierarchical clustering, are com-
monly used in gene expression studies, including miR analyses.
Clustering methods have the important feature of pattern detec-
tion and creation of data-based structures to accommodate a
large number of data points. A widely used method for hier-
archical clustering of expression data is the quality cluster
(QT) algorithm. A full description of this analytic method is
available elsewhere (Heyer, Kruglyak, & Yooseph, 1999).
Briefly, the QT algorithm clusters miRs into an unspecified
number of groups based on pair-wise jackknife correlations®
between individual miRs. The QT clustering algorithm begins
with a single miR signal and iteratively adds additional signals
while minimizing the cluster diameter until no additional sig-
nals can be added without exceeding a predetermined cluster

size. This process is repeated to develop additional clusters.
A unique feature of QT clustering that makes it particularly
appropriate for expression studies is the allowance of full itera-
tive resampling of the data during the initial cluster assembly,
in which signals already added to a cluster are still considered
for successive clusters (Heyer et al., 1999). At the completion
of the initial clustering process, the largest cluster is removed
from the data set, and the iterative process begins again with
the remaining data to determine subsequent clusters.

At the completion of the analysis, a dendogram'® can be
created to depict the clustering patterns of miR, and Venn dia-
grams” can be used to describe how clusters compare between
samples from comparative studies (Figure 4). Depiction of miR
clustering patterns in Venn diagrams permit visualization of
patterns of miR expression within phenotype groups. For
example, lkeda et al. (2007) performed a microarray experi-
ment measuring miR expression in cardiomyocytes of individ-
uals with discrete mechanisms of heart failure (i.e., ischemic,
dilated, aortic stenosis, and control). The aim of the study was
to determine how miR expression clusters within phenotype
groups and the extent to which miR expression differs between
groups. The researchers created a dendogram clustering miR
expression by phenotype from the heat mapl2 depicting up- and
downregulation of each individual miR species. The dendo-
gram shows which miRs are characteristic of each phenotype
group and how individual miR species are coexpressed within
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phenotype groups, allowing for pattern detection. Similarly, the
researcher created a Venn diagram in order to depict differen-
tial miR expression between phenotype groups and the extent
to which individual miRs characterize discrete phenotypes.

Quantitative Prediction of miR Targets

MiRs are an abundant class of regulatory molecules arising
from the genome. The number of miRs present for an individ-
ual species is poorly established, but most predictions for
humans estimate that approximately 1,000 miRs are present.
MiRs are nonspecific for their mRNA targets, and an individual
miR species may bind with numerous mRNA species in order
to regulate transcription. Determining which mRNA are bound
by each miR has been the primary challenge to understanding
the full cadre of functions of discrete miR species. Methods
of computational prediction of mRNA targets based on miR
nucleotide sequences have been successfully employed.
Typically, these methods of computational prediction are
experimentally validated for a subset of miR and mRNA pairs.
Experimental validation studies yield estimates of specificity
ranging from 50% to 80% (John et al., 2004; Krek et al,
2005; Lewis, Shih, Jones-Rhoades, Bartel, & Burge, 2003;
Rajewsky & Socci, 2004; Rehmsmeier, Steffen, Hochsmann,
& Giegerich, 2004). Several important features of both miR
and mRNA have improved the capability of these computa-
tional prediction methods. The miR “seed,” composed of the
nucleotides in positions 2-8 of the 5" end of the miR, appears
to be the most important miR region for target recognition
(Lewis et al., 2003). Binding sites on mRNA are often rich in
the guanine and cytosine nucleotides, and mRNA regions rich
in these nucleotides are more likely to contain miR binding
sites (Rajewsky & Socci, 2004). Many genes appear to contain
multiple miR binding sites for multiple miRs, and recent
advances in computational prediction include identification
of miR binding site clusters (Krek et al., 2005; Rehmsmeier
etal., 2004). A comprehensive review of computational predic-
tion of miR binding sites and methods for experimental valida-
tion 1s available elsewhere (Chaudhurt & Chatterjee, 2007).

Conclusions

Common, complex diseases arise in the setting of combined
genetic and environmental risk, including gene—environment
interactions. MiRs are an important form of epigenetic regula-
tion of gene expression and function in animals, acting by alter-
ing protein synthesis in response to environmental changes.
Measurement of miRs requires extraction of tissue from organs
involved in the physiologic pathway of interest, preservation of
tissue, and 1solation of miRs from other genetic material. MiRs
can be detected using a number of methods. Northern blot capi-
talizes on differences in size, shape, and/or charge of miRs to
detect individual species hypothesized to be present in a tissue
sample. Improving on the sensitivity and specificity of this
method is PCR, which is an automated method for detecting
miR species. Additional advantages of PCR are the ability to

also quantify the number of miRs present in a sample and to
perform multiplex analysis in which numerous experiments are
run simultaneously. PCR experiments are performed in the
setting of an a priori hypothesis for the presence of specific
miR species in a tissue. Microarray has similar functions and
advantages as PCR and is often used in hypothesis-free experi-
ments to determine which miR species are present in a tissue.

Recent studies of miR activity in multiple disease conditions
have yielded promising evidence for a regulatory role of miRs
in the development and progression of disease. Clinical appli-
cations of miR measurement may enhance nursing practice by
providing real time, personalized evaluation of individual
health status, facilitating individualized treatment recommen-
dations and assessment of the impact of nursing practice on
individual and population health. However, implementation
of this utility in humans using current techniques is largely
limited by access to the organs involved in specific disease
processes. However, preliminary data from studies of miR
activity in blood plasma indicate that expression differences
exist between discased and healthy individuals. Accessing
blood as a tissue source presents far fewer feasibility and ethi-
cal limitations and is routinely performed in clinical care and
during health risk assessments. Additional studies are needed
in order to determine the extent to which miR expression pat-
terns in blood characterize specific disease processes. The
dynamic nature of miR expression makes it an appealing target
for early detection of an organism’s gene expression response
to changes in its environment, and miR quantification holds
promise not only as a target of therapeutic interventions but
also as a measurement of response to interventions. Whether
miR expression in blood from individuals with risk factors for
disease is responsive to interventions targeted toward reducing
risk remains to be explored.
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Notes

1. Involving changes in the phenotype or appearance of an organism
that do not result from underlying changes to the genetic
sequence.

2. Heat-catalyzed activation of a chemical reaction that emits a light
signal.

3. Synthesized short strands of nucleic acids (generally <20 nucleo-
tides in length) designed to be used as probes that will bind to a
specific cDNA or RNA sequence.
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4. Nucleotide analogues that have undergone a conformational
change to their sugar-phosphate backbone, making them
extremely stable when bound to complementary strands.

5. A DNA polymerase originally cloned from the thermophilic bac-
teria Tag; stable at the high temperatures required for PCRs and
functions by adding single nucleotides to a cDNA strand.

=

. Primers that bind at the 5" end of an RNA sequence, which is
structurally the end of an RNA sequence compared to the 3'
beginning.

7. Short strands of nucleic acids that bind to mRNA to prevent

translation.

®

. Failing to detect a difference when one exists.

o

. Calculated by a Pearson’s correlation coefficient between all data
points except one, with iterative calculation of the coefficient
after leaving out each data point in a data set. Jackknife correla-
tions are robust to outliers and decrease the number of false-
positive correlations.

10. Tree diagram depicting hierarchical relationships among clusters.

11. Circle diagram depicting theoretical relationships between

clusters.

12. Graphical representation of data utilizing color to depict strength

and magnitude of each variable.
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CHAPTER 8
MicroRNA ASSOCIATED WITH ATHEROGENIC DYSLIPIDEMIA IN SOUTH ASIAN

MEN

Introduction

MicroRNA are structural components of an epigenetic mechanism of post-transcriptional
regulation of messenger RNA (mRNA). MicroRNA function by binding to a complementary 18-
24 nucleotide precursor region on mRNA known as the “seed” sequence, thereby preventing
initiation of translation of MRNA to amino acids. MicroRNA regulation can be temporary, when
the microRNA release the mRNA, or permanent, causing degradation of the mRNA strand.
Currently, there are several hundred discrete microRNA species identified in humans, with
approximately 85 currently known to be detectable in human plasma and serum.

There is mounting evidence to support a role for microRNA in regulation of lipoprotein
metabolism by influencing lipoprotein synthesis, reverse cholesterol transport, and insulin
signaling (1). MicroRNA inhibition studies in animals show very promising results, where
inhibition of microRNA-33 in large primates resulted in significant increases in high-density
lipoprotein cholesterol (HDL-c) and decrease in triglyceride levels with no apparent short-term
side effects. (2) The majority of studies to date have been performed in vitro, and little is known
about the function of microRNA and lipoprotein metabolism in humans. While, in vitro studies of
human hepatocytes and other cell types are useful for elucidating molecular events, they have
limited potential for translational biomarker applications, as the model tissues (e.g., hepatocytes)
studies are rarely accessed in routine clinical care. Moreover, the majority of in vitro models
utilize cell lines that differ considerably from primary cells.

Currently, microRNA have two obvious translational biomarker applications: biomarkers
of underlying pathology (e.g. dyslipidemia), and biomarkers for response to interventions.

However, in order for microRNA expression to be clinically practical in humans, detection must
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be feasible in a readily accessible tissue such as blood. Measurement of microRNA expression in
blood for a wide array of conditions including myocardial infarction and injury (3, 4) and stroke
(5) have shown distinct patterns of expression in disease states compared to controls. These
findings suggest that measurement of microRNA in peripheral blood of individuals with
dyslipidemia could provide clinical biomarkers. To our knowledge, no studies of blood-based
microRNA expression in humans with dyslipidemia have been reported.

In order to identify potential microRNA biomarkers for pro-atherogenic dyslipidemia, we
selected a population with a markedly increased prevalence of this condition. South Asians are
disproportionately afflicted with early, severe atherosclerotic cardiovascular disease. (6, 7)
Dyslipidemia is highly prevalent and appears to be a primary contributor to disease in this
population (8), and is often characterized by normal levels of total cholesterol and low-density
lipoprotein cholesterol (LDL-c), but low HDL-c and elevated triglycerides. (6, 9) Because this
phenotype is common in not only South Asians but also in other ethnic groups (10), it was
selected as the initial focus for studying blood-based microRNA expression associated with
abnormal cholesterol. The aims of this study were to measure microRNA species known to be
prevalent in human plasma and serum, to determine their expression in South Asian men with and
without atherogenic dyslipidemia, and to validate those microRNA with plausible biologic

function in atherogenic dyslipidemia via quantitative polymerase chain reaction (qPCR).

Methods
Participants

The design of this study was a nested case-control study of South Asian men with and
without atherogenic dyslipidemia. Participants were recruited from the South Asian Heart Center
at EI Camino Hospital (Mountain View, CA), a not-for-profit cardiovascular risk reduction
program. Adult men who self-identified as South Asian and were not taking medication to alter

cholesterol were approached to participate. In order to limit potential variability in microRNA
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expression resulting from physiological phenomena (i.e. hormonal fluxuation) other than
dyslipidemia, we excluded women. Additionally, individuals with a body mass index <20kg/m?
or >35kg/m?, current smokers, heavy alcohol users, and those with previously diagnosed type 1 or
type 2 diabetes were excluded. Men with HDL-c < 40mg/dL and triglycerides > 150mg/dL were
defined as cases, and the comparison controls had neither of these conditions.

Demographic and medical history data were collected by scripted telephone interview
administered by trained personnel during enrollment into the risk reduction program. (9)
Anthropometrics and blood pressure were obtained during the initial enrollment visit by trained
personnel. Venipuncture was performed following 10-hour fast, and lipoprotein quantification
was performed using calorimetric methods; HDL-c, triglycerides, and glucose were measured
using reagents from Roche Diagnostics (Indianapolis, IN) and performed on the Roche Modular
PPP Analyzer (11). Potential participants who expressed interest in the study provided a sample
of their blood for microRNA analysis during the same visit in which anthropometric, blood
pressure, and lipoprotein measures were performed. This study was approved by the Committee
on Human Research at the University of California, San Francisco, and the Institutional Review
Board at EI Camino Hospital.
microRNA Isolation

Blood for microRNA analysis was collected into PAXgene tubes (PreAnalytiX,
Switzerland), which contain a reagent to lyse cells and stabilize RNA, per the manufacturer’s
protocol, and stored at -80°C until accrual targets were reached. The PAXgene Blood microRNA
Kit (PreAnalytix, Switzerland) was used to isolate microRNA from whole blood following the
manufacturer’s instructions. Briefly, solid contents from PAXgene tubes were isolated and treated
with guanidine thiocyanate, proteinase K, 99.9% ispropanol, and DNase, then suspended in an
RNase free hydration buffer. Total RNA quantity was measured by spectrophotometry

(NanoDrop, Thermo Scientific, Wilmington, DE), and total RNA and small RNA quantity and
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quality were measured by gel electrophoresis (Bioanalyzer, Agilent Technologies, Santa Clara,
CA).
Case and Control Pools

For array analysis, pools of RNA representing cases (20 samples composed the case pool)
and controls (20 samples composed the control pool) were created. Input quantity for each sample
was based on the microRNA concentration (defined as 18-24 nucleotide size range) determined
by gel electrophoresis. Four participants (2 cases, 2 controls) were excluded from pools due to
unacceptably low microRNA concentration, making inclusion in each pool untenable (i.e.,
requiring lyophilization to reduce fluid volume). Parenthetically, while total RNA concentration
as measured by spectrophotometry and gel electrophoresis was highly correlated (p = 0.81, p <
0.05) microRNA concentration was less well correlated with either total RNA measure (p = 0.08,
p = 0.6 (nanodrop), p = 0.18, p = 0.26 (bioanalyzer)).
Reverse Transcription

Total RNA from individual samples and pools was reverse transcribed into
complementary copy DNA (cDNA) using the miScript Il RT Kit according to manufacturer’s
standard protocol (Qiagen, Valenica, CA). Approximately 250ng total RNA was reverse
transcribed in 20ul reaction volumes. The resulting 20pul cDNA was diluted to 220ul using
RNAse free water per standard protocol.
MicroRNA Array Experiment

Simultaneous detection of 85 microRNA and small nuclear RNA U6 (RNU6) was
performed in 10ul reaction volumes on a Bio-Rad CFX Connect (Hercules, CA) using the
miScript microRNANA PCR Array for human serum and plasma (Catalog # MIHS-106Z) in 384
well plate format (Qiagen, Valencia, CA). The miScript SYBR Green PCR Kit (Qiagen, Valencia,
CA) was used for the experiment according to the manufacturer’s standard protocol. The
microRNA targets included in this array are a subset of microRNA previously observed to be

detectable in human plasma and serum. Pooled sample measurements (1 case pool sample, 1
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control pool sample) were performed in sextuplicate (n = 6) for each pool with equal distribution
of pools on each plate (i.e., two replicates each of the case and control pools). Melt curve results
were visually inspected, and any wells that did not appear to denature at a temperature consistent
with the pattern for each individual microRNA were excluded from analysis. Additional quality
control methods for data from array experiments are described in the Statistical Analysis section
below.
Quantitative PCR

Quantitative PCR was performed on a Bio-Rad CFX Connect (Hercules, CA) using the
miScript SYBR Green PCR Kit (Qiagen, Valencia, CA) with 20ul reaction volumes according to
the manufacturer’s standard protocol. Cases and controls were randomly batched in equal
numbers on each 384 well plate. A minimum of three replicates were done for each sample, and
>50% of replicates were required to meet quality control criteria (described below) in order for
the sample to be included in downstream statistical analysis. RNU6 was amplified in tandem with
each target for each sample and used to normalize input quantity between samples. A standard
curve for each microRNA target and the RNUG6 normalizer was constructed using a series of five
10-fold or five 4-fold dilutions in order to capture the linear range within which the samples
amplified. Melt curve results were visually inspected, and any wells that did not appear to
denature at a temperature consistent within the replicate group for each sample were excluded
from analysis. Additional quality control procedures for data from gPCR experiments are
described in the Statistical Analysis section below.
Statistical Analysis

Descriptive statistics and Student’s t-test were performed to compare demographic and
clinical characteristics of participants. Quality control procedures for the pooled sample array-
based experiments were as follows: cycle threshold (Ct) values greater than 2 standard deviations
from the mean Ct for each target microRNA were excluded, as were replicates with a Ct greater

than 35. Only microRNA targets with at least four remaining replicates after exclusion of outliers
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were retained for downstream analysis. Normalized expression was calculated as 2 where ACt
= Ct targer— Mean (Ct normaiizer), and comparison of normalized expression between the case pool
replicates and the control pool replicates was determined using the Wilcoxon non-parametric test
of equality for unmatched pairs. Fold change was calculated to compare difference in expression
of each target microRNA between the case pool replicates and control pool replicates. Fold
change was calculated using the following formula: 2**“', where AACt = mean (Ct arget, cases —
mean (Ct normalizer, cases)) — MeaN (Ct target, controls — MeaN (Ct normatizer, controts))- (12) MicroRNA
displaying at least 2-fold statistically significant (p < 0.05) differences in expression with
biologically relevant mRNA targets were selected for g°PCR validation.

For gPCR, which was performed with a minimum of three replicates for each sample,
outliers, defined as any replicate > 0.5 standard deviations from the mean for all replicates, were
excluded. Normalized expression was calculated as 2"*“ and compared using student’s t-test with
unequal variance. Fold change between cases and controls was calculated as (E target -ACtargety (B
normatizer -1 mO™2r) (where ACt = mean Ct cases — Mean Ct conois and E = efficiency of amplification
for each gPCR experiment. (13) As multiple 384 well plate experiments were required to validate
each microRNA target, fold change was determined using the efficiency for each plate, and the
average fold change, weighted for the number of samples per plate, was calculated. Fold change
estimates were calculated for the full set of individual samples (n = 44), the subset of individual
samples included in the pools (n = 40), and the pools of cases and pools of controls. Statistical
analysis was performed using Stata 11 (College Station, TX) and Microsoft Excel (Redmond,

WA).

Results
Twenty-two cases with combined low HDL-c and elevated triglycerides, and 22 controls

with normal lipid parameters were enrolled. The mean age in both groups was 42 + 2 years (Table
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1). By design, cases had lower HDL-c (33 mg/dL vs 47 mg/dL, p<0.05) and higher triglycerides
(237 mg/dL vs 109 mg/dL, p<0.05) than controls. Cases had higher fasting blood glucose (97
mg/dL vs 88 mg/dL, p<0.05) and were overweight (body mass index 26.1 vs 23.9, p<0.05), likely
due to abdominal adiposity (waist circumference 94 cm vs 82 cm, p<0.05). In contrast, there were
no statistically significant differences between cases and controls for total cholesterol (197 mg/dL
vs 194 mg/dL, p = 0.8) or LDL-c (116 mg/dL vs 123 mg/dL, p = 0.3).

Data for 11 of the 96 wells included on the array are not presented, as these wells
guantified small nuclear RNA (i.e., SNORD61, SNORD68 SNORD72, SNORD95, SNORD96A)
and experimental controls. Of the 85 remaining microRNA measured by PCR-based array, 74
(87%) were detected with sufficient precision to meet all of the quality control criteria. Three
microRNA (miR-214, miR-885-5p, miR-205) displayed increased expression in cases compared
to controls (Table 1S). Sixteen microRNA (miR-100, miR-374a, miR-7, miR-18a, miR-125b,
miR-148a, miR-17, miR-221, miR-21, miR-93, miR-143, miR-17*, miR-96, miR-106b, miR-
103a, miR-20a) displayed at least two-fold decreased expression (p < 0.05) in cases compared to
controls (Table 2). Three targets (miR-106b, miR-125b, miR-21) previously shown to expression
of gene pathways related to lipoprotein metabolism (14-16) were selected for further analysis.

Table 3 displays the fold change estimates calculated from the gPCR validation
experiments. For miR-106b, the estimated fold change for the full set of individual samples (n =
44) was -1.55. For the set of individual samples included in pools for cases and controls (n = 40)
the fold change estimate was -1.68. For the pool of cases compared to pool of controls, the fold
change estimate was -1.35. For microRNA-125b, the fold change estimate for the full sample was
-1.84, for the subset included in the pools the estimate was -1.86, and for the pooled cases and
controls, the estimate was -1.86. For microRNA-21, the fold change estimate for the full set of
individual samples was -2.12, for the subset of individual samples included in pools the estimate

was -2.02, and for the pooled cases compared to pooled controls the estimate was -1.69.
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Conclusion

MicroRNA appear to have regulatory functions in lipoprotein metabolism, however little
is known about the possibility of microRNA as a blood-based biomarker for atherogenic
dyslipidmia. We sought to measure microRNA levels in blood of South Asian men with and
without dyslipidemia characterized by low HDL-c and elevated triglycerides. We found that 16
microRNA species exhibit at least two-fold statistically significant differential expression
(Supplemental Table 1). Of these, three with a priori evidence for biologic relevance to
dyslipidemia were validated and found to be differentially expressed.

MicroRNA-21 is expressed in endothelial cells (17) and vascular smooth muscle cells
(18), and shows increased expression in vascular proliferation, cardiac hypertrophy, heart failure,
and ischemic heart disease (15). MicroRNA-21 targets phosphatase and tensin homolog (PTEN)
(18) as well as programmed cell death 4 (PDCD4) (19) in vascular smooth muscle cells with
proliferative and anti-apoptotic effects, facilitating vascular neo-intimal growth. MicroRNA-21 is
protective of ischemia-induced injury in rats, also apparently by targeting PDCDA4. (20) Thus, the
activity of microRNA-21 in vascular smooth muscle cells has possible implications for recovery
following ischemic insult and development of collateral vasculature.

In cardiomyocytes, microRNA-21 regulates cardiac hypertrophy in mice by targeting
sprouty2, a growth inhibitor, to prevent development of cell-cell connections. (21) In
hypertrophic mice, microRNA-21 inhibition decreased cardiomyocyte size and heart weight (22).
The aggregate effect of microRNA-21 in cardiomyocytes appears to be control of growth and
proliferation, with possible implications for cardiac hypertrophy and heart failure.

In hepatic tissue, microRNA-21 is up-regulated by free unsaturated fatty acids, with
increased expression in the livers of rats fed a high fat diet and human liver tissue of obese
individuals (23). The apparent action of microRNA-21 in this context is down-regulation of
PTEN. (23) Increased PTEN expression is positively associated with the development of insulin

resistance (24), and insulin resistance is associated with changes in lipoproteins, specifically
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increased triglycerides and decreased HDL-c (25). In this context, microRNA-21 appears to have
arole in preventing the onset of insulin resistance and possibly concomitant development of
atherogenic dyslipidemia.

In prior studies of cardiac tissues, microRNA-21 is consistently up-regulated in diseased
conditions. By contrast, we found 2.12-fold decreased expression. Previous studies of
microRNA-21 expression have isolated microRNA from tissues other than blood (i.e.
cardiomyocytes, hepatocytes) or studied in vitro models, whereas this study measured the levels
of microRNA circulating in blood. Additionally, the direction of effect of microRNA-21 may
differ depending on the function of specific mMRNA targets within discrete cell types. For example,
microRNA-21 expression inhibits PTEN and PDCD4 in vascular smooth muscle cells, increasing
vascular proliferation, whereas microRNA-21 inhibition of sprouty?2 in cardiomyocytes decreases
hypertrophy. Additional studies are needed to determine the full cadre of mRNA targets of
microRNA-21, which targets are relevant in discrete cell types (e.g. vascular smooth muscle cells
versus hepatocytes), and the physiologic consequence of microRNA-21 inhibition of MRNA in
discrete cell types.

MicroRNA-106b targets Adenosine Binding Cassette Transporter A1 (ABCA1), a
cholesterol efflux pump involved in HDL-c formation and reverse cholesterol efflux. (16) This
study found 1.55-fold decreased expression of microRNA-106b in dyslipidemic individuals
compared to healthy controls. In contrast, in vitro studies using HepG2 cells revealed that
microRNA-106b inhibits ABCA1-mediated cholesterol efflux function and inhibits liver X
mediated ABCAL expression. (16) Thus microRNA-106b appears to inhibit reverse cholesterol
transport mechanisms, which may result in decreased HDL-c. Longitudinal studies may inform
whether the observed decreased microRNA-106b in dyslipidemia in this study is a compensatory

action to increase ABCAL1 efflux secondary to the presence of low HDL-c.
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MicroRNA-125b inhibition in vitro causes increased total cholesterol and oxidized LDL-
¢ uptake in human macrophages, as well as corresponding changes in inflammatory markers. (14)
MicroRNA-125b is decreased in ischemic endothelial cells in rats, while corresponding increases
in expression of microRNA-21 were observed. (18) We found 1.84-fold decreased expression of
microRNA-125b in dyslipidemic individuals compared to healthy controls. The direction of the
expression difference for cases compared to controls is consistent with prior observations from
ischemic endothelial cells, but inverse of what has been seen for macrophages in vitro. The
function of microRNA-125b appears to be regulation of the development of foam cells and
subsequent atherosclerotic lesions. Importantly, the prior data about microRNA-125b support a
role in dyslipidemic processes, but not specifically HDL-c and reverse cholesterol transport.

To our knowledge, this is the first study to apply findings from in vitro studies and
animal models to pursue blood-based measurement of candidate microRNA in humans with
impaired lipoprotein metabolism. We speculate several possible explanations for some of the
apparently paradoxical findings between the expression of microRNA observed in this study and
previous observations. First, nearly all prior studies have been performed in vitro or in animal
models, which may not accurately represent human physiology. Second, blood functions as a
signaling medium for physiologic phenomena in other tissues, and therefore it is reasonable to
postulate that blood-based expression of microRNA may correspond with changes in physiologic
needs and gene expression in specific tissues. However, the nature of this relationship is not
known, and blood-based expression may not be a direct reflection of the expression in underlying
tissues. For example, inverse expression of microRNA between an organ and blood may be
observed if changes in physiologic requirements cause an organ to offload specific microRNA via
exosomal secretion into the circulation, or when organ injury occurs and damaged cells are
sloughed into the circulation. Further, this study measured microRNA in whole blood, which
provides an aggregate measure of all sources of blood microRNA. Specific components (i.e. free

microRNA in plasma, microRNA contained within exosomes, and microRNA contained within
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leukocytes) may yield different findings. Thirdly, in vitro studies have the advantage of
determining causality, whereas this study may describe upstream microRNA changes that cause
the observed differences in HDL-c and triglycerides, or compensatory changes that are an attempt
to ameliorate the dyslipidemic condition. Lastly, there may be genetic and or epigenetic
variability between individuals causing differential microRNA transcription, possibly associated
with differential co-translation of mMRNA targets. Epigenetic variability is determined in part by
the environmental pressures exerted on an organism, and further studies are needed to begin to
tease apart physiologic consequences of interactions between the environment and epigenetic

mechanisms.

Limitations

We measured microRNA expression in whole blood obtained by peripheral venipuncture. Future
studies should seek to establish if differences in these microRNA exist between free microRNA
in plasma, microRNA contained within exosomes, and microRNA from leukocyte cytoplasm.
This was a cross-sectional study, and therefore no conclusions about whether the observed
differences in microRNA are markers for the development of dyslipidemia, result from the
presence of dyslipidemia, and/or characterize clinical consequences of dyslipidemia can be made.
While the homogeneity (i.e., gender, age, ethnicity) of the population contributes to the internal
validity of the study, generalizability (e.g., women, younger and older ages, other ethnicities) is
currently limited. This study was designed to detect changes of greater than 2-fold, and larger
studies may reveal more modest expression differences. Also, we focused on candidate
microRNA with a priori evidence for a role in lipoprotein metabolism (n = 3); there are 13 other

targets that merit analysis in subsequent studies.
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This study used array-based methods to screen a large number of microRNA detectable in human
serum and plasma in the blood of South Asian men with and without dyslipidemia. Nineteen
percent (n = 16) of the microRNA targets measured were significantly differentially expressed at
two-fold or greater magnitude in cases compared to controls. Three of these were validated by
gPCR methods with confirmatory findings. Additional studies are needed to validate the
remaining 13 microRNA targets that were differentially expressed, and to determine the mRNA
targets for each of these microRNA. Further research is needed to differentiate between
expression of free microRNA in plasma versus microRNA in exosomes versus microRNA
released from the cytoplasm of leukocytes lysed during the RNA isolation process, and how this

expression relates to microRNA levels in other tissues (e.g., liver, endothelial cells).
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Table 1. Clinical Characteristics of Cases and Controls

Characteristics Cases Controls

Mean + SD or n (%) (h=22) (n=22) p-value
Age (years) 43+£2 43+2 0.84
Systolic Blood Pressure (mm Hg) 129 + 16 116 + 29 0.06
Diastolic Blood Pressure (mm Hg) 80+ 10 72+ 20 0.08
Total cholesterol (mg/dL) 197 £ 28 194 + 32 0.81
LDL-c (mg/dL) 116 £ 25 123+ 30 0.26
HDL-c (md/dL) 33+£3 47+7 <0.05
Triglycerides (mg/dL) 23770 109 + 28 <0.05
Blood glucose (mg/dL) 97 +11 889 <0.05
Waist circumference (cm) 94+8 82+19 <0.05
Body mass index (kg/m?) 26.1+31  239+28 <0.05

Abbreviations

Low-density lipoprotein cholesterol: LDL-c
High-density lipoprotein cholesterol: HDL-c



Table 2. MicroRNA Targets with at least Two-Fold Differential Expression

microRNA  Fold Change*  p-value®

100 0.34 0.0039
374a 0.34 0.0104
7 0.36 0.0039
18a 0.36 0.0065
125b 0.39 0.0039
148a 0.41 0.0039
17 0.44 0.0104
221 0.45 0.0065
21 0.45 0.0039
93 0.46 0.0039
143 0.48 0.0250
17* 0.49 0.0039
96 0.49 0.0250
106b 0.49 0.0104
103a 0.50 0.0163
20a 0.50 0.0039

MicroRNA targets in bold are known to regulate expression of genes in pathways that regulate
lipoprotein metabolism, and were selected for g°PCR validation.

*Fold change calculated using the following formula: 22" where

AACt = mean (Ct target, cases — Meéan (Ct normalizer, cases)) —mean (Ct target, controls — Mean (Ct normalizer,
controls))

¥p-value calculated using Wilcoxon non-parametric test of equality for unmatched pairs
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Table 3. gPCR Validation of Differentially Expressed microRNA

Individual samples Individual samples* Pooled samples
microRNA Fold Change** p-value®  Fold Change**  p-value*  Fold Change**  p-value®
106b -1.55 0.16 -1.68 0.14 -1.35 <0.05
125b -1.84 0.14 -1.86 0.15 -1.86 <0.01
21 -2.12 0.07 -2.02 0.12 -1.69 <0.05

*After exclusion of 4 samples not included in the case and control pools

**Fold change calculated using the following formula:

(E target_ACt targm) / (E normalizer_ACt normahzer) where ACt = mean Ct cases — Mean Ct conerols

using the mean of replicates for each sample after excluding outliers. Outliers were defined as

greater than 0.5 standard deviations from mean Ct.
¥p-value calculated using Student’s t-test

®p-value calculated using Wilcoxon rank-sum non-parametric test
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Table 1S. Mean cycle threshold, standard deviation, and fold change for 85 microRNA

screened by array

Controls

Cases

Standard Deviation

Standard Deviation

microRNA Mean Ct Ct Mean Ct Ct Fold Change*  p-value*
RNU6b 19.8 1.0 19.1 0.7 1.00 0.7488
hsa-let-7a 19.2 0.9 19.5 05 0.52 0.0547
hsa-let-7¢c 219 16 223 11 0.45 0.2002
hsa-microRNA-100 235 0.7 24.3 0.4 0.34 0.0039
hsa-microRNA-103a 19.2 0.7 19.5 0.4 0.50 0.0163
hsa-microRNA-106b 19.6 0.6 19.9 0.3 0.49 0.0104
hsa-microRNA-107 26.5 11 26.2 0.6 0.77 0.6310
hsa-microRNA-10a 28.6 1.0 285 0.3 0.65 0.3613
hsa-microRNA-122 29.7 0.6 29.4 0.1 0.75 0.3367
hsa-microRNA-124 32.0 2.3 317 1.1 0.74 0.6242
hsa-microRNA-125b 21.8 0.6 224 0.3 0.39 0.0039
hsa-microRNA-126 22.5 0.5 22.6 0.3 0.59 0.0250
hsa-microRNA-128 22.0 0.6 215 0.4 0.86 0.4233
hsa-microRNA-130b 22.6 0.7 226 05 0.60 0.1093
hsa-microRNA-133a 30.9 0.7 30.7 0.4 0.70 0.1495
hsa-microRNA-133b 321 13 314 1.0 0.97 0.7150
hsa-microRNA-134 30.1 0.8 29.9 1.0 0.71 0.7488
hsa-microRNA-143 28.1 0.7 28.4 0.3 0.48 0.0250
hsa-microRNA-145 22.1 0.7 22.2 0.3 0.59 0.0374
hsa-microRNA-146a 24.2 0.5 24.2 0.5 0.60 0.0547
hsa-microRNA-148a 21.9 0.5 225 0.3 0.41 0.0039
hsa-microRNA-150 17.5 0.5 17.3 0.3 0.68 0.1093
hsa-microRNA-155 27.5 0.4 27.1 0.4 0.84 0.1093
hsa-microRNA-15a 21.7 0.8 219 0.4 0.53 0.0250
hsa-microRNA-15b 18.3 0.5 18.0 0.3 0.74 0.1093
hsa-microRNA-16 17.2 0.5 17.1 0.4 0.66 0.0547
hsa-microRNA-17 20.9 0.8 21.4 0.4 0.44 0.0104
hsa-microRNA-17* 24.0 0.5 24.3 0.3 0.49 0.0039
hsa-microRNA-18a 23.2 0.8 24.0 0.3 0.36 0.0065
hsa-microRNA-191 15.5 0.6 14.9 0.4 0.91 0.4233
hsa-microRNA-192 21.9 0.6 21.8 0.3 0.67 0.0547
hsa-microRNA-193a-5p 26.6 0.7 26.3 0.7 0.73 0.5218
hsa-microRNA-195 17.5 0.7 17.4 0.4 0.63 0.1093
hsa-microRNA-196a 30.7 1.6 31.2 0.7 0.43 0.2623
hsa-microRNA-19a 18.8 0.5 18.7 0.4 0.65 0.0782
hsa-microRNA-19b 18.9 0.5 18.8 04 0.69 0.0782
hsa-microRNA-200b 28.2 11 28.2 0.7 0.62 0.3367
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hsa-microRNA-200c 27.0 0.7 26.9 0.4 0.67 0.1495
hsa-microRNA-204 29.6 0.6 29.4 0.4 0.72 0.2002
hsa-microRNA-205 32.7 13 317 15 1.23 0.7150
hsa-microRNA-20a 194 0.7 19.7 0.4 0.50 0.0039
hsa-microRNA-21 21.0 0.6 215 0.4 0.45 0.0039
hsa-microRNA-210 25.9 0.9 25.6 0.3 0.76 0.5218
hsa-microRNA-211 31.0 0.8 305 0.6 0.90 0.7488
hsa-microRNA-214 329 1.8 321 1.7 1.09 0.8728
hsa-microRNA-215 295 0.6 29.5 0.4 0.64 0.0782
hsa-microRNA-22 18.0 0.6 174 0.3 0.98 0.8728
hsa-microRNA-221 225 0.7 23.0 0.4 0.45 0.0065
hsa-microRNA-222 22.3 0.7 22.4 0.3 0.59 0.0250
hsa-microRNA-223 155 0.7 15.6 0.4 0.58 0.0547
hsa-microRNA-224 30.0 0.6 29.9 0.5 0.66 0.1093
hsa-microRNA-23a 19.1 0.4 19.0 0.2 0.69 0.0374
hsa-microRNA-24 22.0 0.6 21.7 0.4 0.78 0.2623
hsa-microRNA-25 155 0.7 155 0.6 0.62 0.1093
hsa-microRNA-26a 19.2 0.4 18.8 0.4 0.86 0.4233
hsa-microRNA-26b 20.8 0.9 205 05 0.80 0.6310
hsa-microRNA-27a 234 0.6 23.6 0.3 0.56 0.0163
hsa-microRNA-296-5p 225 0.6 21.9 0.5 0.95 1.0000
hsa-microRNA-29a 229 0.6 22.7 0.7 0.68 0.1495
hsa-microRNA-30d 19.3 04 18.9 0.3 0.82 0.2623
hsa-microRNA-30e 20.0 0.7 20.0 0.4 0.64 0.0374
hsa-microRNA-31 30.3 0.8 29.8 05 0.88 0.5839
hsa-microRNA-34a 30.6 0.8 30.3 0.5 0.78 0.5218
hsa-microRNA-374a 25.0 0.7 25.9 0.9 0.34 0.0104
hsa-microRNA-375 29.5 14 29.2 1.3 0.75 0.5839
hsa-microRNA-376¢ 29.3 0.7 29.6 0.4 0.49 0.0542
hsa-microRNA-423-5p 20.0 0.5 19.8 0.5 0.68 0.0782
hsa-microRNA-499-5p 33.8 1.3 335 1.0 0.77 0.6015
hsa-microRNA-574-3p 225 0.8 22.3 0.5 0.69 0.4233
hsa-microRNA-7 235 05 24.3 0.4 0.36 0.0039
hsa-microRNA-885-5p 29.7 1.0 28.8 0.7 1.14 0.7488
hsa-microRNA-92a 133 0.8 13.0 0.8 0.79 0.3367
hsa-microRNA-93 19.2 0.4 19.6 0.4 0.46 0.0039
hsa-microRNA-96 26.8 0.8 27.1 0.4 0.49 0.0250
*Fold change calculated using the following formula: 2**“' where

AACt = mean (Ct target, cases — mean (Ct normalizer, cases)) — mean (Ct target, controls —

mean (Ct normalizer, controls))

¥p-value calculated using Wilcoxon non-parametric test of equality for unmatched pairs using

normalized expression (2°

ACt)
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CHAPTER 9
CONCLUSION

The purpose of this dissertation was to investigate cardiovascular risk in South Asians
through the theoretical framework of gene-environment interactions. While many environmental
contributors to disease are well known, the nature of how environmental factors interact with the
genome in individuals or populations, and the ensuing consequences for health, are not well
understood. An increasing body of knowledge is developing around a phenomenon termed
epigenetics. Epigentic mechanisms are those that cause alteration in how genes are expressed
without changing the underlying genome. As such, epigenetic mechanisms are the nexus of gene-
environment interactions. Greater understanding of how gene-environment interactions occur
through epigenetic mechanisms will enhance our understanding of the etiology of complex
disease conditions like cardiovascular disease, and is essential knowledge for fulfilling the
promise of individualized medicine.

South Asians are a population disproportionately afflicted with cardiovascular disease.
Although genetic predisposition likely plays a primary role, interactions between genetic risk
factors and the environment are undoubtedly an important part of the story. Given this high level
of risk, prevention is of paramount importance, and interventions to reduce risk are themselves a
form of gene-environment interactions. One approach to reducing risk in this population is
through comprehensive risk assessment followed by individualized, culturally-tailored coaching
by non-medical personnel. While coaching is a proven method for improving chronic disease risk
factors, very little is known about the effect of adapting coaching strategies to be culturally
specific. In a study describing a cardiovascular risk reduction program targeted towards South
Asians, we found that a year-long coaching intervention is appealing to this population, and
feasibly implemented. Over five years, 98% of potential participants screened were eligible
candidates for the program, 87% of those elected to participate in the program, and 50% were

active participants or successfully completed one-year of coaching. Additional research is needed

99



to determine whether this intervention is effective in reducing cardiovascular risk in this
population.

While South Asians are widely recognized to have a high prevalence of cardiovascular
disease, the exact causes are not fully understood. Previous studies have observed a high level of
abdominal adiposity, low HDL-c, and high prevalence of type-2 diabetes and insulin resistance.
In order to begin to disentangle the specific mechanisms underlying cardiovascular risk in this
population, we performed two epidemiologic studies. The first measured the prevalence of the
metabolic syndrome, a clustering of cardiovascular and metabolic risk factors. We found that this
condition occurred in 27% of the sample, compared to estimates of 26-38% in other South Asian
studies, and 34% in the US population. The occurrence of the metabolic syndrome is largely
driven by the combination of low HDL-c with elevated triglycerides, whereas elevated blood
pressure and elevated blood glucose were less common. Interestingly, this high prevalence was
observed despite the fact that the study sample was relatively young (42 * 10 years), smoking
was rare (4%), only 4% had less than college-level education, and 93% were married.

The second study sought to determine whether abdominal adiposity is a necessary
precursor to the development of cardiovascular and metabolic risk factors in this population. A
commonly held belief is that abdominal adiposity is the precipitating factor leading to the
development of combined insulin resistance, dyslipidemia, hypertension, and inflammation. Our
results challenge this belief, showing that cardio-metabolic abnormalities were present in normal
weight individuals (23% men, 7% women). Among obese individuals, 21% of men and 50% of
women had fewer than two cardio-metabolic abnormalities. This study also confirmed our
previous findings that low HDL-c with elevated triglycerides is by far the most common risk
phenotype, occurring in 34% of the sample. This is strong evidence to dispute the notion that
cardio-metabolic risk only occurs in the setting of abdominal adiposity in South Asians. Further,
South Asian women appear to be able to tolerate overweight/obesity without developing cardio-

metabolic risk factors to a greater extent than men.
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Within the category of epigenetics, there are mechanisms of transcriptional regulation of
DNA (i.e. methylation, histone modification), and translational regulation of messenger RNA (i.e.
microRNA). While transcriptional regulation is semi-permanent, microRNA (miR) regulation of
translation is highly dynamic, allowing an organism to rapidly adapt to a changing environment
in order to maintain homeostasis. There are two possible implications for miR as a biomarker:
detection of underlying pathology, and markers for response to interventions. While the
combination of low HDL-c with elevated triglycerides is considered a more discrete type of
dyslipidemia, it is still quite complex and is regulated by numerous biologic pathways.
Differences in miR expression between affected and healthy individuals may provide some
insight into the specific mechanisms underlying the causes of this cardiovascular risk factor in a
single individual or population. This insight may lead to targeted treatments. Although current
pharmacologic treatment options for dyslipidemia, particularly low HDL-c, are limited,
modalities such as gene therapy will require enhanced understanding of the various biologic
pathways underlying complex diseases. Non-medical risk reduction interventions show variable
effectiveness, but application of miR as a biomarker for treatment response may help patients to
focus on interventions that will be highly effective for their specific condition. A third possible
clinical implication for miR are as a therapy themselves through administration of synthetic miR
mimics or miR antagonists.

Previous studies of miR regulation of lipoprotein metabolism have been primarily
conducted in vitro and in animal models. Mi-33 shows the greatest promise to date as a potential
therapeutic agent, with direct effects on both HDL-c and non-HDL-c causing dramatic
improvements in lipoprotein levels following exogenous miR-33 administration in African Green
Monkeys. MiR-122 is the predominant miR found in liver, targeted several genes involved in
cholesterol metabolism, resulting in decreased total cholesterol and triglycerides, and an

increased number of LDL-c receptors in in vitro and animal studies. There are several additional
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miR with early evidence suggesting functional roles in cholesterol metabolism, and the activity of
mMiR appears to be responsive to changes in the environment.

In order to explore the feasibility of miR as a biomarker for dyslipidemia, we undertook a
study of miR expression in South Asians with and without the common low HDL-c and elevated
triglycerides phenotype. This was a case-control study with cross-sectional time frame. Cases
were defined as South Asian men with low HDL-c (<40mg/dL) and elevated triglycerides
(>150mg/dL), while controls had neither of these conditions. Women were excluded from this
study in order to decrease likely variability in miR expression secondary to cyclic hormonal
fluxuations. We collected blood and isolated RNA from 22 cases and 22 healthy controls. Of
these, the equivalent of one miRome from 40 participants (equally distributed between cases and
controls) was combined to create pooled samples for cases and controls. The expression of 85
miR targets was measured using array-based methods, and compared between pooled cases and
controls. Of these, 16 were significantly differentially expressed (p<0.05) with at least two-fold
difference. Three of these (miR-21, miR-106b, miR-125b) were selected for validation using
gPCR methods based on high a priori biologic plausibility for regulation lipid metabolism. We
found similar fold-change estimates for measurement of both individual samples and pools of
cases and controls. The results of this final study are promising evidence for clinical utility of
miR as a biomarker of dyslipidemia. Additional studies are needed to determine the time-
sequence of miR changes and alterations in lipoprotein profiles, and to determine whether miR
expression is responsive to interventions.

Gene-environment interactions likely account for gaps in knowledge about the etiology
of chronic diseases, including disparities in disease conditions between populations. Epigenetic
mechanisms are an important component of the machinery underlying these interactions,
including the highly dynamic regulation of messenger RNA translation by miRNA. South Asians
are a population severely afflicted with cardiovascular disease. We found that a common

cardiovascular risk phenotype in this population is low HDL-c with elevated triglycerides, and
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that cardiovascular and metabolic risk in this population does not necessitate overweight or
obesity as a precursor to other risk factors. Promising evidence from in vitro and animal studies
supports a role for miR in pathways related to regulation of cholesterol levels. We measured miR
in the blood of South Asian men with and without the common low HDL-c and elevated
triglyceride phenotype, finding differential expression of several miR species. To our knowledge,
this is the first blood-based biomarker study of miR expression and dyslipidemia. Further
research is needed to determine the specific pathways and messenger RNA targeted by these miR
in order to gain an enhanced understanding of the causes of cardiovascular risk factors in South
Asians. Additional studies are also needed to investigate whether miR may be plausible

biomarkers for response to interventions.
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