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SUMMARY

Immunoglobulin G (IgG) antibodies coordinate immune effector responses by interacting with 

effector cells via fragment crystallizable γ (Fcγ) receptors. The IgG Fc domain directs effector 

responses through subclass and glycosylation variation. Although each Fc variant has been 

extensively characterized in isolation, during immune responses, IgG is almost always produced 

in Fc mixtures. How this influences effector responses has not been examined. Here, we measure 

Fcγ receptor binding to mixed Fc immune complexes. Binding of these mixtures falls along a 

continuum between pure cases and quantitatively matches a mechanistic model, except for several 

low-affinity interactions mostly involving IgG2. We find that the binding model provides refined 

estimates of their affinities. Finally, we demonstrate that the model predicts effector cell-elicited 

platelet depletion in humanized mice. Contrary to previous views, IgG2 exhibits appreciable 

binding through avidity, though it is insufficient to induce effector responses. Overall, this work 

demonstrates a quantitative framework for modeling mixed IgG Fc-effector cell regulation.
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In brief

Tan et al. quantify the binding of IgG immune complexes with mixed Fc domains to the Fcγ 
receptors, refine estimates of FcγR-IgG affinities with a computational binding model, and then 

demonstrate that this model can predict effector cell-elicited platelet depletion in humanized mice.

Graphical Abstract

INTRODUCTION

Antibodies are both a core component of adaptive immunity and a versatile platform for 

developing therapies. An antibody’s role in promoting immunity is defined by its selectivity 

toward a target antigen, as determined by its variable region, and its ability to elicit 

effector cell responses, defined by the composition of its constant, fragment crystallizable 

(Fc) region. Antibodies of the immunoglobulin G (IgG) type direct effector responses by 

binding to Fcγ receptors (FcγRs) via their Fc region. FcγR activation is initiated through 

IgG-mediated clustering, which in turn is caused by the engagement of several antibodies on 

an antigen target, forming an immune complex (IC). Depending upon the receptors included, 

this interaction may promote or prevent an effector response. This clustering mechanism 

ensures that more than one IgG is present whenever effector responses occur.

The immune response triggered by an IgG IC consisting of a specific Fc form, including 

subclass or glycosylation, is defined by its binding to specific FcγRs, each of which 
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differs in signaling effect and expression patterns.1 Consequently, accurate estimates of IgG 

Fc-FcγR affinities are essential to understanding their effect. Most existing FcγR affinity 

measurements have been performed by surface plasmon resonance (SPR) using monovalent 

IgG.2,3 SPR accurately assesses protein-protein binding kinetics, but many antibody-Fc 

receptor interactions are weak enough to fall outside the assay’s quantitative range when 

assessed in monovalent form. Clustering leads to avidity effects wherein even weak 

interactions can cooperatively lead to strong binding.4 Indeed, avidity is widely employed 

in natural and engineered systems to promote binding through low-affinity interactions.5 

Therefore, direct measurement of IC binding might more accurately quantify IgG Fc 

properties, particularly for low-affinity interactions. Measuring Fc binding as multivalent 

ICs additionally resembles the relevant in vivo context of effector responses.6

Physiological antibody responses universally involve Fc mixtures. For instance, during 

the course of infection, the composition of IgG subclasses shifts dynamically to different 

subclasses due to class switching.7 Even when recombinantly manufacturing monoclonal 

therapeutic antibody preparations, heterogeneity exists in the glycosylation forms derived, 

and this glycan heterogeneity likely exists during endogenous antibody production as 

well.8,9 With mixtures of antibodies of varied Fc composition but identical antigen 

binding, there might be an additive combination of effects, or a minor species (e.g., 

glycosylation variant) might present an outsized effect promoting or preventing effector 

responses. Therefore, knowledge of how these different forms influence the behavior of one 

another would allow one to modulate immune responses by adjusting subclass composition. 

With respect to therapeutic monoclonal antibody preparations, this would help guide the 

evaluation of biosimilars by determining whether glycosylation forms present at small 

fractions influence overall therapeutic efficacy.10

After binding to Fc receptors, effector cell-elicited responses to IgG include several different 

functionally distinct mechanisms, including antibody-dependent cell cytotoxicity (ADCC) 

and phagocytosis (ADCP). Effector responses are coordinately regulated by the cell types 

present within a tissue,11,12 the FcγRs expressed on those effector cells,13 the Fc regions 

present within an IC,1 and the properties of antigen engagement.14,15 Regulation at the Fc 

receptor and cell population levels is a challenge to engineering antibodies with desirable 

cell-killing functions, as well as understanding both productive and pathogenic immune 

responses. Furthermore, it has become clear that, in addition to natural killer (NK) cells, 

tissue-resident macrophages and bone marrow-derived monocytes participate in cytotoxic 

antibody-dependent target cell clearance. In contrast to NK cells (expressing only one 

activating FcγR, FcγRIIIA), these myeloid cell subsets express a broader set of activating 

FcγRs and the inhibitory FcγRIIB.13 Thus, a mixed IC may trigger all or specific subsets 

of activating/inhibitory FcγRs, resulting in further complexity. Despite the presence of and 

capacity to bind to multiple activating FcγRs on myeloid effector cells, our previous studies 

have demonstrated that individual IgG subclasses, such as mIgG2a/c, may mediate their 

activity through select activating FcγRs, indicating that there may be specialization in FcγR 

signaling.6

Our team recently demonstrated that a model of IC-FcγR binding accurately captured and 

could predict in vitro binding across various IgG isotypes.16 Further, it could accurately 
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predict antibody-elicited tumor cell killing in mice across antibodies of varied isotypes, 

glycosylation statuses, and FcγR knockouts.16 Directly quantifying and predicting cell 

clearance makes it possible to accurately anticipate and optimize for antibody-mediated 

therapeutic effects. However, it is still unclear whether such a modeling strategy can 

accurately predict the response of human immune cells, particularly given the divergent 

properties between the murine and human receptors,17–19 and whether this modeling 

strategy can extend to ICs of mixed composition.

Here, we examined the binding properties of ICs with mixed IgG Fc composition. We 

quantified the binding of these ICs to each individual FcγR and observed that mixed-

composition ICs resulted in a continuum of binding responses. A multivalent binding model 

extended to heterovalent IC mixtures captured binding overall. However, surprisingly, it did 

not match certain low-affinity interactions.20 Investigating the source of this discrepancy 

allowed us to improve the estimates of these interactions’ affinities. We additionally 

demonstrate that the binding model can be used to both predict in vivo effector responses 

in humanized mice and infer the cell types responsible for these responses. Thus, while 

antibody effector responses operate through a complex milieu of antibody species, Fc 

receptors, and cell types, IC profiling paired with modeling provides a framework to reason 

about the role of each molecular and cellular element.

RESULTS

Profiling the binding effects of mixed-composition ICs

To determine the effect of having multiple Fc forms present within an IC, we developed 

a controlled and simplified in vitro system. Like in previous work, we employed a panel 

of CHO cell lines expressing one of six individual human FcγRs16 (Figure 1A). ICs were 

formed by immobilizing anti-2,4,6-trinitrophenol (TNP) human IgG on conjugates of TNP 

and bovine serum albumin (TNP-BSA) with an average valency of 4 or 33. IgG binding was 

then quantified after incubation with the cells using a constant IC concentration of 1 nM 

(Figure S1). In contrast to our previous work using a single IgG isotype, we assembled ICs 

from mixtures of each IgG isotype pair.16 For each pair of IgGs, ICs were formed with a 

spectrum of six compositions of the IgG pair, including 100%/0%, 90%/10%, and 67%/33% 

mixtures. Combinations of 6 FcγRs, 2 valencies, 6 IgG pairs, and 6 IgG compositions 

resulted in 432 distinct experimental conditions. One-way ANOVA showed that more than 

70% variance in the data was between experimental conditions rather than within them, 

indicating that more than 70% of the variance could be explained by biological differences 

(Table S1). This suggests that, within each condition, measurements were consistent.

Inspection of the resulting binding data revealed several expected patterns. Among the 

conditions with only one IgG present, the measured binding showed a strong, positive 

correlation with the documented IgG-FcγR interaction affinities (Figure 1B). The higher-

valency ICs universally showed greater binding signals compared with their matching lower-

valency counterparts, and there is an obvious negative trend between documented affinities 

and the ratio between the 33-valent and 4-valent complex binding (Figure 1C). This trend 

is expected since, although complexes of both valencies can bind densely with high-affinity 

units, only high-valent complexes compensate for low affinity through avidity.4 Therefore, 
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while high-affinity complexes result in greater binding, low-affinity complexes have greater 

intervalency binding ratios. Finally, mixtures spanning 100% of one IgG isotype to another 

generally showed a monotonic shift with composition (Figure S1). These patterns, along 

with their reproducibility (Table S1), gave us confidence in the quality of the binding 

measurements.

We also observed several unexpected trends among the binding measurements. There was 

appreciable binding from IgG2-FcγRI interactions despite this combination being reported 

as non-binding3 (Figure 1D). We also saw an increase in binding along the shift from 

IgG4 to IgG1 with FcγRIIIA-158F, even though these two isotypes are documented to have 

identical affinities3 (Figure 1E). These two observations are consistent with previous binding 

measurements using the same TNP-based IC system.16

To better visualize the binding of these experimental conditions, we performed principal 

component analysis (PCA) on the median measurement of each condition, with each 

isotype mixture and valency as a sample and each receptor as a feature. The first principal 

component (PC1) explains more than 86% of the variance, and the first two components 

(PC1 and PC2) explain 93% (Figure 2A). Inspecting the scores, we found that the 33-valent 

measurements are more broadly distributed, consistent with their greater expected binding 

(Figures 2B–2G). PC1 mostly separates IgG3 binding from other isotypes, reflecting that 

IgG3 has the greatest binding among IgG subclasses (Figure S1). PC2 separated the 

genotype variants of FcγRIIA and FcγRIIIA and associated most strongly with IgG3 and 

IgG4 (Figure 2H), reflecting that these two subclasses showed larger differences in binding 

with genotype (Figure S1).

In all, these data support that TNP-assembled ICs provide a controlled in vitro system 

in which we can profile the effects of mixed IC composition on binding to effector cell 

populations. Quantifying binding using ICs may, in fact, provide more precise quantification 

of IgG-FcγR interaction affinities, particularly for lower-affinity pairs, and mixed Fc 

composition ICs showed binding between that of the corresponding single Fc cases.

A multivalent binding model accurately predicts in vitro IgG mixture binding and updates 
Fc-FcγR affinities

To model the effects of polyclonal antibody responses, we extended a simple, equilibrium-

binding model that we have previously used to model antibody effector response.16,20 

Briefly, ICs are assumed to bind to FcγRs on the cell surface with monovalent binding 

kinetics and then can engage additional receptors with a propensity proportional to their 

affinity (Figure 3A). Though additional assumptions are not required for modeling ICs of 

mixed isotype composition, this extension leads to a large combinatorial expansion in the 

number of binding configurations. Through some properties of combinatorics, we derived 

simplified expressions for many macroscopic quantities to allow this model to scale to 

multiligand, multireceptor, and multivalent situations.20

We first used the measured receptor expression (Table S2) and documented affinities3 with 

the model and obtained reasonable agreement overall (Figure 3C). While the predicted 

values mostly agreed with the measurements, there were several notable outliers, most 
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prominently an underestimate of IgG2-FcγRI binding (Figure 3C, red circle). To improve 

the measurement fit, we reversed the estimation process and used the measured binding to 

infer the interaction affinities via Markov chain Monte Carlo (MCMC) (Figure 3B). We 

first created a baseline fit quality by fitting all but the affinities (e.g., receptor abundance 

and the crosslinking parameter Kx
*; Figure 3D). Although the fit improved, outliers persisted 

(circled in red in Figure 3D). Therefore, we next performed the fitting while allowing the 

Fc-FcR affinities to vary. Although we only used the single IgG measurements to infer the 

Fc affinities (Figure 3E), we obtained much more accurate predictions for all measurements 

of both single and mixed IgG compositions (Figure 3F).

To further confirm the generality of these updated affinities, we validated these updated 

affinity estimates with an independent dataset collected in a previous study.16 This previous 

study independently measured the binding of TNP-BSA complexes in vitro with two distinct 

average valencies (4 and 26) but only the binding of single IgG isotypes. We set the Fc 

affinities to either documented or updated values and let MCMC fit the other parameters. 

The updated affinities resulted in a vastly improved agreement with the data (Figures 3G and 

3H).

To illustrate the impact of the affinity changes, we compared the binding predictions with 

two sets of affinities (Figures S2 and S3) with their corresponding measurements (Figure 

S1). For FcγRI binding to IgG2-IgG4 mixtures, the experiment indicated that there was 

still notable binding with mostly or 100% IgG2, while IgG2-FcγRI was documented as 

non-binding.3 The updated values amended the prediction and reflected this interaction, 

especially for the 33-valent complex (Figures 3I and 3J, green circle). For FcγRIIB-232I 

binding to IgG3-IgG4, the documented affinities indicated that there should be more binding 

to IgG4 compared with IgG3, contrary to our observation (Figure 3K). The updated affinities 

instead accurately predicted the binding of all mixtures at both valencies (Figure 3L). These 

examples demonstrate that the affinity adjustments greatly improved agreement with the 

binding measurements.

As our Fc affinity inference was constructed in a Bayesian fashion, both the prior 

(documented) and the posterior (updated) affinity values are represented as distributions 

accounting for uncertainty. Inspecting these updated distributions (Figures 4A–4D; Table 

S3), we noted several trends. The model made the largest adjustments to the Fc affinities of 

IgG2 (Figure 4B), followed by IgG4 (Figure 4D). Most IgG1 (Figure 4A) and IgG3 (Figure 

4C) affinities remained unmodified except for a slight increase in their FcγRIIB-232I 

affinities. The most notable update occurred to IgG2-FcγRI. Previously reported as non-

binding, FcγRI was revised to be the highest-affinity receptor for IgG2, consistent with 

the receptor’s high affinity to other human IgG subclasses. This discrepancy was reflected 

in the model prediction before affinity fitting, where the IgG2-FcγRI binding was the 

striking outlier (Figure 3D and 3G). Another significant adjustment occurred with IgG3-

FcγRIIB-232I. Although FcγRIIB-232I has a low affinity for all IgG subclasses, our update 

led to IgG3 being the strongest-binding subclass (Figures 4C and S3; Table S3). More 

subtle differences can be observed from specific model predictions (Figure S2 and S3). The 

revised affinities showed a similar overall correlation with binding overall (Figure 4E). The 
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intervalency binding ratios show a more prominent negative correlation, however, due to the 

movement of the IgG2-FcγRI outlier (Figure 4F).

Multivalent binding predicts antibody-elicited effector responses in humanized mice

We next sought to link the binding of ICs to their effects on the clearance of antigen targets 

in vivo. To quantify the antibody-driven activity of each effector cell, we first measured the 

binding of each human IgG subclass to immune effector cells collected from the peripheral 

blood of human donors in vitro in the ICs of two valencies, 4 and 33 (Figures 5A–5D). 

The measurements show that the binding amounts of IgG1 and IgG3 were generally about 

10-fold higher in magnitude than those of IgG2 and IgG4. For the latter two subclasses, their 

4-valent complex binding was almost negligible. In all cases except IgG2, neutrophils had 

more binding than classical and non-classical monocytes.

We predicted the same quantities of IC binding by the multivalent binding model with either 

the previously documented3 or updated affinities (Table S4) and the quantification of FcγR 

abundance13 (Table S6; Figure 5E–5H). These estimated binding amounts broadly aligned 

with the measurements (Figure 5I and 5J). Between the two sets of affinities, the predictions 

for IgG1 and IgG3 remained almost identical (Figure 5E and 5G), while more differences 

were reflected in IgG2 and IgG4 (Figure 5F and 5H), consistent with the affinities changing 

more for IgG2 and IgG4 (Figures 4A–4D). The predictions with documented and updated 

affinities were generally comparable in their concordance with the measurements (Figures 

5I and 5J). However, the predicted binding to non-classical and classical monocytes was 

adjusted to be much higher for 33-valent IgG2 (Figure 5F), better matching the measured 

values (Figures 5I and 5J). Both sets of affinities predicted the binding of IgG4 to classical 

monocytes to be much higher than the measurements (Figures 5I and 5J). These changes 

indicate that the updated affinities better predict IgG IC binding to effector cells, suggesting 

that they may also help improve the estimation of in vivo cell response.

Next, we used the multivalent binding model with regression to predict in vivo antibody 

effector cell-driven platelet depletion in humanized mice. In the process of extending our 

previous model, we elected to use the cumulative density function of the exponential 

distribution as the link function in our generalized linear regression model to link the overall 

cell activity to the amount of target (e.g., platelet) depletion (Figure 6A). Since the cell 

depletion effects have a limited range—one cannot deplete an antibody target of more than 

100% or less than 0%—we must use a non-linear link function to transform the linear 

combination. While many functions provide this general relationship (such as the hyperbolic 

tangent function used before16), we realized that the extent of target cell depletion can be 

thought of as a form of survival analysis. In other words, given a certain antibody activity, 

a target cell has a certain probability of being cleared within the given timescale of the 

experiment. Assuming that all target cells have an equal propensity of being cleared dictates 

an exponential relationship for the link function.21

Having refined the cell clearance model, we applied it to a previously collected dataset 

examining in vivo platelet depletion in humanized mice.22 After fitting the cell type 

weighting, we found that the model fit the experiments well, especially considering the 

experiment-to-experiment variability due to donor graft variation and other sources of 
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experimental uncertainty (Figures6B and 6C). The fitting was almost identical when using 

documented (Figure 6B) or updated (Figure 6C) FcγR affinities.

A benefit of the generalized linear regression model is that it provides an easy interpretation 

of each component. Inspecting the inferred cell type effects, we found that classical 

monocytes were inferred to be the predominant effector cell type (Figures 6D and 6E). 

IgG2 had some binding to each effector cell type, but no activity was inferred whatsoever 

(Figures 5F, 6D, and 6E). As the affinity updates are most relevant to IgG2, and this isotype 

had no in vivo effect, it is reasonable that these changes had little effect on agreement with 

the data (Figures 5F and 6E). While neutrophils, not classical monocytes, had the greatest 

binding, classical monocytes were inferred to exert the greatest impact on platelet depletion 

across isotypes (Figures 5A–5D). This demonstrates that the most bound cell type does not 

equate to the most potent effector. One explanation may be that, in these humanized models, 

there are relatively low numbers of human neutrophils upon reconstitution.23 The regression 

model can incorporate the molecular-level binding estimation and the depletion outcome to 

provide insights into the overall potency of each cell type. Overall, we found that the binding 

model could predict antibody-elicited effector responses in vivo in humanized mice.

DISCUSSION

In this work, we explored the binding properties of ICs with mixed IgG Fc composition and 

linked their in vitro effects to in vivo effector cell-elicited platelet depletion. To quantify 

the binding of mixed IgG ICs in vitro, we measured every human IgG subclass pair across 

a range of compositions multimerized at two different valencies (Figure 1). Fitting these 

measurements to a model of multivalent interactions using documented affinities for each 

interaction, our model accurately captured the overall binding trends, with some outliers 

(Figure 3). We uncovered that the model discrepancies could be explained by inaccurate 

estimates of especially low-affinity Fc receptor interactions, most prominently involving 

IgG2. We validated revised affinities within an independent dataset and found that it greatly 

improved concordance with the data there as well. Finally, we used measurements of 

binding to effector cell populations to predict in vivo antibody-driven depletion of platelets 

in humanized mice (Figures 5 and 6). While the updated affinities did not change the 

agreement of the model with the observed depletion, it did change the interpretation of 

IgG2’s small effect on depletion—rather than not binding to classical monocytes, IgG2 

binds strongly when in a larger IC, but platelets might provide insufficient avidity to observe 

sufficient engagement (Figure 6).

Considering that polysaccharide antigens present during bacterial infections or upon 

vaccination efficiently trigger IgG2 responses,24 our data would support the notion 

that FcγR-dependent effector functions such as phagocytosis of opsonized bacteria may 

contribute to protective IgG responses in humans more than expected. Conversely, 

autoreactive IgG2 responses observed during many autoimmune diseases may contribute to 

autoimmune pathology via FcγRs, which may warrant developing therapeutic interventions 

to block this pathway also in IgG2-dominated autoimmune diseases.25 Finally, with respect 

to the use of human IgG2 antibody formats as immunomodulatory antibodies for the therapy 

of cancer, our results would support strategies to engineer IgG2 variants with reduced 

Tan et al. Page 8

Cell Rep. Author manuscript; available in PMC 2023 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding to activating FcγRs and optimized binding for the inhibitory FcγRIIB, which has 

been shown to be critical for immunomodulatory IgG activity to further improve their 

therapeutic activity and reduce unwanted side effects.26

IgG subclasses and glycan variants are defined by their differing affinity toward each Fc 

receptor.3,19,27 Therefore, accurate measurements of each Fc receptor affinity are critical 

to understanding the differences in immune responses to each IgG. Using a mechanistic 

multivalent binding model alongside in vitro binding fluorescence measurements, we were 

able to derive a new set of Fc affinities refined from those measured by SPR. Due to the 

heightened avidity, multivalent ICs were better at detecting low-affinity IgG-Fc receptor 

interactions (Figure 4B). Examining binding through ICs also better simulates the relevant 

structure of Fc-FcR interactions in vivo. Harnessing avidity to overcome the low affinity 

of interactions is a common theme in immunology and its experimental characterization. 

For instance, tetramers are routinely used for isolating antigen-selective T cells.28 Here, we 

additionally show that these complexes can be used alongside quantitative models to infer 

properties of these systems.

This framework can be extended to study other aspects of IgG biology such as IgG 

allotypes. Due to a large number of variants and their implication in ADCC, IgG3 

allotypes are of particular interest, with their immunogenicity directly related to their 

FcγR affinities.29 Compared with SPR, our multivalent strategy may allow us to better 

distinguish the subtle differences in allotype Fc affinities, while the binding model can 

predict their NK cell responses for different IC valencies. IgG polymorphism also presents 

in forms independent of Fc binding affinities, such as half-life and hinge length. Having 

a computational model that can accurately quantify the binding effect may help with 

separating the affinity-dependent and -independent factors, guiding optimal biologic designs.

Our results suggest that, within ICs comprised of several distinct subclasses or glycosylation 

variants, the Fc interaction effects are a blend of the constituent species’ properties. This 

means that ICs’ most extreme binding and effector responses should predominantly arise 

from whichever species is most potent in eliciting binding or a response. It also should 

provide some encouragement that the effector responses elicited from therapeutic antibodies 

should vary roughly in proportion to their relative composition; small contaminants of 

alternative Fc subclasses or glycosylation can only have a substantial effect if those 

species differ extremely in their responses alone. One caveat of this observation is 

that we only examined mixtures of antibodies with differing Fcs but identical antigen 

binding—polyclonal mixtures of antibodies will have still other interaction effects because 

antigens can form a higher-valency complex when they are present in combination.30 

While in this work we only demonstrated Fc subclass mixtures, the same lessons likely 

apply to glycosylation mixtures, both in vitro and in vivo, since different subclasses and 

glycosylation variants exert their effect through divergent affinities toward Fc receptors.

Fc receptor-mediated effects are central to protection from both endogenously produced and 

therapeutic antibodies. Our work demonstrates that computational methods greatly facilitate 

reasoning about the complex signaling of the FcγR pathway quantitatively and at both 

cellular and organismal levels. This work extends our previous modeling to humanized mice 
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and expands its application to the depletion of platelets.16 We anticipate that mechanistic 

models of antibody-mediated protection, such as the one here, will continue to grow in their 

utility for studying model systems such as humanized mice. In fact, as other features of 

antibodies are incorporated, such as variation in antigen specificity, it may become possible 

to connect behavior in vitro all the way to protection in human subjects.31,32

Limitations of the study

Although the updated affinities performed better in predicting the binding to human 

lymphocytes, there were still discrepancies in the IgG4 predictions (Figures 5D, 5H, and 

5J). The predicted binding to classical monocytes was higher than measured, especially with 

4-valent complexes. This measurement might have been underestimated, as the measurement 

was close to 0, while the 33-valent binding was comparable to or higher than those of non-

classical monocytes. IgG4-neutrophil binding was also underestimated. The most expressed 

FcγR on neutrophils is FcγRIIIB, but IgG4 was previously reported as non-binding to this 

receptor. Although they were not included in our subclass mixture study, from measurements 

of single IgG subclass complex binding to FcγRIIIB-expressing CHO cells, we inferred that 

the IgG2 and IgG4 affinities are both much lower than 105 M−1, supporting the documented 

non-binding estimation (Figure S4; Tables S3 and S4). Alternatively, evidence exists that 

neutrophils also express a low level of FcγRIIIA, which has adequate binding to IgG4.33

To investigate the in vivo implication of our revised FcγR affinity updates, we elected to 

use humanized mice as a model system. This is both a strength and a limitation of this 

study. Humanized mice serve as an ideal surrogate for understanding human immunity.34 

However, this model system is complicated by graft-to-graft differences, including the level 

of humanization and genetic heterogeneity of human stem cell donors.34 The depletion 

data reflected these complications, with high donor-to-donor and mouse-to-mouse variation, 

limiting our ability to observe subtle changes (Figures 6B and 6C).22

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Aaron S. Meyer (ameyer@asmlab.org).

Materials availability—All unique reagents generated in this study are available from the 

lead contact upon request.

Data and code availability

• The original data can be accessed in the “data” folder of the code repository.

• The original code is deposited on GitHub at https://github.com/meyer-lab/

FcRegression.jl and on Zenodo at https://doi.org/10.5281/zenodo.7997263

• Any additional information request can be directed to the lead contact.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants—Aiming to investigate IC binding to primary human leukocytes, 

blood was drawn from seven healthy volunteers, six female and one male subject aged 

between 23 and 33 years, with the informed consent of the donors and the approval of the 

local ethical committee, Ethik-Kommission der Friedrich-Alexander-Universität Erlangen 

Nürnberg.

METHOD DETAILS

Chinese hamster ovary (CHO) cell FcγR expression quantitation—Human FcγR 

expression on stably transfected CHO cells was quantified by determining the antibody 

binding capacity (ABC) for antibodies specific to the respective Fcγ receptor (Table S2).13 

Quantum Simply Cellular (QSC) anti-mouse beads (Bangs Laboratories Ltd.) with known 

binding capacities for mouse IgG were used according to manufacturer’s instructions. 

Subsequently, a reference curve was generated by correlating the fluorescence intensity 

(caused by the respective anti-FcγR antibody) and the number of antibody binding sites 

of the different QSC beads. This reference curve was established in each experiment for 

all FcγR-specific antibodies of interest (PE-conjugated clone 10.1 to detect FcγRI, clone 

FUN-2 to detect FcγRIIA/B and clone 3G8 to detect FcγRIIIA, all from Biolegend) and 

used to calculate receptor numbers based on fluorescence intensity of FcγR staining on 

CHO cells. Samples were measured on a FACSCantoII flow cytometer and analyzed with 

FACSDiva software.

Immune complex binding measurement—CHO cells stably expressing human FcγRs 

were used to assess IgG-IC binding to hFcγRs as previously described.6 Briefly, ICs 

were generated by coincubation of 10 μg/mL anti-TNP human IgG subclasses (clone 7B4, 

produced in-house) and 5 μg/mL BSA coupled with either an average of 4 or 33 TNP 

molecules (Biosearch Technologies) to mimic low or high valency ICs, respectively, for 

3 h with gentle shaking at room temperature. To address the impact of distinct subclass 

combinations on binding to hFcγRI, hFcγRIIA-131H/R, FcγRIIB and FcγRIIIA-158F/V, 

human IgG1 through IgG4 subclasses were mixed at specific conditions (100%, 90%, 66%, 

33%, 10% of one subclass filled up to 10 μg/mL with the respective second subclass) before 

the addition of TNP-BSA. CHO cells stably expressing FcγRIIIB NA1 and NA2 variants 

were generated for this study and employed to determine IgG subclass binding for 100% 

IgG1–4 immune complexes of low and high valency. ICs were subsequently incubated with 

100,000 FcγR expressing or untransfected control CHO cells for 1 h under gentle shaking 

at 4°C. Bound ICs were detected using a PE-conjugated goat anti-human IgG F(ab’)2 

fragment at 0.5 μg/mL (Jackson ImmunoResearch Laboratories) on a BD FACSCanto 

II flow cytometer. To calculate the fluorescence signal intensity (median fluorescence 

intensity, MFI) of specific immune complex binding, the background fluorescence intensity 

of anti-human IgG F(ab’)2-stained control cells was subtracted (ΔMFI). The measured IC 

fluorescence intensities were between 1,000 and 15,000, far from the equipment saturation 

level which occurred at around 260,000. Each experimental condition had 3–5 technical 

replicates. The relative fluorescence unit of each IC binding was normalized so that 

measurements of each day had geometric means of 1.0.
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Alternatively, binding to human primary peripheral blood leukocytes co-expressing specific 

FcγRs was studied. Blood was drawn from healthy volunteers and erythrocytes were 

lysed by the addition of ddH2O for 30 s at room temperature to obtain total leukocytes. 

Immune complexes were generated as described above and incubated with 200,000 

leukocytes. Leukocyte subpopulations were identified by staining cell-type-specific surface 

markers. Fluorescently labeled antibodies PE/Cy7-conjugated anti-CD19, PerCP-conjugated 

anti-CD3, APC-conjugated anti-CD33, Brilliant Violet 510 conjugated anti-CD14, FITC-

conjugated anti-CD56 and APC/Fire 750 conjugated anti-CD45 were obtained from 

Biolegend. Immune complex binding was quantified upon staining with PE-conjugated goat 

anti-human IgG F(ab’)2 fragment at 0.5 μg/mL (Jackson ImmunoResearch Laboratories) and 

data acquisition on a BD FACSCanto II flow cytometer.

The cell identification strategy was as follows: aggregates of cells were excluded by their 

forward light scatter (FSC) characteristics (area vs. height) and dead cells based on staining 

with DAPI. Leukocytes were identified by expression of common leukocyte marker CD45. 

Among those, neutrophils were gated based on high side light scatter (SSC) characteristics 

and lack of surface CD14, and classical monocytes were based on intermediate SSC and 

expression of CD14. Within the CD14−SSClow cells, B and T cells were gated by expression 

of CD19 or CD3, respectively. Staining of CD56 was used to distinguish NK cells. The 

remaining CD33-expressing cells were gated as nonclassical monocytes. ΔMFI of bound 

immune complexes was calculated by subtracting the background fluorescence intensity of 

PBS-treated leukocytes.

Data were analyzed with FlowJo or FACSDiva Flow Cytometry Analysis Software. Six (6) 

biological replicates were measured for each IC valency, IgG subclass, and leukocyte cell 

type combination. All measurements were normalized so that the daily geometric means are 

1.0.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical and computational analyses in this study were implemented by Julia v1.8.

Principal component analysis on mixture binding measurements—Principal 

component analysis on the IgG mixture binding measurement was performed with the 

package MultivariateStats.jl. The variance explained by principal component analysis was 

defined as 1 − ‖X − X‖F
2

X F
2  where ∥ ⋅ ∥F indicates the Frobenius norm.

Generalized multi-ligand, multi-receptor multivalent binding model—To model 

polyclonal antibody-antigen immune complexes (ICs), we employed a multivalent binding 

model to account for ICs of mixed IgG composition previously developed and detailed in 

Tan and Meyer.20

In this model, we define NL as the number of distinct monomer Fcs and NR as the number 

of FcRs, and the association constant of monovalent Fc-FcR binding between Fc i and 

FcR j as Ka, ij . . Multivalent binding interactions after the initial interaction are assumed 

to have an association constant of Kx
*Ka, ij, proportional to their corresponding monovalent 
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affinity. The concentration of complexes is L0, and the complexes consist of random ligand 

monomer assortments according to their relative proportion. The proportion of ligand i
among all monomers is Ci. By this setup, we know ∑i = 1

NL Ci = 1 . Rtot,i is the total number 

of receptors i expressed on the cell surface (where this term is used synonymously for 

the actual determined number of binding sites for the respective anti-FcR antibodies), and 

Req,i the number of unbound receptors i on a cell at the equilibrium state during the ligand 

complex-receptor interaction.

The binding configuration at the equilibrium state between an individual 

complex and a cell expressing various receptors can be described as a vector 

q = q10, q11, …, q1NR, …, q2NR, …, …, qNLNR  of length NL NR + 1 , where qij is the number of 

ligand i bound to receptor j, and qi0 is the number of unbound ligand i on that complex 

in this configuration. The sum of elements in q is equal to f, the effective avidity. For all i in 

1, 2, …, NL , let φij = Req,jKa, ijKx
*Ci when j is in 1, 2, …, NR , and φi0 = Ci. Then, the relative 

number of complexes in the configuration described by q at equilibrium is

vq, eq = f
q

L0

Kx
* ∏i = 1, j = 0

i = NL, j = NR φij
qij,

with 
f
q  being the multinomial coefficient. Then the total relative amount of bound receptor 

type n at equilibrium is

Rbound, n = L0f
Kx

* ∑
m = 0

NL
φmn ∑i = 1, j = 0

i − NL, j = NR φij
f − 1

.

By conservation of mass, we know that Rtot, n = Req, n + Rbound, n for each receptor type n, while 

Rbound, n is a function of Req, n. Therefore, each Req, n can be solved numerically from its Rtot, n

measured experimentally. Similarly, the total relative number of complexes bind to at least 

one receptor on the cell is

Lbound = L0

Kx
* ∑i = 1, j = 0

i = NL, j = NR φij
f

− 1 .

FcRs are activated through crosslinking. The amount of each kind of receptor in a 

multimerized complex can be calculated as

Rmulti, n = L0f
Kx

* ∑m = 1

NL φmn ∑i = 1, j = 0
i = NL, j = NR φij

f − 1
− 1 .

Immune complex binding analysis—Fitting the parameters in the binding 

quantification was performed by Markov chain Monte Carlo (MCMC) implemented by 

Turing.jl.35
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At first, we plugged in the documented values into the binding model for all parameters 

without fitting, thus the geometric means of CHO cell receptor expression (Table S2), 

documented affinities,3 nominal valencies (4 and 33), and Kx
* as 6:31 × 10−13cell·M16, 

as estimated in previous work (Figure 3C).16 To examine the role of affinity fitting, we 

used MCMC to fit all parameters except (Figure 3D) and including (Figure 3E) affinities. 

CHO receptor prior distributions were inferred from their measured values through maximal 

likelihood estimation (MLE) in Distributions.jl36 for both IgG mixture dataset (Table S2) 

and validation dataset16 (Table S5). The affinity priors were inferred from documented 

Fc affinities and standard errors following several assumptions: (1) each prior follows a 

log-normal distribution; (2) the mode of the distribution is the documented value, and the 

interquartile range of the distribution is the standard error; (3) if the values of mode or 

standard errors are too small, the mode was clipped to 1 × 104 M−1, and the interquartile 

range was clipped to 1×105 M−1 to deal with recorded nonbinding cases.3,37 The priors of 

the effective valency and crosslinking constant were:

f4 log N(μ = log(4), σ = 0.2)

f33 log N(μ = log(33), σ = 0.2)

Kx
* log N μ = log 6.31 × 10−13 , σ = 2.0

MCMC was initialized with the maximum a posteriori estimation (MAP) optimized by a 

limited-memory BFGS algorithm implemented by Optim.jl,38 then sampled through a No 

U-Turn Sampler (NUTS) implemented by Turing.jl.35

In vivo regression model—We extended the in vivo antibody-elicited target cell 

depletion regression model with both cell type weights and FcγR weights (Figure 6A). 

Depletion, y, was represented as the percent reduction in the number of target cells.

To quantify the activity of each effector cell, we first used the multivalent binding model to 

predict the amount of multimerized FcγR of each kind, Rmulti, i, assuming each IC is 4-valent. 

Then the activity of this cell type is assumed to be a linear combination of these predictions 

and a set of receptor weights, pi, that are set to either +1 or −1 for activating or inhibitory 

receptors, respectively, clipped to 0 if it is negative:

xn = max p1Rmulti,1 + p2Rmulti,2 + …, 0

To determine how these cell types bring the depletion effect at the organism level, we 

combine their estimated effects, xn, with a weighted sum, where we introduce another set of 

weights, wn, that are specific to each cell type. To convert the activities to a limited range of 

depletion (i.e., one cannot have a reduction over 100%), the regression was transformed by 

an exponential linker function (the cumulative density function of exponential distribution) 
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such that the predicted effectiveness: ŷ = Fexp wx = 1 − exp − wx  so that limX ∞ Fexp X = 1. 

Together, we defined the estimated depletion as

ŷ = Fexp w1x1 + w2x2 + …

We did not estimate the amount of each cell type in an individual, nor did we include them 

in the model, because the weights, wn, are meant to absorb these quantities, while requiring 

effector cell abundance would limit the application of this model to organs where the tissue 

resident cell abundance has been accurately quantified.

The regression against in vivo effectiveness of IgG treatments was performed via MCMC 

implemented by Turing.jl.35 For the multivalent binding model, the ligand concentration 

was assumed to be 1 nM. The receptor expression level was set to the geometric means of 

the values measured in previous work (Table S6).13 For the receptor weights, pi, we set the 

weight of the only inhibitory receptor, FcγRIIB, as −1:0 and every activating receptor to be 

+ 1:0. The predicted cell type effects were estimated by multiplying the cell type weights by 

their predicted activities, xn.

MCMC was initialized with MAP optimized by a limited-memory BFGS algorithm 

implemented by Optim.jl,38 then sampled through NUTS implemented by Turing.jl.35
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mixed Fc immune complexes bind as a blend of each constituent IgG species

• A multivalent binding model can be generalized to mixed Fc immune 

complexes

• Immune complexes provide better estimates for low IgG-Fcγ receptor 

affinities

• The FcγR binding model predicts effector-elicited cell clearance in 

humanized mice
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Figure 1. Profiling the binding effects of mixed-composition immune complexes
(A) Schematic of the immune complex (IC) binding experiment. Individual or mixtures 

of IgG subclasses are immobilized as multivalent TNP complexes. The binding of these 

complexes to CHO cells expressing a single type of Fc receptor is then quantified.

(B) Measured binding in relative fluorescence units (RFUs) versus the previously reported 

affinity of each interaction. Only single subclass conditions are plotted. Each condition has 

3–5 technical replicates. Error bars represent the interquartile range of the measurements.

(C) The ratio of median binding quantified between valencies 33 and 4 versus the reported 

affinity of the interaction. ρ represents the Spearman correlation coefficient. Significance 

testing was performed using the t-statistic under the null hypothesis that ρ = 0.

(D) IgG1-IgG2 mixture binding to FcγRI shows appreciable binding even though IgG2-

FcγRI is documented to be non-binding. The RFU level was normalized to match the FcγRI 

expression to the FcγRIIIA-158F expression (shown in E) on CHO cells.

(E) IgG1-IgG4 mixture binding to FcγRIIIA-158F.

In (D) and (E), each error bar represents the interquartile range of the three technical 

replicates in the respective condition.

Tan et al. Page 19

Cell Rep. Author manuscript; available in PMC 2023 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Principal component analysis (PCA) visualizes the variance in mixture binding 
measurements and their associated factors
(A) Variance explained by each number of components in PCA. Two PCs explained greater 

than 93% of the measurement variance.

(B–G) PCA scores for ICs of each valency and pair of IgG subclasses.

(H) PCA loadings. The FcγRI and FcγRIIB-232I points overlap.
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Figure 3. A multivalent binding model accurately accounts for in vitro binding of IgG mixtures
(A) Schematic of the multivalent binding model.

(B) Schematic of the process of predicting binding with documented affinities and inferring 

affinities from measurements.

(C) Measured versus predicted binding by the binding model without fitting. Points also 

vary in the IgG subclass used, which is not indicated.

(D) Binding model prediction with all parameters but affinities fitted by Markov chain 

Monte Carlo (MCMC).

In (C) and (D), the IgG2-FcγRI outliers are circled in red. Since this interaction was 

previously reported as non-binding, the actual predictions were all 0 but were clipped to a 

non-zero value (1/10 of the next smallest value) to be plotted on the log scale.

(E) Binding model prediction of all measurements (single and mixed IgG) with affinity 

inferred from the single IgG measurements.

(F) Binding model prediction of mixture IgG measurements with affinities updated using the 

single IgG measurements.

In (C)–(F), error bars represent the interquartile range of 3–5 technical replicates.
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(G and H) Validation of the updated affinities with a separate dataset16 by predicting the 

binding with either documented (G) or updated (H) affinities. The error bars represent the 

interquartile range of four technical replicates for each condition.

(I–L) Predicted binding of IgG4-IgG2 mixture to FcγRI (I and J) and IgG4-IgG3 mixture 

to FcγRIIB-232I (K and L) with either documented (I and K) or updated affinities (J and 

L, solid line and left axis) compared with measured binding (J and L, dashed line and right 

axis).

Error bars in (J) and (L) represent the interquartile range of 3–5 technical replicates.
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Figure 4. Inferred affinities from the binding data
(A–D) The prior (documented) distributions of binding affinities (assuming all follow log-

normal distributions) and posterior (updated) affinities of IgG1 (A), IgG2 (B), IgG3 (C), and 

IgG4 (D).

(E) Updated affinities plot against the binding measurements of single IgGs. Error bars 

represent the interquartile range of the 3–5 technical replicates.

(F) Updated affinities plot against the ratio of median binding between valency 33 and 4 

complexes.

In (E) and (F), ρ represents the Spearman correlation coefficient. Significance testing was 

performed using the t-statistic under the hypothesis that ρ = 0.
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Figure 5. Predicting IgG effector cell binding with the multivalent binding model
(A–D) Measured in vitro binding of IgG1 (A), IgG2 (B), IgG3 (C), and IgG4 (D) IC of 

either 4 or 33 valency to selective immune effector cells from human donors, classical 

(cMO) or non-classical monocytes (ncMO), and neutrophils (Neu).

(E–H) Model-predicted IgG1 (E), IgG2 (F), IgG3 (G), and IgG4 (H) IC of 4- or 33-valent 

binding on each effector cell type under documented versus updated affinities.

(I and J) Measured versus predicted effector leukocyte binding under documented (I) or 

updated (J) affinities.

The error bars in (A)–(D) and (I) and (J) represent the interquartile range of six biological 

replicates.
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Figure 6. In vivo target cell depletion regression in humanized mice
(A) Schematic of in vivo platelet depletion regression. To predict the percentage decrease 

of platelet abundance after antibody injection in mice, we combined the binding model 

predictions with the Fc receptor and effector cell type weights, then transformed the sum 

into depletion percentage with an exponential distribution cumulative density function.

(B–E) Results of regression run using the documented (B and D) and updated (C and E) 

affinities. (B and C) Actual versus predicted depletion of platelets. (D and E) Predicted 

effector cell type effects. Error bars indicate the interquartile range from MCMC sampling.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-human CD3 PerCP (mouse monoclonal) Biolegend Cat.#: 300428; RRID: AB_893298

Anti-human CD14 Brilliant Violet 510 (mouse 
monoclonal) Biolegend Cat.#: 301842; RRID: AB_2561946

Anti-human CD19 PE/Cyanine7 (mouse monoclonal) Biolegend Cat.#: 302216; RRID: AB_314246

Anti-human CD33 APC (mouse monoclonal) Biolegend Cat.#: 303408; RRID: AB_314352

Anti-human CD45 APC/Fire750 (mouse monoclonal) Biolegend Cat.#: 368518; RRID: AB_2616705

Anti-human CD56 FITC (mouse monoclonal) Biolegend Cat.#: 304604; RRID: AB_314446

Anti-human IgG Fc PE (goat Fab2 fragment) Jackson Immunoresearch Cat.#: 109–116-170; RRID: AB_2337681

Anti-human FcγRI PE (mouse monoclonal) Biolegend Cat.#: 305008; RRID: AB_314208

Anti-human FcγRIIA/B PE (mouse monoclonal) Biolegend Cat.#: 303206; RRID: AB_314338

Anti-human FcγRIIIA/B PE (mouse monoclonal) Biolegend Cat.#: 302008; RRID: AB_314208

Chemicals, peptides, and recombinant proteins

TNP-4-BSA BioSearch Technologies Cat.#:T5050

TNP-33-BSA BioSearch Technologies Cat.#:T5050

Anti-TNP IgG1 (clone 7B4, human monoclonal) Lux et al.6 In house

Anti-TNP IgG2 (clone 7B4, human monoclonal) Lux et al.6 In house

Anti-TNP IgG3 (clone 7B4, human monoclonal) Lux et al.6 In house

Anti-TNP IgG4 (clone 7B4, human monoclonal) Lux et al.6 In house

Critical commercial assays

Quantum Simply Cellular anti-mouse IgG Bangs Laboratories Cat.#: 815

Deposited data

hIgG subclass mixture TNP-BSA IC binding to 
hFcγR-expressing CHO cells

This paper https://github.com/meyer-lab/
FcRegression.jl

hIgG pure subclass TNP-BSA IC binding to hFcγR-
expressing CHO cells Robinett et al.16 Figure 1

Residue platelet count in humanized mice 4 h after 
6A6-hIgG injection

Schwab et al.22 Figure 1

Experimental models: Cell lines

CHO Lux et al.6 In house

CHO-hFcγRIA Lux et al.6 In house

CHO-hFcγRIIA-131H Lux et al.6 In house

CHO-hFcγRIIA-131R Lux et al.6 In house

CHO-hFcγRIIB Lux et al.6 In house

CHO-hFcγRIIIA-158F Lux et al.6 M. Daeron, Institute Pasteur, Paris, France

CHO-hFcγRIIIA-158V Lux et al.6 M. Daeron, Institute Pasteur, Paris, France
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REAGENT or RESOURCE SOURCE IDENTIFIER

CHO-hFcgγRIIIB-NA1 This paper In house

CHO-hFcγRIIIB-NA2 This paper In house

Software and algorithms

Julia Julia Programming Language https://julialang.org/

Multivalent binding model Tan and Meyer20 https://github.com/meyer-lab/
polyBindingModel.jl

Turing.jl Ge et al.35 https://turing.ml/

Original source code This paper https://github.com/meyer-lab/
FcRegression.jl

BDFACSDiva 6.1.3 Becton Dickinson, Franklin Lakes, 
NJ, USA

FlowJo 10.8.1 FlowJo LLC, Ashland, OR, USA

GraphPad Prism 9.5.1 GraphPad Software Inc, San Diego, 
CA, USA
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