
UC Irvine
ICS Technical Reports

Title
An architecture-centered approach to software environment integration

Permalink
https://escholarship.org/uc/item/71m561j3

Authors
Medvidovic, Nenad
Oreizy, Peyman
Taylor, Richard N.
et al.

Publication Date
2000-03-23
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/71m561j3
https://escholarship.org/uc/item/71m561j3#author
https://escholarship.org
http://www.cdlib.org/


\\\ntice·. This Material 
, · may be protected 

by copyright Law 
(Title 17 u.s.c.) 

An Architecture-Centered Approach· to Software Environment Integration 

Nenad Medvidovic1 Peyman Oreizy2 Richard N. Taylor2 

Rohit Khare2 Michael Gunt~rsdorfer2 

Technical Report 00-11 

Department of Information and Computer Science 
University of California, Irvine, CA 92697-3425, USA 

1 Computer Science Department 
University of Southern California 

Los Angeles, CA 90089-0781, USA 
neno@usc.edu 

March 23, 2000 

2Department of Information and Computer Science 
University of California, Irvine 
Irvine, CA 92697-3425, USA 

{peymano,taylor,rohit,mgunters }@ics.uci.edu 



An Architecture-Centered Approach to Software Environment Integration 

N enad Medvidovic 1 Peyman Oreizy2 Richard N. Taylor2 

Rohit Khare2 Michael Guntersdorfer2 

Technical Report 00-11 

Department of Information and Computer Science 
University of California, Irvine, CA 92697-3425, USA 

March 23, 2000 

1 Computer Science Department 
University of Southern California 

Los Angeles, CA 90089-0781, USA 
neno@usc.edu 

ABSTRACT 

Software architecture research has yielded a variety of pow­
erful techniques for assisting in the design, implementation, 
and long-term evolution of complex, heterogeneous, distrib­
uted, multi-user applications. Since software development 
environments are themselves applications with these charac­
teristics, it is natural to examine the effectiveness of an 
architectural approach to constructing and changing them. 
We report on our experience in creating a family of related 
environments in this manner. The environments encompass 
a range of services and include commercial off-the-shelf 
products as well as custom-built tools. The particular archi­
tectural approach adopted is fully reflexive: the environ­
ments are used in their own construction and evolution. We 
also report on some engineering experiences, in particular 
with our use of XML as the vehicle for supporting a common 
and extensible representation of architectural models, 
including the model of the environment itself. Generally 
applicable lessons from the experience are described. 

Keywords: Software architectures, software environments, 
tool integration, off-the-shelf reuse, XML 

1 INTRODUCTION 

A comprehensive software development environment will 
offer many services to help with the myriad activities associ­
ated with application development. Environments are multi­
user applications; they are likely to be distributed and con­
current. Building, maintaining, and evolving such an envi­
ronment is fraught with difficulties. As the scope of the 
environment expands, the heterogeneity of the constituent 
toolset is likely to expand as well: tools may come from dif­
ferent vendors, have varying platform requirements, vary in 
their size, complexity, degree of openness (from source code 
to APis to closed binaries), and potentially interact in com­
plex ways. Deciding whether or not a given tool should be 
considered for inclusion in an environment requires under­
standing complicated trade-offs. Actual integration of a tool 
may entail substantial effort. Inadequate understanding of 
the multiple and various issues has often led to failed envi-

2Department of Information and Computer Science 
University of California, Irvine 
Irvine, CA 92697-3425, USA 

{peymano,taylor,rohit,mgunters }@ics.uci.edu 

ronments or serious schedule or budget overruns. 

The issues and challenges posed by environments are not 
unique, of course. Many complex applications exhibit the 
same properties. Over the past decade, an architecture-based 
approach to the engineering of such applications has 
emerged. Central to this approach is the use of architectural 
models. Such models separate designers' concerns b~tween 
components, as loci of computation and state, and connec­
tors, as the sole means of communication between compo­
nents. These models 
• focus attention on component-based development, 
• aid us in reasoning about certain overall system properties, 

both rigorous and conceptual, 
• aid in system implementation and/or generation, 
• assist during system evolution, both before and during 

runtime, and 
• aid configuration management. 

Architecture-based software engineering also emphasizes 
architectural styles, both domain-specific abstractions and 
effective domain-independent patterns and idioms. These 
styles and the architectural models work to facilitate under­
standing and communication among team members and can 

be a key element in an effective reuse strategy. 1 

Our work has focused on examining the applicability and the 
utility of applying an architecture-based software engineer­
ing approach to the development of an extensible software 
development environment. We are thus treating the develop­
ment of an environment as "just another" application devel­
opment problem. Our approach involves: 
• explicitly and formally representing the architecture of the 

environment, 
• employing adaptable connectors to model and implement 

all the communication between tools, and 

I. All architectures and architecture-based approaches are not equal, 
however. Support for reuse, heterogeneity, and distribution are 
not guaranteed. One-of-a-kind, homogeneous, monolithic 
systems also have architectures; applications with rigid 
connectors may have no appealing characteristics with regard to 
evolution; and so on. 



• using an architectural style to further aid understanding, 
analysis, and evolution of the environment's architecture. 

The explicit model employed provides a higher fidelity rep­
resentation of the environment's architecture than either an 
architecture implicit in the environment's construction or an 
ad-hoc, boxes-and-arrows diagram, such as has been typical 
in the software environments world [13,32,34,45]. We do 
not simply use an architecture-based approach to explicate 
our system, however, but also to play a concrete technical 
role in the implementation and evolution of the environment. 
For one, ifthe tools in the environment support development 
of applications having the same architectural concepts and 
style as that exhibited by the environment itself, then a 
reflexive development environment results. That is the case 
with our work: the environment is used for supporting its 
own development and evolution, a tradition dating back at 
least as far as Interlisp [44]. The benefits of doing this 
include avoiding the need for building special-purpose tools 
for maintaining the environment. 

Our approach is, of course, applicable on different levels of 
abstraction. We can use the same set of architectural princi­
ples to build custom tools within the environment as well as 
to build the environment as a whole. Our results also benefit 
the architecture community's ongoing effort to define a 
canonical architectural toolkit [I I]. 

This paper proceeds by briefly describing the architectural 
principles underlying our approach. We then describe the 
approach, report on our experiences with building a family 
of related environments, and discuss the lessons learned in 
the process. Along the way, we also consider some interest­
ing engineering issues we encountered and discuss how we 
addressed them. In particular, we describe how we used the 
Extensible Markup Language (XML) [4] to support the com­
mon internal/external representation of the architectural 
models, and the benefits that resulted. 

2 OUR APPROACH 

We have adopted an architecture-based approach to software 
environment integration. The approach is intended to closely 
parallel that for developing applications [43], where the tools 

Legend: 
Component/Tool 

w 
Connector -
Communication 
Link 

I 
Figure 1. Overview of the adopted architecture-based approach. 
The architecture is structured according to the rules of the C2 style: 
the top (bottom) of a component attaches to the bottom (top) of a 
single connector; there is no bound on the number of components 
or connectors to which a connector attaches. Parts of the 
architecture are elided, as represented by the jagged lines. 

in the environment correspond to components in an applica­
tion (see Figure I). In principle, this permits us to employ an 
environment in its own development (modeling, analysis, 
implementation, and evolution). It also allows us to leverage 
our extensive experience with architecture-based application 
development. 

Three key concepts underline our approach. We explicitly 
represent the architecture of an environment. As with com­
ponents in an application architecture, a high-level model of 
each tool's behavior (internal object in Figure 2) is provided 
in first-order logic [22], while tool interactions (dialog in 
Figure 2) are modeled with asynchronous events (also 
referred to as messages) [43]. This allows early analysis of 
an environment to establish properties of interest. Further­
more, an environment's architecture does not prescribe its 
implementation. Instead, an architecture may be imple­
mented in multiple ways, allowing one to address specific 
non-functional requirements (e.g., performance, concur­
rency, distribution, and so on). 

We employ explicit software connectors to model and imple­
ment all interactions among tools. The connectors are highly 
adaptable: they allow arbitrary addition, removal, and 
replacement of their attached components. Each connector is 
mapped into an explicit service (i.e., a module) in an envi­
ronment's implementation, allowing the modeled environ­
ment to be modified both at design-time and run-time [27]. 
Connector implementation issues are discussed further in 
Section 3. 

Finally, we exploit the properties of an architectural style, 
C2 [43]. A style specifies design rules and constraints to 
which a system must adhere. In tum, awareness of style rules 
facilitates understanding, analysis, and evolution of a sys­
tem. The C2 style was selected because of its support for dis­
tribution, heterogeneity, and reuse. C2 is characterized by 
minimal interdependencies among components. It supports 
loose component integration via connectors, as depicted in 
Figure I. All communication in a system occurs by exchang­
ing asynchronous events, as depicted in Figure 2. Mis­
matches among component interfaces are allowed in 

principle [23].2 The above properties are desirable when 

Internal 
Object 

Figure 2. Internal architecture of a C2-style component (tool). The 
internal object contains application-specific functionality and may 
be a third-party tool accessible via an application programmable 
interface (API). The dialog engages in event-based communication 
with the rest of the architecture and makes invocations on the 
internal object. Two types of events are exchanged: requests of 
components above and notifications to components below. 



composing large, heterogeneous, possibly third-party tools 
into an environment. 

3 IMPLEMENTATION ISSUES 

To support implementation of C2-style architectures, we 
have developed a light-weight, extensible framework of 
abstract classes for concepts such as components, connec­
tors, and events (messages), shown in Figure 3. This frame­
work is the basis of development and OTS reuse in C2. It 
implements component interconnection and message passing 
protocols. Components and connectors used in C2 applica­
tions are subclassed from the appropriate abstract classes in 
the framework. This guarantees their interoperability, elimi­
nates many repetitive programming tasks, and allows devel­
opers to focus on application-level issues. The framework 
supports a variety of implementation configurations for a 
given architecture: the entire resulting sy.,tem may execute 
in a single thread of control, or each component may run in 
its own thread of control or operating system (OS) process. 
The framework has been implemented in Java and C++; its 
subset is also available in Ada. 3 

Table 1: OTS Component Reuse Heuristics 

Problem with OTS Component 
.. 

'Integrati~~ M~thod 

Explicit Invocation Wrapper 

Message Interface Mismatch Adaptor 

Different Thread of Control Inter-Thread Connector 

Different Language and/or OS Process IPC Connector 

Inadequate Functionality Source Code Modification 

The base framework has been extended to provide support 
for reuse, distribution, and heterogeneity of applications. 
Reuse and heterogeneity are accomplished via explicit, flexi­
ble connectors and light-weight component adaptors and 
wrappers. In general, in order to incorporate any OTS com­
ponent into a C2 architecture, the component can be wrapped 

C20bject 

~
C2Message 

C2Request 
l=:==C2Notification 

C2Port 
L_c2Port_FIFO 

C2Brick 

[

C2Connector 
C2Connector_SameProcess 
C2Connector_Thread 
C2Connector_IPC 

C2Component 
t___::_C2Architecture 
[___C2Component Threads 

t___::_C2Architecture_Threads 

Figure 3. C2 implementation framework. 

2. The impact of a component interface mismatch on a system's 
operation can range from negligible to serious [23]. Our approach 
allows the system's architecture to be analyzed to assess the 
consequences of mismatches before the system is implemented 
and deployed [22]. 

3. It has been argued by others [9,46) that this framework is similar 
to commercial middleware platforms, such as CORBA [30) and 
COM [39]. 

as an internal object inside a generic framework component 
(recall Figure 2). An extensive series of exercises conducted 
to study component reuse in the context of C2 [20,23] has 
resulted in several other heuristics for integrating OTS com­
ponents into C2-style architectures, summarized in Table 1. 

The framework supports distribution and heterogeneity 
through addition of connectors that supply a variety of 
interoperability mechanisms. To date, we have incorporated 
four OTS interoperability technologies into the framework: 
Q [17], Polylith [32], Java's RMI [42], and ILU [47]. Each 
technology supports one or more of the following: multi­
threaded and multi-process communication, multi-lingual 
development, and distribution across a network [7]. 

We have devised two complementary strategies for incorpo­
rating an OTS technology into a connector, shown in Figure 
4: a single "virtual" connector is split horizontally or verti­
cally into two actual modules that interact using the mecha­
nisms provided by the OTS technology. These two basic 
configurations can be combined to achieve any application 
deployment profile. For example, the architecture in Figure 4 
may be configured so that each component runs on a differ­
ent machine. Once such a "virtual" connector is imple­
mented, it can be used like any other connector; its internals 
are entirely transparent to the developers and the interacting 
components. 

Finally, we specified a shared data model to represent the 
architecture of an environment during its construction and 
execution. This model is used as the basis for evolution. Our 
approach builds on that of the Field development environ­
ment [34 ], which pioneered the use of shared abstract syntax 
trees of control flow graphs, source text, and so on, as well 
as event-based access to them. In particular, we applied the 
technologies of XML [4] for capturing syntax and C2 com­
ponent packaging for concurrent access to the architecture 
repository. 

There were several reasons to migrate from a textual archi­
tecture description language (ADL) to an XML-based one, 
called xADL [18]. XML offered a simpler, standardized 
parser and a richer, internationalized user interface in con­
junction with HTML. Using separate XML Namespaces, we 
designed a generic vocabulary of tags and attributes useful 
across a range of AD Ls independently of ontologies specific 
to particular ADLs. Furthermore, the principle of ignoring 
unknown tags allowed individual tools within the environ­
ment to annotate individual components and types, as well as 
include entirely new subtrees without affecting other tools. 

(a) (b) 

Figure 4. Connectors are a primary vehicle for distribution and 
heterogeneity. A single conceptual connector can be "broken up" 
(a) vertically or (b) horizontally for this purpose. Shaded ovals 
represent language, process, and/or machine boundaries. 



Conversely, XML extended the promise of adding architec­
tural knowledge to applications entirely outside the environ­
ment, such as XML-format drawing tools. 

Fundamentally, we view architectural description as a form 
of hypertext. Rather than presenting a unified object-base for 
a project as in, say, the Montana integrated C++ environ­
ment [14], hyperlinking explicitly articulates separate evolu­
tion of each component in the architecture. One component 
interface might be extracted from a vendor's Web page, 
while connectors may be annotations in an illustration pack­
age; currently "external" documentation could be included 
within the project Web as well. 

4 AFAMILYOFSOFTWAREDEVELOPMENT 
ENVIRONMENTS 

During the course of the last four years, we have constructed 
a family of software development environments using our 
approach. Our first environment, ArchStudio, began as an 
experiment in applying the C2-style and the principles of 
architecture-based development to software environments. 
Inspired by its success, we built more comprehensive envi­
ronments that integrated both commercial and research off­
the-shelf (OTS) tools. We describe each of these environ­
ments in the following subsections. The purpose of this sec­
tion is to reveal the complexity of the problems addressed 
and some of the details of how the approach was applied. In 
tum, this enables assessment of the general utility of the 
approach. 

ArchStudio 1.0 

ArchStudio 1.0 was the first prototype environment that 
embodied our approach. The initial version was constructed 
in 1996 and was then incrementally improved and extended. 
ArchStudio 1.0 provided a graphical design environment for 
interactively constructing and analyzing software systems at 
the architectural level, and a novel mechanism for interac­
tively evolving the system during runtime by changing its 
architectural model. The environment's own architecture is 
depicted in Figure 5 and was implemented using the C2/Java 
class framework. 

The two central tools in the environment are Argo/C2 and 
ArchShell. Argo/C2 [36] is an interactive, graphical design 
environment for software architectures that allows architects 
to drag-and-drop components and connectors from a palette 
onto a design canvas. Argo/C2's critics continuously exam­
ine the system under design, identify errors, and non-intru­
sively suggest design alternatives. ArchShell, on the other 
hand, provides a text-based, interactive interface for instanti­
ating implementations of components and connectors into an 
architecture and executing the architecture. ArchShell is 
novel in that it enables architects to evolve a system's run­
ning implementation by changing its architectural model 
[27,29]. 

Since Argo/C2 and ArchShell were initially designed as 
stand-alone tools, each used its own internal representation 
of the architectural model. To create ArchStudio 1.0, we 
wrapped them to emit messages describing changes to their 
internal representations. ArchADT is a shared representation 

Netscape 

·, 

C2 Browser\ 
\ 

Argo/C2 ArchShell 

Component 
Repository 

Component 
Template 
Generator 

Figure 5. ArchStudio I.O's C2-style architecture. 

component that records the changes and notifies other tools 
in the environment of them, thus synchronizing ArchShell 
and Argo/C2's internal representations. 

The remaining ArchStudio 1.0 components facilitate runtime 
manipulation of an application's architecture. C2 Browser 
encapsulates an OTS Web browser, such as Netscape Com­
municator, as discussed in Section 3. C2 Browser allows 
architects to locate new C2 components (identified by a 
unique MIME type and file extension) over the Web. Click­
ing on a C2 component link causes Netscape to invoke C2 
Browser's dialog; in response, the dialog emits a notification 
message announcing a successful download of a new C2 
component. Component Incorporation Tool reacts to the 
notification by unarchiving the C2 component from the 
downloaded file, passing its interface description to IDL 
Parser, and installing the component for use in a running 
application. IDL Parser parses the component's interface 
description and stores it in the Component Repository, a file­
based repository of component interfaces, similar to 
CORBA's Interface Repository. Other tools can retrieve a 
list of available components from the Repository and exam­
ine their interfaces. Similarly to C2 Browser's use of 
Netscape, Component Repository uses JOP [38], an OTS 
persistent object package, as its internal object. 

Finally, Component Template Generator generates a Java 
class template when given a C2 component name. It queries 
the Component Repository for the component, examines its 
interface, and generates a Java method signature and body 
for every interface element. This capability helps to reduce 
the effort required to implement new C2 components. 

While simplistic, ArchStudio 1.0 was constructed using the 
same principles as the systems it was designed to construct. 
In fact, the initial prototype of the environment was con­
structed (and modified during runtime) using ArchShell. 

DRADEL 

The DRADEL environment, initially developed in 1998, sup­
ports specification, analysis, design-time evolution, and 
implementation of C2-style architectures. Its architecture is 
shown in Figure 6. Like ArchStudio 1.0, DRADEL adheres to 
C2 style rules and is thus applicable on itself. The environ­
ment has been implemented in Java, using the framework 
described in Section 3. An early prototype of DRADEL was 



Figure 6. Architecture of the DRADEL environment. 

discussed in [22]. This section briefly summarizes the envi­
ronment's key features and introduces a recent addition that 
required integrating an OTS tool. 

The User Palette, Type Mismatch Handler, and Graphics 
Binding components from Figure 6 provide a graphical front 
end for the environment; we will not focus on them in this 

paper.4 The Repository component stores architectures mod­
eled in C2's ADL, c2SADEL [22]. The Parser receives via 
C2 messages a specification of an architecture, parses it, and 
requests that the Internal Representation component check 
its consistency and store it. Internal Representation is an 
ADT that builds its own representation of the architecture 
and ensures that components and connectors are properly 
specified and instantiated. 

Once an entire specification of an architecture is parsed and 
its internal consistency ensured, the Topological Constraint 
Checker, Type Checker, Code Generator, and UML Genera­
tor components are notified of it. Topological Constraint 
Checker ensures adherence to the topological rules of C2 
discussed in Section 2. Type Checker is DRt\DEL's center­
piece, enabling two key tasks: analysis of architectures to 
establish (the degree of) behavioral conformance among 
interacting components and evolution of individual compo­
nents. Both these tasks make use of the components' behav­
ior models, provided in c2SADEL as first-order logic 
expressions, and implement the idea of heterogeneous typing 
for software architectures [18,19,22]. The Code Generator 
component is evolved from ArchStudio I .O's Component 
Template Generator: it generates an implementation skele­
ton for the modeled architecture on top of the Java/C2 frame­
work. For each component, Code Generator automatically 
generates the dialog from the component's c2SADEL specifi­
cation. It also partially generates the internal object, with 
stubs for each method. The stubs must then be implemented 
manually or replaced by an OTS component. 

In order to provide developers with support for implement­
ing the internal objects, as well as for refining architectures 
into implementations that are independent of the C2 frame­
work, we have introduced the UML Generator component. 
UML Generator implements a set of rules we have devised 
[21,35] for transforming an ADL specification into UML 
[5]. Like other C2 components, UML Generator internally 

4. GraphicsBinding is an example of OTS reuse. It incorporates a 
user interface toolkit, Java's AWT [20]. 

. _l .. ll<lllotlo!lr"*""~ .•• - .................................... . 

D~_:alll.§Jm .itl!~~I tol.flEL~l~~; 1 ~. 

J:=:7 ~ J ~: 
a~o..... a ~:::.::....:;,:--,;.,.: 

:.~~::;=. ~ - -1~1~ .. 1.,.__...,~ 

~atRo!KMl~uU>gaDeocnpllonllllll&voa.llloftLlfllllllljlG j •. r-
• • · fC~~P91C\A..n..s,..-,ne2 

~;.;-1~~1··1,..;...:fa...;..r.i..j-~t&..1. 

P...., 
c.­
~r~e:.--. 

"-"" 
Tp0wic:l'9_ 

"­
Gfnlll!*OlN..llGdd_ 

"-

~ -·------·-:-·-·-·-··-·····---

Figure 7. Screenshot of DRADEL (bottom) and the UML model 
produced by DRADEL's UML Generator in Rational Rose (top). 

consists of a dialog that engages in message-based commu­
nication and an internal object that implements the compo­
nent's functionality. In this case, the internal object is 
Rational Rose [33], an OTS environment for UML-based 
software development (see Figure 6). 

This example illustrates the flexibility of a C2 component's 
internal architecture. Typically, the interaction between the 
dialog and the internal object is accomplished via procedure 
calls. However, Rose provides an API that is accessible via 
COM [39]. We, therefore, employed an OTS facility that 
enables Java applications to interact with COM objects. This 
facility acts as a connector internal to a component. A 
screenshot of the resulting tool is shown in Figure 7. 

ArchStudio 2.0 

ArchStudio 2.0, our most recent development environment, 
combines many of the tools in ArchStudio 1.0 and DRADEL 
with other research OTS and COTS tools, including Rational 
Rose and Metamata IDE. Its C2-style architecture is 
depicted in Figure 8. The lightly shaded tools in the figure 
represent individual integrations intended to assess the feasi­
bility of the approach; they have not yet been added to the 
production environment. The more heavily shaded tools are 
part of the current environment. 

A significant difference between ArchStudio 2.0 and our 
previous environments is our use of an extensible, persistent, 
XML-based shared architectural model for the system under 
design, xADL (see Section 3). This shared model is encapsu­
lated as an abstract data type by ArchADT. Supported opera­
tions on the model include enumerating the components and 
connectors in the architecture, and their respective types; 
adding and removing architectural elements (e.g., compo­
nent types and instances); and querying and modifying the 
architecture's topology. Additionally, the model may be 
extended by adding new attributes to existing elements or by 
adding new sub-hierarchies of elements. 

xADL is a generic language framework with five basic tags: 
• <Architecture>: a list of directed links between 



· .. ArohADT' 
An .enensible~ persistent, 

XMl.-baaeci roodel 
torsdtware arohi!eciuea 

]:_ 

AYl!SIMi!e !ld'!w.ve bu 
tei:mol(Qeei nr:lidt! 
~~•'ii PMl, Put,lilh. 
nrtl ILL'. 

I 
Aroh E\rolution · Resource 

\ .. • • M1aru10S. . • · : Partitioning 
Ri.ri!Jne mad.ftBliJcl Mq:>e oornp:merm oo 

, ctsrdtiedures '. procemg Eli!rni!rts; 

Rational ROll8.& 
Generate LML deea;;ir 

~miaC2~tEi 
arch~h::l model 

_[_ 

ci$ADEL parser 
..... ntP.Of1 t::z .. 

I 

. 'n.lpd<Jgk:l4 
~oru11tnint Qeickw 
· 'lk rifyC2-'S'iyle ·. 

I----..-----' 

• . SADEL model••: · 
'apt?dti::auoiis · · rulee 

,Wet, Bn>Waer 
Retrieve. £Ditwar~ 
t:t:mponentsfrorn 

•.. ·.~~vtet:i•· ·.··1 

l 
l 

r Argo1C2 
O rsph bal. de~gn, 
environment 1Cf 
C:! arohiteclure~ 

Dependency 
Analyzer 

Veri! ~ ccm.panenl 
dependencies 

l 

Armanl 
Ardli!ectural 

coo1:1tran1 
ched<ing 

· .·ArchSheU 
lntsraatiie rllltiw 
. mtrlJEafun 
·,.Cl arctdtecifuree .. 

Arebica 

ArgoJUr.tL 
U ML-based desgn I> 

d compcnen'! 1 .. 

internals 

1 I 

Elllenaim Wi~ 
1 Installs new ·. 

·,~!Ii.:.· •. 
· · compcriert:s 

.. ~8eam:lG2 
megra1oo 

:' 

Type Chee leer 
, , Type. modeling and 
· ·'• die eking hr 

architecture3 
.: 

Uaer Palett& 

Code G enerotor 
Code gene ratbn 

olcompcnell! 
intertacea 

I 

•·• Orsphbal 
1 

U5er n1era~ 

· • Type litism at ch 
Handlw 

: Displays i;pe 
checking resu lls ... !orDRADEL 

·. I T 
J. 

. , Graphte& Blndtng 
' Rendera 

DRADEL's usa t 

Metsmam lDE 
~kri!ies caibrrnanoe 
be<Y.-een oource code! 

and an:tuteclure 
bAADEL .. • : --.__,.int_e_,n_aoe_,___ 

· .. 
·· ... 

Figure 8. ArchStudio 2.0's architecture, in the C2 architectural style. 

instances; 
• <Component>: name and type(s) supported by each com­

ponent instance; 
• <Connector>: name and type(s) supported by each con­

nector instance; 
• <Component Type>: name and method inte~faces for each 

component type, and input and output parameters; and 
• <ConnectorType>: name and method interfaces for each 

connector type 

Composing xADL with additional C2-specific definitions 
yields a complete, verifiable xC2 Document Type Definition 
(DTD). For example, we added the xC2: Filter attribute 
and its five permissible settings [43] to <xADL: Connector­
Type>. As discussed above, DRADEL enforces the remaining 
properties of an architecture the grammar alone cannot, such 
as type conformance. 

ArchStudio 2.0's tools query and modify the model by send­
ing C2 request messages to ArchADT. If a tool's request 
changes the model (e.g., adds a new component), ArchADT 
emits a C2 notification describing the change to the connec­
tor below it, which, in tum, broadcasts it to the tools attached 
below it. Each tool receives and reacts to the state change 
independently; typical reactions include making a corre­
sponding change to its internal representation, updating 
affected graphical views, or ignoring state changes that fall 
outside a tool's domain of interest. 

In addition to ArchStudio 1.0 and DRADEL's tools, ArchStu­
dio 2.0 introduces several other components, giving the 
architect additional support for architecture modeling, analy­
sis, implementation, reuse, deployment, and evolution. 

Evolution Management: The Arch Evolution Manager 
component is responsible for changing a system's running 

implementation to correspond with its changing architectural 
model. This component was a part of ArchShell in ArchStu­
dio 1.0. In ArchStudio 2.0, we have decoupled it from 
ArchShell and modified it to run as an independent compo­
nent. 

Resource Partitioning: One of Argo/C2 's graphical views 
allows architects to assign system components and connec­
tors to operating system processes and machine hosts. The 
Resource Partitioning tool retrieves these attributes and gen­
erates initialization and startup code for executing the system 
in the specified configuration. The tool relies on available 
OTS connector technologies, such as those described in Sec­
tion 3. 

Dependency Analysis: The Dependency Analyzer tool 
examines the interface of every component in the system 
(consisting of the messages understood and potentially emit­
ted by the component) and the architectural topology to 
reveal dependencies between components. This information 
helps architects evaluate how components are used and the 
consequences of adding, removing, replacing and reconnect­
ing components. 

Constraint Management: Armani [25] is a language and 
tool set developed at Carnegie Mellon University (CMU) for 
specifying and checking constraints over a system's archi­
tectural topology. Our prototype integration enables archi­
tects to specify constraints over how a system's topology 
may evolve during runtime. If any tool (e.g., Argo/C2) mod­
ifies the system's model in a way that violates a topological 
constraint, Arch Evolution Manager will not perform the 
corresponding change to the system's running implementa­
tion. 

Design Refinement: Argo/UML [36] is a UML design envi­
ronment similar to Rational Rose, developed at UC Irvine. 



Our prototype integration allows architects to diagram a 
component's internal design based on the component's inter­
face specification. Since Argo/UML was developed indepen­
dently of ArchStudio, it stores its diagrams in individual 
files, not within ArchADT. To relate the UML and architec­
tural models, our integration stores the filename of each 
component's UML diagram as an annotation on the compo­
nent's model within ArchADT. 

Interoperability: Arabica [26] provides interoperability 
between Sun Microsystems' JavaBean components [41] and 
C2 components by automatically translating JavaBean 
events into C2 messages, and visa versa. Additionally, Ara­
bica ensures C2 's topological rules among connected Java­
Bean components. 

System Generation: After generating template code for a 
component's interface using DRADEL' s Code Generator, 
developers can edit the code using the Metamata !DE [24]. 
Using Metamata's style checking feature, our integration 
detects source code changes that diverge from the compo­
nent's interface and notifies the architect. This assures a cer­
tain degree of fidelity between the architectural model and 
its implementation. 

Our research group is continuing to improve ArchStudio 2.0 
by integrating new tools, improving its user interface, and 
extending its XML schema. 

An Avionics Development Environment 

The preceding three environments have been built by the 
members of our research team. This section briefly describes 
an ~nvironment constructed by a third-party o~·ganization, a 
maJor aerospace company, using the same principles and 
tools. This organization used C2 to define and implement the 
System Control and Configuration Manager subsystem of an 
avionics development and simulation environment. A set of 
the company's instrumentation and operational components 
was integrated with ArchStudio 1.0 and the toolset provided 
with Stanford University's Rapide system [16]. The result­
ing environment included interactive support for defining a 
configuration (i.e., an architecture) of a simulation, and visu­
alizing and analyzing its run-time properties. 

ArchStudio 1.0 was used to control dynamic reconfiguration 
of architectures of the simulated avionics systems. The C2 
implementation framework provided access to the runtime 
events emitted by the components in a simulated system. 
The company defined an event visualization facility to sup­
po~ the identification of specific event patterns occurring 
durmg system execution. Rapide' s event analysis and anima­
tion tools were notified of the observed event patterns in 
order to analyze the actual behavior of the simulation. For 
example, by capturing the run-time events, the company was 
able to produce a three-dimensional visualization of an in­
flight replanning algorithm, which operated on the run-time 
trace of events associated with the algorithm's key data struc­
tures. 

This environment was integrated without any reported 
changes to the OTS tools (ArchStudio 1.0 and Rapide tools) 
beyond providing adaptors and wrappers to enable their 
interoperation in the manner discussed in the preceding sec-

tions. 

Environment Interoperability 

Our work on building multiple software development envi­
ronments provided us with the opportunity to explore envi­
ronment interoperability-integrating multiple environ­
ments, each with its own tools, into a single, composite envi­
ronment. The problem is one of scale. Getting two tools to 
interoperate is a "l x 1 problem," where either (or both) of 
the tools can be adapted to suit the peculiarities of the other. 
Integrating a tool with an environment is an "1 x N problem" 
since adapting the single tool to the environment's estab­
lished framework is typically easier than adapting multiple 
tools in the environment. Environment interoperability poses 
an "N + M problem" where two well-established integration 
frameworks must be stitched together. In this case, even the 
initial tasks of understanding how the disparate pieces 
should fit together poses significant obstacles. 

We confronted these issues when we considered integrating 
DRADEL with a subset of ArchStudio 1.0 (specifically, Argo/ 
C2, ArchShell, and ArchAD1). Our goal was to allow archi­
tects to use DRADEL's analysis tools in conjunction with 
Argo/C2's critic-based analyses, and to allow architects the 
option of using ArchStudio' s interactive architecture specifi­
cation capability or DRADEL' s file-based c2SADEL specifica­
tion language. 

The most difficult interoperability issue concerned the 
incongruent architectural models maintained by each envi­
ronment. Dl_lADEL's. ADT (Internal Representation from Fig­
ure 6) provided a nch type and component interface model, 
such as pre- and post-conditions on interface methods, that 
ArchStudio's ADT (ArchADTfrom Figure 5) lacked. On the 
other hand, ArchStudio's ADT modeled implementation 
details that DRADEL' s ADT lacked, such as file system paths 
to component and connector binaries, and flags signaling 
whether or not components and connectors are running. 

One obvious approach involved unifying the two architec­
tural models and implementing a single ADT component 
replacement. To avoid modifying the other tools, this single 
ADT would have to simultaneously mimic the message 
interfaces of both previous ADTs-feasible, but cumber­
some and error-prone. The alternative approach involved 
retaining both ADTs. This had the advantage of not requir­
ing changes to existing tools. However, since the ADTs 
shared common elements, we would need to implement a 
mechanism for assuring data coherence. Our prototype 
implementation involved building a single special-purpose 
connector to replace the connectors below Arch Studio's and 
DRADEL' s ADTs. This new connector-part adaptor and part 
consistency manager-dynamically translates messages to 
and from ArchStudio' s ADT into corresponding messages 
understood by DRADEL' s ADT, and visa versa. Since all 
messages intent on changing either ADT travel through this 
single connector, a certain degree of data coherence can be 
ensured. This prototype implementation allowed us to exper­
iment with using ArchStudio 1.0 and DRADEL simulta­
neously, which benefited the design of ArchStudio 2.0 and 
its XML-based, unified data repository. 



5 LESSONS LEARNED 

In the previous section we discussed three environments 
constructed internally, one environment built by a third 
party, and two tool interoperability mechanisms: (1) shared, 
flexible data representation using XML and (2) message 
routing and adaptation using software connectors. We 
believe our experiences with these technologies are of value 
to software architecture and software environments research­
ers and practitioners, as follows: 
• The use of XML as the basis of a shared, extensible repre­

sentation of an evolving architecture (xADL) proved very 
successful. It simultaneously met the goals of providing an 
effective basis for information exchange between the tools 
without requiring a fixed format and structure. It thus 
addressed a critical issue that has vexed many previous 
environments. In the context of architecture-based design, 
it has done so with acceptable performance. 

• The techniques for encapsulating and interacting with 
binary or "uncooperative" tools, such as Rational Rose 
and Netscape, were effective. The canonical internal 
architecture of a C2 component has proven adequately 
flexible in wrapping over twenty such tools to date. 

• Extensibility and manageability of the environments was 
achieved via an explicit and reflective architecture, using 
an existing ADL. This suggests that ADLs can provide 
significant leverage for modeling, analyzing, implement­
ing, and evolving solutions to problems of at least the size 
and scope of a software development environment. 

• Some tools, such as Netscape, offered flexible and conve­
nient interaction capabilities while others, such as Rose, 
demanded a very fine-grain style of interaction. In both 
cases, the general mechanisms offered for wrapping tools 
and for hooking them together with connectors not only 
sufficed but integrated the tools in a manner that seemed 
natural. 

• Different sets of development environment services were 
successfully supported by the chosen approach: there is no 
single "main tool" of an environment, no single user inter­
face, and no essential set of tasks. The tools are integrated 
in a manner that supports many different usage scenarios; 
nonetheless, a coherent view of the entire environment 
from an architectural perspective is maintained. 

• The exercises demonstrated that architectural principles 
and supporting mechanisms can be effectively used to 
enable the composition of entire environments in much 
the same manner as the composition of individual tools. 

• Finally, the exercises provided some new data points in 
the on-going evaluation of the C2 architectural style, sup­
porting tools, and its use of software connectors that are 
explicit not only in the architecture, but also in the imple­
mentation. In short, the experience was positive, warrant­
ing further efforts to push and explore the boundaries of 
the style. 

Viewing these experiences a bit differently, they motivate 
and reinforce some general observations: explicit connectors 
provide enormous leverage; XML is an effective technology; 
wrappers and implicit invocation are (still) effective soft­
ware integration mechanisms; reflection in the context of 
architectures provides clear value; and architectural mis-

match can be avoided (or at least minimized) through judi­
cious use of explicit architectural models. 

6 RELATED WORK 

This paper has been influenced by work in several areas: 
software architectures, reuse, component interoperability, 
and software environments. Each is summarized below. 

Architectures: Environment integration did not become a 
focus of the software architecture community until very 
recently [ 11]. With the exception of CMU' s Aesop environ­
ment [IO], there have been no published examples of soft­
ware toolkits that employ an architecture-centric approach. 
Garlan et al. described in architectural terms the many prob­
lems they encountered during Aesop's construction. They 
coined the phrase architectural mismatch to denote conflict­
ing assumptions made by components and produced a set of 
guidelines for avoiding architectural mismatch. These guide­
lines largely focus on components: their internal structure, 
adaptors to resolve conflicts, and design guidance for select­
ing, reusing, and composing them. We have previously dis­
cussed why C2 is well suited to address these guidelines 
[20]. 

The work described in this paper indicates that an approach 
centered on component configurations is a needed comple­
ment to the guidelines: by providing an explicit architectural 
model, one can assess the assumptions made by a component 
in the context of its "location" in the architecture. Such an 
approach may have resulted in early warnings of several 
problems Aesop's developers faced. For example, a compo­
nent they used required all communication to be channelled 
through it. An explicit architectural model would have indi­
cated that this assumption is in direct conflict with the envi­
sioned configuration, in which the four major components 
needed to directly interact with one another. As it was, this 
problem was not discovered until the integration of the envi­
ronment was well under way. Recently, Garlan et al. have 
applied their formal architecture modeling and analysis 
approach to the problem of tool integration [I]. 

Reuse: Two approaches to component reuse have influenced 
our work: component packaging and domain-specific soft­
ware architectures (DSSA). Shaw has discussed a set of 
mechanisms for (re )packaging components to facilitate their 
use in new contexts [ 40]. This work has been embodied in a 
recent approach by DeLine that separates a component's 
essence from its packaging [8]. However, DeLine's 
approach does not support reuse of legacy components, but 
instead requires their reengineering. On the other hand, C2 
employs several of Shaw's mechanisms, such as import/ 
export converters, and adaptors/wrappers. Other mecha­
nisms are obviated by C2's rules. For example, multilingual 
components are inherently supported by C2 's use of implicit 
invocation and explicit connectors. 

Another relevant approach to reuse, DSSA, exploits the 
shared characteristics of applications within a domain. 
DSSA have proven successful at supporting reuse, but have 
at times been overly restrictive in that support [20]. A repre­
sentative example is Gen V oca [3 ], which requires that all 
components be custom built for its style of interaction and 



compos1t1on. We have tried to leverage the successes of 
DSSA, while providing more flexible rules: C2 eliminates 
assumptions of shared address spaces and threads of control; 
it supports event-based communication through connectors; 
and it separates an architecture from its implementation. 

Interoperability: Component interoperability technologies 
(e.g., Field/SoftBench [6,34], Q [17], ToolTalk [12], 
CORBA [30], COM [39], Enterprise JavaBeans [41]) pro­
vide a set of communication services and protocols to enable 
component interactions. Though they provide effective 
implementation-level support for environment integration, 
these technologies often unduly influence the properties of 
systems they are used to construct [9]. Thus, they must be 
accompanied by a set of higher-level, compositional guide­
lines (e.g., an architectural style) and models (e.g., an archi­
tectural description) that clearly specify structure, behavior, 
and other properties of a system [28]. As discussed in Sec­
tion 3, we have exploited several interoperability technolo­
gies to provide support for multi-lingual, multi-process, and 
multi-platform development of C2-style architectures. 

Environments: We have been strongly influenced by the 
work on software environments. In particular, we have 
drawn a number of lessons from our involvement with the 
Arcadia environment project [13]. These lessons included 
the need for an environment's explicit blueprint (i.e., archi­
tecture); the necessity of tool reuse, heterogeneity, and mini­
mal tool interdependencies; trade-offs between tight and 
loose tool integration; and benefits of applying an environ­
ment on itself. Although the environments discussed in Sec­
tion 4 are smaller in scope than Arcadia, the approach we 
adopted for their integration has resulted in comparatively 
quicker development, greater flexibility (e.g., "plug-and­
play"), increased support for incorporating OTS technolo­
gies, and easier adaptation to changing requirements. Our 
approach also has roots in DSSA environments (e.g., 
ADAGE [2]). DSSA environments exploit the properties of 
a given application domain, while we exploit the (broader) 
characteristics of a style. Finally, as discussed in [22], 
DRADEL in particular has drawn inspiration from the Inscape 
environment for software modeling and evolution [31]. 

7 CONCLUSIONS 

We have been able to successfully construct a family of soft­
ware development environments using an architecture-based 
approach. This lends credence to our hypothesis that an 
architectural approach can be applied to software environ­
ments--conglomerates of tools-in addition to "traditional" 
software applications and individual tools. Furthermore, 
since our environments have been designed to support devel­
opment of applications using the same fundamental concepts 
as those used in the environments' own construction, we can 
apply the environments "on themselves." The environments 
have been constructed in the C2 architectural style and inte­
grate a variety of tools, both reused off-the-shelf and devel­
oped in-house. 

The key elements of our approach include: 
• explicit and formal modeling of an environment's archi­

tecture. This provides a higher fidelity representation of 
the environment's architecture as compared to ad-hoc 

boxes-and-arrows diagrams used in the past; 
• using multiple, explicit, adaptable connectors to model 

and implement all the communication between tools. This 
reduces tool coupling and facilitates the runtime evolution 
of the environment's architecture; and 

• using an architectural style to further aid understanding, 
analysis, and evolution of the environment's architecture. 

Another novel aspect of our approach is that we view a 
model of an architecture (including the environment's) as a 
form of hypertext, explicitly capturing the components' and 
connectors' separate, and possibly distributed, descriptions 
and evolution. To this end, we designed and incorporated 
xADL, an extensible XML-based architecture-neutral 
schema, as the shared data structure for the ArchStudio 2.0 
environment. Using XML offered the added benefit of reus­
ing several OTS tools, such as XML parsers, IBM's Xeena 
to edit our xADL schema and validate our architectural mod­
els against it, and Microsoft's Internet Explorer 5 to visually 
navigate our architectural models. 

Our approach reveals that some sources of architectural mis­
match may be prevented through architecture modeling and 
analysis, and provides further proof that OTS reuse must be 
planned. Architectural models are the necessary first step as 
they provide a framework for understanding and reasoning 
about the gross properties of systems, whether applications 
or environments. 

8 ACKNOWLEDGMENTS 

We wish to acknowledge the following individuals for their 
participation in the work described in this paper. ArchStudio 
1.0 was developed by P. Oreizy and N. Medvidovic. DRADEL 

was developed by N. Medvidovic. ArchStudio 2.0 was 
developed P. Oreizy, R. Khare, M. Guntersdorfer, K. Nies, 
E. Dashofy, Y. Kanomata, R. Natarajan, A. Hitomi, R. 
Klashner, L. Pan, M. Dias, M. Vieira, S. Devanathan, and J. 
Robbins. We also wish to acknowledge the important contri­
butions of G. Johnson and G. Brannum. 

Effort sponsored by the Defense Advanced Research 
Projects Agency, and Air Force Research Laboratory, Air 
Force Materiel Command, USAF, under agreement numbers 
F30602-94-C-0195, F30602-97-2-0021, and F30602-99-C­
Ol 74. The U.S. Government is authorized to reproduce and 
distribute reprints for Governmental purposes notwithstand­
ing any copyright annotation thereon. The views and conclu­
sions contained herein are those of the authors and should 
not be interpreted as necessarily representing the official pol­
icies or endorsements, either expressed or implied, of the 
Defense Advanced Research Projects Agency, Air Force 
Research Laboratory or the U.S. Government. 

9 REFERENCES 
1. R. J. Allen, D. Garlan, and J. Ivers. Formal Modeling and Anal­

ysis of the HLA Component Integration Standard. In Proceed­
ings of the Sixth International Symposium on the Foundations 
of Software Engineering (FSE-6), Orlando, FL, November 
1998. 

2. D. Batory, L. Coglianese, S. Shafer, and W. Tracz. The 
ADAGE Avionics Reference Architecture. In Proceedings of 
A/AA Computing in Aerospace JO, San Antonio, TX, 1995. 

3. D. Batory and S. O'Malley. The Design and Implementation of 



Hierarchical Software Systems with Reusable Components. 
ACM Transactions on Software Engineering and Methodology, 
October 1992. 

4. T. Bray, J. Paoli, and C. M. Sperberg-McQueen, eds. Extensi­
ble Markup Language (XML) 1.0. World Wide Web Consor­
tium Recommendation, 1998. 

5. G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling 
Language User Guide. Addison-Wesley, 1998. 

6. M. R. Cagan. The HP SoftBench Environment: An Architecture 
for a New Generation of Software Tools. Hewlett-Packard 
Journal, June 1990. 

7. E. M. Dashofy, N. Medvidovic, and R. N. Taylor. Using Off­
the-Shelf Middleware to Implement Connectors in Distributed 
Software Architectures. In Proceedings of the 21st Interna­
tional Conference on Software Engineering, Los Angeles, CA, 
May 1999. 

8. R. DeLine. A voiding Packaging Mismatch with Flexible Pack­
aging. In Proceedings of the 21st International Conference on 
Software Engineering, Los Angeles, CA, May 1999. 

9. E. Di Nitto and D.S. Rosenblum. Exploiting ADLs to Specify 
Architectural Styles Induced by Middleware Infrastructures. To 
appear in Proceedings of the 21st International Conference on 
Software Engineering, Los Angeles, CA, May 1999. 

10. D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mis­
match, or, Why It's Hard to Build Systems out of Existing 
Parts. In Proceedings of the 17th lnternaU?nal Conference on 
Software Engineering, Seattle, WA, April 1995. 

11. D. Garlan, J. Ockerbloom, and D. Wile. Towards an ADL Tool­
kit. EDCS Architecture and Generation Cluster, December 
1998. http://www.cs.cmu.edu/-spok/adl/index.html 

12. A. Julienne and B. Holtz. Too/talk and Open Protocols: Inter­
Application Communication. SunSoft Press/Prentice Hall, April 
1993. 

13. R. Kadi a. Issues Encountered in Building a Flexible Software 
Development Environment: Lessons Learned From the Arcadia 
Project. In Proceedings of ACM SIGSOFT '92: Fifth Sympo­
sium on Software Development Environments, Tyson's Comer, 
VA, December 1992. 

14. M. Karasick. The architecture of Montana: an open and extensi­
ble programming environment with an incremental C++ com­
piler. In Proceedings of The Sixth International Symposium on 
the Foundations of Software Engineering, Orlando, FL, 
November 1998. 

15. R. Khare and A. Rifkin. The Origin of (Document) Species. In 
Proceedings of the 8th International WWW Conference, pub­
lished as Computer Networks and ISDN Systems, Volume 30 
(1998 ), issues 1-7. 

16. D. C. Luckham and J. Vera. An Event-Based Architecture Def­
inition Language. IEEE Transactions on Software Engineering, 
September 1995. 

17. M. J. Maybee. D. H. Heimbigner, and L. J. Osterweil. Multilan­
guage Interoperability in Distributed Systems: Experience 
Report. In Proceedings of the Eighteenth International Confer­
ence on Software Engineering, Berlin, Germany, March 1996. 

18. N. Medvidovic. Architecture-Based Specification-Time Soft­
ware Evolution. Ph.D. Dissertation, University of California, 
Irvine, December 1998. 

19. N. Medvidovic, P. Oreizy, J.E. Robbins, and R. N. Taylor. 
Using Object-Oriented Typing to Support Architectural Design 
in the C2 Style. In Proceedings of the Fourth ACM SIGSOFT 
Symposium on the Foundations of Software Engineering, San 
Francisco, CA, October 1996. 

20. N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of Off-the­
Shelf Components in C2-Style Architectures. In Proceedings of 
the 1997 Symposium on Software Reusability and Proceedings 
of the 1997 International Conference on Software Engineering, 
Boston, MA, May 1997. 

21. N. Medvidovic and D.S. Rosenblum. Assessing the Suitability 

of a Standard Design Method for Modeling Software Architec­
tures. In Proceedings of the First Working IFIP Conference on 
Software Architecture, San Antonio, TX, February 1999. 

22. N. Medvidovic, D.S. Rosenblum, and R. N. Taylor. A Lan­
guage and Environment for Architecture-Based Software 
Development and Evolution. In Proceedings of the 21st Inter­
national Conference on Software Engineering, Los Angeles, 
CA, May 1999. 

23. N. Medvidovic and R. N. Taylor. Exploiting Architectural Style 
to Develop a Family of Applications. IEE Proceedings Soft­
ware Engineering, October-December 1997. 

24. Metamata IDE. Metamata Corp. http://www.metamata.com/ 

25. R. T. Monroe. Armani Language Reference Manual. Technical 
Report CMU-CS-98-163, Carnegie Mellon University School 
of Computer Science, October 1998. 

26. R. Natarajan and D. S. Rosenblum. Merging Component Mod­
els and Architectural Styles, Proc. Third Int'/ Software Archi­
tecture Workshop, Lake Buena Vista, FL, Nov. 1998. 

27. P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture­
Based Runtime Software Evolution. In Proceedings of the 20th 
International Conference on Software Engineering, April 1998, 
Kyoto, Japan. 

28. P. Oreizy, N. Medvidovic, R. N. Taylor, and D. S. Rosenblum. 
Software Architecture and Component Technologies: Bridging 
the Gap. In Proceedings of the Workshop on Compositional 
Software Architectures, Monterey, CA, January 1998. 

29. P. Oreizy. Issues in the Runtime Modification of Software 
Architectures. Technical Report UCI-ICS-96-35, Department 
oflnformation and Computer Science, University of California, 
Irvine, August 1996. 

30. R. Orfali, D. Harkey, and J. Edwards. The Essential Distributed 
Objects Survival Guide. John Wiley & Sons, Inc., 1996. 

31. D. E. Perry. The Inscape Environment. In Proceedings of the 
11th International Conference on Software Engineering, Pitts­
burgh, PA, May 1989. 

32. J. Purtilo. The Polylith Software Bus. ACM Transactions on 
Programming Languages and Systems, January 1994. 

33. Rational Software Corporation. Rational Rose 98: Using Ratio­
nal Rose. 

34. S. P. Reiss. Connecting Tools Using Message Passing in the 
Field Environment. IEEE Software, July 1990. 

35. J.E. Robbins, N. Medvidovic, D. F. Redmiles, and D.S. 
Rosenblum. Integrating Architecture Description Languages 
with a Standard Design Method. In Proceedings of the 20th 
International Conference on Software Engineering, April 1998, 
Kyoto, Japan. 

36. J.E. Robbins and D. F. Redmiles. Cognitive Support, UML 
Adherence, and XMI Interchange in Argo/UML. Construction 
of Software Engineering Tools (CoSET'99). 

37. J.E. Robbins, D. M. Hilbert, and D. F. Redmiles. Extending 
Design Environments to Software Architecture Design. In Pro­
ceedings of the I996 Knowledge-Based Software Engineering 
Conference (KBSE), Syracuse, NY, September 1996. 

38. D. Rothwell. Java Object Persistence Package. 
http://www.magna.com.au/ 

39. R. Sessions. COM and DCOM: Microsoft's Vision/or Distrib­
uted Objects. John Wiley & Sons, New York, NY, 1997. 

40. M. Shaw. Architectural Issues in Software Reuse: It's Not Just 
the Functionality, It's the Packaging. In Proceedings of IEEE 
Symposium on Software Reusability, April 1995. 

41. Sun Microsystems, Inc. Enterprise Java Beans 1.1, Draft Speci­
fication. http://java.sun.com/products/ejb/newspec.html 

42. Sun Microsystems, Inc. Remote Method Invocation. 
http ://java.sun.com: 80/products/jdk/rmi/index.html 

43. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, 
Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow. A 
Component- and Message-Based Architectural Style for GUI 



Software. IEEE Transactions on Software Engineering, June 
1996. 

44. W. Teitelman and L. Masinter. The Interlisp Programming 
Environment. IEEE Computer, April 1981. 

45. I. Thomas. Tool Integration in the Pact Environment. In Pro­
ceedings of the 11th International Conference on Software 
Engineering, Pittsburgh, PA, May 1989. 

46. D. Yakimovich, J.M. Bieman, and V. R. Basili. Software 
Architecture Classification for Estimating the Cost of COTS 
Integration. In Proceedings of the 21st International Confer­
ence on Software Engineering, Los Angeles, CA, May 1999. 

47. Xerox PARC. !LU-Inter-Language Unification. 
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html 




	20141104123349420_0001
	20141104123349420_0002
	20141104123349420_0003
	20141104123349420_0004
	20141104123349420_0005
	20141104123349420_0006
	20141104123349420_0007
	20141104123349420_0008
	20141104123349420_0009
	20141104123349420_0010
	20141104123349420_0011
	20141104123349420_0012
	20141104123349420_0013



