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ABSTRACT OF THE DISSERTATION

Harnessing AI/ML for Proteomics: Post-Translational Modification Prediction and

Proteome Turnover Imputation

by

Yu Yan

Doctor of Philosophy in Medical Informatics

University of California, Los Angeles, 2025

Professor Peipei Ping, Chair

The field of proteomics, encompassing the exhaustive study of proteins, their structures,

functions, post-translational modifications, dynamics, and interactions, stands as a crucial

domain in the quest to understand biological systems and disease mechanisms. The rise

of high-throughput technologies, notably mass spectrometry, has exponentially increased

the volume and complexity of proteomic data, posing both opportunities and challenges

in large-scale data analysis and interpretation. In this context, the integration of Artificial

Intelligence (AI) and Machine Learning (ML) methodologies presents a transformative strat-

egy, promising to significantly enhance various facets of data analysis in proteomics. This

dissertation is dedicated to exploring the application of AI/ML in the domain of proteomics.

The first theme of this dissertation introduces MIND-S, a deep-learning platform de-

signed to predict protein post-translational modifications (PTMs). MIND-S utilized protein

sequence and structure, modeling through combination of a transformer model and a graph

neural network to efficiently predict multiple PTMs. It features an interpretation module

that discerns the relevance of amino acids and uncovers PTM patterns without direct super-

vision. Additionally, it assesses the effects of mutations on PTMs and has been validated

using biological data. This work demonstrates MIND-S’s accuracy and efficiency in analyzing

PTM processes in both health and disease.[1]

The second theme delves into gene representation through a comprehensive, task-agnostic
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approach, aiming for a holistic understanding of molecular events. Traditional gene em-

beddings often have a narrow focus on specific tasks, missing the broader picture. This

study evaluates nine gene embeddings across three categories: experimental, literature, and

knowledge graph data. Using Singular Vector Canonical Correlation Analysis (SVCCA), it

reveals that the representations contain unique, minimally overlapping information, fostering

rich, multifaceted embeddings. This method outperforms task-specific approaches in various

benchmark tests and successfully imputes missing data, enhancing individual embeddings.

It offers a robust framework for comprehensive biomolecule characterization, with significant

benefits for biomedical AI applications.

The third theme addresses the challenge of missing values in temporal proteomics datasets,

which can obscure critical measurements and impair the understanding of biomedical pro-

cesses. To address this, a Data Multiple Imputation (DMI) pipeline was developed to facili-

tate robust analysis of protein turnover rates in time-series data. This approach was applied

to murine cardiac and human plasma datasets, greatly improving the detection of protein

turnover rates and uncovering new biological insights. The imputed data provided a more

comprehensive depiction of proteins, enhancing the understanding of biological pathways and

disease associations. Notably, DMI outperformed single imputation methods in benchmark

evaluations, demonstrating its effectiveness in managing missing data challenges in temporal

proteomics.[2]
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CHAPTER 1

Introduction

Proteomics is the large-scale study of the entire set of proteins produced by an organism,

system, or biological context, collectively known as the proteome, at a specific point in

time. Unlike genomics, which examines the static blueprint of DNA, proteomics captures

the dynamic and functional aspects of cellular biology by analyzing protein expression levels,

post-translational modifications, interactions, and functions. This comprehensive approach

enables scientists to gain deeper insights into cellular processes, disease mechanisms, and the

intricate regulatory networks that sustain life[3].

Advancements in analytical technologies have been pivotal in propelling the field of pro-

teomics forward. Mass spectrometry (MS) stands out as a cornerstone technique, facilitating

the precise identification and quantification of proteins with high sensitivity and accuracy.

Additionally, bioinformatics tools and software have become indispensable for managing

and interpreting the vast amounts of data generated, enabling the reconstruction of protein-

protein interaction networks and the identification of post-translational modifications. In-

novations such as tandem mass tags (TMT) and data-independent acquisition (DIA) have

further enhanced the throughput and depth of proteomic analyses, making it feasible to study

proteomes in unprecedented detail. However, these advancements also introduce challenges

in extracting valuable information from the large volumes of available data[4].

Recently, Artificial Intelligence (AI) and Machine Learning (ML) have emerged as trans-

formative fields that empower computers to perform tasks typically requiring human intel-

ligence by learning from data and improving over time. AI encompasses a broad range of

technologies, including natural language processing, computer vision, and robotics, aimed

at replicating cognitive functions such as reasoning, problem-solving, and decision-making.
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These technologies have revolutionized various industries by enhancing automation, opti-

mizing processes, and enabling the analysis of vast datasets to uncover insights previously

unattainable[5]. Their success in other fields has inspired their application in bioinformatics,

where large datasets are prevalent and require processing at unprecedented scales.

This dissertation will focus on applying AI/ML methodologies to address some of the

challenges in proteomics, which are listed below:

1.1 MIND-S: a deep-learning prediction model for elucidating

protein post-translational modifications in human diseases

We present a deep-learning-based platform, MIND-S, for protein post-translational modifica-

tion (PTM) predictions. MIND-S employs a multi-head attention and graph neural network

and assembles a 15-fold ensemble model in a multi-label strategy to enable simultaneous

prediction of multiple PTMs with high performance and computation efficiency. MIND-S

also features an interpretation module, which provides the relevance of each amino acid for

making the predictions and is validated with known motifs. The interpretation module also

captures PTM patterns without any supervision. Furthermore, MIND-S enables examina-

tion of mutation effects on PTMs. We document a workflow, its applications to 26 types

of PTMs of two datasets consisting of around 50,000 proteins, and an example of MIND-S

identifying a PTM-interrupting SNP with validation from biological data. We also include

use case analyses of targeted proteins. Taken together, we have demonstrated that MIND-

S is accurate, interpretable, and efficient to elucidate PTM-relevant biological processes in

health and diseases.

1.2 Systematic Evaluation and Integration of Multi-Modal Gene

Embeddings

Genes are fundamental for the specification of physical and biological traits; understand-

ing their molecular events is often supported by a holistic examination of various aspects
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including structure, interacting partners, and function. However, existing methods for repre-

senting genes as embeddings are often built towards specific tasks, where a particular aspect

is focused, while the holistic view is not completely captured. In this study, we examined

knowledge representations of genes from various aspects in a task-agnostic manner. Nine

gene embeddings from three major categories: experimental data, literature data, and knowl-

edge graph data are utilized and evaluated. Applying Singular Vector Canonical Correlation

Analysis (SVCCA), we discovered that each representation possesses unique information

with minimal overlap with other categories. Such sparsity in gene representation encourages

embeddings that capture multi-faceted representation. To achieve a comprehensive view

of biomolecules, we constructed an AI-based workflow using an Autoencoder to integrate

these diverse knowledge representations into a unified multimodal embedding. To validate

our results, we performed multiple analyses: our approach consistently ranked at the top

in five diverse benchmark experiments, outperforming other embedding methods tested. As

expected, the other methods only excelled in focused subsets of these benchmarks. Further-

more, our platform demonstrated the ability to impute missing embeddings by leveraging

available datasets from non-missing embeddings, highlighting its utility in refining individ-

ual embeddings with incomplete information. Taken together, we have developed a method

to characterize large set of biomolecules in a holistic fashion, presenting an efficient frame-

work for integrating multimodal biomolecule embeddings, generating a comprehensive set of

multimodal biomolecule embeddings optimized for machine learning and AI applications in

biomedical research.

1.3 Missing Values in Longitudinal Proteome Dynamics Studies:

Making a Case for Data Multiple Imputation

Temporal proteomics data sets are often confounded by the challenges of missing values.

These missing data points, in a time-series context, can lead to fluctuations in measure-

ments or the omission of critical events, thus hindering the ability to fully comprehend the

underlying biomedical processes. We introduce a Data Multiple Imputation (DMI) pipeline
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designed to address this challenge in temporal data set turnover rate quantifications, enabling

robust downstream analysis to gain novel discoveries. To demonstrate its utility and gener-

alizability, we applied this pipeline to two use cases: a murine cardiac temporal proteomics

data set and a human plasma temporal proteomics data set, both aimed at examining protein

turnover rates. This DMI pipeline significantly enhanced the detection of protein turnover

rate in both data sets, and furthermore, the imputed data sets captured new representation

of proteins, leading to an augmented view of biological pathways, protein complex dynamics,

as well as biomarker–disease associations. Importantly, DMI exhibited superior performance

in benchmark data sets compared to single imputation methods (DSI). In summary, we have

demonstrated that this DMI pipeline is effective at overcoming challenges introduced by

missing values in temporal proteome dynamics studies.

1.4 Summary

This dissertation explores the integration of artificial intelligence and machine learning tech-

niques to advance proteomics. By leveraging state-of-the-art mass spectrometry and bioin-

formatics tools, the research addresses computational challenges of prediction of protein

post-translational modifications (PTMs) with the novel MIND-S model. Additionally, the

work systematically evaluates and integrates multi-modal gene embeddings derived from ex-

perimental data, literature, and knowledge graphs, providing a comprehensive, task-agnostic

representation of gene function that outperforms traditional methods. Finally, the disser-

tation introduces a Data Multiple Imputation (DMI) pipeline to robustly tackle missing

values in longitudinal proteome dynamics studies, significantly enhancing the analysis of

protein turnover rates and biomarker–disease associations. Together, these contributions

demonstrate the transformative potential of AI/ML methodologies in unraveling complex

biological processes and improving biomedical research.
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CHAPTER 2

MIND-S: a deep-learning prediction model for

elucidating protein post-translational modifications in

human diseases

2.1 Introduction

Protein post-translational modifications (PTMs) are covalent processing events that alter

the biophysical properties of a protein through the addition of a modifying group to one or

more amino acids. PTMs serve as key regulatory mechanisms governing a broad spectrum of

sub-proteomes and are commonly involved in many disease phenotypes[6, 7]. The diversity

of PTM types and the large number of amino acid residues involved enable the greater reg-

ulatory capacity of PTMs, yet substantial challenges remain in detecting and understanding

PTMs. Although large-scale PTM identification has been improved with proteomics tools[8],

they remain costly, labor-intensive, and time-intensive, especially when PTM-specific enrich-

ment approaches are necessary for their detection.

Recently, computational approaches to predict PTM sites have gained traction[7, 9, 10].

A common and widely used prediction schema is to predict PTMs based on local amino acids

spanning the target sites. Specifically, amino acids flanking the PTM site are leveraged to

make predictions on the target residual. However, this strategy relies heavily upon surround-

ing amino acids, whereas whole-protein-level information is less considered. Moreover, these

approaches require selecting an optimal length of flanking amino acid sequence for different

types of PTMs, limiting the transferability among PTM types.

Another major consideration is the interpretability pertaining to the underlying mech-
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anism supporting model predictions. This is especially the case for deep-learning-based

approaches, which often demonstrate excellent prediction results but without reasonable

explanations (i.e., interpretation). Thus, the selection of interpretation methods becomes

essential to help us understand the anticipated model output upon a certain set of input.

The optimal interpretation methods enable us to uncover hidden patterns affecting PTM oc-

currence. For example, feature importance is one of the interpretation methods that evaluate

which inputs (in this case, amino acids) are important for the anticipated output. Although

several amino acid patterns related to phosphorylation have been uncovered[11], many PTM

patterns as well as their underlying mechanisms largely remain a mystery. Indeed, many

phosphosites are orphans without information on their associated kinases[12].

To overcome these challenges, we developed an artificial intelligence (AI)-based tool,

MIND-S (multi-label interpretable deep-learning method for PTM prediction-structure ver-

sion), which predicts PTMs at the protein level. Specifically, the protein sequence and

structure are given as the input and the predictions are made on all possible residuals at the

same time. This schema allows the model to make batch predictions across multiple protein

sequences, multiple amino acid sites, and multiple PTM types at a proteome scale. We also

adapted the integrated gradient method to interpret MIND-S by identifying residues impor-

tant for prediction. We demonstrated that MIND-S achieves great performance for PTM

prediction with excellent computational efficiency and interpretability. We present use cases

of MIND-S, including an examination of how the SNP can affect PTM occurrences, which

bridges the gap between genetic data and PTMs. 4.1

2.2 Results

2.2.1 MIND-S model design and performance

We present a computation model, MIND-S, for protein PTMs prediction, utilizing graph neu-

ral network (GNN) and multi-head attention to extract information from protein structure

and protein sequence. The overall design of MIND-S is detailed in 2.2.
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Our model is built at the protein level, where all PTMs pertaining to one protein are put

within the same instance. All protein data were split into training, testing, and validation

sets on the protein level as well. To ensure fair evaluation, proteins assigned in the testing

set must share less than 50% sequence similarity with proteins in training and validation

sets[13]. To increase model robustness, a bootstrap method was implemented, where multiple

models are trained on sampled datasets and ensembled together at the end stage 4.1A. A

fixed testing set (about 5% of the whole dataset) was retained and the remaining data

were split into training and validation sets at random at each iteration. To account for

the various length of proteins and to alleviate the problem of redundant padding, the full-

length protein with its PTM is split into multiple core sequences, on which the model will

predict. Core sequences were then extended on both sides (up to 128 amino acids) to ensure

sufficient contextual sequence information 4.1B. Extended core sequences were input to our

model for multi-label training, and all PTMs falling within core sequences will be trained

simultaneously 4.1C. The trained model was evaluated on the validation set by the area

under the precision-recall curve (AUPR)[14]. AUPR was chosen over the area under the

receiver operating curve (AUC)[15] as AUPR yields a more informative evaluation when the

data are imbalanced[16], which is especially true for PTMs. The number of negative PTM

samples (targeted residue without PTM) is far greater than the number of positive PTM

samples (target residue with a PTM) 2.6. The above training process was repeated 15 times

to ensemble the final model, which is the weighted average of predictions from 15 models.

For the model architecture, MIND-S takes protein sequences and structures as the input

and outputs PTM prediction scores (ranging from 0 to 1) for every targeted residue. One-

hot encodings of these protein sequences are passed through a feedforward neural network,

which converts the sparse representation into a dense numeric vector capturing biochemical

properties 4.6. The embedding is then passed to a bidirectional long-short term memory

(LSTM)[17] layer, which passes information along the sequence bidirectionally and encodes

positional information. The LSTM embedding serves as the token embedding and node

embedding for multi-head self-attention block[18] and graph attention layer[19], a GNN

model, respectively. The multi-head self-attention is designed to capture information about
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the protein sequence while the graph attention layer is employed to gather information

from important and spatially close (close in 3D space) amino acids guided by the protein

contact map. Last, the outputs of the two components are concatenated and converted

to prediction score PTMs by a feedforward neural network layer. Detailed descriptions of

our model architecture are described in the STAR Methods section. In addition, we also

provide MIND, an alternative version to MIND-S that makes predictions solely based on the

protein sequence. In the following paragraphs, we performed analyses to demonstrate the

contribution of different modules or layers of our model.

MIND-S has several unique design features that facilitate its performance of the pre-

diction task, as demonstrated by our experiments. We have selected 13 types of curated

PTM as the benchmark dataset to test the model performance 2.6. We also constructed a

dataset consisting of 13 types of oxidative PTM (O-PTM) from a mass spectrometry project

as an independent dataset 2.8. We investigated the contribution of sequence and struc-

ture components of MIND-S to gain a deeper understanding of the PTM prediction task.

We showed that adequate data are a vital part of the model. We trained and evaluated

MIND-S with different amounts of data sampling from the whole dataset, and the results

indicated that the performance of the model is proportional to the amount of training data

4.2A. Furthermore, we uncovered that the sequence (modeled by multi-head attention) and

structure (modeled by graph attention layer) components together provide the best perfor-

mance. We constructed an ablated version of MIND-S with either multi-head attention or

graph attention layer removed as structure-only and sequence-only models. Individually, the

sequence-only model performs better than the structure-only model, which suggests that

protein sequence is most informative for PTM prediction. However, the two components

combined achieve the best performance, suggesting that graph attention layer can provide

valuable information not captured in the protein sequence 4.2A.

Another feature, multi-label[20] training and prediction, in MIND-S was shown to im-

prove the overall performance of the model. Unlike the conventional approaches, where one

model is trained to predict one type of PTM, multi-label allows one model to be trained to

predict multiple types of PTM. This strategy can benefit PTM with fewer samples available.
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Such PTMs are usually more challenging to predict due to the limited availability of rele-

vant datasets; as demonstrated in the previous section, the amount of data is proportional

to the performance. MIND-S addresses this issue by employing multi-label prediction such

that the learning process (parameters in the network) of different types of PTM is shared

during training; PTM types with fewer data can “borrow” knowledge learned from other

PTM types. Moreover, instead of separately training each PTM type, all PTM types were

trained and predicted simultaneously, which speeds up the training and predicting processes,

alleviating the computational burden. We evaluated model performance under the single-

label settings (where training is performed separately for each PTM) compared with the

multi-label setting on each PTM type. Our results reveal that multi-label substantially im-

proved the prediction performance for most PTM types, especially for PTMs with limited

data, such as hydroxyl lysine and O-linked glycosylation on serine and threonine 4.2B. Using

a multi-label strategy, MIND-S greatly improves the prediction of these PTM types. To a

lesser extent, commonly studied PTM types also benefit from a multi-label strategy. How-

ever, the performance of one such PTM, N-linked glycosylation, showed little improvement,

suggesting the improvement from adding data for this PTM was saturated.

In addition, we showed that utilizing a bi-LSTM layer, instead of fixed positional encod-

ing methods to capture positional information (i.e., the sequential order of amino acid)[21],

improves model performance such that the representation of positional information is learn-

able and can be better utilized to improve predictions. Indeed, 4.7A shows that the model

performs poorly without any position information; amino acid composition by itself is not

sufficient for prediction.

Last, a bootstrap method is applied: the dataset is split 15 times to generate 15 training

and validation sets, where the size of the validation set is 5% of the total size of the dataset.

The 15 models were trained on each set, and an ensemble model was obtained by averaging

the output prediction scores from N models weighted by AUPR scores on validation sets.

The bootstrap step is to enhance the robustness of MIND-S, and the weighting is to adjust

for the variation of the performance by the models[22]. As a result, 4.2C highlights that

the bootstrap method enhanced the model’s performance, and the model achieved its best
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performance at N = 15. Therefore, we chose N = 15 for bootstrapping in MIND-S.

Few tools are available for multiple PTM predictions. MIND-S is benchmarked against

MusiteDeep, which is a valid PTM prediction tool that allows multiple PTMs prediction,

outperforming several other single-PTM prediction tools[23]. MusiteDeep is a convolutional

neural network (CNN)-based model for multiple PTM predictions, and it takes in the one-hot

encoded flanking sequences of length 33 and passes to an ensemble of multi-CNN and Capsnet

models. We also construct a straightforward CNN and a recurrent neural network (RNN)

under our protein-level prediction schema as a comparison between the two schemas. The

performances of MIND-S, MusiteDeep, CNN, and RNN models are shown in 4.2D. MIND-S

has the best performance in most types of PTM when evaluated by AUPR. MIND-S also

shows the best performances on all aggregate metrics (4.2E). Moreover, thanks to the multi-

label and protein-level training design, MIND-S has a far smaller size (698,765 parameters

for 13 types of PTM together) compared with MusiteDeep (2,342,680 parameters for each

PTM), which renders superior computation speed for the training process and demands fewer

computational resources. In addition, the CNN model outperforms MusiteDeep in terms of

micro-average metrics even though it is simple in terms of model design, indicating that our

protein-level prediction schema may help the model better capture the information needed.

In addition, analyses on the hyperparameters of MIND-S can be found in 2.10.

2.2.2 MIND-S provides biological interpretation through integrated gradients

Given that MIND-S can accurately predict PTM occurrences, we seek to interpret its pre-

dictions to gain insight into how PTMs occur. MIND-S adapts a post hoc interpretation

method, integrated gradients[24], to provide a way to interpret the model prediction. This

interpretation method can evaluate to what extent each amino acid residue can affect the

final prediction. In other words, it can identify the important amino acids for PTM. The

integrated gradients method was originally designed for continuous values; we adapted this

approach to amino acid residue embeddings. Since each amino acid is mapped to a multi-

dimension embedding, integrated gradients of each dimension of the embedding were summed
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to generate a single saliency score for that amino acid as a measurement of importance to

prediction.

To evaluate if the interpretation method can capture biologically relevant information,

we compared the interpretation with the known PTM motif and consensus sequence patterns

of the flanking sequence of a PTM[25]. We first investigated its application on the -linked

glycosylation, which possesses a relatively stable recognition pattern: Asn-X-Ser/Thr, where

Asn is the PTM site and X is any amino acid except proline[26]. To evaluate the robustness of

our interpretation method, we apply it to all confident and correct predictions in the test set,

as the model has not “seen” the test set during training. Saliency scores of the amino acids

surrounding the N-linked glycosylation site were calculated and averaged by their relative

position to the PTM sites 4.3A. Obvious peaks at the position of 0 (the glycosylation site) and

the position of +2, matching the consensus recognition pattern Asn-X-Ser/Thr, were shown

in the averaged saliency scores. The comparison with the sequence frequency plots from the

corresponding flanking sequences of the PTM sites further demonstrates that our model is

able to faithfully capture recognition patterns. We then evaluate the method in the scenario

that there is a mixture of various recognition patterns. We focused on phosphorylation where

a variety of recognition patterns exist[27, 28]. Kinases are responsible for phosphorylating

proteins with specific recognition patterns. We searched for protein sequences in our dataset

to find all the phosphorylation sites with a studied motif region through Scansite 4.024;

13,689 phosphosites were found with at least one motif, and MIND-S predicted 13,377 of

them correctly. To evaluate if our interpretation method can distinguish phosphorylations

introduced by different kinase groups, we calculated the saliency scores of the flanking amino

acid (of length 21, including the PTM site itself) of each phosphorylation. We applied t-SNE

(t-distributed stochastic neighbor embedding) on the saliency scores of each phosphorylation

to reduce the dimension for visualization, and we colored them based on the associated

kinases motif. Three groups of kinases were depicted: proline-dependent, basophilic, and

acidophilic kinases 4.3A. From the t-SNE plot, the three groups of kinases are roughly

separated, with proline-dependent kinases falling on the left, basophilic kinases falling on

the right, and acidophilic falling in the middle. This suggests that MIND-S’s interpretation
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module can mostly separate the phosphorylation originating from different kinase groups.

However, the interpretation module is not expected to make perfect separation due to the

following reasons: (1) Scansite is a tool to predict phosphorylation based on the motif, which

does not represent ground-truth, and (2) the interpretation module is developed to identify

the important amino acid for prediction and not for motif discovery. To further understand

the results from the interpretation module, we performed clustering on the saliency scores,

such that different patterns can be separated. K-means clustering was applied, and the

number of clusters (17) was determined by the elbow methods 4.8A. The clustering results

are shown in 4.3B colored by clusters. We used the cluster center as a representation of the

clusters (4.3C and 4.8) and gathered the sequence from the corresponding cluster to create

a frequency plot. We found several clusters with an obvious consensus sequence pattern.

Correspondingly, the interpretation module is able to highlight those positions. For example,

4.3C shows cluster 0’s saliency scores where, at the -3 position, saliency score reached the

peak, indicating that MIND-S considered the -3 position as important. We then investigated

the sequence pattern and found an enrichment of arginine at -3 position, indicating that the

arginine there is important for phosphorylation. We also found other matching patterns

(+1 proline, -2 arginine, -2 and 3 arginine), suggesting that MIND is able to capture the

sequence consensus pattern hidden in the input even though we did not explicitly design

a module to detect the consensus pattern. Other patterns exist in the clusters, while not

exactly matching the enrichment of amino acid, which suggests that MIND-S has other ways

in addition to the consensus sequence for making a prediction. Last, we also show one specific

example of saliency scores that exhibit the same trend as the phosphorylation motif. MIND-

S correctly predicted the phosphorylation site on protein P04150 site 203 (glucocorticoid

receptor), which falls in a CDK1 motif. We compared the consensus sequence frequency of

the CDK1 motif with the saliency scores of the flanking amino acids 4.3D. The interpretation

module detects that the proline on position +1 is important for phosphorylation, which is in

accord with the pattern shown in the kinase motif, where position +1 is a highly conserved

proline. Similar analysis can be performed on any predictions made by MIND-S for users

pursuing details of the prediction.
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2.2.3 MIND-S examinates SNP effects on PTMs

Dysregulation of PTMs could potentially lead to disease, and the identification of the disease

mechanism is of vital importance. Non-synonymous mutation can interrupt the recognition

of the corresponding enzyme responsible for PTM addition and may therefore interrupt the

PTM occurrence[29, 30]. Although genome-wide association studies (GWAS) have associ-

ated genetic variants with various traits, including disease phenotypes, less has been done

to investigate associations between SNP and PTM. This may be due to the lack of cou-

pling datasets from the two modalities. MIND-S is able to identify SNP candidates that

affect PTM occurrences without requiring such datasets. We demonstrate two use scenarios

here: in scenario 1, if a PTM is given, to predict whether an SNP will interfere with a

known PTM (identified experimentally); in scenario 2, if a PTM is not known, to predict

the change of the PTM landscape. We demonstrated scenario 1 with 1,054 non-synonymous

cardiac-related SNPs that are proximal to PTMs (within five amino acids; limits to four

common PTMs: phosphorylation, methylation, ubiquitination, and sumoylation) retrieved

from PhosphoSitePlus PTMVar[31]. The protein sequence was mutated in silico based on

the SNPs and input to MIND-S. The prediction score of the proximal PTM was compared

against the one from the unmutated protein sequence (2.12A). In total, 51 SNPs that change

the PTM prediction from positive to negative with a stringent criterion (wild-type prediction

score greater than 0.8 and mutation prediction score smaller than 0.2) For example, SNP

R272C on myosin-binding protein C (Uniprot: Q14896), is an SNP found in hypertrophic

cardiomyopathy and is responsible for a decrease in the phosphorylation level on the pro-

tein[32]. MIND-S examined this SNP and revealed a change in the score of phosphorylation

on site 275S from 0.986 to 0.0031. This is also in accord with decreased phosphorylation

level of myosin-binding protein C in heart failure[33]. The other SNP, P251S, on potassium

voltage-gated channel subfamily H member 2 (Uniprot: Q12809), is a mutation found in

long-QT syndrome[34]. MIND-S detects this SNP to interrupt the phosphorylation on site

250S, with the score dropping from 0.898 to 0.016. This may suggest a potential role of

the mutation. We next demonstrated the use case when PTM information is not known

in advance. Similar to scenario one, the original protein sequence and mutated protein se-
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quences are both used as input to MIND-S. Instead of making prediction on each single

PTM, MIND-S makes predictions on every amino acid that can be targeted by PTM, which

generates PTM maps for both original protein and mutated protein. Providing a PTM map

can not only examine PTM that may be distal but also discover PTM that might be pro-

moted by SNP. We demonstrate the effects of both interference and promotion of SNPs on

protein leucine-rich repeat kinase 2 (LRRK2), a protein associated with familial and sporadic

Parkinson disease (PD) and also shown to be associated with cardiac diseases[35]. Eleven

SNPs on LRRK2 were retrieved from UniProt and examined, and four of them are found to

potentially affect PTMs. SNP R1441C was predicted to interfere with the phosphorylation

on site 1444 with the prediction score changed from 0.972 to 0.154. Such interference has

been reported[30] and therefore provides validation on the method. On the other hand, the

effect of promoting a PTM is found in SNP R1628P on phosphosite 1627 with the prediction

score changed greatly from 1.45e3 to 0.912 (4.4A). We visualized the PTM map of the wild-

type and mutant LRRK2 in 4.4B. Through comparisons of PTM maps between wild type

and mutant, full-length protein effects of SNP can be examined and protein-wide distribution

of PTMs over the protein sequence can be comprehensively viewed. For example, in SNP

R1441C, in total, two phosphorylations were predicted to be interfered and carbonylation

on cysteine is predicted to be promoted. In summary, MIND-S can effectively examine the

effect of protein mutation from a PTM perspective.

2.2.4 Other use cases of MIND-S

Furthermore, we demonstrate MIND-S’s usage by providing several use cases in cardiovas-

cular research. while similar approaches can be adapted to other research fields as well.

MIND-S is able to make high-throughput predictions on unannotated proteins. We chose

pig cardiac proteome for prediction because of its high research value in cardiac disease

modeling but relatively few PTM annotations[36, 37]. MIND-S predicted PTMs on the

pig cardiac proteome from text mining (unpublished data), which consists of 7,016 proteins

where 6,596 of them have no PTM reported. MIND-S identified 48,841 PTMs with high

confidence (prediction score ¿0.8) as a pig cardiac PTMome. MIND-S can also be utilized as
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an approach to determine the exact PTM location. Some experimental approaches, such as

antibody-based approaches, can confirm the existence of PTMs while being unable to deter-

mine the exact location of PTM on the protein. MIND-S can serve as a follow-up analysis

that provides putative locations. Pyruvate dehydrogenase complex (PDH) is reported to be

modified by O-linked-N-acetylglucosamine (O-GlcNAc) in mice, while the sites were not de-

termined[38]. We used MIND-S to identify the glycosylation sites and found three O-GlcNAc

sites: Uniprot: P35486 site 232, Uniprot: P35486 site 300, and Uniprot: Q8BKZ9 site 200.

Uniprot: P35486 is a pyruvate dehydrogenase E1 component subunit alpha, somatic form.

in mitochondria. and both sites 232 and 300 can be modified by kinase for phosphorylation.

This may suggest a crosstalk between glycosylation and phosphorylation. Uniprot: Q8BKZ9

is a pyruvate dehydrogenase protein X component in mitochondria, where site 200 falls in

the peripheral subunit-binding (PSBD) domain. PSBD domain, consisting of 35 residues,

binds to the E1 or E3 subunit of PDH. This suggests the regulatory role glycosylation may

play in regulating the PDH functionality.

2.3 Methods

2.3.1 Dataset

Two separate large PTM datasets encompassing a total of 26 PTM types, including 50,000

+ proteins with 260,000 + total PTMs, are employed in this study. First, we selected the

PTM dataset previously published by MusiteDeep[23] (09/2021), where 13 PTM types were

included. For training/validation/testing split, to prevent information leakage from similar

proteins, we applied Uniref. 50[13], where protein in the clusters has at least 50% sequence

identify to and 80% overlap with the longest sequence in the cluster; during splitting, we

enforced proteins from the same Uniref. 50 cluster go into the same split. The 13 PTM

types are detailed in 2.6.

The second dataset is an Oxidative PTM (O-PTM)-centric dataset we have collected

in-house combined with a publicly available dataset.[39] In short, O-PTM was searched from
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MS raw file through IP2 program, and 13 types of O-PTMs are included in this study.

Similarly, we applied Uniref. 50 to guide the splitting. A summary of the O-PTM data in

each split is shown in 2.8.

An amino acid residue with/without a PTM will be treated as a positive/negative label

for that PTM, respectively. Both positive and negative labels were utilized to train our

model.

In addition, we only considered negative PTM when there is at least one positive PTM

in the same protein; for example, if a protein has one phosphorylation on serine or threonine,

all other serine and threonine that do not bear phosphorylation will be treated as negative

samples; if the same protein has no ubiquitination, all lysine will neither be treated as positive

or negative labels for ubiquitination. This is to ensure the integrity of the negative samples,

since a protein with no positive PTM may indicate no PTM identification experiment has

been performed on that protein.

Protein sequences were downloaded from the UniProt website (https://www.uniprot.org/)[40]

by UniProt ID. Protein structures were downloaded from AlphaFoldDB by UniProt ID from

Google Cloud Public Datasets, with name as “AF-UID-F1-model v3.cif”. In total, 38,947

proteins have predicted structure from AlphaFold. We used Biopython[41] to parse the pro-

tein structure and built the contact map. Specifically, model 0 and chain A of each protein

was used, “CA” atom in each amino acid was used to calculate the pairwise distance be-

tween amino acids. From the pairwise distance matrix, we filtered out amino acid pairs with

distance greater than 10 Å and binarized it as our contact map. We regarded each amino

acid is close to itself.

2.3.2 Model architecture

The MIND-S architecture consists of one embedding layer, one bidirectional LSTM layer,

three multi-head self-attention blocks, one graph attention layer and one fully connected

layer. The embedding layer converts protein sequence to an embedding of the size of 128

through a feedforward dense layer. The bidirectional LSTM layer has a dimension of 64 for
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each direction. Tanh activation is used for cell and hidden state; sigmoid activation is used for

gate activation. After the LSTM layer, a dropout layer is added. The feature vector from the

LSTM layer is passed to the multi-head self-attention block. The multi-head self-attention

block consists of a multi-head self-attention layer, a dropout layer, a layer normalization

layer, two feedforward dense layers, another dropout layer, and another normalization layer

in sequential. Graph attention layer used multi-head attention with the number of heads

equals to 8 and a dropout rate equals to 0.5. Lastly, output from the multi-head self-attention

block and graph attention layer will be concatenated at the last dimension and passed to a

feedforward neural network with an output dimension of 13 (number of PTM types) for each

amino acid. Sigmoid activation is applied to output a final score. Unless specified otherwise,

all layers have 128 hidden dimensions and the dropout score is set to 0.1. The model is

built using Tensorflow 2.0, Keras API and spektral.[42] The detail of each layer is descripted

below.

Fully connected neural network layer

a “ relupWX ` bq

where X is the input matrix, W is the weight matrix, b is the bias term, relu is the

rectified linear activation function, and a is the output of the layer.

Bidirectional LSTM layer

Hidden states of each amino acid in LSTM are calculated following the sequential order:

ft “ sigmoidpWfxt ` Ufht´1 ` bf q

it “ sigmoidpWixt ` Uiht´1 ` biq

ot “ sigmoidpWoxt ` Uoht´1 ` boq

c1
t “ tanhpWcxt ` Ucht´1 ` bcq

ct “ ft ¨ ct´1 ` it ¨ c1
t
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ht “ ot ¨ tanhpctq

where xt is the input of the t-th amino acid input embedding, ht´1 is the t´ 1-th hidden

state, ft is the t-th forget gate, it is the t-th input gate, ot is the t-th output gate, ct is the

t-th cell state, Wf ,Wi,Wo,Wc, Uf , Ui, Uo, Uc are the weight matrices, and bf , bi, bo, bc are the

biases.

Bidirectional LSTM are combined by LSTM from N-terminal to C-terminal and LSTM

from C-terminal to N-terminal:

Outt “ Concat
´

hf
t , h

b
t

¯

where Outt is the t-th output, hf
t and hb

t are hidden states from the forward and backward

direction respectively.

Multi-head self-attention

Qi “ WQi
X

Ki “ WKi
X

Vi “ WVi
X

Ai “ softmax

ˆ

QiK
T
i?

dk

˙

Out “ Concathi“1 pAiViq

where X is the input matrix, WQi
,WKi

,WVi
are the weight matrices to generate query

matrix Qi, key matrix Ki, and value matrix Vi, respectively. i represents the i-th head. Ai

is the matrix of scaled attention of the i-th head, T is the matrix transpose operation, dk is

the second dimension of matrix Ki. Out is the output from concatenating all heads.
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2.3.3 Model training

Sequence preprocessing

The input sequence is one-hot encoded into a matrix with the shape as (length of sequence

+2, 26), where 2 is the “START” and “END” added before and after the sequence; 26 is

the total number of tokens: 22 amino acids (20 common amino acids plus Selenocysteine

and any) and four special tokens “OTHER”, “PAD”, “START” and “END”. ”START” and

”END” will be added before and after the input sequence to indicate the start and end of the

sequence; “OTHER” will be used if the amino acid in the sequence is not in the 22 amino

acid tokens mentioned earlier; “PAD” is used to pad the sequence to the maximum length,

which is 512 amino acids with “START” and “END” tokens in our study. The padding is to

batch the data for computation; we mask the attention involving padding during multi-head

attention calculation by adding negative 1e3 to the corresponding attention scores before

softmax, rendering the value close to 0 after softmax. A binary protein contact map is used

as the adjacency matrix for the graph attention layer. To match the sequence length, the

protein contact map is also padded to a dimension of (514, 514) with zeros.

We have chosen 512 amino acids as the maximum segment length with three primary

considerations: first, we anticipate that a 512 amino acid long segment has sufficient length

to encompass various protein domains, which are on average 100 amino acids long, typically

of length between 50 and 200 amino acids[43]. Second, our multi-head self-attention and

structure graph layers require quadratic computational memory with respect to length, re-

stricting the protein segment length. Third, about 60% of the 48,811 proteins in our dataset

are shorter than 512, which is not affected by the maximum length.

Thus, we selected a computation segment length of around 512 amino acids.

PTM mapping strategy

To address long sequences, we arranged proteins into extended core sequences with over-

lap. We set the segments with maximum length (i.e., 512), where the N terminal of the

extended core sequence has 128 amino acids overlapping with the C terminal of the last

extended core sequence. The PTM data falling in the core sequence (i.e., the middle 256
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amino acids of the extended core sequence) were selected for training, assuring interactions

within a distance of at least 128 (mostly longer) will not be lost.

Specifically, we cut the whole protein sequence Seq into extended core sequences ECSeqi:

ECSeqi “ Seq

„

i ˚ c

2
: MaxSeqi

ȷ

,

MaxSeqi “

$

’

&

’

%

s, i “ s´1
2c

´ 1

pi`2q˚c
2

, i ‰ s´1
2c

´ 1

where Seqra : bs represents a subsequence of Seq from position a to position b ´ 1, s is

the length of the sequence, c is the size of the core sequence (i.e., 256).

To ensure enough context for each instance, for each ECSeqi, we only consider the

CoreSeqi within the positions from l to r of ECSeqi, where

CoreSeqi “ ECSeqirl : rs

l “

$

’

&

’

%

0, i “ 0

c
4
, i ‰ 0

r “

$

’

&

’

%

si, i “
ps´1q

c˚2
´ 1

3c
4
, i ‰

ps´1q

c˚2
´ 1

si is the length of the i-th subsequence ECSeqi.

Label and sample weight preprocessing

To adapt to the multi-label setting, we constructed a label matrix with the shape as

(length of sequence, the number of PTM types); where the rows correspond to the residues

in the protein sequence while columns correspond to the PTM types. We used “1” to present

the positive labels and “0” to represent the negative labels. The entry was “1” if/when the
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amino acid hosts PTM(s) or, “0” if the amino acid is naked or not the target of the PTM. We

also constructed the sample weight matrix to (a) inform which PTMs to be included during

training and evaluation; and (b) apply class weights during training. We weighted different

PTM labels to provide higher weight for PTM types with fewer samples to address the class

imbalance issue. The sample weight matrix has the same shape as the label matrix, where

entry will be weights if/when the PTM was hosted. The entry will be “1” if no weighting is

applied.

Model loss

We have chosen the weighted binary cross-entropy loss for each label. Specifically,

Loss “ ´
1

řN
j“1Nj

N
ÿ

j“1

Nj
ÿ

i“1

pyij log ppijq ˚ wj ` p1 ´ yijq ˚ log p1 ´ pijqq

where Nj is the number of samples in the class j, N is the total number of PTM classes,

yij is the true label in i sample of PTM class j, pij is the output prediction scores from the

model in i sample of the PTM class j, wj is the positive class weight for PTM class j.

Considering that many amino acids do not host any PTMs, we applied sample masks to

retain only positive or negative samples during loss calculation. All other amino acids that

are not targets of PTM will not be included in the loss calculation.

One challenge in PTM site prediction is the class imbalance issue; the number of negative

samples, target residuals without PTMs, is much larger than the number of positive samples,

target residuals with PTMs. To ensure the model learns from balanced data, we computed

the loss with the inverse proportion of positive or negative samples as the weights.

Specifically, the weight was calculated as:

wj “
nposj ` nnegj

2nposj

where nposj is the number of positive samples in the PTM class j, nnegj is the number

of negative samples in the PTM class j. The consideration of such weighting is to assign
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higher weights for classes with fewer data and lower weights for classes with more data. So

the weight is set proportional to the inverse of the number of samples in negative or positive

samples and normalized by the total number of samples[44].

This calculation was only performed during training; no weighting was involved during

evaluation.

Training settings

We set the number of epochs as 300 and batch size as 64. An early stopping strategy

with patience equal to 2 was enforced, and loss was monitored for early stopping. The model

will stop training after 2 epochs if there was no improvement in the loss. And the model

with the least loss during the training was accepted as the final model. We utilized the

Adam stochastic optimization method with the following parameters: learning rate 1e-3, the

decay rate for the first moment estimate as 0.9, and exponential decay rate for the second

moment estimate as 0.999. We employed the AMSgrad variant. The model evaluation metric

was calculated through the scikit-learn package[45], where the average precision score was

selected to determine the AUPR. Metric using micro-average was to calculate the metric for

all predictions made together, whereas macro-average calculated the metric for each PTM

type first and averaged them. AUC, f1 score, and Matthews correlation coefficient (MCC)

were determined through the scikit-learn package as well.

Bootstrapping was performed by splitting the dataset randomly into two separate sets

iteratively, where one set was one-fifth of the total size and was ultimately used as the

validation set whereas the remaining was the training set. 15 different training/validation sets

were generated to train 15 models. After training, AUPR was calculated for the validation

set. The AUPR scores were applied to weight the score outputted by corresponding models

to ensemble a final model for each PTM type for each amino acid.

Two models were trained individually for the 13 PTMs and 13 O-PTMs as these two

PTM datasets were generated from different sources.

Model comparisons

For evaluating the effects of data size, we had the testing set fixed, and randomly sampled
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the remaining data without replacement with a proportion of 10%, 30%, 50%, and 100%. For

the sequence only model, we remove the input of protein structure and graph attention layer.

For the structure only model, we removed the multi-head self-attention blocks. For the single

label setting, we changed the final output of the model to one dimension and train the model

for each PTM type individually. For evaluating the positional information, we constructed

a model without the biLSTM layer as the no positional information model; we constructed

a model without the biLSTM layer but instead we add the sinusoidal positional encoding

before next layers as the sinusoidal model. MusiteDeep was trained on the combined training

and validation sets and tested on the testing dataset with default settings. CNN model is

constructed under our schema with protein mapped to Core sequences. The CNN model

consists of four layers of 1D convolution with the size of dimension as 256, same padding,

and kernel size as 3, 6, 9, and 12 respectively. A LeakyReLU layer with alpha = 0.01 and

a dropout layer with probability = 0.6 are added after each 1D convolution layer. The

remaining setting was identical in MIND-S without bootstrap application. RNN model is

constructed similar as CNN model, instead of using CNN layers, RNN model use three layer

of Bidirectional LSTM layer with identical setting as MIND without bootstrapping.

Amino acid embedding

The amino acid embeddings are generated by the embedding layer in MIND-S, where

each amino acid has one corresponding embedding associated. We extracted the embeddings

from 20 amino acids and used principal component analysis (PCA) to extract the first two

components for visualization.

Saliency scores

Integrated gradients were selected to determine saliency scores. The integrated gradi-

ents method requires the integration of gradients from a series of interpolated values from

background to actual input. However, one-hot encoding cannot be interpolated. Therefore,

we applied the embedding from one-hot encoding instead to perform the interpolation. This

would not interfere with the saliency attribution given that the embedding layer is unique

for each amino acid. We utilized the same vectors as input for background embedding, with
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the exception that the corresponding embedding of the residual to be evaluated as zero. We

calculated 50 interpolations between the background and the actual embedding, specifically:

A background embedding emb0 of the amino acid residue interested is created first:

emb0 “ 0

where the emb0 is a zero vector.

A series of interpolated embeddings embi are generated from the background embedding

and the original embedding emb:

embi “ emb0 ` αi pemb ´ emb0q

αi “
1

Nα

i

where Nα is the total number of interpolations to be performed and embi is the i-th

embedding.

Interpolated embeddings and the original embeddings were then input into the model

to arrive at the prediction. The prediction of a PTM was then determined to calculate

the gradients of the interpolated inputs. The gradient of interpolated embedding embi is

calculated as si:

si “
Bloss

Bembi

Finally, the gradients of interpolated embeddings are accumulated with the trapezoidal

rule and scaled with respect to input to get the final saliency vector s:

s “

řNα´1
i“1 si `

řNα

i“2 si
2

pemb ´ emb0q

The sum of all entries of s will be used as the saliency score for this amino acid residue.

Flanking sequence of length equal to 21 (including the PTM site) is used to calculate
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the flanking saliency scores and perform t-SNE plot. Only phosphosites that have predic-

tion scores greater than 0.8 and have associated kinases defined were selected. Kinases are

determined by scansite4[46] web service to scan protein sequences in our datasets to locate

the phosphorylation motifs. t-SNE plot is generated by sklearn with default setting except

that perplexity is set to 100. Clustering analysis is performed by kmeans in sklearn with

the default setting and the number of clusters (17) is determined by the elbow method

using the sum of squared distances of samples to the corresponding cluster center. The

sequence frequency plot of the cluster was generated by aggregating the sequence of samples

in that cluster by WebLogo[47]. The sequence frequency plot of kinase was generated by

aggregating the substrate sequences of that kinases retrieved from PhosphoSitePlus[31]. The

representative of the cluster is the cluster center from kmeans.

SNP PTM association

Human disease-associated SNPs proximal to PTM sites were downloaded from PTM-

Var[31] and UniProt. SNP related to cardiovascular diseases were selected for analysis. In

silicon mutated protein was generated according to SNP. The prediction scores of the same

PTM site were compared between the mutated and wild-type proteins. An SNP-PTM pair

was set to be confident when the wild type has a prediction score higher than 0.8 and the

subsequent mutation prediction score is lower than 0.2 or vice versa.

Quantification and statistical analysis

Statistical test was performed to compare the cross-entropy loss made by MIND and

the other models. All predictions on the test set from the models were used to calculate

the binary cross-entropy loss with true labels (n = 182,872 losses). We then performed

a one-sided t-test (the alternative hypothesis is loss from MIND is smaller than the other

model) on cross-entropy losses from MIND the other model compared. We used ttest rel

from scipy.stats in python to perform the t-test.
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2.4 Discussion

In this report, we describe a PTM prediction schema with its coupled modeling method,

MIND-S. Most existing PTM tools are based on local amino acids spanning the target

sites. Specifically, several amino acids flanking the PTM site are taken as the input, with

predictions on the target residual as the output. Several major limitations exist in this

approach (discussed below). Our workflow with MIND-S has overcome these limitations.

We have applied a strategy to train and predict at the protein level, which provides a much

larger receptive field to the model and relieves the burden of tuning window size. Moreover,

it converts the single-site, single-PTM prediction task to a multiple-site and multiple-PTM

prediction task, allowing the features learned to be shared across PTM types and improving

training and predicting efficiency. In addition, reframing the peptide-level question into a

protein-level question opened up opportunities for us to address the question on integration

with other protein-level features and/or tasks available. One important element in our

workflow architect design is the application of GNN to overcome the challenges on the

integration of protein structure with protein sequence. This was not trivial since protein

structure data are 3D data, whereas the protein sequence is 1D. We employed GNN to

model the protein structure as a contact map, which provided spatial closeness relationship

between any pairs of amino acids. We demonstrated that integration of GNN offered new

information and enhanced the prediction performance. We believe that, with the growing

computing power and rapid development of deep learning, modeling at the protein level will

make the model interoperable among different applications involving proteins in the future.

Over the past decade, many pioneer studies contributed significantly to the growing field

of machine learning applications to decode PTMs. One popular area is the amino acid

recognition-domain-based PTM predictions. This direction has offered important informa-

tion, e.g., associated kinases, to the targeted sequences. However, they also bear several

limitations: (1) information outside of the flanking region is often lost. Short flanking se-

quences may not be able to capture longer sequence information or protein-level information.

For example, docking sites on the substrate increase the binding affinity of the kinase for the
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substrate, which increases the likelihood of phosphorylation. Docking sites can be far away

from the phosphosites and would be missed if only local flanking sequences were considered.

(2) Training and predicting are inefficient when input amino acid sequences are overlapping.

For PTM prediction, both training and predicting will be done on a large scale given the

large amount of existing PTM data and proteins with no PTM annotation. In addition,

methods such as deep neural networks are time-costly on training. These require a less re-

dundant dataset, while overlapping flanking sequences create redundancy in both training

and prediction processes. (3) Different PTM types may have distinct optimal sizes of the

flanking sequence; the fixed window size of the flanking sequence may limit the model’s abil-

ity to transfer between PTM types. In addition, studies of PTM motifs are limited, which

makes it difficult to determine the optimal size by existing biological knowledge.

With the above considerations, we created MIND-S using a deep-learning method to

perform the prediction under the schema. While machine learning approaches such as sup-

port vector machines and random forest have been applied to PTM site prediction, these

methods often rely heavily on engineered features such as amino acid composition profiles,

position-specific scoring matrix profiles, and surface accessibility. These engineered features

are computationally expensive to build, store, and predict, and are often unavailable. On

the other hand, while protein sequences are widely available, they are difficult to encode

as numeric values to be “machine-readable.” Compared with conventional machine learning

approaches, deep-learning methods can accept a wider range of raw input, such as sequence

data and graph data. Features important for prediction are thus implicitly extracted and

utilized, relieving the feature extraction burden and enhancing performance. Various neu-

ral networks have been proposed to process sequence data in the field of natural language

processing (NLP). However, model architectures that succeed in general NLP tasks may not

be generalizable to tasks directed toward protein amino acid sequence. For example, the

amino acid sequence comprising a protein is usually much longer than a natural language

sentence, the “vocabulary” of protein sequences (i.e., 20 common amino acids) is much less

complex than the word dictionary, but the amino acid sequence order of a given protein

offers important insights.
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We applied an LSTM layer to effectively deliver sequential information instead of using

fixed positional encoding, such that the sequential information can be represented in a way

that the model can best utilize. As for protein structure data, as the number of experimen-

tal determined structure data grows and computational methods for structure prediction

improve, various methods are becoming available to model the protein structure data with

deep learning. Here we utilized the AlphaFold DB as one example to illustrate the utilities

of structure data. AlphaFold DB has an excellent coverage of protein structure, and we

converted the structure to a protein contact map to adapt for GNNs. We observed benefits

from incorporating structure information for enhanced PTM prediction. In addition, we

provide another version, MIND, that takes only protein sequence as the input as an alterna-

tive for proteins without reliable structure data. We also examined strategies in addition to

model architecture, such as multi-label learning and bootstrap methods, which can consid-

erably enhance MIND-S’s ability to accurately predict PTMs, demonstrating the need for

consideration from both computational elements as well as protein features and for devel-

oping methods on PTM predictions. The architecture design of the model is mostly driven

by functionality. Specifically, the embedding layer is to vectorize the protein sequence, the

bidirectional-LSTM layer is to encode positional information, the multi-head self-attention

layer is to process the sequence data, the graph attention layer is to process the structure

data, and the final fully connected neural network is to construct the embedding above to

multi-label output.

By model design, MIND-S is able to process arbitrarily long protein sequences as input,

but we truncated protein sequences when they were at excessive length due to practical

restrictions. First, protein sequences need to be padded to the same length as the longest

sequence in the batch, even though the padding does not provide any meaningful information;

second, computational memory cost is quadratic to the protein length. Thus, we split the

protein into sufficiently long subsequences to ensure memory efficiency and still allow the

model learning on long-distance interactions between amino acids. We also developed an

approach to split the sequence to ensure the interaction between amino acids falls into two

subsequences that will not be lost. While such restriction can be loosened if preferred during
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inference time, e.g., when only a few proteins are investigated, full-length proteins can be

used as input since parameters in MIND-S are independent of protein length.

MIND-S also provides a way to evaluate the contribution from individual residuals to

the final prediction. Although deep learning is powerful on complicated tasks, the inter-

nal decision-making process is complex and less understood by humans. We use integrated

gradients to simplify the interpretation process from tracking complicated decision-making

processes to calculating saliency scores associated with every residual, which is easier to be

understood by humans. Overall, three important features define a good model on PTM

predictions: it implicitly detects innate patterns, it makes reasonable predictions with effec-

tive model interpretation, and it will unveil underlying patterns in a human-understandable

fashion. Specifically, we considered two types of mechanism insights: (1) for a biologist

who is interested in a specific PTM, MIND-S can point out the amino acids that might be

important for the occurrence of that PTM. Thus, further experimental investigations can

be performed on those prioritized amino acids instead of every amino acid in that protein.

(2) When predictions and interpretations of PTM are performed on a proteome scale, the

results can be treated as a database to mine the recognition pattern. For example, our anal-

ysis of phosphorylation recognition pattern not only discovered known recognition patterns

but also revealed recognition patterns that have not yet been found. Different from regu-

lar motif-finding tools, which mine patterns from sequences bearing PTM (positive case),

MIND-S utilized both positive and negative PTM cases (sequence without PTM site) to

identify amino acids that are essential to the PTM occurrence. Thus, MIND-S provides a

perspective on mining recognition/modification patterns.

Last, we showed several use cases of MIND-S. MIND-S is capable of studying the function-

ality of SNPs by identifying SNPs that disrupt PTM occurrences. We prioritized the SNPs

most likely to change the PTM occurrence from a large pool of disease-associated SNPs. In

this study, only mutations in the protein sequence due to SNPs are considered; however,

any mutational processes that result in a mutant protein can be studied with MIND-S. For

example, RNA splicing of introns and exons results in multiple different isoforms of the same

protein and therefore can affect the occurrence of a PTM on a given site. Taken together,
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our tool empowers researchers to understand how sequence variation can affect downstream

biological processes and their PTM landscape.

Limitations of the study

We examined the PTM motif via interpretation module, however, the current analysis

only focus on capturing known kinase motif. Another direction will be exploring the propor-

tion of known motifs within the clustering patterns could serve as a validation of our model

interpretability. However, conceptually, a direct comparison is somewhat challenging because

kinase motifs are traditionally represented as position weight matrices (20-dimensional, cor-

responding to the 20 amino acids), whereas our model outputs a single scalar saliency score

per position of the entire sequence. One potential solution is to use the saliency scores

as weights for the corresponding amino acids, technically speaking, we could consider con-

structing a position weight matrix analogous to the established kinase motifs. This strategy

may enable a comparison, and may present opportunities leading to discoveries of novel mo-

tifs. We are excited about this approach. We plan to explore this approach in our future

investigations

We performed an ablation study to assess the contributions of the structure modules. The

results indicated that the structure module contributes less to the overall model performance

than the sequence module. We hypothesize several potential reasons for this observation:

Prediction Limitations from AlphaFoldDB: The structures provided by AlphaFoldDB may

have limited information and not necessarily perfectly reflect the true 3D conformations.

PTMs might be sensitive to local structural variations which host them, thus are not ad-

equately captured by a global reconstruction of that protein as shown in AlphaFoldDB.

Redundancy Between Sequence and Structure: There may have been overlaps between the

protein information contained in their sequence and structure. It is possible that when

the model extracts the relevant features from the sequence, it automatically suppresses the

additional value from the structural data related to the same protein. Incomplete Lever-

age of Structural Information: Although protein structures obtained from AlphaFoldDB

contain rich information, their binary contact maps may capture only a subset of the 3D

features. Recent studies have demonstrated alternative approaches for modeling protein 3D
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structures[48–50], which may provide a more comprehensive representation;

Currently, MIND-S predicts whether an amino acid residue is a potential PTM target

without conditioning on contextual variables such as cell type or disease state. The reason

for MIND-S to focus on PTM prediction without conditions is to first reduce the potential

search space for PTM sites and allow the model to learn a fundamental understanding of

PTMs not complicated by other variables. However, PTMs have been shown to demonstrate

differences across cell types or diseases in human samples. This heterogeneity occurs because

the specificities of PTM depend on various intrinsic factors of the modification process within

a given cell or tissue type.

NSCLC tumors express different combinations of active tyrosine kinases, resulting in

distinct phosphorylation patterns that may lead to varied drug resistance profiles. This un-

derscores the need for individualized therapies based on specific phosphorylation signatures

[51]; Similarly, tumor cells often exhibit altered glycosylation on asparagine (N-linked) or

serine/threonine (O-linked) residues with structures and expression levels that differ from

those in normal cells—a hallmark of cancer that has been exploited as biomarkers (e.g.,

aberrantly glycosylated MUC1 in breast cancer) [52].

Therefore, a condition-specific PTM prediction model is essential for accurately mapping

the PTM landscape in biological systems. In future iterations, we envision extending the

model to incorporate additional context (e.g., cell type, disease conditions) to support more

nuanced and condition-specific predictions.

2.5 Code and Data Availability

Training datasets and pig cardiac PTMome results have been deposited in Zenodo and are

publicly available:

https://doi.org/10.5281/zenodo.7655709

https://doi.org/10.5281/zenodo.7655827

https://doi.org/10.5281/zenodo.7655835
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All original code has been deposited on GitHub as well as Zenodo and is publicly available

https://github.com/yuyanislearning/MIND
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Figure 2.1: Design of MIND-S

A A workflow on ensemble MIND-S. A fixed dataset is retained for testing, with the remaining data split into a training set
and a validation set in the data splitting step; PTM data at the protein level are mapped to core sequences using the split and
extend strategy detailed in B; each individual model is trained on the processed data under the multi-label setting as detailed
in C; each model is subsequently evaluated in the evaluation steps. This process is repeated 15 times to ensemble the final
model, MIND-S. B The splitting and extending strategy. The full-length protein is first split into multiple core sequences. To
ensure sufficient information for prediction, each core sequence is then extended (additional 128 amino acid residues on both C
and N termini; on only one side when it is the N terminus or C terminus core sequence). C The multi-label training on the core
sequence. The prediction score matrix representing one core sequence is shown. Columns of the matrix correspond to amino
acid residues, rows of the matrix correspond to PTM types, and each cell corresponds to the prediction score of the specific
PTM. 34



Figure 2.2: Graphical Abstract

MIND-S architecture overview
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Figure 2.3: MIND-S performance on PTM prediction

A The line plot presents the relationship between the number of data points and performance. The x axis is the proportion of
training data employed to train the model, and the y axis is the performance (macro-average AUPR) of the model. The red
line shows the performance of the model with both the sequence and the structure components; the green line and the blue
line show the performance of the model with only the sequence component and the model with only the structure component,
respectively. All models achieve performances with more data, and the model with both components performs the best. B-D
Both positive and negative data points in each PTM type were applied and analyzed. Radar plots present PTM prediction
and model performance. The baseline AUPR (total detected PTMs divided by total available AA residues) for each PTM type
is shown in red. B The AUPR for PTM under single-label setting is shown in blue, and the AUPR under multi-label setting
is shown in green. The multi-label model shows better performance than the single-label setting in all PTM types. C The
AUPR for benchmark PTMs on the model trained with 5- and 15-fold bootstrapping is shown in green and purple, respectively.
The AUPR of the model without bootstrapping is shown in green. The bootstrap method shows better performance, and the
15-fold bootstrap method achieves the best performance. D The AUPR for benchmark PTMs of MIND-S, MusiteDeep, CNN,
and RNN are shown in orange, purple, blue, and green respectively. Overall, MIND-S shows the best performance in most
of the PTM types.E Table of model performances. Micro- and macro-aggregated metrics (AUPR, AUC, F1 score, Matthews
correlation coefficient [MCC]) on benchmark PTM data of four models: MIND-S, CNN, RNN, and MusiteDeep. MIND-S shows
the best performance in every metric measured. One-sided paired t test was performed on binary cross-entropy loss between
MIND-S and other models; asteriod p ă 0.001. 36



Figure 2.4: Validation of the interpretation module of MIND-S

A The upper panel shows the sequence frequency plot of all sequences from glycosylation sites investigated, where the +2
position shows enrichment of serine (S) or threonine (T). The bottom panel shows the averaged saliency scores of the same
glycosylation sites, where the 0 and +2 position has a peak saliency score. The two panels show a matching of emphasis at the
+2 position. (B and C) The t-SNE plot of flanking saliency scores of phosphosites. Points in (A) are colored by the kinase
group of the phosphosites: proline-directed kinase (red), basophilic kinase (blue), and acidophilic kinase (green). The three
kinase groups are roughly distributed in three regions: left, right, and middle. Points in (B) are colored by the clusters (17
clusters in total). (C) The upper panel is the sequence frequency plot of all sequences from cluster 1, where the 3 position shows
enrichment of arginine (R). The bottom panel is the saliency scores of the representative of cluster 1, where the 3 position has
a peak saliency score. The two panels show a matching of emphasis at the 3 position.
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Figure 2.5: MIND-S examines the effect of SNP on LRRK2 PTM

A An illustration of SNPs interrupting or promoting PTM occurrences on a particular molecule, LRRK2. SNP R1441C on
protein LRRK2 is found to have reduced phosphorylation scores on site 1444 from 0.972 to 0.754 and site 1445 from 0.778 to
0.227. SNP R1628P is found to have an elevated score of phosphorylation on site 1627 from 2.6e-4 to 0.903. B PTM maps
of wild-type and two mutant LRRK2. PTM types are annotated. The mutation amino acid (aa) is highlighted by the black
triangles on the x axis. The area affected is shown with a white background; the major changes in the PTM prediction score
are indicated by black arrows. In the R1441C mutant, two phosphorylation sites are interrupted, and an O-PTM on cysteine
is promoted. In the R1628P mutant, one phosphorylation site is promoted.
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2.8 Supplementary materials

2.8.1 Supplementary figures
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Figure 2.6: PTM Dataset Summary

To best evaluate the performance of our tool, we have adopted the 13 PTM dataset from MusiteDeep (https://www.musite.
net/). These datasets were used to validate outcomes predicted by MIND. They are split into training, validation, and testing
sets. All amino acids detected either with a PTM (positive, P) or without PTMs (negative, N) are shown. The total number
of proteins analyzed in each set is shown.
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Figure 2.7: PCA plot of amino acid embedding from MIND

Embeddings of 20 amino acids are extracted from MIND and PCA is applied for visualization. Each dot represents one amino
acid and is colored by category. Amino acids colored in red are the amino acids with a positive charge [Arginine (R), Histidine
(H), Lysine (K)]; amino acids colored in blue are the amino acids with a negative charge [Aspartic acid (D), Glutamic acid (E)];
amino acids colored in green is the uncharged polar amino acids [Serine (S), Threonine (T), Asparagine (N), Glutamine (Q)];
amino acids colored in orange are the amino acids that are hydrophobic [Alanine (A), Valine (V), Isoleucine (I), Leucine (L),
Methionine (M), Phenylalanine(F), Tyrosine (Y), Tryptophan (W)]; amino acids in colored in purple are the remaining amino
acids [Cysteine (C), Glycine (G) and Proline (P)].
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Figure 2.8: O-PTM Dataset Summary

A total of 13 O-PTM types of mouse cardiac proteome were collected in-house using established methods. They were split into
training, validation, and testing sets. All amino acids detected either with a PTM (positive, P) or without PTMs (negative, N)
are shown. The total number of proteins analyzed in each set is shown.
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Figure 2.9: MIND-S Performance on PTM Prediction

Panel A and B, radar plots present PTM prediction and model performance. The baseline AUPR (total detected PTMs divided
by total available AA residues) for each PTM type is shown in red. Panel A, the AUPR for PTM prediction utilizing different
position encoding methods. The AUPR of the model without any positional information provided is shown in blue; The AUPR
of the model using sinusoidal positional encoding is shown in green; The AUPR of the model using LSTM as a way to encode
positional information is shown in purple. Panel B, the AUPR for Oxidative PTMs (OPTMs) on the model trained with 5 and
15 fold bootstrapping, is shown in green and purple, respectively. The AUPR of the model without bootstrapping is shown in
green.
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Figure 2.10: Hyperparameters tuning Summary

A table summarizes the PTM-specific performance of different hyperparameters choice. The base model, MIND-S, is the final
model used in the paper except that it is not ensembled. Only one hyperparameters were changed on the base model to test
the hyperparameter’s impact on performance. Specifically, “attn=4” changes the number of multi-head self-attention layers
to 4 (3 in the base model), similar, “attn=2” changes it to 2; “h d=32” changes the hidden dimension to 32 (128 in the base
model), “h d=64” changes it to 64; “head=4” changes the attention head to 4 (8 in the base model), “head=16” changes it to
16. From the average AUPR, we chose the hyperparameters setting in base model as our final model setting since it achieves
the best performance.
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Figure 2.11: Saliency clustering results

Panel A, the upper panel is the sequence frequency plot of all sequences from cluster 2, where the +1 and +3 position shows
enrichment of proline (P) and arginine (R) respectively. The bottom panel is the saliency scores of the representative of cluster
2, where the +1 and +3 positions have peak saliency scores. Panel B, the upper panel is the sequence frequency plot of all
sequences from cluster 9, where the +1 position shows enrichment of proline (P). The bottom panel is the saliency scores of
the representative of cluster 9, where the +1 position has a peak saliency score. Panel C, the upper panel is the sequence
frequency plot of all sequences from cluster 10, where the -3 position shows enrichment of arginine (R). The bottom panel is
the saliency scores of the representative cluster 10, where the -3 position has a peak saliency score. Panel D, the upper panel
is the sequence frequency plot of all sequences from substrates of kinase CDK-1, where the +1 position shows enrichment of
proline. The bottom panel is the flanking saliency scores of protein P04150 site 203, where the +1 position has a peak saliency
score. The two panels show a matching pattern on position +1.
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Figure 2.12: Illustration of SNP affecting PTMs

Panel A, MIND-S Workflow for determining the impact of disease-specific SNPs on PTMs (e.g., cardiac disease-associated SNPs
that affect PTMs shown). Among the cardiac diseaseassociated SNPs identified in GWAS, after translation, 1,054 SNPs are
proximal to PTMs. Accordingly, we examined their impacts on PTMs. In silico mutations on protein sequences were guided
by these SNPs. With the input of mutant and wild-type protein sequences, MIND-S outputs scores of PTMs and determines
whether this SNP affects any PTMs. In total, 51 SNPs were found to interrupt the PTMs. Panel B, An illustration of SNPs
interrupting or promoting PTM occurrences on myosin binding protein C (MYBPC3). SNP R272C on protein MYBPC3 is
found to have reduced phosphorylation scores on site 275 from 0.986 to 0.032. SNP P608L is found to have an elevated score of
phosphorylation on site 607 from 0.711 to 0.165. Panel C, PTM maps of wild-type and two mutant MYBPC3. PTM types are
annotated. The mutation amino acid (aa) is highlighted by the black triangles on the x-axis. The area affected is shown with
a white background; the major changes in the PTM prediction score are indicated by black arrows. In the R272C mutant, one
phosphorylation site is interrupted. In the P608L mutant, one phosphorylation site is interrupted.
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CHAPTER 3

Systematic Evaluation and Integration of Multi-Modal

Gene Embeddings

3.1 Introduction

Artificial Intelligence (AI) has exhibited remarkable capabilities in various fields, notably in

natural language processing and computer vision. Its growing prominence is also evident

in numerous biomedical fields, including genomics, genetics, proteomics, drug discovery and

precision medicine[1, 53–58]. A critical factor underlying this advancement is the effective

representation of biomedical concepts in a machine-interpretable format, facilitating the in-

tegration of diverse AI and machine learning (ML) methodologies. Constructing embedding

for genes as well as their products including transcripts and proteins (refer to gene embed-

ding for simplicity) are one of the essential components of it. Gene embeddings are typically

compact numerical vectors, encapsulating the intrinsic properties of genes and elucidating

their interrelationships depending on the data and model utilized. Gene embeddings can

serve as building blocks within biomedical AI/ML as gene/transcript/protein are the funda-

mental concepts in the biological domain. For example, gene embeddings have been utilized

in predicting gene characteristics and interactions[59–61] and adapted to general tasks such

as single-cell RNA-seq analysis[62, 63].

Gene embeddings demonstrate considerable versatility across a range of biomedical ar-

tificial intelligence and machine learning (AI/ML) tasks; however, their efficacy is largely

influenced by the alignment between the gene embeddings and the specific downstream ap-

plications. To maximize the utility of gene embeddings for particular research inquiries, it is

essential to evaluate whether the underlying data and method used for embedding generation
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encompasses the relevant information, a process typically tailored to specific ML tasks. How-

ever, the burgeoning diversity of biomedical data modalities and applications necessitates

gene embeddings that offer a comprehensive representation of genes. Assessments based

narrowly on specific task performances may lose the generalizability and prove insufficient

for gauging the multi-faceted representational capacities of gene embeddings. Additionally,

developing a fair and biologically reasonable evaluation task is inherently challenging, let

alone devising a series of tasks that cover multiple aspects.

In this context, we propose an alternative evaluation framework, that involves assessing

gene embeddings in a task-agnostic manner, eliminating the need to predefine a ML task.

Essentially, gene embeddings that represent different dimensions of genes are compared to

each other to identify the overlap shared. This is grounded in the premise that a holistic

gene embedding will capture diverse aspects of genes and therefore exhibit substantial over-

lap with other gene embeddings. While methods to compare representations from neural

networks have been mainly focused on learning the dynamics of neural networks, we adapt

the method to compare gene representations generated from distinct sources. We developed

a workflow utilizing Single-Value Canonical Correlation Analysis (SVCCA) to quantify the

similarity between pairs of gene embeddings. We assessed the underlying similarities be-

tween embeddings derived from disparate data sources or methods, providing insights into

the multi-faceted representation ability of gene embeddings.

To ensure diverse perspectives of genes are included, we investigated nine different embed-

dings, which we broadly categorize them into three main categories based on their respective

data sources, namely: Knowledge Graph Embeddings, Molecular Data Embeddings, and

Natural Language Embeddings. Knowledge Graph Embeddings are derived from knowledge

graphs comprising entities, such as genes and other biomedical components, along with their

interrelationships. These embeddings effectively capture both the structural and seman-

tic dimensions of the corresponding biomedical knowledge stored in the Knowledge Graph.

Molecular Data Embeddings, on the other hand, are constructed from diverse molecular

datasets, such as omics data and sequence data. These embeddings encapsulate the intrinsic

biological insights present within the molecular data. Lastly, Natural Language Embeddings
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are recently developed with the advances in natural language processing. They are usually

generated from textual sources, distilling the semantic meanings of genes as reflected in the

scientific literature. These embeddings emphasize various aspects of biomedical data and

knowledge, representing a diverse array of gene-related information.

Our investigation revealed that the majority of gene embeddings we assessed did not

correlate well with gene embeddings from different modalities. This is expected as these em-

beddings are usually generated from single data sources. To address this issue, we developed

a Multi-Modal Gene Embedding (MMGE) by integrating gene embeddings across various

data sources and methods using a customized autoencoder model. Our results demonstrate

that MMGE exhibits integrated information that highly overlaps with existing gene em-

beddings. Furthermore, MMGE consistently ranks among the top-performing embeddings

across a diverse array of ML evaluation tasks, underscoring its capacity to capture a compre-

hensive spectrum of gene information. Additionally, we demonstrate that leveraging diverse

information, MMGE can be used to impute missing gene embeddings for incomplete gene

embeddings. These findings suggest that MMGE could serve as an effective and widely

adoptable data in biomedical AI/ML applications.
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3.2 Results

3.2.1 Canonical Correlation Analysis Between Gene Embeddings

To evaluate the multi-faceted representation capabilities of gene embeddings, we examined

the shared information between these sets that are generated from diverse data sources.

We employed SVCCA to perform the comparison between gene embeddings. At its core,

SVCCA identifies linear transformations that maximize the correlations between the two sets

of embeddings. Although SVCCA calculated correlations of the embeddings in a transformed

space, this correlation is not to be confused with the convention correlations, but should seen

as an indicator of information overlap in the representations from the two embedding sets. We

structured the two gene embedding sets with genes aligned and applied SVCCA to compute

the correlation score (ranging from 0 to 1, reflecting the degree of similarity between the two

gene embedding sets) (see 3.1). Additionally, we devised a shuffling method to compute a

background correlation to adjust the correlation value for fair comparison.

In this study, we selected a range of representative gene embedding sets from three dis-

tinct categories for detailed investigation. From the molecular data embedding category, our

selection includes gene2vec[59], omics[64], geneformer[65], and prottrans[66]. Gene2vec em-

ploys a concept analogous to word2vec[67] on gene expression data from the GEO database

to construct gene embeddings. Omics is a composite embedding, integrating expression data,

genome-wide essentiality screening data, and protein sequence encodings. Geneformer repre-

sents a transformer-based model, specifically trained on extensive single-cell RNA-seq data.

Prottrans is a protein language model developed through self-supervised masked language

modeling (MLM) on protein sequences. In the knowledge graph embedding category, we

chose struc2vec[68] on the protein-protein interaction (PPI) database which demonstrated

better performance[60]. We included two gene embeddings from a heterogeneous biologi-

cal knowledge graph, know2Bio, created using two knowledge graph embedding techniques

(cite TransE and MurE). For the natural language embeddings, we selected genePT[69] and

BioLinkBERT[70]. In these embeddings, the representation of a gene is extracted as the em-

bedding of the gene’s description, utilizing GPT embedding mode and BioLinkBERT as the
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underlying language models. From each of these gene embedding methods, we extracted all

available gene embeddings for our analysis. The broad and diverse range of gene embeddings

enables comprehensive evaluations on representation similarity between gene embeddings.

Pairwise SVCCA correlations were computed within selected gene embeddings (3.2).

Most gene embeddings exhibited a relatively similar degree of similarity of representation

with other embeddings except for struc2vec on PPI. The distinct position of struc2vec could

suggest a lower overlap of information in its representation. Notably, genePT and Bi-

olinkBERT exhibited the highest similarity among all comparisons, indicating a substantial

overlap of information between these two pairs. This finding aligns with the fact that both

genePT and BiolinkBERT gene embeddings were generated from the same data source and

format (text descriptions of genes). A similar pattern was observed in the two Know2BIO

embeddings. Although these embeddings generally showed lower similarity with other gene

embedding sets, they exhibited the highest similarity with each other. These observations

validate the effectiveness of our approach in assessing the shared information between gene

embeddings. The remaining gene embeddings showed less similarity, suggesting distinct rep-

resentations. In addition, it is shown that computing a background distribution is necessary,

given that background correlations varied considerably across different comparison pairs.

These results show that there is information shared between different gene embeddings, the

level of which is relatively low, with each capturing particular aspects of genes.

3.2.2 MMGE (Multi-Modal Gene Embedding) Integrates Multi-Modal Gene

Embeddings

As AI/ML approaches become increasingly prevalent in the biomedical field, there is a grow-

ing demand for information-rich molecular embeddings. However, as the gene embeddings

examined exhibit relatively low information overlap. This challenge motivated new ap-

proaches that can present a holistic view of a molecule; we envisioned that this approach

should have the following characteristics: (1) It should be able to incorporate information

of a molecule from multiple data modality to capture comprehensive characteristics. (2) It
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should demonstrate versatile ability to accommodate a variety of downstream applications.

(3) And it should also leverage the existing pretrained models and embeddings. (4) Lastly,

it should be easily scaled with the increasing number of representations.

To address this challenge, we developed the Multi-Modal Gene Embedding (MMGE),

designed to encapsulate and integrate multi-modal gene information captured by diverse

gene embeddings, making it applicable to a broader range of applications. MMGE employs

a customized autoencoder model to refine and distill this information into a condensed form

(3.3A). For each gene, embeddings from different modalities are combined as the input and

compressed by the encoder to form a condensed gene embedding. The condensed gene

embedding is converted back to the original embeddings by a decoder. The model is trained

to have the gene embedding to be condensed while maintaining the capacity to reconstruct

the diverse original gene embeddings. After the model is trained, the output from the encoder

will be utilized as the MMGE.

To ascertain whether the MMGE encapsulates comprehensive information, we calculated

its SVCCA correlations with other gene embeddings with the same procedure. The results

showed that MMGE exhibited significantly higher correlations in comparison to other gene

embedding approaches (3.3B), implying that MMGE effectively integrates information from

a variety of gene embedding sets.

To further evaluate whether the high correlation of MMGE to other embeddings is driven

mainly by the fact that the embeddings to be compared are also inputs of the MMGE, we

employed a ”leave-one-out” test. Specifically, for each gene embedding utilized, we calculated

the correlation with a reduced MMGE whose input excluded that particular gene embedding,

such that the reduced MMGE to be compared does not “know” the gene embedding prior

to comparison. From the comparison, we assess how much shared information MMGE could

still capture without having been exposed to the specific gene embedding during training.

The reduced versions of MMGE continued to achieve the highest similarity scores, regardless

of the exclusion of particular gene embeddings (3.3C). This finding reinforces the notion

that different gene embeddings contain overlapping information, and MMGE is capable of

amalgamating these diverse data sources to a certain degree.
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3.2.3 MMGE Demonstrates Strong Performance across Various Downstream

Tasks

To highlight the comprehensive information captured in MMGE compared to other gene

embeddings, we assessed its performance across a range of gene-related ML tasks. Selecting

tasks that highlight diverse attributes of gene data was crucial in evaluating MMGE’s capac-

ity to encapsulate multifaceted information. Thus, five distinct ML tasks were chosen: Gene

Ontology (GO) prediction, protein subcellular location prediction, gene dosage sensitivity

prediction, protein-protein interaction (PPI) prediction, and gene-gene interaction predic-

tion (see details in Methods). The GO database[71] is a comprehensive resource designed

to systematically describe the functional attributes of gene products, significantly aiding in

the characterization of gene functions. Protein Subcellular Localization Prediction is cru-

cial for understanding a protein’s function and physicochemical properties, with accurate

prediction reducing the need for labor-intensive experimental determination. Gene Dosage

Sensitivity Prediction is vital for interpreting the impact of copy number variants in genetic

diagnostics, offering insights into gene sensitivity to dosage variations. Protein-Protein In-

teraction (PPI) Prediction entails forecasting the likelihood of interactions between pairs of

proteins. Lastly, Gene-Gene Interaction Prediction focuses on predicting whether pairs of

genes exhibit functional overlap.

Our focus was on the generalizability of MMGE across various tasks rather than excelling

in a single one. Some tasks, such as GO prediction, might inherently favor certain embeddings

like those based on natural language, as the original gene descriptions may already include

functional information. Therefore, assessing the overall performance across all tasks provides

a more comprehensive evaluation of the gene embeddings’ generalizability. Performance

rankings for each task revealed that MMGE consistently achieved a top-three position (3.4),

whereas other gene embeddings exhibited more variable rankings. This consistent high

performance indicates that MMGE effectively integrates multi-modal information, proving

beneficial across a wide range of downstream tasks.
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3.3 Methods and Data

3.3.1 Gene Embedding Collection

GenePT: GenePT’s precomputed GPT-3.5 embeddings (’text-embedding-ada-0020’ model)

for each gene were sourced directly from genePT’s Zenodo repository

(https://zenodo.org/records/10030426)

Additionally, the NCBI gene summaries used by GenePT were also retrieved from this

repository.

BiolinkBert: BioLinkBERT-base is a model that has been pretrained on PubMed ab-

stracts, incorporating citation link information. In this study, the NCBI gene summaries

utilized by GenePT, were tokenized using the BioLinkBERT tokenizer and adjusted the to-

kenized input to a length of 512 through padding and truncation. We then processed these

inputs through the pretrained model

(https://huggingface.co/michiyasunaga/BioLinkBERT-base)

The embedding for each gene was represented by the ‘[CLS]‘ token embedding obtained

from the model output.

String struc2vec gene embedding were retrieved from BioNEV

(https://github.com/xiangyue9607/BioNEV).

Omics gene embedding were retrieved from the supplementary data from.

Prottrans: Prottrans embeddings were retrieved from the UniProt protein database.

These embeddings are generated using the ProtT5 protein language model. We obtain

the per-protein embeddings (UP000005640 9606, Per-protein embeddings for Homo sapiens

reference proteome). In this process, a fixed-length embeddings vector is computed for each

protein sequence. UniProt IDs were converted to gene names via UniProt ID mapping API.

In cases where a protein was associated with multiple genes, the first gene was used.

Geneformer embeddings were retrieved from the gene embedding layer from “geneformer-

12L-30M” model
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(https://huggingface.co/ctheodoris/Geneformer).

While in its original publication, gene embeddings were retrieved from averaging output

gene embeddings from each cell. As we are interested in the universality of gene embedding

instead of genes in particular cell types or cellular context, gene embedding layers which

are invariant to the cellular context were used to generate the embeddings. Specifically, we

retrieved gene IDs geneformer used, tokenized them and extracted the corresponding gene

embedding from the model.

Gene2vec embedding was directly obtained from

(https://github.com/jingcheng-du/Gene2vec).

Know2BIO Knowledge Graph Embeddings were retrieved for all genes found in the

Know2BIO biomedical knowledge graph. Know2BIO integrates biomedical data from 30

biomedical knowledge bases describing relationships between genes, proteins, drugs, dis-

eases, biomedical pathways, and other data types. Data was accessed on August 18, 2023

and consists of 219k nodes and 6.18M edges. Knowledge graph embeddings were trained

on this knowledge graph, using an 80:10:10 split for training, validation, and test set. Two

knowledge graph embedding models were chosen based on their superior performance in the

benchmark evaluation: MurE[72] and TransE[73]. Both models were trained with negative

sampling of 150, learning rate of 0.001, using Adam optimizer with 1000 max epochs.

All gene IDs from various embeddings were converted to the HGNC symbol using my-

gene.info (https://mygene.info/) or Ensembl REST API (https://rest.ensembl.org/)

or Uniprot (https://www.uniprot.org/).

3.3.2 Correlation analysis

SVCCA calculation

SVCCA, a variant of CCA, is tailored to focus on singular values that capture the majority

of variance in gene embeddings. This is based on the premise that minor fluctuations in

gene embeddings may not yield meaningful insights. A key advantage of SVCCA is its

computational efficiency, which allows for repeated measurements on large gene embedding
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datasets.

A particular gene embedding dataset is structured as a matrix, where rows represent

different genes and columns represent the embedding dimensions. Before conducting cor-

relation analyses, the embeddings are standardized by column (embedding features). To

compare two gene embedding sets, we retain the intersection of their gene sets, resulting in

two gene embedding matrices with matching rows (i.e., each row represents the same gene in

both embeddings) but different columns. Specifically, let EMB1 have dimensions Xpm, d1q

and EMB2 have dimensions Y pm, d2q. For each gene i in the gene set, Xi and Yi represent

the embeddings in the two gene embedding sets.

SVCCA was implemented as in its original publication[74]. SVCCA first performs singu-

lar value decomposition on matrices X and Y. This results in singular vectors X’ and Y’ with

associated singular values λ1´d1 for X and Y, respectively. From these d1 singular vectors,

we retain the top d1
1, where d1

1 is the smallest value that satisfies
řd1

1
i“1 |λi| ě 0.99

řd1
i“1 |λi|,

thereby retaining vectors that account for 99% of the variance in X. CCA is then applied to

these top singular vectors, X’ and Y’, producing transformed subspaces. The average of the

correlations between each transformed subspaces is used as the final correlation value.

Background correlation calculation

To assess baseline correlations between different gene embedding pairs, we calculated a

background correlation distribution. We randomly permuted gene sets in the two embedding

methods to ensure unmatched gene pairs, calculating the SVCCA correlation between these

shuffled embeddings to represent background correlations. This permutation process was

repeated 100 times to derive an empirical background correlation distribution. The p-value

was defined as the proportion of permutations where the correlation exceeded the actual

correlation: p “
number of permutations with correlation ą actual correlation

total number of permutations
. We used a p-value thresh-

old of 0.05, indicating statistical significance if fewer than 5 permutations showed higher

correlation than the actual correlation. We further utilized this background distribution to

calculate an adjusted correlation by subtracting the mean background correlation from the

unpermuted correlation.
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Correlation plots

The correlation heatmap was generated from the correlation matrix, where the diagonal

was set to zero to indicate self-comparisons for visualization purposes. Hierarchical clustering

was applied to this heatmap to cluster similar gene embeddings. The figure was produced

using the Python package Seaborn’s Clustermap function. The correlation ranking boxplot

was created using the adjusted SVCCA correlations, excluding self-correlations, to illustrate

the correlation range with other gene embedding sets.

3.3.3 MMGE generation

The autoencoder model employed comprises two primary components: an encoder and a de-

coder. The encoder is designed as a three-layer multilayer perceptron (MLP) with the specific

function of compressing the diverse information inherent in gene embeddings. Conversely, the

decoder is a two-layer MLP responsible for reconstructing the dense representation produced

by the encoder back to its original input form.

Implementation of the Autoencoder Model: The autoencoder model is implemented using

PyTorch version 1.13.1. The encoder component consists of two linear layers with dimensions

of 1024 and 512, respectively. Leaky ReLU activation functions with a negative slope of 0.01

are applied following these linear layers. The decoder, in contrast, comprises a single linear

layer matching the input dimensionality, and no activation function is utilized in this layer.

The output generated by the encoder serves as the Multimodal Gene Embedding (MMGE).

The input comprises nine concatenated gene embedding sets: OMICS, Gene2vec, Bi-

oLinkBert, GenePT, ProtTrans, K2B-MurE, K2B-TransE, Geneformer, and STRING-struc2vec.

A total of 12,528 genes, common to all nine embedding sets, were employed for training. The

gene embeddings are standardized on the feature side. For reconstruction, mean squared er-

ror (MSE) loss is utilized, and the optimization is conducted using the Adam optimizer. The

model undergoes training for 100 epochs, with early stopping criteria triggered if there is no

decrease in loss over the course of three consecutive epochs (patience = 3).

Because the nine gene embedding sets vary in size, direct calculation of the MSE loss
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may bias results towards embeddings with larger dimensions. To address this, the loss was

weighted based on the size of each input embedding during optimization: the weight for each

embedding is calculated as the total size divided by the size of dimension.

To assess the similarity of the MMGE on unseen gene embedding sets, we trained a series

of reduced models, each omitting one of the nine gene embedding sets in input during the

autoencoder training process. Consequently, nine reduced MMGE models were generated,

each corresponding to a scenario with one missing gene embedding set. SVCCA similarity

scores were computed between these nine reduced MMGEs and their respective missing gene

embeddings, which were then compared to the similarity scores obtained between the missing

gene embeddings and the remaining gene embeddings.

All training processes were executed utilizing an NVIDIA A100 GPU.

3.3.4 Gene embedding benchmark

We selected in total five major tasks for benchmark: GO prediction, PPI prediction, gene

dosage prediction, protein location prediction, Gene gene interaction prediction.

GO prediction: GO21 is an ontology of gene, with detailed annotation of gene’s function,

involving biological processes (BP), molecular functions as well as cellular location. We chose

to predict biological processes of genes. We only retained the GO terms with experimental

evidence by filtering on evidence code: ’EXP’, ’IDA’, ’IPI’, ’IMP’, ’IGI’, ’IEP’,’TAS’, ’IC’.

As we are interested in the general performance of gene embeddings in universal tasks, we

selected the high level biological process and chose 6 of them that have more than 100 posi-

tive cases in the gene sets: Biological Regulation, Metabolic Process, Localization, Cellular

Process, Response to Stimulus, Developmental Process. Specifically, we retrieved the BP

associated with the gene and traced back to these 6 root BPs using the hierarchy of GO

terms. We trained the model for each BP separately as a binary classification task.

PPI prediction. PPI were retrieved from STRING24, with a focus of experimental vali-

dated interaction in humans (“9606.protein.physical.links.v12.0.txt”). For each PPI pair, we

retained it when the two proteins both exist in the intersected gene set (genes that appear
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in all gene embeddings). We chose to multiply the two gene embeddings to get the input

for the model to avoid the directionality of which gene embedding to be put in the front for

concatenating gene embeddings.

Gene dosage prediction. Gene dosage is a task adopted from geneformer, where gene

dosage indicates whether the copy number of the gene is important for survival.

Protein location prediction, protein location is a task adopted from deeploc[75] to predict

the cellular location of proteins. For each cellular location, we trained a separate model to

predict it as a binary classification task.

Gene gene interaction prediction is a task defined in gene2vec8, which is to predict

whether two genes have shared function annotation. We used a similar approach as in PPI,

to multiply the two gene embeddings to serve as the input for the prediction.

3.3.5 Pycaret ML

In this study, we employed a systematic approach to train and evaluate for the different tasks

with different gene embeddings, using the PyCaret library, to evaluate the gene embedding

benchmark tasks. We selected Logistic Regression for all tasks. These methods were cho-

sen for their diversity in modeling techniques, which provided a comprehensive evaluation

of their applicability to gene embedding tasks. The metric used for model comparison was

the area under the precision-recall curve (AUPRC), a robust measure for evaluating model

performance. This metric was selected due to its effectiveness in reflecting the precision and

recall balance of the models, thus providing a more nuanced understanding of their predic-

tive capabilities, especially in class-imbalanced predictions. To ensure a fair and rigorous

evaluation of each model, StratifiedKFold validation approach with 10 folds was used. This

method of cross-validation maintains the proportion of samples for each class, which is par-

ticularly important in minimizing training bias due to class imbalance. By employing this

approach, we could assess the generalizability and stability of each model across different

subsets of the data. Models with longer training times were excluded from our analysis to

optimize computational efficiency without compromising the integrity of the results. The
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best-performing model for each gene embedding task was identified based on the highest

AUPRC score.

3.4 Discussion

The growing understanding of omics and the rapid advancement of computational techniques

underscore the potential for gene embeddings to significantly influence applications ranging

from precision medicine to drug discovery. The evolution of artificial intelligence (AI) and

machine learning (ML) has enabled the transformation of gene representations into embed-

dings that are more accessible for computational applications. These developments have

even empowered biologists with minimal modeling expertise to implement machine learning

models, thereby democratizing the use of advanced computational methods.

Despite these advancements, the evaluation of gene embeddings remains predominantly

single-task oriented, limiting their broader applicability. Such trend has been observed in our

experiment utilizing SVCCA, a method to calculate canonical correlation in the transformed

spaces where correlation is maximized. We discovered that most gene embeddings share

little information overlap. This single-focus evaluative approach necessitates an additional

process to align the appropriate gene embedding for a given task. Ideally, a robust, universal

gene embedding should serve as a pre-computed component that encapsulates diverse infor-

mation while minimizing resource requirements. Such versatile embeddings could function

as foundational elements for more complex downstream tasks or models. Our objective is to

systematically explore these possibilities by examining gene embeddings in a task-agnostic

manner. We posit that a single task cannot capture the complexity inherent in biological

data, while evaluating multiple tasks can be both resource- and time-intensive.

The efficacy of gene embeddings in capturing biological meaning is contingent upon both

the dataset used and the method employed to generate the embedding. Ideally, embeddings

should represent essential information while minimizing noise; however, achieving or mea-

suring this balance is often challenging. Thus, our study incorporates various data sources

and diverse methods applied to the same datasets.
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While several benchmarking studies have assessed gene embeddings, fewer efforts have

focused on directly comparing the embeddings themselves. Our investigation aims to dis-

cern the extent to which information is shared among these embeddings. Specifically, we

seek to determine whether different gene embeddings encapsulate distinct information and

which embedding would be optimal for developing a new AI/ML model. Nine different gene

embeddings are evaluated and little overlap is discovered in this study, indicating distinct

aspects of genes captured in various embeddings. Thus, to build an embedding that captures

more comprehensive information of genes, we develop the MMGE model to integrate these

embeddings into condensed embedding, which removes the redundancy while combining the

different aspects effectively. The integrated MMGE has shown higher information overlap

with different gene embedding sets as well as demonstrating better performance in a range

of downstream gene relevant benchmark tasks. By addressing these questions, we hope to

enhance the utility and understanding of gene embeddings within the scientific community.

3.5 Code and data availability

The code is available in github: https://github.com/erikazhengyilin/uge_capybara
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3.7 Figures
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Figure 3.1: SVCCA correlation calculation and background distribution calculation.

The left panel shows the calculation of SVCCA between two gene embedding sets. The two matrices are formatted as gene
by embedding dimension (the embedding dimensions can be distinct for each gene embedding set) and the genes are aligned
(same color). SVCCA is then applied to obtain the canonical space for each gene embedding. One canonical variable is shown
in a scatter plot where x and y-axis represent transformed values from the two gene embeddings and each scatter represents
one gene. The right panel shows the process of calculating background distribution SVCCA correlation. The order of genes
in each matrix are shuffled (different colors). The shuffle process is repeated for 100 times and SVCCA is calculated for each
shuffle, resulting in an empirical background correlation distribution. The adjusted correlation is obtained from subtracting the
average background correlation from the original correlation from the unshuffled matrices.
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Figure 3.2: Correlations of gene embeddings

A) SVCCA correlation heatmap of gene embeddings. Each entry represents the original SVCCA correlation between the two
corresponding gene embeddings. Hierarchical clustering is performed to arrange the row and column of the heatmap. Self
comparison of gene embeddings (the diagonal) was not performed and set as 0. Statistical test (see details in Methods Section)
was performed for each comparison and the “*” indicates a p-value less than 0.05. B) Boxplot of adjusted SVCCA correlation
against other gene embeddings.
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Figure 3.3: MMGE shows high correlations with other embeddings

A) Building MMGE from diverse gene embeddings. Nine gene embeddings of the same genes are concatenated to large vectors
and served as the input of the model. The encoder of the model with the reducing layer size serves to condense the input and
the decoder of the model is responsible to predict the input from the condensed vector. The difference between the predictions
and input will be weighted and used to guide the model optimization. After training is finished, the consed layer (yellow) will
be retrieved as MMGE. B) A boxplot of adjusted SVCCA correlation against other gene embeddings. MMGE (blue) stands
out as it possesses the highest overall SVCCA correlations. C) A boxplot of adjusted SVCCA highlighting the shrunk MMGEs.
The SVCCA correlation of the corresponding shrinked MMGE is shown as a purple circle for each embedding; correlation with
the intact MMGE is shown as a red circle.
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Figure 3.4: Ranking of Embeddings Across Five Downstream Tasks.

(A) A boxplot shows the overall ranking of each embedding across all tasks. The x-axis represents the different embeddings, and
the y-axis shows their rank scores (with higher scores indicating better performance). (B) In the protein localization prediction
task, MMGE and gene2vec tied for the best performance. (C) In protein-protein interaction (PPI) prediction, MMGE ranked
first, with k2bMurE coming in second. (D) For gene-gene regulatory interaction (ggipnn) prediction, MMGE again led the
rankings, while Biolinkbert ranked second. (E) In gene ontology prediction, Biolinkbert outperformed all other embeddings,
achieving the top rank, with MMGE following closely in second place. (F) In the gene dosage sensitivity task, MMGE achieved
the best performance, with prottrans ranking second. Although each embedding shows unique strengths for specific tasks,
overall, MMGE demonstrates superior performance across all tasks tested.
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CHAPTER 4

Missing Values in Longitudinal Proteome Dynamics

Studies: Making a Case for Data Multiple Imputation

4.1 Introduction

Missing values, absence of observations for one or more variables in the data set, is a com-

mon challenge across a wide range of biomedical data sets[76–79], including proteomics data

sets[80, 81]. Missing values can adversely impact data quality, subsequent downstream anal-

ysis and/or modeling, resulting in biased outcomes, and incomplete conclusions[82]. Over-

coming missing data points is essential for rendering a data set to be “AI-ready”, which

refers to the data operations performed to meet the requirements of AI models[83]. To ap-

propriately address missing values, it is necessary to explore the factors contributing to them,

including the conditions under which data sets were collected (e.g., experimental equipment

[77, 84, 85]). In particular, missing values in temporal data sets, i.e., data sets with re-

peated measurements at multiple time points are further complicated by (1) the continuity

of time series data, which might be hampered due to the proportion of missing values; and

(2) any intrinsic temporal patterns, which are yet to be revealed. Ostensibly, addressing

these complexities in temporal data sets requires context specific solutions.

The advancement of proteomics technologies, e.g., tandem mass spectrometry (MS)[58,

86], has rendered proteome-wide examinations and measurements of protein dynamics fea-

sible with unprecedented detail[87, 88]. Despite significant advancements in technology,

MS-based proteomics often grapples with the issue of missing values. Missing values in pro-

teomics can arise from a variety of factors, including peptide abundances that fall below

the detection limit, error from laboratory preparation or instrumentation and/or data pro-
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cessing[89, 90]. When/if a significant portion of peptide data are absent, the subsequent

quantification of protein expressions as well as measurements of protein turnover rates will

be affected[91]. Accordingly, missing turnover rates and inaccurate turnover rate estimation

may occur with incomplete time series when the number of peptides quantified across time

points is insufficient for model fitting. This issue introduces biases in subsequent analyses,

thus hindering biological discovery and understanding[80, 81, 92]. Seminal works have been

implemented to tackle these issues in protein expression data[77, 80, 81, 93–97], whereas

effective approaches specifically addressing missing values in the context of temporal dy-

namics profiling are lacking. Accurate estimation of protein turnover rate is contingent

upon a complete time-series data set and is more vulnerable to missing values[98, 99].

Generally, data imputation methods can be classified into single- and multiple imputation

approaches. Most imputation methods applied in proteomics are single imputation tech-

niques, where each missing value is filled by one imputed value[77, 80, 81]. Although single-

imputation approaches are widely adopted, estimates from single imputation are treated as

observed values, making them indistinguishable in downstream analyses. Single imputation

falls short of capturing the uncertainty associated with missing values, often resulting in

unrealistically narrow standard errors[100]. In contrast, Data Multiple Imputation (DMI)

methods address these challenges and have been applied on nontemporal proteomics data

set[97]. DMI generates multiple imputations for each missing value, allowing for the aggre-

gation of these imputations to derive a final imputed value. DMI considers variability across

imputed data sets, thereby reflecting the inherent uncertainty in missing values, an aspect

not addressed by single imputation methods. Moreover, DMI methods can be seamlessly

integrated with downstream analysis. For example, for protein turnover rate estimation,

imputed values will not be distinguished from observed values, leading to potential overre-

liance on the imputed data and skewing estimates. DMI imputes multiple values for the

same missing values via sampling from posterior distributions of the parameters, better cap-

turing the uncertainty during the process. Then the protein turnover rate can be inferred

from each imputed data set individually and then pooled to derive final parameter estimates,

therefore better addressing the potential variation from the imputation. In addition, DMI
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utilizes time series from other peptides to capture the potential temporal dependency via

Fully Conditional Specification (FCS)[101]. Therefore, the DMI integrated workflow takes

into consideration temporal dependencies, uncertainties at single time point, as well as time

series levels to address the multilevel challenges introduced by missing data in temporal

proteomics studies.

We have developed a DMI pipeline to effectively address missing values in estimating

protein turnover rates from time series proteomics data. Our workflow 4.1B showcased its

effectiveness and generalizability on a cardiac temporal proteomics data set from mice and

a temporal plasma proteomics data set from humans.

4.2 Methods and Data

4.2.1 Data Sets

Murine Data Set

A temporal proteomics data set characterizing large-scale cardiac protein turnovers across

multiple mouse strains[99]. To summarize, this study is divided into two groups: Isopro-

terenol (ISO) treated mice and Controlled (Ctrl) mice were metabolically labeled with deu-

terium water. Within each group, six mouse strains were used: A/J, BALB/cJ, C57BL/6J,

CE/J, DBA/2J, and FVB/NJ. From each experimental group, two mice were euthanized

on each day: 0, 1, 3, 5, 7, 10, and 14 to collect heart and plasma samples. In the cardiac

hypertrophy groups, surgical implanted subcutaneous micro-osmotic pumps (Alzet) were

calibrated to deliver 15 mg¨kg´1¨d´1 of isoproterenol over 14 days.

Human Data Set

A human temporal proteomics data set that performed high-throughput quantification

of protein turnover in ten human subjects[102]. This proteomics data was acquired from

healthy human plasma samples collected at ten defined intervals: days 0, 1, 2, 4, 5, 8, 9, 10,

12, and 14.

The peptide samples from both data sets were analyzed by liquid chromatography-tandem
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mass spectrometry (LC-MS/MS) to discern peptide abundance, isotope incorporation, and

sequences. Protein turnover kinetics and estimated fitting errors were analyzed through

“Proturn”[103]. Additional details of the data set can be found in previous publications[98,

99].

4.2.2 Construction of the Data Multiple Imputation (DMI) Pipeline

We incorporated FCS in our pipeline using the R package “MICE”[104]. We formatted the

data from both data sets as a proteome-wide time series of A0 (the fraction of the zeroth

isotopomer of a peptide isotope envelope, which is used to estimate the protein turnover

rate). For the murine data set, this was done for each mouse strain in each condition

(ISO/CTRL), and for the human data set, for each healthy subject. Missing A0 values at

any given time point were imputed based on the remaining time points. If multiple A0s

from different peptides in the same proteins exist, the median of the A0s was used. The

imputation was performed on the peptides that have at least two observed time points;

this is not to be confused with the requirement of four time points to perform the turnover

rate estimation. We used FCS to reproduce the correlations over time and set the number

of imputed data sets, m, to 10. Subsequently, we performed half-life computation with

“Proturn” on the 10 resulting data sets separately, with identical settings. For any given

protein, the final turnover rate constant k is the average rate constant estimated from 10

runs of half-life analyses. This process is repeated for each of the 12 samples, i.e., 6 samples

under both ISO-treated and CTRL conditions, in the murine data set and for each of the 10

healthy subjects in the human data set. Compared to previous work, this pipeline is flexible

to accommodate other types of DMI techniques and larger m, and provides a platform for

comparing different approaches for missing data.

Proturn for Computing Protein Turnover Rates

“Proturn” was used to calculate protein turnover kinetics and estimated fitting errors as

previously described[105]. “Proturn” automatically retrieved identified peptides that were

uniquely assigned to proteins for the area integration. The “Proturn” parameters were
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set as follows: area-under-curve integration width: 60 ppm, extracted ion chromatogram

smoothing: Savitzky–Golay filter over 7 data points. To further control against peptide false

positive identifications, only peptides that were explicitly identified (1% FDR) and integrated

in greater than 4 time points were accepted for the calculation of protein abundance and

turnover.

Evaluation Framework for Missing Data Imputation

To simulate missing data scenarios, we first retrieved peptides from the murine cardiac

temporal proteomics data set that contained a complete time series in A0 with no missing

values, such that we can ensure that the turnover rate is estimated without missing values

and can serve as a ground truth for evaluating the imputation methods. To simulate the

different levels of missingness, we create five masked data sets where 1 up to 5 time points

out of the complete 7 time points were randomly masked. On each of these masked data sets,

we applied three imputation methods: (1) DMI; (2) Single imputation with mean; and (3)

Single imputation with k-nearest neighbor (KNN) using 30 neighbors. Each masked data set

that underwent the Data Single Imputation (DSI) workflow produced one imputed data set.

Each masked data set that underwent the DMI workflow produced 10 imputed data sets for

each of the masked configurations. Subsequently, we conducted kinetic analysis to quantify

the turnover rates on each masked data set for each imputation method independently. The

accuracy of the imputation methods was quantified using the normalized root-mean-square

error (NRMSE) comparing the actual values versus the imputed values for A0 and turnover

rates.

4.2.3 Impact of DMI on Biomedical Insights

Summary of Number of Samples Available for Turnover Calculation with a

Barplot

For each time series of a specific protein from different experimental conditions (6 strains

× 2 treatments = 12 conditions), the number of nonmissing data points were counted (rang-

ing from 0 to 7) by picking the peptide with the least missing values in the time series. The
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counts from different experimental conditions for the same protein are then aggregated to

yield the total number of observations and the number of missing observations imputed for

that protein. Proteins are sorted by the number of observations in the barplot. The barplot

showing the numbers of proteins recovered by DMI under different conditions follows the

same procedure.

Protein Expression Comparison on Proteins Quantifiable with or without

DMI

Violin plots compare the abundance value (normalized spectral abundance factor, NSAF)

and turnover rates between proteins only quantifiable by DMI and those quantifiable without

DMI. The area of each violin is adjusted to reflect the number of proteins. A two-sample

two-sided Wilcoxon test is performed, and the p-value is shown in the figure. The Wilcoxon

test is performed in R using wilcox.test.

Reactome Pathway Enrichment Analysis

Reactome database was used to analyze the biological processes associated with the

identified proteins, including those recovered through imputation methods. We performed

Reactome Pathway enrichment analysis with the following settings: Mus musculus genes as

the reference list; biological process complete as the annotation data set; Fisher’s Exact test

and calculate FDR. The analysis was specifically designed to pinpoint biological processes

that are significantly enriched in our data set of proteins, with an emphasis on contrasting

those proteins identified through DMI with those not subjected to DMI. Biological processes

that are only enriched in the protein list subjected to DMI are shown.

Protein Complex Stability Analysis

Protein complex information was retrieved from Complex Portal[106]. We selected com-

plexes for which all protein interactors in the complex were represented in the proteomics

data set and focused on heterocomplexes, i.e., complexes with multiple protein interactors.

Stability is calculated as the standard deviation of the average protein turnover rates within

the protein complex. To compare against proteins sampled from the proteome, we account

for the number of proteins in the complex by sampling from the proteome with the em-
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pirical frequency of the number of proteins in complexes. A Wilcoxon Test was performed

to calculate the p-values. We also analyzed the dynamics of individual protein complexes

across the experimental groups. Using one-way Analysis of Variance (ANOVA), we examined

differences in the mean turnover rates of protein interactors in four complexes.

Biomarker Analysis on Human Temporal Proteomics Data set

MarkerDB is a professionally curated database of preclinical biomarkers[107]. From this

database, we identified 137 unique protein biomarkers and retrieved their UniProt IDs using

UniProt KB API[108]. We identified the intersection of these biomarkers and proteome

quantified with and without imputation in the human temporal proteomics data set. We

then queried MarkerDB to map the biomarker lists of each human subject to their disease

associations in order to identify new or corroborated disease associations revealed by the

additional imputed proteins.

4.3 Results and Discussion

4.3.1 The DMI Pipeline to Recover Temporal Proteomics Data with Flexibility

We developed a DMI pipeline capable of imputing missing values in temporal proteomics

data, rendering greater coverage of protein turnover rates. Our workflow (4.1B) first pre-

processes the temporal proteomics data set to fit the format required by DMI. DMI is then

performed to impute missing values for m rounds, where m is predefined. The resulting m

imputed data sets allow quantification of protein turnover rates for all identified proteins,

a task that would have been challenging, and sometimes infeasible, with incomplete data

sets. Kinetic analyses are performed on these data sets separately, leading to M estimates of

protein turnover rates. Finally, all estimates are pooled to generate the final turnover rates,

proteome wide.
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4.3.2 The DMI Pipeline Enhances the Final Determination of Protein Turnover

Rates

Our DMI pipeline is able to fully utilize the information that can be extracted about pro-

teome dynamics from the temporal proteomics data sets. In the previous analysis, peptides

identified at least 4 times were selected to control false discovery rate of protein turnover

quantification. The requirement for a minimal number of time points is to ensure adequate

information for accurate turnover rate estimation. Our DMI pipeline captures a more com-

plete proteome-wide turnover rate in both data sets. Thus, proteins that were previously

quantifiable (¿4 time points) but not present in the full time points also benefit from inclu-

sion of DMI-imputed data for more accurate kinetic analysis. A detailed number of imputed

samples and original samples for both data sets are shown in 4.2.

We evaluated the performance of DMI on imputing missing values in comparison to single

imputation methods (DSI). We developed an approach to introduce missing values by mask-

ing experimentally observed values for peptides’ with a complete time-series. To examine

the temporal aspects of the imputation, we evaluated how well each imputation method can

recover masked values and subsequently estimate turnover rates from the imputed time se-

ries. Across various levels of missingness, DMI consistently outperformed k-nearest neighbor

(KNN) imputation and mean imputation in accurately imputing experimentally observed

A0 values and turnover rates as measured by NRMSE (4.6).

4.3.3 The DMI Pipeline Ensures a Comprehensive View of Protein Turnover

Rates

A detailed number of proteins quantifiable after imputation in each mouse strain under two

conditions is shown in 4.3C. Around 50% improvement of coverage is shown in all strains

under both conditions. With the improved coverage, we have a more comprehensive view of

the proteome dynamics landscape during cardiac hypertrophy pathogenesis.

As previously demonstrated with proteomics data, missing values are correlated with low

abundances of the protein, i.e., proteins with low abundance were prone to contain missing
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values. We investigated whether low abundance also correlates with the missing values in

the protein turnover rate. We further explored this relationship in the context of protein

turnover rates. Specifically, we compared the abundance levels and turnover rates of proteins

that can be quantified without DMI to those that are only quantifiable with DMI (4.3A and

B). A significant difference in both the abundance and turnover rate between these two

groups in all strains and two treatments suggests that the proteins with lower abundance

and higher turnover are prone to be missing in the turnover rate calculation. Thus, DMI

enables proteins with lower expression to be captured, ensuring a more comprehensive view

of proteome wide protein dynamics (4.3B).

4.3.4 The DMI Pipeline Captures a Broad Representation of Biological Pro-

cesses

To investigate how an imputed data set can better capture the comprehensive biological

processes of the proteome, we performed the Reactome Pathway enrichment analysis on

both the protein sets before and after imputation to determine the potential loss of biological

processes if no imputation is performed. There were 199 and 238 biological processes enriched

from the proteins recovered with imputation in health and disease, respectively (4.7). In the

healthy group, biological processes related to localization, autophagy, splicing and so on are

enriched. In the disease group, biological processes related to transportation, splicing, and

autophagy are enriched. While the recovered biological processes in the two groups were

not the same, they share common pathways in terms of high-level processes such as splicing,

localization and autophagy.

4.3.5 The DMI Pipeline Reveals a Dynamic Landscape on Protein Complexes

The turnover rate of individual proteins within protein complexes offers insights into their

stability, regulatory mechanisms, and functional lifespans, enhancing our understanding of

cellular biology[109]. We investigated the turnover rate landscape of multiple heterocomplex

interactors, revealing the dynamic view of protein complexes.
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We first explored the impact of DMI on proteome-wide turnover rates, revealing that

DMI elucidates a detailed proteome turnover landscape (4.4A). While the majority of pro-

teins show relatively consistent turnover rates before and after DMI, we observed increases

and decreases of turnover rates as a result of increased time points imputed by DMI. The

proteins that have lower turnover rates after imputation seem to have a large discrepancy be-

fore and after DMI. This discrepancy likely arises because these protein turnover rates, when

quantified without DMI, are challenging to measure due to the high proportion of missing

values that lead to fewer data points and greater variation across replicates. Subsequently,

we investigated the turnover rates of proteins within heterocomplexes, characterized by the

Complex Portal database. We defined a metric, the standard deviation of turnover rates,

as a measure of the synchronization of turnovers within protein complexes. A lower stan-

dard deviation signifies a more coordinated complex, characterized by similar level protein

turnover rates. Our analysis demonstrated that the synchronization of protein complexes was

significantly greater than that observed for proteins sampled from the proteome, suggesting

a coordinated regulation of turnover within the complexes (4.4B).

The turnover landscape offered by DMI allowed for an understanding of how individual

complex dynamics may be coordinated across experimental groups (4.4C). Importantly, the

ability to assess the dynamics of all protein interactors in certain heterocomplexes is only

made possible by DMI (e.g., CPX-5868, 4921, 3035, 3027). We observed that, in some cases,

DMI quantified turnover rates demonstrate alignment with the quantified turnover rates

obtained without DMI in terms of the synchronization among heterocomplex interactors in

the ISO and CTRL conditions (e.g., CPX-2055, 16).

We also observed DMI quantified turnover to provide insight into the change in com-

plex synchronization between the ISO and CTRL conditions. We zoomed in to analyze a

select number of these complexes where turnover exhibited incoherence in the ISO experi-

mental group, yet suggested coherence in the CTRL group: (1) UBC13-UEV1A ubiquitin-

conjugating enzyme E2 complex; (2) Mitochondrial NIAUFX iron–sulfur cluster (ISC) assem-

bly complex; (3) AP-2 Adaptor complex, alpha1 variant; (4) Laminin-211 complex (4.4D).

We further compared the change in coherence (one way ANOVA). The analysis indicated
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a decrease in coherence across all four complexes, suggesting that mismatches in turnover

rates within complexes critical to cardiac function could play a role in the pathophysiology

of heart failure: (1) The ubiquitin-conjugating enzyme complex plays a key role in the pro-

cess of eliminating damaged and/or misfolded proteins in response to cardiac stress[110];

(2) The Mitochondrial NIAUFX iron–sulfur cluster (ISC) assembly complex is required for

the de novo synthesis of iron–sulfur (Fe–S) clusters within mitochondria. Defects in ISC

biogenesis are associated with disorders of mitochondrial import, export, and translation

and have been linked with cardiomyopathies[111]; (3) AP2, a membrane-bound complex,

interacts with clathrin in the plasma membrane to form clathrin-coated vesicles, controlling

intracellular trafficking in endocytosis and playing a crucial role in autophagy and lysoso-

mal protein degradation[112]; (4) Laminin 211, an extracellular matrix protein, functions to

stabilize the basement membrane and muscle fibers during cardiac contraction[113]. This

analysis underscores the utility of DMI in proteomics, providing preliminary insights into

protein dynamics that merit further investigation.

4.3.6 The DMI Pipeline Recovers Dynamics of Potential Biomarkers

To further demonstrate the capabilities and effectiveness of our Data Multiple Imputation

(DMI) pipeline, we applied our workflow to a human plasma temporal proteomics data set.

Similarly, DMI significantly enhanced the number of proteins that can be quantified in each

subject by an additional 60% (4.5A). This substantial improvement in protein coverage allows

for an improved understanding of the proteome dynamics landscape, thereby broadening the

scope of potential clinical applications.

To illustrate a clinical application, we investigated whether additional DMI recovered

biomarkers can be quantified. A list of biomarkers from MarkerDB was retrieved and com-

pared with the protein list generated with and without the application of DMI. Our analysis

revealed that DMI successfully recovered an additional 2–3 biomarkers per subject on top

of the original 10 biomarkers (4.5B). To assess the potential of the additionally identifiable

biomarkers to impact diagnostic and prognostic assessments, we obtained biomarker–disease
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associations curated from MarkerDB. We observed that certain biomarkers can be highly

specific to particular diseases when outside their normal ranges. However, most biomarkers

can be less specific and indicative of a family of diseases (e.g., C-reactive protein can be

associated with any host of inflammation-related diseases, while human growth hormone

can be linked to growth deficiency or acromegaly). Therefore, the ability of imputation to

capture additional plasma biomarkers has high clinical utility. It can provide additional

corroboration for a specific disease differential, confirm the absence of disease, or indicate

the potential of other disease (4.5C and 4.8). This comprehensive biomarker profile helps

strengthen the overall differential diagnosis and directs the clinician toward further clinical

investigation.

Temporal cardiovascular proteome dynamics studies often suffer from missing data prob-

lems, and it hinders our ability to gain insights from these valuable data resources. In

many cases, mechanisms contributing to missing values are complex and typically stem from

a combination of Missing Completely at Random (MCAR), Missing at Random (MAR),

and Missing Not At Random (MNAR). Therefore, methods that can accommodate various

combinations of missing data patterns are necessary. The DMI method discussed herein is

effective for handling MCAR and MAR data but can also accommodate MNAR patterns

followed by some sensitivity analysis, thus addressing various types of missing data scenarios.

However, it is advisable to select specific imputation methods tailored to the nature of the

missing mechanism when such information is known or strongly assumed.

Our DMI pipeline allows users to adjust the parameters of imputation to meet the de-

mands of their proteomics data analysis in the following aspects: it provides a default regres-

sion model but allows users to choose preferred regression methods in the multiple imputation

process; allows users to specify the minimum samples required for imputation, which depends

on the specific experimental design; allows selection of the number of data sets, m, for multi-

ple imputation, which should be chosen based on the computational resources available and

reliability desired.

As demonstrated in our study, a primary advantage of the DMI pipeline is to better

address uncertainties in handling missing data compared with ad hoc or single imputation
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methods. We showed the benefit of our DMI pipeline for protein turnover rates inference by

applying it to the cardiac temporal data sets.

4.4 Discussion

Missing values is a common issue in MS-based proteomics studies and especially in proteome

dynamics data sets. Our DMI pipeline successfully addressed missing data challenges and

demonstrated its utility on two distinct existing temporal proteomics data set. In brief, the

DMI pipeline captured additional protein turnover rates. These recovered protein dynamics

enable a more detailed view of biological pathways, protein complexes, and plasma biomark-

ers previously obscured, thereby enhancing our understanding of biological insights into the

underlying protein dynamics in cardiovascular diseases. In summary, our DMI pipeline can

expand the scope of proteome characterization in temporal data sets.

Additionally, Pretraining large omics datasets to learn inherent biological patterns has

recently gained traction—particularly in single-cell transcriptomics[65, 114, 115]. We have

followed the development of this direction with enthusiasm. We envision such approaches

can potentially be adapted to proteomics investigations for tasks such as missing value impu-

tation. Despite its potential promise, challenges for proteomic applications remain problem-

atic, including limited data points (typically, each experiment contributes only a single data

point) and batch effects. Unfortunately, implementing a pretraining strategy for missing

value imputation in proteomics is beyond the scope of the current study. We are committed

to explore this intriguing question in our future endeavors.

4.5 Code and data availability

The code of the work is available at:

https://github.com/yuyanislearning/temporal-preteomics-multiple-imputation.git.
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4.7 Figures
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Figure 4.1: Data imputation workflows.

(A) Data Single Imputation (DSI) and Data Multiple Imputation (DMI). In the DSI approach, each missing value (white cell)
in the incomplete data matrix is replaced with a single estimate (yellow cells). Imputed values are treated as observed values
in the imputed data matrix for downstream analysis. In the DMI approach, multiple values are imputed for each missing value
in the incomplete data matrix. Consequently, there are multiple imputed data matrices with the same observed values but
different imputed values (green cells). Analysis of each imputed data matrix is performed separately, and the final estimates are
obtained by pooling the results from multiple analyses. (B) DMI for missing values in Proteome turnover Data set. The DMI
pipeline computed protein turnovers from an incomplete temporal data set (peptide isotope intensities). As data preprocessing,
we included peptides detected at ą2 time points. The missing values were imputed using Fully Conditional Specification (FCS).
DMI generated 10 imputed data sets in which peptide isotope intensity values are imputed at each of the time points (t1 –
tn) when/if the data was missing. Each data set has the same observed values but slightly different imputed values. Kinetic
analysis (25) was performed on each imputed data set independently, and the protein turnover rates were obtained by averaging
the results of multiple analyses.
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Figure 4.2: DMI improves coverage of the proteome turnover rates

Supporting evidence from two independent data sets are presented here. (A) The mouse data set contains 84 samples (6
strains × 2 treatments × 7 time points). The individual proteins are represented in the x-axis in decreasing order of samples,
where their turnover rates were quantifiable without (blue) DMI and with DMI (red). Without DMI, the turnover rate of
3,214 proteins (in dark blue) were quantified. With DMI, the turnover rates of 1,236 (38%) additional individual proteins were
quantified (in light blue), capturing a total of 4,450 protein turnover rates. Only a small fraction of samples (in gray, 2,907
proteins) did not satisfy our minimum requirement for imputation. (B) The human plasma data set consists of 100 samples (10
subjects × 10 time points). Similarly, without DMI, the turnover rates of 515 proteins (in dark blue) were quantified. With
DMI, the turnover rate of 405 (78%) additional individual proteins were quantified (in light blue), capturing a total of 920
protein turnover rates.
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Figure 4.3: Impact of DMI on protein expression and turnover rate

(A) Violin plot shows the protein relative abundance of those with DMI (orange) and those without (blue), indicating that DMI
has a more pronounced impact on proteins of lower abundance. (B) Violin plot shows the protein turnover rate computed from
the data set with or without DMI, illustrating the DMI has a bigger influence on proteins with faster turnover rates. Statistical
significance between groups in both violin plot is determined using the Wilcoxon test (***p-value ă0.001). (C) Bar chart
compares the quantifiable protein turnover rates with and without data imputation across six mouse strains. Data imputation
leads to a 40–50% increase (orange) in the quantifiable turnover rates in each strain.
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Figure 4.4: Impact of DMI on protein complex dynamics

(A) Scatter plot of proteome turnover rates from top to bottom based on the absolute impact of DMI on turnover rate
estimations: enhancement (on the top), agreement (in the middle), reduction (in the lower part), or the assignment of an
imputed value, previously unquantifiable in the absence of DMI. Each row represents a protein, and the rows are organized in a
descending order of the difference between protein turnover rates estimated after and before imputation. Error bars represent
standard error mean (SEM); they are 0 if n ă 2. (B) A violin plot shows a pronounced synchronization of turnover rates
among proteins within complexes, as evidenced by the standard deviation of the turnover rates quantified post-DMI compared
to the broader proteome. “***” indicates a p-value ă0.001. (C) A scatter plot of protein turnover rate within individual
complexes, showing the impact of DMI on assessing the dynamic behavior of proteins within the same complex. A color bar
indicates the protein complex the protein interactors belong to. Detailed examples are given in panel D. (D) A zoom in view
of four protein complexes selected from panel C: UBC13-UEV1A ubiquitin-conjugating enzyme E2 complex; Mitochondrial
NIAUFX iron–sulfur cluster assembly complex; AP-2 Adaptor complex, alpha1 variant; Laminin-211 complex, where DMI
provides insight into the synchronized protein turnover behavior in CTRL which was disrupted in ISO.
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Figure 4.5: DMI pipeline enhances protein quantification in human samples

The bar chart presents a comparison of protein turnover rates quantified with and without Data Imputation (DMI) across 10
human subjects when examining both the plasma proteome (A) and the biomarkers it carries (B). The application of data
imputation results in a significant increase in quantifiable protein turnover rates, with a 60–70% improvement observed in the
proteome and a 10% enhancement noted in individual biomarkers. (C) We elucidate biomarker–disease associations in the data
set gained with DMI, it reveals three patterns: (1) new disease associations (e.g., HS8: C-reactive protein → Hypertension); (2)
new evidence supporting existing disease association (e.g., HS3: Lysozyme C and IL-2 receptor subunit alpha → Pulmonary
Sarcoidosis); and (3) adding to the list of markers pre-DMI (e.g., HS3: Ferritin or HS8: Fibrinogen).
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4.8 Supplementary materials

Figure 4.6: DMI improves coverage of the proteome turnover rates

To simulate the different levels of missingness, we have created five masked scenarios in silico, where 1 time point and up to 5
time points out of the complete 7 time points were randomly masked. On each of these masked datasets (scenarios), we applied
three imputation methods to recover the datasets: 1) DMI; 2) Single Imputation using Mean (DSI); and 3) Single Imputation
using K-nearest neighbor (DSI). Each masked dataset undergone the DSI workflow produced one imputed dataset, resulting in
a total of 5 imputed datasets. Each masked dataset that underwent the DMI workflow produced 10 imputed datasets for each
of the masked configurations, resulting in a total of 50 imputed datasets. The imputed A0 values were compared against the
ground-truth A0 values to evaluate the ability of imputation methods that can faithfully recover the original data. Subsequently,
we conducted kinetic analysis to quantify the turnover rates on each masked dataset for each imputation method independently.
The turnover rate estimated using imputed A0 time series were compared against the ones using completely observed A0 time
series to evaluate the ability of imputation methods to capture the temporal dependencies among values. The accuracy of the
imputation methods was quantified using the normalized root mean square error (NRMSE). As illustrated in the figure, DMI
(blue) consistently demonstrates superior performance in recovering missing data, evidenced by the lower Normalized Root
Mean Square Error (NRMSE) values and narrower Standard Error (SE) range in comparison to DSI methods in either single
time point level (A0 in panel A) or time series level (turnover rate in panel B). In addition, DMI is more resilient to higher levels
of missingness compared to DSI, as its NRMSE and SE are less affected with the increasing number of masked data points.
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Figure 4.7: DMI enhances protein turnover rate detection in biological pathways

The DMI pipeline leads to enhanced protein turnover rate detection in multiple biological pathways, but it has limited impact
on others. For example, in the “Protein Metabolism” pathway, DMI captures the turnover rates of additional 144 proteins (in
orange) on top of the 568 proteins (in blue) without imputation. A “*” sign indicates a significant enrichment of the pathway
with the recovered proteins based on pathway enrichment analysis.
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Figure 4.8: DMI recovers dynamics of potential biomarkers

Analysis of biomarker-disease associations across subjects reveals that DMI-imputed biomarkers either strengthen existing
disease associations or provide evidence for new ones. A total of 30 additional biomarkers are discovered, 2 of which are new
biomarkers only discovered with DMI across 10 subjects. This leads to a total of 116 additional biomarker-disease associations,
7 of which are new biomarker-disease associations that were not detected pre-imputation.
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CHAPTER 5

Summary and future directions

In this article, we discussed three topics regarding AI/ML applications in proteomics and

their corresponding applications. In this section, I summarize the three computational meth-

ods that I developed and discuss some potential future directions.

5.1 MIND-S: A Deep-Learning Prediction Model for Elucidating

Protein Post-Translational Modifications in Human Diseases

In Chapter 2, we proposed MIND-S, a deep learning model for predicting protein post-

translational modifications (PTMs) with high accuracy, efficiency, and interpretability. MIND-

S leverages information from protein sequences and structures to predict potential PTM

locations for a total of 26 different PTM types.

We have three future directions for this project. Our ablation study indicates that the

structure module in MIND-S can be further enhanced to fully leverage the information

retained in protein structures. We plan to incorporate 3D structural data by considering

residual sidechain directions, secondary structure elements, and local 3D conformations, in

addition to spatial proximity.

Another direction will be to further investigate the proportion of known PTM motif with

the saliency-weighted positional weight matrix. Exploring the proportion of known motifs

within the saliency patterns generated by MIND-S could serve as a validation of our model

interpretability. Furthermore, it could potentially be a new approach for novel PTM motif

discovery.

A remaining challenge is predicting PTMs in a condition-specific manner. PTMs have
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been shown to differ across cell types and disease states in human samples, due to intrinsic

factors that affect the modification process within a given cell or tissue type. As such,

a condition-specific PTM prediction model is essential for accurately mapping the PTM

landscape in biological systems. Although MIND-S can statically predict PTMs or identify

potential target sites, it cannot yet determine whether a PTM will occur under a specific

cellular condition. Incorporating context-specific information, such as gene expression data,

may enhance these predictions and lead to more accurate, condition-specific outcomes.

5.2 Systematic Evaluation and Integration of Multi-Modal Gene

Embeddings

In Chapter 3, we systematically investigated the overlap, measured by SVCCA, a method

calculate the maximized correlation in a transformed space, between different gene embed-

dings and uncovered the diversity inherent in these representations. We further integrated

gene embeddings to create a more holistic view of genes and proteins, thereby benefiting

downstream tasks in the proteomics domain.

For future directions, it will be valuable to incorporate additional gene, protein, and

RNA embeddings to further enrich the representation. We plan to extend our integration

framework to include state-of-the-art embeddings, thereby capturing a more comprehensive

picture of biological systems. This expanded representation will enable us to explore how

different embeddings complement one another.

Given the model’s efficiency, it is feasible to develop a user-friendly service that generates

customized embeddings. Such a service would allow researchers to select specific represen-

tations tailored to their preferences or particular downstream tasks, with the flexibility to

adjust parameters in real time. Additionally, incorporating condition-specific information,

such as tissue-specific gene expression profiles or environmental factors, could further refine

these embeddings to support more targeted predictions.
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5.3 Missing Values in Longitudinal Proteome Dynamics Studies:

Making a Case for Data Multiple Imputation

In Chapter 4, we proposed a multiple imputation pipeline for temporal proteomics, specif-

ically designed to estimate proteome turnover rates. Our method demonstrated superior

performance in recovering missing data, thereby improving the overall proteome coverage

and enabling a more detailed understanding of protein dynamics.

For future directions, we aim to adapt and extend our pipeline to accommodate a wider

variety of data formats and protein abundance measurements. One area of focus will be

enhancing the pipeline’s flexibility to integrate data from different experimental platforms,

such as label-free quantification, SILAC, and TMT, as well as other emerging technologies.

This will not only increase the robustness of our approach but also ensure its applicability

across diverse experimental setups. Additionally, we plan to incorporate advanced statistical

and machine learning techniques in the DMI to refine the imputation process, which could

further improve the accuracy and reliability of proteome turnover estimations. By enabling

more precise modeling of protein dynamics, these enhancements will pave the way for deeper

insights into cellular processes, disease mechanisms, and potential therapeutic targets.

We will consider adapting a different schema that leveraging the existing proteomics

dataset to boost the imputation of incoming proteomics dataset. Potentially, a model that

pretrained on large corpus of proteomics datasets can learn inherent biological patterns

among proteins and be used to impute missing data leveraging the learnt relationship. We

are committed to explore this intriguing question in our future endeavors.
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