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Systems/Circuits

Timescales of Local and Cross-Area Interactions during
Neuroprosthetic Learning

Katherine Derosier,1,2,3p Tess L. Veuthey,1,2,3,4p and Karunesh Ganguly2,3
1Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, 2Neurology and Rehabilitation Service,
San Francisco Veterans Affairs Medical Center, San Francisco, California 94158, 3Department of Neurology, University of California San Francisco,
San Francisco, California 94158, and 4Medical Scientist Training Program, University of California San Francisco, San Francisco, California 94158

How does the brain integrate signals with different timescales to drive purposeful actions? Brain-machine interfaces (BMIs) offer a
powerful tool to causally test how distributed neural networks achieve specific neural patterns. During neuroprosthetic learning, actua-
tor movements are causally linked to primary motor cortex (M1) neurons, i.e., “direct” neurons that project to the decoder and whose
firing is required to successfully perform the task. However, it is unknown how such direct M1 neurons interact with both “indirect”
local (in M1 but not part of the decoder) and across area neural populations (e.g., in premotor cortex/M2), all of which are embedded
in complex biological recurrent networks. Here, we trained male rats to perform a M1-BMI task and simultaneously recorded the ac-
tivity of indirect neurons in both M2 and M1. We found that both M2 and M1 indirect neuron populations could be used to predict
the activity of the direct neurons (i.e., “BMI-potent activity”). Interestingly, compared with M1 indirect activity, M2 neural activity
was correlated with BMI-potent activity across a longer set of time lags, and the timescale of population activity patterns evolved
more slowly. M2 units also predicted the activity of both M1 direct and indirect neural populations, suggesting that M2 population
dynamics provide a continuous modulatory influence on M1 activity as a whole, rather than a moment-by-moment influence solely
on neurons most relevant to a task. Together, our results indicate that longer timescale M2 activity provides modulatory influence
over extended time lags on shorter-timescale control signals in M1.
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Significance Statement

A central question in the study of motor control is whether primary motor cortex (M1) and premotor cortex (M2) interact
through task-specific subpopulations of neurons, or whether tasks engage broader correlated networks. Brain-machine inter-
faces (BMIs) are powerful tools to study cross-area interactions. Here, we performed simultaneous recordings of M1 and M2
in a BMI task using a subpopulation of M1 neurons (direct neurons). We found that activity outside of direct neurons in M1
and M2 was predictive of M1-BMI task activity, and that M2 activity evolved at slower timescales than M1. These findings sug-
gest that M2 provides a continuous modulatory influence on M1 as a whole, supporting a model of interactions through broad
correlated networks rather than task-specific neural subpopulations.

Introduction
Mammalian cortex is characterized by dense local and sparse
cross-area connections, suggesting a vital role for dynamic inter-
actions between local and cross-area processes (Sporns et al.,
2004). Take, for example, premotor (M2) and motor cortex (pri-
mary motor cortex; M1): they have connectivity both within and
across areas, and both are known to play an important role in
motor learning (Hikosaka et al., 2002; Ganguly and Carmena,
2009; Ganguly et al., 2011; Peters et al., 2014; Cao et al., 2015;
Kawai et al., 2015; Athalye et al., 2017; Makino et al., 2017).
While there are known changes in activity patterns localized to
both M2 (Cao et al., 2015; Makino et al., 2017) and M1 (Peters et
al., 2014; Ramanathan et al., 2015; Lemke et al., 2019) with learn-
ing, there is also greater task-related cross-area coordination
with learning (Veuthey et al., 2020). Together, this supports a
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hierarchical “top-down” influence of M2 on M1 during learning
and adaptation (Hikosaka et al., 2002; Siniscalchi et al., 2016;
Omlor et al., 2019). However, it is also well known that both M2
and M1 have projections to subcortical and spinal regions (Nudo
and Masterton, 1990; Dum and Strick, 2002; Wang et al., 2017).
Thus, with learning, it is difficult to tease apart whether changes
in interactions between M2 and M1 are because of alterations in
cross-area communication, or instead because of their roles coor-
dinating the upper limb (Whishaw and Pellis, 1990).

How then might we isolate M1 and M2’s roles in movement
control from M2’s top-down influence on M1? Brain-machine
interfaces (BMIs) offer a powerful tool to causally test how net-
works change with learning of neuroprosthetic skills (Taylor et
al., 2002; Ganguly et al., 2011; Gulati et al., 2014, 2017; Sadtler et
al., 2014; Kim et al., 2019). During “brain control,” actuator
movements are causally linked to an ensemble of neurons in M1,
“direct neurons” (Taylor et al., 2002). Such direct neurons
change their firing properties during neuroprosthetic learning
(Ganguly et al., 2011; Arduin et al., 2013; Gulati et al., 2014,
2017; Athalye et al., 2017, 2018); in contrast, the vast majority of
neurons in the larger M1 network, “indirect neurons,” generally
become less task coupled (Fetz, 2007; Ganguly et al., 2011;
Koralek et al., 2012, 2013; Arduin et al., 2013; Clancy et al., 2014;
Gulati et al., 2017; Silversmith et al., 2021; but see Liu and
Schieber, 2020). It remains unknown how neural activity in M2,
i.e., indirect neurons which shape M1, plays a role in neuropros-
thetic learning. Here, we hypothesized that M2 neurons will
demonstrate task-related firing during neuroprosthetic learning.
We also predicted that analyzing interactions between M2 and
M1 can reveal timescales and modes of interactions within and
across structures during learning.

Here, we use a BMI paradigm in which a small selection of
M1-direct neurons controlled a simple 1-D actuator (Koralek et
al., 2012; Gulati et al., 2014, 2017; Kim et al., 2019). We addition-
ally record neural activity from indirect neurons in both M1 and
M2. First, we found that M2 neurons are modulated by M1-BMI
learning, reinforcing M2’s indirect involvement in downstream
M1-activity. Intriguingly, M2 population activity predicted M1-
direct neural activity at many time lags, suggesting continuous
rather than intermittent influence on M1. This diversity of time
lags was also present when predicting M1-indirect activity from
M2, indicating that M2 interacts with M1 as a whole for BMI
tasks, rather than specifically modulating direct neurons as a
task-relevant group. However, this diversity of time lags was not
the case for M1-indirect to M1-direct predictions, which instead
were optimal at short time lags, indicating a narrower temporal
relationship within M1 than between M1 and M2. This differ-
ence in time lags may be inherent to each population, as M2 ac-
tivity patterns evolved slower than M1-indirect patterns, neither
of which directly controlled the actuator. Together, our results
support a framework for population-based cross-area interac-
tions in which M2 activity provides a modulatory influence that
evolves at longer timescales.

Materials and Methods
Animal care
All procedures were in accordance with protocols approved by the
Institutional Animal Care and Use Committee at the San Francisco
Veterans Affairs Medical Center. Adult male Long–Evans rats (n=4, 250–
400 g; Charles River Laboratories) were housed in a 12/12 h light/dark cycle.
All experiments were done during the light cycles. Rats were housed in
groups of two animals before surgery and individually after surgery.

Surgeries
All surgical procedures were performed using a sterile technique under
2–4% isoflurane. Surgery involved cleaning and exposure of the skull,
preparation of the skull surface (using cyanoacrylate) and then implanta-
tion of the skull screws for overall headstage stability. Reference screws
were implanted posterior to l and ipsilateral to the neural recordings.
Craniotomy and durectomy were performed, followed by implantation
of the neural probes. Postoperative recovery regimen included the
administration of 0.02mg kg�1 buprenorphine for 2 d, and 0.2mg kg�1

meloxicam, 0.5mg kg�1 dexamethasone and 15mg kg�1 trimethoprim
sulfadiazine for 5 d. All animals were allowed to recover for oneweek
before further behavioral training.

Electrode array and cannula implants
Long–Evans hooded rats were implanted with two 32-channel tungsten
wire probes (TDT or Innovative Neurophysiology), one each in the fore-
limb regions for M1 (Neafsey et al., 1986; Ramanathan et al., 2015, 2018;
Lemke et al., 2019; 10.5 AP, 13.5 ML, �1.5 DV) and M2 (Neafsey et
al., 1986; Murakami et al., 2014; 14.0–4.5 AP, 11.5 ML, �1.5 DV).
Subject-specific implantation sites were not based on motor mapping.
However, a subset of rats also performed reaching tasks and had robust
activation during reaching (Veuthey et al., 2020). One rat (T391) had a
cannula attached to the lateral side of the M2 electrode array before sur-
gery for use in a different experiment (Veuthey et al., 2020).

General BMI paradigm
Rats were trained using an automated behavior box, with components
controlled by MATLAB R2015a and an Arduino running the Adafruit
Motor Library V1. Within the box, rats were unrestrained. Neural data
were recorded and sorted online using software from Tucker Davis
Technologies, either OpenEx or Synapse. Spike counts from online sort-
ing were imported into MATLAB and used to control the feedback stim-
uli (for details, below, BMI control). Trials started with an auditory cue
and the opening of the plastic gate covering a slot in the back of the
behavior box. When rats achieved the neural firing rate target, success
was indicated with an auditory cue, and water reward was delivered via a
metal spout through the slot. If rats failed to achieve the target in the set
time, failure was indicated with an auditory cue and the closing of the
gate, followed by a timeout period. The maximum trial length and the
timeout period following failures were both manipulated over the course
of the experiments to encourage learning, and ranged from 10 to 20 and
5 to 10 s, respectively.

BMI control
The spout BMI paradigm was used to train n= 4 rat. In this paradigm,
feedback about progress to the firing rate target was given via the move-
ment of the water spout used for reward. A total of 4–8 direct units were
chosen based on having good signal-to-noise and neither unusually high
nor unusually low firing rates. Of the direct units, 2–4 units were arbitra-
rily assigned to the “positive pool,” and 2–4 units were arbitrarily
assigned to the “negative pool.” The same channels were used for all ses-
sions, but we did not directly test for unit similarity across days. At the
beginning of each session, a 5–30min baseline recording was taken. and
used to fit mean firing rates for each unit. During the task, for every 100-
ms bin, direct unit firing rates were computed, mean subtracted, and
summed within pools. For one rat, the “neural state” was computed as
s = g � (p – n), where p is the firing rate of the positive pool, n is the fir-
ing rate of the negative pool, and g is an experimenter-controlled gain
parameter. For three rats, g distributions were fitted to the histogram of
firing rate differences using the MATLAB function fitdist. During the
task, for every 100-ms bin, firing rates were summed within the positive
and negative pools, and the difference between the two pools was com-
puted. This difference was fed into the cumulative distribution function
of the baseline distribution to obtain the neural state. The neural state
was smoothed by averaging it with its previous value, and then used to
control the position of the water spout, such that increasing the differ-
ence between positive and negative pools moved the spout toward the
rat. Once the neural state crossed a threshold value, the trial was consid-
ered a success.
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Three rats received visual feedback on their performance. In this par-
adigm, feedback about progress to the firing rate target was given via the
movement of both a visual cue on a computer monitor placed outside
the behavior box and of the water spout used for reward. First, a com-
puter monitor outside the behavior box displayed a circular “cursor”
that moved along a line toward a stationary “target” circle. The position
of the cursor along the line was a direct readout of neural state, moving
from the top left to the bottom right of the screen (i.e., closer to the rat)
as neural state increased.

Electrophysiology data collection
We recorded extracellular neural activity using tungsten microwire elec-
trode arrays (MEAs; n=4 rats, TDT or Innovative Neurophysiology).
We recorded spike and LFP activity using a 128-channel TDT–RZ2 sys-
tem (TDT). Spike data were sampled at 24,414Hz. Analog headstages
with a unity gain and high impedance (;1 GV) were used. Snippets of
data that crossed a high signal-to-noise threshold (four standard devia-
tions away from the mean) were time-stamped as events, and waveforms
for each event were peak aligned. For BMI control, spikes were sorted
online using either TDT OpenEx (n= 1) or TDT Synapse (n= 3) soft-
ware. MEA recordings were sorted offline using a density-based cluster-
ing algorithm (Chung et al., 2017). Clusters interpreted to be noise were
discarded, but multiunits were kept for analysis. Trial-related time-
stamps (i.e., trial onset, trial completion) were sent to the RZ2 analog
input channel using an Arduino digital board and synchronized to neu-
ral data.

The pool of M1 direct neurons ranged from four to eight neurons.
The M1 indirect pool contained 23 units 610 (SD), and the M2 pool
contained 29 units69 (SD).

Circular shuffle test for single unit modulation
A circular shuffle test was used to determine whether single units were
significantly task-modulated. First, the unit’s true perievent time histo-
gram (PETH) was calculated by aligning data to the end of successful tri-
als and binning at 15ms. Then, the PETH was given a modulation score
by calculating its difference from a flat mean using the MATLAB func-
tion immse. Then, for 105 repetitions, trials were independently ran-
domly circularly shuffled, and a shuffled PETH and modulation score
were calculated. A unit was considered significantly task-modulated if its
true modulation score exceeded the 95th percentile of shuffled modula-
tion scores.

M1 BMI-potent space
M1 BMI-potent activity was reconstructed from offline-sorted data by
binning the data according to online timestamps and identifying the
units on M1 direct channels that were most correlated with the recorded
online firing rates. Once the offline-sorted M1 direct units had been
identified, neural data could be binned at any binwidth, and M1 BMI-
potent activity could be computed as the difference between summed
M1d1 activity and summed M1d– activity and used as the response vari-
able in the generalized linear models (GLMs).

GLMs
Regression was performed using GLMs fitted with the MATLAB func-
tion fitglm. Predictors were binned firing rates of either all M2 units or
all M1 indirect units, and the response variable was either M1 BMI-
potent space activity (described above), or surrogate M1 indirect activity
(for GLM-2i models, see below). In all cases, each predictor unit was rep-
resented multiple times, with data shifted to include all time lags from
�0.2 to 10.2 s relative to the response variable. For the response vari-
able, data used was the final 2 s of all trials of at least 2-s duration; for the
predictors, the incorporation of time lags meant that data between 2.2 s
before the end of the trial to 0.2 s after the end of the trial was used.
Models were fit to data binned at 15, 25, 35, 50, and 100ms.
Crossvalidated R2 values were computed for all binwidth models, and
weight structures were qualitatively similar across binwidths. Statistics
were performed on 25-ms models. In the case of GLM-2i models, a “sur-
rogate BMI-potent space” was created from M1 indirect activity by ran-
domly selecting matched numbers of indirect units to stand in for the

true direct units. The randomly chosen indirect units were summed
within pools and the difference between the pools was used as the
response variable. This process was repeated for 50 choices of indirect
units per dataset.

For each model, a crossvalidated R2 was computed and used as a
metric of how well the model generalized to held out data. The full data-
set was randomly partitioned into 10 equal folds (ignoring trial structure,
i.e., timepoints from the same trial could be assigned to different folds).
Then, ten different times, 1-fold was assigned to be the test data and the
other nine to be the training data. GLM models were fit to the training
dataset. The test data were then projected onto the training model, and
R2 values were computed between the true response variable and the
model output. The R2 values reported are the average across all 10 com-
binations of testing/training data.

Population correlations
Population correlations were computed for either all M2 or all M1 indi-
rect units. Neural data from the given population was binned at 50ms,
and the set of firing rates at a given time bin was considered a population
vector. For all successful trials of at least 2-s duration, pairwise correla-
tions were computed between population vectors for all time bins from
–2 to 0 s (relative to success) using the MATLAB function corrcoef. The
results were averaged across all correct trials of at least 2-s duration and
all datasets.

Statistical analysis
Statistical tests were done using bootstrapping and permutation tests.
Unless otherwise specified, simulations had 105 repetitions, and the sig-
nificance threshold was set at a = 0.05, meaning that tests were signifi-
cant when the true value was greater than the 95th percentile of the
reference distribution.

To calculate success rate across animals, the success rate from the last
1/3 of the session (late) was subtracted from the success rate from the
first 1/3 of the session (early) for each dataset and averaged across data-
sets. This difference between success rates was compared with a boot-
strap distribution of differences with the early and late success rates
shuffled between categories.

To determine whether GLMs had significant predictive power, their
crossvalidated R2 (described above) was compared with a reference dis-
tribution of crossvalidated R2 values for models fitted to trial-shuffled
data. Shuffling the trials in the response variable before fitting the models
created a control dataset with equivalent firing rates and the same char-
acteristic pattern of neural state increasing at the end of successful trials,
but broke true moment-by-moment correlations. Trial-shuffling was
performed for 25-ms models only. A total of 103 shuffles were per-
formed. Models were considered to have significant predictive power if
the true R2 exceeded the 95th percentile of the reference distribution,
which was the case for all seven datasets.

To determine whether the distribution of timelags that had the larg-
est magnitude GLM weight (tmax) were significantly nonuniform, the
tmax histograms were compared with surrogates drawn from a uniform
distribution as follows: first, the probability-normalized tmax histogram
was considered to be the empirical distribution, and a theoretical discrete
uniform distribution was calculated as the mean value of the empirical
distribution. The difference between the empirical and theoretical distri-
butions was computed using the MATLAB function immse. Then, for
each bootstrap repetition, a surrogate set of tmax values was drawn from
a uniform distribution using the MATLAB function datasample, and the
difference from the theoretical distribution was calculated in the same
manner to create the reference distribution.

To determine whether the GLM-2d models had significantly differ-
ent R2 values from the GLM-2i models, permutation tests were per-
formed separately on each dataset. First, for each dataset, the true
difference between the GLM-2d R2 value and the mean GLM-2i R2 value
was calculated. Then the true GLM-2d R2 value was pooled with the 50
GLM-2i R2 values (from different choices of indirect units, see above,
GLMs), resulting in a set of 51 R2 values. Then, for each permutation,
one of the R2 values was chosen to stand in for the GLM-2d R2 value,
and the difference between that and the mean of the remaining 50 R2
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values was calculated to create the reference distribution. By this metric, the
GLM-2d R2 values were not significantly different from the GLM-id R2 val-
ues for six of the seven datasets; for the remaining dataset the GLM-2d R2

value was significantly higher than the mean GLM-id R2 value.
To determine whether the GLM-2d models had significantly lower

R2 values from the GLM-id models, a permutation test was used. First,
the mean GLM-2d and GLM-id R2 values were calculated across datasets,
and the true difference between themwas computed. Then, for each permu-
tation, the GLM-2d and GLM-id R2 values were randomly swapped (or
not) with 50% probability, and the difference in means between the two
groups was calculated to create the reference distribution.

To determine whether M2 single units had a significantly wider auto-
correlation function thanM1 indirect units, a permutation test was used.
First, the autocorrelation of eachM2 andM1 indirect unit was computed
using the MATLAB function xcorr, the width-at-half-max was calculated
for each autocorrelation, and the true difference in mean values between
M2 and M1 indirect was calculated. Then, for each permutation, units
were randomly assigned to two groups, matched in size to the true M2
and M1 indirect populations, and the difference in mean autocorrelation
width between the two groups was calculated to create the reference
distribution.

To determine whether M2 population activity was more correlated
across time than M1 indirect population activity, a permutation test was
used. First, M2 and M1 indirect population correlations were computed as
described above. Then, the mean M2 and M1 indirect population correla-
tions was taken across all time bin pairs, and the true difference between the
two means was calculated. Then, for each permutation, correlation values
were randomly swapped between M2 and M1 and the difference between
the mean values was calculated to create the reference distribution.

Data sharing
The datasets generated and analyzed in the current study are available
from the corresponding author on reasonable request.

Results
M2 units are modulated by a
simple M1 BMI task
We recorded simultaneously from
both M1 and M2 in rats learning a
simple linear BMI task (Fig. 1A,B;
Koralek et al., 2012; Gulati et al.,
2014, 2017; Athalye et al., 2018; Kim
et al., 2019). In each recording ses-
sion, a subset of M1 neurons were
chosen to drive the decoder (M1
direct, or M1d, units). M1 neurons
that were excluded from the decoder
were considered indirect (M1i)
units. The M1 direct units were split
into two groups: the positive pool
(M1d1) and the negative pool
(M1d–), each consisting of one to
four arbitrarily selected units (Fig.
1B). At each timestep during the
experiments, online firing rates were
computed for all of the M1 direct
units. Firing rates were summed
within the two pools, and then the
summed negative pool firing rate
was subtracted from the positive
pool to obtain the neural state used
to drive the BMI. Neural state values
were compared with a baseline dis-
tribution, and a trial was successful
when the neural state exceeded a
target threshold (see Materials and
Methods). Therefore, rats were re-
warded when they increase the dif-

ference in firing rate between the positive and negative pools.
Feedback was given via changes in the angular position of a
waterspout (n=4 rats; Fig. 1A). Water reward was delivered on
successful task completion; trials that were not completed within
15 s (n=1 rat) or 10 s (n=3 rats) were considered failures. Rats
were generally able to learn the task over the course of 100–200
trials, as indicated by increased success rate (Fig. 1C,D).

First, we asked whether M2 units and M1 indirect units were
task modulated. Although these neurons do not directly drive
the BMI decoder (Fig. 2A), it is possible that they directly affect
the M1 direct units. We computed PETHs for all offline-sorted
units relative to the end of successful trials, and used a circular
shuffle modulation test to determine which units were signifi-
cantly modulated. We found that 31.68% of M2 units and
36.02% of M1 indirect units were significantly modulated, com-
pared with 70.83% of offline-sorted units from channels that had
contained an online-sorted direct unit. Significantly task modu-
lated units are shown in Figure 2B,C. This indicates that during
this relatively early stage of BMI training, a large portion of
recorded M1 and M2 neurons were involved in rats’ attempts to
perform the BMI task, although only a few neurons were directly
causal to the BMI.

M2 population activity predicts M1 BMI-potent activity at
diverse time lags
Although we found that many M2 neurons were significantly
task-modulated, it is not necessarily the case that their activity
pattern is related to BMI control: an M2 neuron could have

Figure 1. Learning the BMI task. A, Experimental setup (not to scale). Rats were allowed to move freely inside a clear plastic
behavior box during the task. Online feedback about neural state was provided via the angular position of the waterspout (all n= 4
rats, see Materials and Methods). When the target neural state was reached, the waterspout moved within reach and a water reward
was given. Auditory cues marked trial start, reward, or task timeout. B, left, Only M1 neurons were used in the BMI decoder. Neural
activity from M2 was recorded but was not directly decoded. Right, Subsets of M1 neurons were arbitrarily chosen as direct (green),
used to drive BMI decoder, while rest were indirect units (purple). One to four direct units were assigned to the positive pool (d1)
and one to four direct units were assigned to the negative pool (d–). C, Example learning curve. Gray points indicate actual trial dura-
tion. Dashed gray line shows running average trial duration (smoothed over 30 trials). Light brown boxes at the top of the plot indi-
cate successful trials. Brown line shows running average success rate (smoothed over 30 trials). D, Trials early in the session were
significantly more successful than trials late (early: first 1/3 trials, 37.30 6 5% SEM; late: last 1/3 trials, 64.87 6 6% SEM success;
p, 0.01). Error bars represent SE (n= 7).
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a stereotyped activity pattern without being correlated with
moment-by-moment BMI activity. To address this ques-
tion, we used GLMs to perform regression predicting M1
BMI-potent activity from M2 population activity (GLM-2d
models; Fig. 3A). As the goal of this analysis was to investi-
gate patterns of simultaneously-recorded population activ-
ity in M2 and M1, we included single units both with and
without significant trial-averaged PETH task modulation.
First, M1 BMI-potent activity was reconstructed, re-binned
at 25 ms, and used as the response variable in the GLMs.
The predictors were binned M2 firing rates, where each
neuron appeared more than once with variable time lags
ranging from �0.2 to 10.2 s relative to the M1 BMI-potent
activity. Model significance was computed for 25-ms mod-
els by comparison to a reference distribution of models fit
to trial-shuffled data. By this metric, M2 population activity
had significant predictive power for moment-by-moment
M1 BMI-potent activity in all datasets (Fig. 4B; see
Materials and Methods).

Next, we examined the temporal structure of the regres-
sion weights. Across the population, different M2 units had
their largest magnitude weight at a wide range of time lags
(Fig. 3C). Additionally, many single M2 units had large
regression weights at multiple time lags, often including
both positive and negative weights (Fig. 3D). Across all
datasets, the distribution of time lags at which any neuron
had its largest magnitude regression weight was not signifi-
cantly different from a uniform distribution (Fig. 3E; boot-
strap, p = 0.2435; for details, see Materials and Methods).
These results indicate that M2 and M1 interactions occur at
a broad range of time lags.

M1 direct units do not have a privileged functional
relationship with M2
Next, we wondered whether M2 activity was particularly predic-
tive of M1 direct unit activity, or whether it had similar predic-
tive power for any arbitrarily chosen subset of M1 units. To
address this, we randomly chose M1 indirect units to use as “sur-
rogate direct” units, matched in number to the M1 direct units
from each dataset, and built GLMs to predict their activity as
before (GLM-2i models). For each dataset, we repeated this
process with 50 different sets of M1 indirect units. As with the
GLM-2d models, we found that many M2 units had large regres-
sion weights at multiple time lags, with both positive and negative
weights (Fig. 4C). The distribution of time lags for maximally pre-
dictive weights was also consistent with a uniform distribution
(Fig. 4D,E; bootstrap, p=0.491). For the 25-ms models, we also
compared crossvalidated R2 values, and found that the R2 values
for the GLM-2d models were within the range of R2 values for the
GLM-2i models (Fig. 4B), and were not significantly different
from the mean GLM-2i R2 models for six of seven datasets (per-
mutation tests, p=0.1164, p=0.1568, p=0.8609, p=0.9609,
p=0.3701, p=0.6454; remaining dataset, p=0.0192). This suggests
that, at least at this early stage of learning, the relationship between
M2 and M1 is quite similar for both M1 direct and indirect neural
populations.

M2 units are distinct fromM1 indirect units
Do M2 and M1 indirect units have similar roles? M2 and M1 are
heavily interconnected, both include task-modulated indirect
units, and are jointly involved in natural movements. To test this
idea, we built GLMs to predict M1 BMI-potent activity from M1

Figure 2. Indirect neurons in both M2 and M1 are modulated during BMI control. A, Illustration of the relationship between recorded neurons and the BMI decoder. B, Rasters and PETHs
for example M2 (top), M1i (middle), and M1d (bottom) units. Data are aligned to the end of successful trials (red bar). Gray shaded region represents a circular shuffle test. C, PETH showing av-
erage activity patterns from significantly modulated units in all rats. Units are grouped as: M2, M1i, M1d1, M1d–. Within each group, units are ordered by the time of their peak firing rate.
Time is relative to the end of successful trials. Color indicates normalized firing rate (n= 387 units from 7 BMI sessions in 4 animals).
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indirect population activity (GLM-id models). Unlike the GLM-2d
and GLM-2i models, predictor units in GLM-id models tended to
have large weights for small time lags (Fig. 4F), and simultaneous
data (t = 0) was most commonly given the largest magnitude
weight (Fig. 4G,H). In contrast to the GLM-2d and GLM-2i models,
the distribution of time lags with the largest magnitude weights was
significantly nonuniform (bootstrap, p, 0.00001). Additionally, the
GLM-id models had higher crossvalidated R2 values than the GLM-
2d models (Fig. 4B; permutation test, p=0.0079). Together, this
shows that there is a meaningful difference between M2 and M1
indirect units’ respective functional relationships with M1 direct
units. Specifically, M1 indirect units tend to be more correlated with
M1 BMI-potent activity than M2 units, and at shorter time lags;
reflecting their belonging to the same local population.

M2 population activity evolves more slowly than M1 indirect
activity
Finally, we examined the timescales at which M2 and M1 indi-
rect populations activities evolved immediately before successful

trial completion. We observed that M2 population activity
included broad modulation near the end of successful trials (Fig.
2B,C), and hypothesized that M2 population activity was chang-
ing at a slower timescale than M1 indirect population activity.
We tested this hypothesis in two ways. First, we computed single
unit autocorrelation functions, and found that the average
width-at-half-max was significantly wider for M2 units than for
M1 indirect units (permutation test, p, 0.00001). Second, we
binned neural data at 50ms and correlated M2 or M1i popula-
tion vectors with their respective population vectors during the
final 2 s of correct trials. We found that the mean correlation
coefficient was significantly higher for M2 than M1i (Fig. 5A–D;
permutation test, p, 0.00001), supporting a model in which M2
population activity patterns evolve at a longer timescale than M1
population activity patterns.

Discussion
In this study, we found differential relationships between M1
direct units and M1 indirect versus M2 units during M1 BMI

Figure 3. M2 neural activity predicts M1 BMI-potent neural activity at multiple time lags. A, GLM-2d indicates models which predict M1 direct activity from M2 activity. In color are regions
and interactions analyzed in this figure. In gray are regions and interactions analyzed in subsequent figures. B, Regression was used to identify a M2 neural population space that predicted
BMI-potent M1 activity. GLMs were fit to predict the M1 BMI neural state from M2 population activity; multiple time lagged copies of each M2 unit were used as predictors. C, Distribution of
regression weight magnitude in one example session. Top, For each M2 unit, regression weights were assigned for a variety of time lags. To emphasize the time of the maximum absolute
weight of each neuron, values here are normalized to each neuron’s maximum value, and the absolute value of those weights is indicated by color. Units are sorted according to the time of
the largest magnitude weight. Tick marks on the right edge indicate the units shown in D. Bottom, Histogram of the t values with the largest magnitude weight for this dataset. D, Example
non-normalized weights for two M2 neurons from one example session (neural data binned at 25ms). Height of green lines indicates weights for example neurons at different time lags (t )
relative to the M1 BMI-potent activity, with negative t values meaning that M2 leads. E, Histogram of time lags that had the largest magnitude regression weight for all M2 units in all ani-
mals, for models fitted to neural data binned at 25 ms. Yellow lines show kernel density fit to equivalent histograms for models fit to neural data binned at 15 (lightest), 25, 35, 50, and
100 ms (darkest). Dashed gray line shows theoretical uniform distribution, empirical distribution is not significantly different.
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control. While M2 population activity
changed slowly and was predictive of
BMI performance at a broad range of
time lags, M1 indirect population ac-
tivity changed quickly and was predic-
tive of performance at short time lags.
These findings suggest a model in
which M2 plays a “hierarchical role”
by providing a longer timescale influ-
ence on the short-timescale M1 activ-
ity, which is closer to neuroprosthetic
control. Additionally, M2-based mod-
els predicting M1 direct or M1 indi-
rect activity had similar correlation
values, suggesting M2 interacts with
M1 neurons as a population, rather
than through privileged relationships
with effector-specific neurons. In con-
trast, models predicting M1 direct unit
activity from M1 indirect unit activity
had higher correlation values, indicating
closer within-area interactions. Toge-
ther, these findings suggest a model of
M2-M1 communication in which M2
provides a slow modulatory input.
Thus, moment-to-moment BMI con-
trol might be largely internal to M1,
while presumed contextual or other
top-down input might be provided by
M2 (Siniscalchi et al., 2016; Omlor et
al., 2019). Understanding these differen-
tial roles provides insight into natural
movement control and can be har-
nessed to improve BMI functionality.
For example, BMI paradigms could
incorporate longer-timescale contextual
signals for situation-specific controllers.

Multiarea BMIs to study motor
control
BMI experiments allow selection of
target neural patterns in one region
and concurrent examination of corre-
lates of task performance in connected
regions. We thus aimed to isolate the
top-down influences from M2 to M1.
Notably, both M1 and M2 have direct
connections to the spinal cord (Nudo
and Masterton, 1990; Dum and Strick,
2002), they are implicated in nor-
mal movement control (Harrison
et al., 2012; Wang et al., 2017), and
can compensate after damage to either
area (Whishaw et al., 1991; Ramanathan
et al., 2018). In our BMI study, our arbi-
trarily selected target neural pattern,
enforced by the decoder, is unlikely
to be correlated with processes in other brain regions. This
allows us to examine how cross-area communication during BMI
control facilitates control. Specifically, natural movement studies
suggest that activity in M2may be context specific (Murakami et al.,
2014; Saiki et al., 2014; Siniscalchi et al., 2016; Omlor et al., 2019)
and appears to be organized in a top-down manner. Thus, while it

would be surprising if M2modulated neurons were not functionally
coupled to M1 neurons (Makino et al., 2017; Veuthey et al., 2020),
it is unknown how M2 signals might interact with movement-spe-
cific versus nontask pools of M1 neurons.

For example, we find that the correlation between M2 and
M1 direct neurons is weaker and at longer time lags than the cor-
relation between M1 indirect and direct neurons. This suggests

Figure 4. Comparison of time lags of M2 and M1-indirect units’ predictions of M1-direct units. A, Models which predict M1 direct
activity from M2 activity (GLM-2d; see Fig. 3) were compared with models which predict M1 direct activity from M1 indirect activity
(GLM-id) and to models which predict a subset of M1 indirect neurons from M2 activity (GLM-2i). B, Crossvalidated R2 values for
GLM-id, GLM-2d, and GLM-2i models. Each line is one dataset. For the GLM-2i models, 50 different models were fitted to different
choices of indirect units. Circle shows mean, error bars show full range. C, Example regression weights for an M2 neuron from one
example learning session, for a model fitted to neural data binned at 25ms. Height of the green lines indicates regression weights
for the example neurons at different time lags (t ), with negative values meaning that M2 leads. D, Distribution of regression
weight magnitudes in one example learning session. For each unit, regression weights were assigned for a variety of time lags (as
in C), and the absolute value of those weights is indicated by color. Units are sorted according to the time of the largest magnitude
weight. E, Histogram of time lags that had the largest magnitude regression weight for all M2 units in all animals, for models fitted
to neural data binned at 25 ms. Solid lines show kernel density fit to equivalent histograms for models fit to neural data binned at
15 (lightest), 25, 35, 50, and 100 ms (darkest). Dashed gray line shows theoretical uniform distribution. F, As in C, but for GLM-id
models. G, As in D, but for GLM-id models. H, As in E, but for GLM-id models.
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that M2 provides inputs to M1 that are task-specific, albeit tem-
porally imprecise; in contrast, internal M1 population dynamics
are more robust but are temporally limited. Because we locked
activity to the end of a successful trial, one interpretation is that
M2 inputs are better positioned to steer to the target state by pro-
viding a steady modulatory input. This is analogous to the find-
ing in sensory systems that task information in higher level
regions is present at greater latencies and maintained for longer
durations (Murray et al., 2014; Runyan et al., 2017).

Timescales of multiplexed local versus cross-area
interactions
Little is known about how signals of different timescales interact
during motor control (Cavanagh et al., 2020). Specifically, it is
unclear how long-duration signals, perhaps representing abstract
goals, are integrated with short-duration signals controlling
movements. Studies with simultaneous recordings are best suited
to address these questions of interactions (Perich et al., 2018;
Lemke et al., 2019; Semedo et al., 2019; Stringer et al., 2019;
Perich and Rajan, 2020). However, most studies with simultane-
ous recordings in motor regions use well-trained animals per-
forming natural movement tasks (Kaufman et al., 2014; Perich et
al., 2018; Musall et al., 2019; Stringer et al., 2019). When it comes
to understanding M1-M2 interactions, this raises two potential
complications: that M2 signals may be directly controlling move-
ment rather than modulating M1, and that well-trained animals,
who have often completed thousands of training trials, have tran-
sitioned to automatic movements with compressed or reduced
top-down goals signals (Kawai et al., 2015). These confounds
make it difficult to interpret the timescale of M1-M2 signal inter-
actions in these experiments (Kaufman et al., 2014; Perich et al.,
2018).

Here, we show that, in a M1 BMI task, M2 contains M1-pre-
dictive population signals at a broad range of time lags, in con-
trast to the short time lag predictive signals within M1. This
supports two important concepts in motor control. First, that the
activity of M1 effector neurons contains multiplexed signals
coordinated with both local and cross-area activity. Second, that
these multiplexed signals have timescales corresponding to their
hierarchical functions (Murray et al., 2014; Runyan et al., 2017;
Cavanagh et al., 2020). In turn, these findings reinforce the idea
that variances in M1 task activity previously perceived as noise
may instead be important activity related to coordination in the
larger motor network (Semedo et al., 2019; Stringer et al., 2019;
Veuthey et al., 2020). While the function of such large-network
activity is still unknown, it has been hypothesized to represent
internal attentional states (Ni et al., 2018), to provide modulatory
motivational signals (Decot et al., 2017), and to coordinate
movement with sensory feedback (Stringer et al., 2019).

Dynamic versus static neural activity goals
BMIs are often framed as a substitute for natural movement, but
there are important differences between BMI and natural move-
ment tasks. For one, while natural movements involve body parts
which must move continuously through space, BMIs do not
have this restriction. Studies also suggest that, within motor cor-
tex, neural activity during natural movement progresses through
continuous states (Churchland et al., 2012; Shenoy et al., 2013).
However, high-dimensional neural activity is not inherently con-
strained by continuous paths through activity space. Instead,
neural activity can jump between states. This has been exploited
in nonhuman primate and human experiments in which partici-
pants use a BMI to type on a digital keyboard (Stavisky et al.,
2015) rather than trace paths through virtual space, as is more

Figure 5. M2 population activity evolves more slowly across trials than M1 indirect population activity. A, left, Patterns of binned firing rates across a neural population were represented as
population vectors, where the firing rate for each unit is an entry. Right, Population vectors are correlated across different time lags to quantify temporal stability. B, Population vector correla-
tions for different time lags averaged across populations of M2 versus M1 indirect units. C, Explanatory graphic representing correlation values between population vectors from different time
bins relative to behavior. D, Correlation of population firing vectors across time for neural data binned at 50ms for (left) M1 indirect and (right) M2 neural populations. Color indicates the aver-
age correlation coefficient between population vectors at the given time for all successful trials of at least 2-s duration, for all animals. Mean M2 correlations coefficients were significantly
higher than for M1i (M2: 0.41, M1: 0.31; permutation test, p, 0.00001, n= 820 values for each region).
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common with artificial limb research. In the simple BMI used in
our experiments, BMI control occurred over discrete time bins
and output was only smoothed over short timescales. Neural ac-
tivity was therefore less constrained to be continuous than for
BMIs mimicking movements (Liu and Schieber, 2020).
Furthermore, the target neural activity pattern was a static
threshold, and the approach to it was unconstrained within the
BMI-potent space. Because of this, it is particularly interesting
that population activity in M2 evolved relatively slowly, since the
task did not require a smooth evolution even in downstreamM1.
However, to better understand natural movement dynamics,
experimenters may want to use BMIs with dynamic rather than
static neural activity targets (Collinger et al., 2013; Athalye et al.,
2017).

This does not mean threshold-based BMI tasks are irrelevant
for understanding natural movements. Instead, threshold-based
BMI tasks may best be compared with reaction time and waiting
time tasks. In waiting time tasks, animals must hold a position
until an arbitrary internal threshold is reached (Murakami et al.,
2014), similar to common simple BMI paradigms in which the
neural activity must be maintained above a target threshold for a
period of time. Waiting experiments have demonstrated encod-
ing of hold time within medial prefrontal cortex (mPFC; Xu et
al., 2014) and M2 (Murakami et al., 2014) single neurons, with
single neurons displaying a variety of activity patterns, including
a slow ramp to threshold. This may contribute to the slow evolu-
tion of M2 population activity seen here.

Activity of local and cross-area indirect neurons over BMI
learning
Natural motor learning is considered to occur in several phases,
from early exploration to consolidated control (Hikosaka et al.,
2002; Kleim et al., 2004; Floyer-Lea and Matthews, 2005; Luft
and Buitrago, 2005). We focus on early exploratory BMI learning
by using a single-session paradigm. BMI studies which allow sleep
consolidation (Gulati et al., 2014, 2017; Kim et al., 2019) or use
multiday learning paradigms (Ganguly et al., 2011; Silversmith et
al., 2021) have found that M1 indirect units become less modu-
lated. It is possible that at later stages, M2 task-modulation is
similarly decreased; however, it is also possible that consolidation
has a different effect on cross-area indirect neurons. Only one
other study has analyzed the activity of cross-area indirect neurons
in cortex; they found robust task-related modulation in several
cortical areas, including premotor cortex, after multiday learning
(Liu and Schieber, 2020). This suggests that M2 activity patterns
may be maintained. This parallels evidence from studies of natural
learning that overall correlated activity between M2-M1 does not
change with learning (Veuthey et al., 2020).

In conclusion, this project leverages a multiarea BMI para-
digm to probe cross-area interactions. We show that task-related
local interactions are more robust and take place at shorter time
lags than cross-area interactions. While our paradigm imposes
an artificial target activity pattern within M1, its relatively small
neural footprint allows us to examine internal motor network
dynamics without the constraints of movement performance.
Thus, multiarea BMIs may allow for a more natural inside-out
view of network dynamics.
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