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Abstract of the Dissertation

Modeling and Optimization of Spatially Evolving Heat

Sinks Using Volume Averaging Theory

by

Krsto Sbutega

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2015

Professor Ivan Catton, Chair

Today’s society has developed an ever-increasing dependence on electronic components, mak-

ing it a critical challenge to match the rising demand for size reduction and performance

reliability with efficient cooling strategies. Heat sinks are still the most common form of heat

rejecting devices used in electronic cooling, and it has been shown in recent years that heat

sinks with variable geometry can lead to efficiency improvement. The geometrical complex-

ity and multi-scale nature of heat sinks make their modeling a challenging, and often time

consuming, task. Volume Averaging Theory (VAT) has been shown to be a valid alternative

to standard modeling techniques because of its ability to obtain accurate predictions of sys-

tem performance parameters with a significant reduction in computational time.

In this work, the theoretical fundamentals of VAT are examined in detail. Its mathematical

fundamentals are discussed, and analogies with other averaging procedures are presented to

illustrate the bases of the averaging process. The VAT transport equations are then derived

and closed. The developed VAT model is applied to heat sinks with non-uniform geometry.

Two numerical solution methods are applied to efficiently solve the resulting set of partial

differential equations: a Galerkin method and a fractional step finite difference method. The

fractional step method, based on Strang splitting, is used to address the coupling between

the VAT solid and fluid energy conservation equations. In addition, a variable time-step

approach is derived to accelerate the convergence to steady state. A new solution method,

based on a spectral decomposition of the interface temperature and a quasi-Newton iteration
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method, is also proposed to address the coupling between the homogenous base of the heat

sink and the geometrically homogenized heat sink channel. Overall, the solution method

provides a significant improvement in computational time over previously used methods.

To determine the limits of applicability of the VAT model for systems with non-uniform

geometry, a scaling procedure is applied to the governing equations. Through physical and

mathematical arguments, it is determined that the momentum equation limits the applica-

bility of the model, and it is shown that three non-dimensional parameters, M1, M2 and M3,

can be used to provide estimates of these limits. For heat sinks with constant geometry, it

is found that the solution is accurate when the boundaries of the system do not significantly

affect the solution in the bulk, and the parameter M1 provides a quantitative estimate of

these effects. For heat sinks with geometry variations in the cross-flow direction, it is de-

termined that the accuracy of the solution is determined by the magnitude of the gradients

induced by porosity variation, which are quantified through a parameter M2. Finally, for the

case in which the geometry changes in the stream-wise direction, the VAT model is observed

to be accurate when porosity variations do not affect local flow. This is quantified by a third

parameter M3, which it is found to be Reynolds number dependent. In all three cases, it was

shown that for low values of these parameters the VAT model is very accurate for a wide

range of porosities, Reynolds numbers, geometries, and material combinations.

The vast improvement in computational speed, along with the defined limits, is exploited

to carry a series of optimization studies to determine the effects of the added geometric

degrees of freedom of the system on its performance. A Genetic Algorithm is employed to

determine optimal solutions for entropy generation and thermal resistance for three types of

micro-channel heat sink geometries: straight, trapezoidal, and converging (or diverging). It

is found that although straight channels provide an optimal combination of pumping power

and thermal resistance, the limited geometric degrees of freedom do not allow for efficient

heat transfer improvement. It is determined that straight channels present no efficient means

to improve heat transfer and, in order to reduce the thermal resistance of a straight channel

heat sink by 20%, a 200% increase in pumping power is required. It is also concluded that

trapezoidal channels do not provide significant advantages over straight channels for either
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entropy generation or thermal resistance. On the contrary, an optimal converging channel

configuration resulted in a 6% improvement in thermal resistance and a 23% decrease in

pumping power, with respect to the thermally optimized straight channel. The results of the

optimization studies are then combined to manually design a trapezoidal converging heat

sink that features the same thermal performance of an optimal straight micro channel, but

a 44% reduction in pumping power. Therefore, it is concluded that the added geometric

degrees of freedom allow for a more efficient heat transfer improvement of the system.
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CHAPTER 1

Introduction

Electronic devices nowadays are not only an important part of our personal lives, but also

a vital element in arguably every aspect of our society. The ever expanding use of comput-

ers, along with the advent and galloping advancement of hand held devices, has opened new

doors in the field of communication, data storage, data management, and virtually any other

technological or scientific field. It is estimated that by 2019, there will be approximately 10

billion devices containing integrated circuits in the world [1] (see Figure 1.1).

However, our society’s dependency on integrated circuits makes their reliability and proper

Figure 1.1: Predicted Global Growth of Smart Mobile Devices and Connections [1]

functioning a critical subject. Since computers are present in disparate applications in our

everyday lives from entertainment systems to life supporting systems, gaming to missile

defense, and economic activities to medical databases it can be easily understood why a

failure in an electronic component can lead to severe and possibly life threatening scenarios.
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Therefore, reliability of electronic devices is a key aspect in the present, and especially fu-

ture, of our society.

Inter-diffusion, corrosion and electro-migration are the leading causes of degradation of reli-

ability in electronics, and they all have thermally-activated components. Thus, as shown in

Figure 1.2, the rate of reliability increases exponentially with decreasing temperature and an

improvement in cooling devices. Furthermore, lower operating temperatures lead to reduc-

Figure 1.2: Predicted Mean Time To Failure (MTTF) vs Operating Temperature of a Typical

Electronic Component [2]

tion in current leakage, therefore enhanced cooling solutions also improve chip performance.

CMOS chip technology shows a 2% improvement in speed for every 100C reduction in chip

temperature. Figure 1.3 shows the effect of operating temperature on a standard benchmark
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performance test (Linpack score) as a function of the CPU operating temperature. The

Figure 1.3: Linpack Score Based on Operating Temperature [3]

degradation in performance is clear, with about 70% degradation in performance when the

CPU operates constantly above a temperature of 990C. These facts emphasize the impor-

tance of thermal management in electronic systems. Improved heat removal systems are

further required because of the continuous increase of power density in microprocessors, as

dictated by the infamous Moores law. At the same time, the need for reduction in weight

and size of electronic components is reducing the space available and the choice of materials

that can be employed for heat dissipation.

The increase in power density leads directly to an increase in chip heat flux as shown by

Figure 1.4. We can see that by 2018, the predictions show that chips will need to dissipate

as much as 190W/cm2 . Since most electronic equipment needs to be maintained in a range
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of 60− 1000C, the need for very efficient heat exchangers is critical.

In the early stages of electronic cooling, the components were cooled by natural convection

directly from the PCB. As the power density increases, heat sinks were added on top of the

CPU (which is the most heat productive component) but natural convection was still the

cooling mechanism. As the heat load increased, a fan was added to the system directly on

top of the heat sink to enhance heat convection. In recent years, the growing number of

GPUs, increasing heat load of CPUs, and the need for space reduction has stimulated the

use of flattened heat pipes to transport heat from the PCB to a heat sink, which is placed

in a different part of the system.

Air cooled heat sinks (ACHS) are the most common heat rejection devices because of their

ready availability, ease of application, and low cost [4]. Furthermore, because of the lack of

moving parts, connections, or valves, they are more reliable and applicable in a wide variety

of conditions. Several types of ACHS have been developed, and numerous studies have been

carried out to optimize their performance and design. Although there have been several

studies on different shapes, heights, lengths, diameters, and pitches, and the two most com-

mon ACHS are shown in Figure 1.5. A base of high conducting material (usually Aluminum

or Copper) is augmented with fins. Air flows over the structure and removes heat by convec-

tion. At steady state, all the heat produced by the electronic component is transferred to the

solid and then to the fluid while friction causes a pressure drop in the fluid that needs to be

overcome by a blower or fan. The reduction in size of the heat generating component, along

with the improvements in micro-fabrication, has lead to development of water-cooled micro

channel heat sinks (also shown in Figure 1.5). The cooling mechanism through water-cooled

micro channel heat sinks is equivalent to the mechanism used by ACHS, except that the

features of the system are smaller, and a higher specific heat fluid (water) is used to improve

performance. Several new technologies are under development to satisfy the cooling needs

of new generation chips. The most promising solutions are [5]:

• Improved Air Cooling

• Liquid flow in Microchannels
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Figure 1.4: Trends in a) Chip Heat Flux and b) Chip Power
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Figure 1.5: Example of a a) Pin Fin Heat Sink b) Microchannel Heat Sink and c) Plane Fin

Heat Sink
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• Thermoelectric Cooling

• Nanomaterials for property enhancement

• Compression refrigeration cycle

This work will concentrate on the first two solutions. The reliability and simplicity of ACHS

make them the most commonly adopted and preferred solution, spurring great interest in the

study of their performance and optimization. Hannenman [6] and Azar [7] have shown that

no real barriers exist that would make air cooled technologies obsolete for most applications.

Presently, we have reached goals in air cooled thermal management that were beyond the

limits put on such technologies in the 1980s [8, 9]. The beginning of analysis of air cooled

heat sinks starts with the analytical study of pin conduction and fin efficiency by Gardner

[10]. Later, Elenbaas [11, 12] studied natural convection in parallel plate channels under

different heating conditions. He correlated the date by using Rayleigh and Nusselt number

correlations. Starner and McManus [13], Van de Pol and Tierney [14], Aihara and Maruyama

[15] further developed these results to different shapes and arrays of fins. Radiation in U-

shaped channels was analyzed by Ellison [16] using gray body assumptions. At about the

same time, Zukauskas et al. [17, 18] used an impressive number of experimental results

to correlate Nusselt number to Reynolds number for tubes in cross flow for a wide set of

geometrical parameters. Whitaker [19] used a porous media derived hydraulic diameter to

collapse date and correlate flow in packed beds and tube bundles which are often used in

ACHS. Tuckerman and Pease [20] introduced the concept of micro-channels for cooling of

high power electronic components, opening the doors to a whole new area of research in

the field of heat transfer. The development in micro and nano manufacturing processes

has increased the interest in microsystems for cooling because of their high heat transfer

surface and small dimensions. With the increase interest in such systems, several modeling

techniques have been developed to model air cooled heat sinks and several metrics have

been used to optimize them. All of the studies mentioned before used analytical models or

experimental results to guide the design of air cooled thermal management systems. Qu [21],

Bowers [22], Dae-Whan [23] and Bar-Cohen [24], along with many others, investigated single
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and two-phase flow and heat transfer in micro-channels.

Modeling techniques for all forms of heat rejection systems can be divided in four main areas:

• Analytical

• Experimental

• Numerical

• Averaged

All the studies discussed thus far belong to the experimental or analytical modeling of heat

sinks. In most cases the quantities of interest are average pressure drop and average heat

transfer coefficient across the heat sink, which are directly related respectively to the energy

required to run the system and the amount of heat that can be dissipated by the system for

a fixed temperature increase. Each method has its supporters, the advantages and disadvan-

tages of each method are listed in Table 1.1. The advancement in computational hardware

has made CFD methods the most popular analysis method for heat sinks. Because of the

relative simplicity of CFD analysis with todays packages, a significant amount of work has

been done in heat sink analysis and heat sink optimization, but very few brought innovative

concepts to the field. Some of the first analysis using CFD was done by Linton and Agonafer

[25] on modeling of a plane fin heat sink and by Chapman and Lee [26] for elliptical pin

fin heat sinks. Liu and Garimella [27] analyzed micro-channel heat sinks using a full CFD

simulation. Walchli et al. [28] combined CFD and analytical network models to obtain

accurate results for micro-channels.

Averaging methods such as Volume Averaging Technique (VAT) were developed for flow

through complex porous structures in the 1960s and 1970s, and have been successfully ap-

plied to modeling of heat and momentum transport in heat sinks. The advantages of av-

eraging methods are that performance parameters can be obtained very quickly and the

efficiency of the system can be evaluated in computational time, which is several orders of

magnitude less than CFD finite element methods. On the other hand, the averaging pro-

cess leads to some loss of information about the flow structure and requires development
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Table 1.1: Comparison of different modeling techniques for heat sinks

Method Advantages Disadvantages

Analytical
No computational time

Limited to simple geometries
Direct correlation of quanti-

ties of interest

Experimental

Comprehensive
Time consuming

Does not need validation

Produces directly quantities

of interest
Expensive

Independent of geometry

and problem conditions

Averaged
Reduced computation time Requires Closure

Produces directly quantities

of interest

Needs validation

Numerical
Accurate Time consuming

Applicable to wide range of

geometries and flow condi-

tions

Needs validation
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of closure schemes. Closure variables are geometry and flow dependent; however, schemes

have been developed for a wide variety of applications. The foundations of the theory are

discussed in detail in the next chapter, and several references are provided. Quintard and

Whitaker [29, 30, 31, 32, 33, 34, 35] and Gray [36, 37] developed the mathematical foun-

dation and theoretical basis for VAT application for heat transfer in porous media. Unlike

geophysical porous media where the determination of the geometry is also part of the av-

eraging process, for man-made heat management devices, the geometry is well defined and

some of the assumptions can be relaxed and more accurate results can be obtained. Travkin

and Catton [38] set the foundation for application of VAT to laminar and turbulent convec-

tive heat transfer in complex heat management systems. They applied these concepts with

experimental closure to analyze flat channels with rough walls [39], structures with random

pore distributions [40], and several other structures [41, 42, 43]. Horvat [44, 45] modeled

pin fin heat sinks and heat exchangers while Vadjnal [46, 47] modeled a vapor chamber and

a micro-channel heat sink using VAT. Kuwahara and Nakayama developed several closure

correlations [48, 49] and studied convection in generalized geometric structures [50, 51] using

VAT. However, in all of these studies, closure schemes for the momentum and energy equa-

tions were used with the assumption that the structure has constant porosity and periodic

geometry. The problem of flow through geometrical heterogeneous media was first analyzed

by Plumb and Whitaker [52] and Quintard [53, 35]. Goyeau [54] analyzed the limits of

periodic closure for flow through a dendritic system with evolving nonlocal heterogeneity.

Cushman [55] developed a general averaging and closure scheme for diffusion and dispersion

for continuously evolving heterogeneity scales. Still, the author is not aware of any studies of

heat transfer through such systems. Moreover, the heat sink problem is a conjugate problem

where the conduction in the base can have a significant impact on the system performance.

Because the volume averaged equations are true in the average sense while the base solu-

tion is point-wise true, the treatment of the interface presents a very important challenge.

Sahraoui and Kaviany [56] assumed continuous heat flux and developed a temperature jump

condition in terms of a parameter α. However, Nakayama [49] showed that the tempera-

ture equilibrium at the interface leads to more accurate results. Horvat [57] and Hu [58]
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solved the conjugate problem by assuming temperature equilibrium at the interface and by

using iteration to obtain an energy conserving flux interface. This leads to accurate results,

but the iteration procedure is very expensive in terms of computational time. Nield and

Kuznetsov [59] developed a quite arbitrary uniformity principle boundary condition for the

conjugate problem for the case of negligible axial conduction in the fluid and in the base.

The treatment of the interface condition for the general case of axial conduction in both

base and channel still lacks some rigor and needs to be developed to refine and expand the

use of VAT in modeling of general ACHS.

Although there have been an immense number of publications in heat sink technology, most of

them have concentrated on spatially periodic structures. Recently, there have been few stud-

ies that have suggested that non-periodic, multi-scale heterogeneous geometries can greatly

improve heat transfer and reduce pressure drop in heat dissipating devices [60, 61, 62]. This

tendency was proposed by Bejan in his constructal law [63] and is supported by the scarcity of

periodic structures in natural flow systems. The main challenges that have prevented exten-

sive studies on these systems, has been the extensive computational times required to model

such systems with conventional modeling techniques. The multi scale nature of the problem

implies that, for discretization methods such as FEM/CFD, the minimum mesh size has to

be on the order of magnitude of the lowest feature. When the system length scale disparity

is very large, this means that very large meshes are required to discretize the system, which

implies large memory and CPU requirement for the solution of the equations. This computa-

tional drawbacks have limited the exploration of more complicated non-uniform geometries,

and have limited the amount of optimization studies that can be conducted. Fortunately,

multi-scale problems arise constantly and several techniques have been developed to tackle

the challenges they present.

Nature, in all its beauty and diversity, presents itself in an amazing range of physical and time

scales. From the light-year scale of astronomical distances and eons of geological time scales,

to the Planck length and time scales of string theory, the diversity of scales around us is

astonishing. Nature being the inspiration and subject of engineering, leads to the ubiquitous

presence of multi-scale problems in engineering applications. Since the scope of engineer-
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ing is design, modeling of system behavior and determination of performance parameters is

crucial. In most cases, models that are accurate and practical over a certain scale range,

are inaccurate and/or inefficient over a different range. For example, although all design

parameters for a system could be obtained by studying the motion of elementary particles

(e.g. atoms, photons, phonons etc.) in it and around it, such an approach is undoubtedly not

practical in designing a cargo ship. The study of transport phenomena through multi-scale

systems is no different. In the study of transport phenomena, scale disparities arise from

the physics and mathematics of the problem, such as in singularly perturbed problems (e.g.

boundary layers) and turbulence, or they can result from the geometrical features of the

system, such as in a porous medium. In both cases, modeling challenges are similar, and

it will be shown in this paper that certain mathematical approaches to modeling systems

that present length disparities are indeed very similar. The hot debate about climate change

has sparked strong interest in Global Circulation Models (GCM), to study environmental

transport phenomena on a global scale. This is clearly a multi-scale problem, with scales

ranging from the size of small cities to earths radius. Furthermore, recent development in

technology and manufacturing have given us access to micro (and lower) time and length

scale and, have opened amazing new possibilities in all fields of engineering and science. It

is not uncommon now, to have man-made large scale systems that contain both micro and

nano scale features to improve their performance. Therefore, development of multi-scale

models is a crucial aspect in engineering, and it is not surprising that research interest in

the field has been exponentially growing in the last decade. There are several approaches to

modeling of transport phenomena in multi scale modeling, each one with its advantages and

disadvantages. The most accurate approach is to solve the problem directly at the smallest

scale of interest l, and nowadays these are mostly carried out computationally. Example of

these types of approaches are: molecular dynamics simulation of diffusion, direct numerical

simulations of turbulence, pore scale simulation in porous media flow. These methods are

essential to understand the physics of the problem at the lowest scale of interest, and could

be applied to the entire system, although at great computational cost. Nonetheless, studying

phenomena on the system scale L using this approach is not realistic when the length scale
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disparity is large:

l� L (1.0.1)

To avoid these shortcomings, in multi-scale systems, the scales are often separated, and the

lower and upper scale models are solved separately (or iteratively). The main assumptions

of these methods is that the large scale disparity leads to a weak coupling between the two

problems. As it will be discussed later, the length scale disparity, Eqn. (1.0.1), is given dif-

ferent names in different multi-scale problems and results from different physical arguments.

The earliest example of such methods are matched asymptotic studies of singularly per-

turbed equations. In these problems, a small boundary layer is present in which quantities

vary significantly allowing an inner solution to the boundary layer and an outer solution to

be defined and solved. Another approach involves averaging the lower scale equations on an

intermediate scale; this allows the study of the phenomena at the intermediate scale, while

still incorporating the effects of the lower scale through some closure parameters. Examples

of these approaches are: continuum approximation in mechanics, Reynolds Averaged Navier

Stokes (RANS), Large Eddy Simulations (LES) studies of turbulence, and, what will be the

subject of this paper, Volume Averaging Theory (VAT) for geometrical multi-scale heteroge-

neous systems. Although not discussed in this work, it has been shown that all three of these

methods can be mathematically unified through asymptotic expansion analysis [64, 65, 66].

Any averaging process leads to a loss of information about the underlying functions, there-

fore, some additional information about the effects of the lost information on the parameters

of interest is usually required to close the problem. Quoting Einstein, the key step in the

closure of an equation is to make it as simple as possible, but not simpler. The advantage

of these averaged types of solutions is that the derived model can be solved much more

efficiently, and, when the effects of lower scale quantities are properly defined and modeled,

their effects are still taken into account. Another advantage of these averaged models is that

they allow easier comparison with lab experiments. In most cases, it is very challenging, if

not impossible, to directly determine the lower scale quantities, and lab measurement pro-

vide averaged quantities. For example, velocity and temperature in a macro system can be

measured in a lab, therefore, it makes sense to have a model that directly predicts those
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quantities such that its accuracy can be measured. At the same time, experimental valida-

tion of a method that predicts position and momentum of molecules throughout the same

system is not really feasible. Similarly, for a porous medium with a complex geometrical

structure, it could be impossible to obtain velocities and temperatures inside the pores, and

average quantities (e.g. average pressure drop, average temperature increase) are usually

measured. Therefore, it seems fit to have methods that predicts quantities which can be

measured.

The focus of this work will be on VAT and its application to modeling, design and optimiza-

tion of heat transfer systems. Although VAT was developed for study of transport phenom-

ena in porous media, which are intrinsically multi-scale and heterogeneous, its features and

rigor, make it very useful in any multi-scale heterogeneous medium, independent of whether

or not it is porous in the true meaning of the word. This work is divided into five chapters.

The first chapter is dedicated to the presentation of the problem and the solution methods

proposed. The second chapter is dedicated to the derivation of system scale conservation

equation, along with mathematical and physical explanations of the method. Although rig-

orous mathematical foundations for VAT have been laid out by Whitaker [67, 68], Quintard

[69], and Gray [36], empirical variations are still widespread. The authors will attempt to

show that the VAT approach is a rigorous approach that leads to exact equations which

lead to a geometrically simplified but physically accurate model of the system under consid-

eration. Approximation in the solution are introduced in the definition and determination

of the closure parameters, therefore the closure problem will be discussed in depth. The

second chapter will be dedicated to the application of the VAT model to heat sinks with

variable geometry, and derivation of efficient numerical solutions to the resulting set of Par-

tial Differential Equations (PDEs). A VAT two-dimensional model of a heat sink will be

presented, and scaling arguments will be discussed to further simplify the equations. In the

second part of the chapter, a Galerkin method and finite difference solution of the resulting

set of PDEs will be presented. Significant attention will be dedicated to the issues that

arise from the length scale disparity between the homogenous base and the channel. The

accuracy and limits of the model are discussed in the fourth chapter. The solution method is
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validated against experimental and numerical results, and the scaling developed in Chapter

3 is used to determine the limits of applicability of the theory. Finally, the drastic reduc-

tion in computational time is used to carry out an optimization study to determine optimal

design parameters for heat sinks with variable geometry. System performance parameters

of optimized heat sinks with uniform, trapezoidal and converging geometries are compared.

The effects of the added geometric degrees of freedom are investigated, and it is determined

that they are indeed an efficient way to improve heat transfer.
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CHAPTER 2

Theoretical Fundamentals of Volume Averaging Theory

The omnipresence of porous media in geological systems has spurred strong interest over

the last century in effective modeling of transfer processes through such media. The first

well-known study in such systems is attributed to Darcy [70] in 1856, where in his Appendix

D he states the most famous law for flow through porous media

〈v〉 = − 1

µ
K · ∇p (2.0.1)

where 〈v〉 is the seepage velocity, µis the viscosity and K is the permeability tensor. For

the sake of accuracy, it should be noted that in its original form given by Darcy, the equation

is one dimensional and permeability is a constant. This equation relates the average velocity

through the porous medium to the pressure gradient across it. This equation has been proven

to be valid only for slow viscous flow of a Newtonian fluid and since then, several empirical

modification to this law have been made to extend its validity. Some of the most important

of these modifications are the additions by Brinkman [71] and Forchheimer [72], who added

correction factors to extend Darcys law to higher speed flows and non-Newtonian fluids.

These additions result in the Brinkman-Forchheimer extended Darcy equation

0 = −∇〈pf〉+ µeff∇2 〈v〉 − µf
K
〈v〉 − ρfc1

K1/2
〈v〉2 = 0 (2.0.2)

Although these equations have been used for many years to model flow through different

porous media with good results, they are purely experimental and lack a solid theoretical

foundation. These equations can be very useful in practice, for cases in which their limits

and the empirical constant on which they are dependent have been determined; however,

since they are purely empirical they cannot give a correct description of the physics of the

problem, and it is unclear how to apply them to new problems.
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On the other hand, it will be shown that direct integration of the Navier-Stokes equation (or

other forms of the momentum conservation equations for non-Newtonian fluids) using VAT

will give a physical description of the transport in a porous medium. Furthermore, using

VAT, a theoretically based expression relating empirical properties such as permeability and

effective viscosity to the geometry of the porous media and physical properties of fluid can

be obtained. Thus, VAT allows, with proper closure, to efficiently obtain mean values of

velocity, temperature, electric charge, etc. for several porous media geometries and different

fluids. VAT was first proposed in the sixties by Anderson and Jackson , Slattery [73], Marle

[74], Whitaker [68], Gray [36] and Zolotarev and Radushkevich [75] and has since been

extended by the work of numerous investigators such as Quintard [30, 31, 32, 33, 34, 53],

Carbonell [76], Plumb [52, 77], Travkin and Catton [38], Bear [78], Kaviany [79], Kuwahara

[50, 48] and Nakayama [80, 81, 49], Hsu [82], Ochoa-Tapia [83], and Lemos [84]. This list

is not intended to be comprehensive, as it is not possible to cite all contributors to the

advancement of VAT in the last several decades. Recently, VAT has been applied to several

new fields and in the last decade has found a lot of applications in biological systems and

their modeling. Diffusive and convective flows through multi-scale systems are extremely

common in biological applications. Species diffusion plays a key role in delivering nutrients

through scaffoldings to cells for tissue growth, delivering drugs through tissue to defective

cells for drug treatments, and spreading contrast fluid through joints to damaged areas

for imaging. Lasseux et al [85] developed a three-phase model based on VAT for species

reaction and transport during in-vitro tissue growth. Khanafer and Vafai [86] used VAT to

study diffusion for MRI imaging and drug delivery systems. Fluid flow, convective species

transport and heat transfer also play a key role in the intricate multi-scale circulatory system.

Nakayama [87, 88, 89] developed a general bioheat equation to study transport phenomena

in circulatory systems. Khanafer and Vafai [90, 91] also used VAT to developed models

for transport in arterial walls, treatment of brain aneurysm and blood perfusion. The fast

advancement in biotechnology and the growing interest in the field has opened an entirely

new area for application of VAT, and its applications in biological systems are expected to

grow exponentially in next few years. The main features of VAT will be described in great
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detail in the core of this paper, however, it is important point out here that the VAT averaging

process produces equations that are exact. However, the result is a set of partial integro-

differential equation that contain a mix of averaged, fluctuation and point-wise quantities.

Since the ultimate goal is to obtain equations in the average quantities alone, a closure

scheme is introduced to model the effect of these fluctuation and point-wise quantities on

the average values, and this is where approximations are introduced. Thus, approximations

to the solution of the equations are introduced in the closure scheme, not in the derivation

of the equations themselves. It is then obvious that closure is usually problem specific, and

the key to achieving good results using VAT is a closure scheme that will correctly portray

the physics and geometry of the problem at hand. First, it is shown that the VAT approach

is similar to other common approaches in multi-scale problems.

2.1 Analogy with other averaging techniques

The continuum approach is today such an established technique that its underlying assump-

tions are sometimes forgotten. Following Bear [78], a short review is provided here in order

to show the parallel between the continuum approach in fluid flow and the volume averag-

ing approach in porous media. Because of the widespread use of the continuum approach,

showing an analogy between it and VAT, will help demystify the VAT approach, and at the

same time elucidate its limits of applicability and some of its issues. Since the rest of this

work will deal with two-scale systems, the smaller scale will be defined as micro scale and

given the symbol l (with appropriate subscript), while the upper scale will be defined as

the macro scale L. While the micro scale is defined by lower scale phenomena, the macro

scale depends on the problem under consideration, therefore it is not given any subscript.

For the different averaging theories discussed in this section, the actual order of magnitude

of micro and macro scales can be significantly different, however, because of the context in

which they arise, no confusion should arise.

Fluids are composed of a large number of molecules contained in vacuum and in their per-

petual motion they collide with each other and with the solid walls of the container in which
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they are placed. Given initial position and momentum of each particle, hypothetically classi-

cal mechanic theories could be used to fully describe a given system of molecules and predict

the future position of each molecule. However, even with todays most powerful computers,

it is impossible to determine the motion of 1023 molecules in one gram of gas. Thus, instead

of treating the problem at the molecular level, a statistical approach is usually used. This

means that average quantities are defined that allow the study of motion of a large group of

molecules and consider the fluid as a continuum. Essential to the continuum approach is the

definition of particle. A particle is an ensemble of molecules contained in a small volume.

In order for this averaging to have statistical value, its size has to be much bigger than the

mean free path of the molecules, lmfp. However, it should also be small compared to the

entire fluid domain in order to allow its changes through the domain. The averaging process

starts by taking a mathematical point P (which has no mass or volume), associating to it an

elementary volume, of which P is the centroid, and calling it a physical or material point.

Now, at every physical point density can be defined as the ratio of the mass ∆m contained in

a volume ∆U . The question is what should the size of the volume be for the density to be a

good representation of the number of particles that are in the volume? Let’s consider a point

P in space, and take a volume ∆Ui around it, of which P is the centroid. Let ∆mi define the

mass of the molecules in it. The average density of the fluid is then defined as their ratio

ρi = ∆mi/∆Ui. Obviously, if ∆Ui is too big, say the size of the domain, it is meaningless to

assign such a value to P because it cannot be used to study changes in ρ within the domain.

To determine the correct size of∆U , the behavior of density at P as the volume increase

can be studied. Starting from the volume-less mathematical point, the size of the volume

is increased and its effects on the density are shown in Figure 2.1. For small values of ∆Ui,

few molecules will be present in the volume, and increasing its size will add a considerable

amount of mass, and the value of the density will fluctuate significantly. As ∆Ui increases

further, small variations in its size, produce smaller variations in the number of molecules

added relative to the ones already contained. At a value of ∆Ui ≥ ∆U0, further increase in

the volume size has negligible effects on ρ and fluctuations die down. As the value of ∆Ui

is increased even further, if the fluid is inhomogeneous (or compressible), smooth changes in
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Figure 2.1: Definition of density and particle
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ρ are present, otherwise it will be constant. From a statistical point of vie, Figure 2.1 can

be interpreted by considering ρ as a probability, and as the sample size increases, its mean

value will reach a constant value (or slowly varying). Going back to Figure 2.1 the size of

the averaging volume should be taken ∆Ui ≈ ∆U0, because it is a good representation of

the density of the system, while still allowing its variation through the system to be studied.

The density at a physical point P is thus defined as

ρ (P ) = lim
∆U→∆U0

(
∆mi

∆Ui

)
(2.1.1)

The volume ∆U0 may now be identified with the volume of a particle at the physical point

P. Through this procedure, a fluid made of collection of molecules in a vacuum is replaced by

a continuum filling the entire space and a fictitious smooth medium called fluid is defined at

every point in space. As a consequence density has becomes a smooth function. Following

this discussion, it is not a surprise that shock waves, whose size is on the order of lmfp,

give rise to discontinuities in density. When the fluid is inhomogeneous (or compressible), a

higher length scale over which macroscopic changes in density occur can be defined as

L =
ρ

∂ρ/∂l
(2.1.2)

The volume L3 may be used as the upper limit for the size of the averaging volume ∆U , and

∂ρ

∂l
= lim

∆l→∆l0

ρ
(
l + ∆l/2

)
− ρ

(
l − ∆l/2

)
∆l

(2.1.3)

where lmfp < ∆l0 < L and (∆l0)3 ≈ ∆U0. Similar arguments can be made to find the size of

the fluid particle that gives smooth variations in other averaged quantities such as velocity,

pressure, temperature etc. The size of the particle volume ∆U0 to be associated to a point

P should then be the largest one that makes these quantities smooth.

The Knudsen number is defined as a dimensionless parameter that defines the validity of the

continuum approach

Kn =
lmfp
L

(2.1.4)

When Kn � 1, the continuum approach is valid. On the other side, when Kn ≈ 1 the

flow is in the slip flow regime, and for Kn > 1 the flow is usually defined as free molecular
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or Knudsen flow. In these low Knudsen number flows, the continuum approach cannot be

used, and use of Navier-Stokes equation would lead to incorrect results. This averaging

process results in a loss of information because the effects of molecular motion still need

to be taken into account, thus some closure is required. In the passage from molecular to

continuum, this closure is obtained through the introduction of constitutive laws such as

Newtons law of viscosity, Fouriers law, Ficks law etc. which define physical properties such

as viscosity, diffusivity, thermal conductivity etc. These parameters describe the effect of

molecular motion on average quantities (e.g. velocity, temperature, mass fraction). Note

that the size of the particle volume does not enter in the averaged equations (e.g. Navier-

Stokes, energy conservation), however, it can be important when the closure parameter need

to be determined.

Similar to the transformation obtained through the continuum approach from a discrete

molecular scale to a continuous medium, is the transformation obtained through the volume

averaging approach from a discrete pore space to a homogenous medium. Hypothetically,

it would be possible to solve the full Navier-Stokes equations for the fluid phase in the

pores of a porous medium to obtain the velocity everywhere in the domain. However, it is

computationally expensive, or sometimes impossible, to do so except for simple geometries

such as capillary tubes. Thus, in order to obtain equations that can be solved efficiently,

the lower scale governing equations are averaged over a volume and the discrete space is

homogenized. The central issue is, again, to determine the size of the averaging volume that

will give meaningful results. Following the procedure carried out for the continuum approach,

given a mathematical point P, it is important to determine the size of the representative

averaging volume (REV) around it. Clearly, this volume should be much larger than a

single pore and much smaller than the entire porous medium domain. Analogous to the

fluid density, defined as the ratio of the mass of the molecules in the volume and the volume

itself, is the volumetric porosity ε, defined as the ratio of the volume of fluid in the REV to

the volume of the REV itself. In both cases, the metric is taken as something that quantifies

the amount of elements at the lower scale (molecules for continuum, pore space for porous

media) per unit of representative volume (control volume for continuum, REV for porous
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media). Returning to the issue of the size of the averaging volume, let P be a mathematical

point inside a domain occupied by porous media. Let P be the centroid of a volume ∆Ui

and define volumetric porosity as

εi =
(∆Uv)i

∆U
(2.1.5)

where (∆Uv)i is the volume of the pore space within ∆Ui. Repeating the procedure that

was used for continuum, starting from a single point, the size of the REV is increased and

the resulting plot is shown in Figure 2.2. Assuming that the initial point it is located in the

fluid, the porosity is equal to 1. As the size of ∆Ui increases, some of the solid phase will

be included and ε will start changing significantly. As the size of ∆Ui increases further, it

start becoming a better representation of the actual phase distribution in the system and

the porosity becomes a smooth function. The analogy to Figure 2.1 is clear. The size of

the REV should be then taken as ∆Ui ≈ ∆U0, since it represents the smallest value that

will give porosity as a smooth function, and allow the study of its variation throughout the

domain. Hence, the volumetric porosity at point P is defined as

ε (P ) = lim
∆Ui→∆U0

(∆Uv)i
∆Ui

(2.1.6)

The volume ∆U0 is therefore the REV of the porous media corresponding to the mathemat-

ical point P . A characteristic length L can be defined as

L =
ε

∂ε/∂l
(2.1.7)

where
∂ε

∂l
= lim

∆l→∆l0

ε
(
l + ∆l/2

)
− ε

(
l − ∆l/2

)
∆l

(2.1.8)

and (∆l0)3 ∼ ∆U0. Similar analysis can be carried for average velocity, average temperature

etc., which would possibly result in different REV restriction. The actual size of the REV

should be chosen as the largest one that will produce smooth functions for all the quantities

of interest. Also, equivalent to the Knudsen number for continuum, a length scale ratio can

be defined as
lpor
L

(2.1.9)
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Figure 2.2: Definition of porosity and representative elementary volume
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where lpor is the length scale associated with the pore space. When this quantity is small,

the VAT approach will give meaningful results. When this quantity is on the order of unity,

the system under consideration only has a few large pores and a regular approach with N-S

equations should be used. It can be seen that, similarly to a shock wave, regions in which

the pore geometry changes on the scale of lpor, will lead to discontinuity in the porosity.

By introducing the concept of porosity and the definition of REV, the actual porous media

has been replaced by a fictitious smooth medium in which values of any property (fluid or

solid) can be assigned to any mathematical point P. Once again, the averaging process causes

a loss of information requiring some constitutive relations to associate the effects of lower

level phenomena onto averaged quantities. In VAT, several different closure relations are

available, and they define parameters such as the effective diffusivity, permeability, effective

thermal conductivity etc. Also, the size of the averaging volume does not enter directly in

the resulting averaged equations, however, its size has to be considered in the determination

of the closure parameters. Since pictures are worth a thousand words (and equations),

the discussion about the analogy between these two approaches is graphically shown in

Figure 2.3. Both approaches take a discrete space, they average it over a representative

volume, and produce a homogeneous space in which the lower effects are modeled through

closure parameters.

Another example of an approach that takes advantage of length scale disparities is the Large

Eddy Simulation (LES) method for turbulence modeling. The complexity of the physics of

turbulence has (and will continue to) produce papers and books, and this is not in any way

intended to be an extensive review of it. Only a few established physical behaviors will be

highlighted to show how the LES approach is indeed very similar to the VAT approach.

Kolmogorov’s hypothesis states that for large Reynolds numbers the lowest scale eddies are

independent of the mean flow scales and boundary conditions, and have a universal form

that depends only on viscosity and dissipation rate. The length scale ratio between the mean

flow scale L and the length scale of these lowest scale eddies lKol (Kolmogorovs length scale),

can be then shown to be
lKol
L
∼ Re−

3/4 (2.1.10)
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Figure 2.3: Graphical description of average analogy between continuum and VAT ap-

proaches
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Comparing this equation with Eqn. (2.1.4) and Eqn. (2.1.9), it can be seen that they all

define a conditions in which a length scale disparity is present. A large Reynold’s number

imply that the Kolmogorov length scale is much smaller than the system scale, and the two

problems can be separated. This is the idea behind the LES approach, in which Navier-

Stokes equations are averaged (filtered or resolved) over a volume at an intermediate scale

between the largest and smallest eddies to obtain equations that are very similar to the VAT

equations. In the averaging process, some information about the lower scale eddies (residual

or subgrid) is lost, and their effect on the large scale eddies needs to be modeled through a

closure scheme. Direct Numerical Simulations (DNS) of turbulence have been performed in

recent years for moderate Reynolds numbers, however, they are not of practical use because

of the need for very fine grids to resolve the Kolomgorov scale phenomena. The LES approach

allows coarser grids to be used, and it is therefore more efficient while still maintaining a

good degree of accuracy. The strong mathematical similarity between the LES approach

and VAT provides opportunities for an exchange of knowledge from one to the other. This

is particularly clear in the weighted VAT formulation which was proposed and discussed in

detail by Quintard and Whitaker [30, 31, 32, 33, 34], in which the weight functions and their

properties are equivalent to filter functions in LES.

These two analogies show that the mathematical and physical approaches behind VAT, are

well established and VAT is indeed a rigorous technique. In the next sections, governing

equations for transport phenomena will be derived, and it will be shown that they can be

successfully applied to efficiently model complex multi-scale systems.

2.2 Derivation of the generalized VAT transport equation

In this section, first the averaging operators are defined, and their properties and useful

theorems are discussed. Then, the operators are applied to a general point-wise transport

equation, to develop the volume averaged form of the general transport equation. To illus-

trate the general feature of VAT without additional complications, the effects of turbulence

are initially ignored and are included in a separate section. The notation and derivation are
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taken mostly from the work of Whitaker [67] and Carbonell and Whitaker [76]. The term

point-wise equations will be used throughout the section to define equations that are defined

only at points within its phase (e.g. Navier-Stokes equations are defined only in points within

the fluid). The averaging process and its discussion will be given for a two phase (fluid-solid)

system; due to the linearity of the averaging operators defined, the extension to multiple

immiscible phases is not very different (see [92]). The homogenization process of complex

multi-scale geometry starts by associating to every point x in the domain, a volume V of

which x is the centroid. The vector yf locates points in the fluid relative to x, while rf locates

points within the fluid relative to the fixed origin. Then it is easy to see that rf = x+yf (see

Figure 2.4). Throughout the work, plain symbols will be used to denote scalar quantities,

lowercase bold symbols will denote vectors (geometric and mathematical), and uppercase

bold symbols will denote tensors and matrices. Two types of averaging operators are used

in averaging the equations: a superficial average and an intrinsic average. The superficial

average of a given variable ψ, at any pointx in the domain is defined as

〈ψ〉|x =
1

V (x)

∫
Vf (x)

ψ (x + yf ) dV (2.2.1)

while the intrinsic average is defined as

〈ψ〉f
∣∣∣
x

=
1

Vf (x)

∫
Vf (x)

ψ (x + yf ) dV (2.2.2)

where Vf is the volume of fluid within the averaging volume. It can be easily shown that the

relationship between these two averages is

〈ψ〉|x =
Vf (x)

V (x)
〈ψ〉f

∣∣∣
x

= εf (x) 〈ψ〉f
∣∣∣
x

(2.2.3)

and εf is defined as the fluid volume fraction (also known as porosity). It is important to

note here that the superficial average of a constant a is not equal to the constant itself

〈a〉 = a

 1

V

∫
Vf

dV

 = aεf (2.2.4)

On the other hand, the intrinsic average of a constant is equal to the constant itself, sug-

gesting that, in most cases, it is more suitable for study of transport through porous media.
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Figure 2.4: Position vectors associated with an averaging volume
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Several arguments can be made on the preferred type of average for the study of transport

in a porous medium, and there is not a right answer. In general, the value of the intrinsic av-

erage will be closer to point values that are measured with a probe, and therefore it is easier

to interpret physically. On the other side, if instead of using the VAT upscaling approach,

in which the governing equations are averaged starting from the point-wise equations, the

derivation is started from a continuum view of a porous media, and the governing equa-

tions are obtained through a control volume approach, superficial averages seem to make

more sense. These two approaches are equally valid, however, due to the familiarity of most

researchers with point-wise equations and their physical meaning, the upscaling approach

seems easier to grasp, and it will be described in this paper. Although the authors are not

aware of a full derivation of the governing equations from a continuum view of the porous

medium, Adler [93] and Brenner [94] give arguments that involve such an approach.

The application of these averaging operators to the governing equations leads to averages

of gradients, and averages of products. In order to obtain equations that define changes of

average quantities throughout the domain, these terms have to be dealt with. The average

of a gradient can be related to the gradient of the average, using what is known as Slattery’s

Spatial Averaging Theorem (SAT). The theorem states

〈∇ψ〉 = ∇〈ψ〉+
1

V

∫
Afs

nfsψdS (2.2.5)

where nfs is the outward normal to Afs, which represents the fluid-solid interface in the

REV. This theorem is an extension of Leibnitzs rule, and will be used extensively throughout

the rest of the derivations. A proof of the SAT can be found in [95] and [67]. The theorem

also applies to the average of the divergence of a variable

〈∇ · ψ〉 = ∇ · 〈ψ〉+
1

V

∫
Afs

nfs · ψdS (2.2.6)

The average of a product, which usually stems from advective terms, also need to be related

to products of averages. This is achieved by decomposing the point-wise values as a sum of

its intrinsic average and fluctuation part

ψf = 〈ψf〉f + ψ̃f (2.2.7)
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This decomposition is indeed a decomposition of length scales, because at the basis of our

derivation is the assumption that average quantities vary over the macro scale L, while

fluctuation vary over the micro scale lf . This assumption is a key argument in the derivation

of the equations and their closure, therefore, it will be discussed in detail when necessary.

A crucial assumption that will be used in the derivation of the equations is that averaged

values are constant (or vary negligibly) within the averaging volume. This can be expressed

mathematically as

〈ψ〉f
∣∣∣
x+yf

≈ 〈ψ〉f
∣∣∣
x

(2.2.8)

where |yf | ≤ r0 (see Figure 2.4). Based on the discussion about the determination of an

REV given in the previous section, this condition makes sense, and it simply states that

the length scale of changes in the average quantity is much larger than the REV length

scale, and ψwill vary smoothly throughout the domain. Some insight into this assumption

can obtained by expanding the right hand side of Eqn. (2.2.8) in a Taylor series about the

centroidx

〈ψf〉f
∣∣∣
x+yf

= 〈ψf〉f
∣∣∣
x

+ yf · ∇〈ψf〉f
∣∣∣
x

+ yfyf : ∇∇〈ψf〉f
∣∣∣
x

+ ... (2.2.9)

Although this expression is not enlightening in terms of the physics of the problem, it shows

that the difference between the average at the centroid and at a point relatively close to it,

will depend on changes in the average quantity through the derivatives, and on the REV

geometry through yf and its moments. Rearranging Eqn. (2.2.9), the relative error in the

approximation given in Eqn. (2.2.8), assuming that the average is not zero, can be written

as

R|x+yf
=

〈ψf〉f
∣∣∣
x+yf

− 〈ψf〉f
∣∣∣
x

〈ψf〉f
∣∣∣
x

=
1

〈ψf〉f
∣∣∣
x

yf · ∇〈ψf〉f
∣∣∣
x

+
1

〈ψf〉f
∣∣∣
x

yfyf : ∇∇〈ψf〉f
∣∣∣
x

+ ...

(2.2.10)

Defining the following length scales

∇〈ψf〉f
∣∣∣
x

〈ψf〉f
∣∣∣
x

= O

(
1

Lψ

)
,
∇∇〈ψf〉f

∣∣∣
x

〈ψf〉f
∣∣∣
x

∼ O

(
1

Lψ1

)
(2.2.11)
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and, since max |yf | ∼ r0, the relative residual can be expressed as

R|x+yf
= O

(
r0

Lψ

)
+O

[(
r0

Lψ1

)2
]

(2.2.12)

Therefore, the error associated with the assumption that the intrinsic average is constant

within the averaging volume will be negligible when

r0

Lψ
� 1,

(
r0

Lψ1

)2

� 1, (2.2.13)

This shows again that changes in averaged quantities should occur over length scales much

larger than the averaging volume scale. Two important properties of averaging stem from

this assumption. The average of an averaged variable is the averaged variable itself〈
〈ψ〉f

〉f
= 〈ψ〉f (2.2.14)

and, the average of the product of averaged quantities is the product of the quantities〈
〈ψ〉f〈ζ〉f

〉f
= 〈ψ〉f〈ζ〉f (2.2.15)

or, equivalently 〈
〈ψ〉f〈ζ〉f

〉
= εf〈ψ〉f〈ζ〉f (2.2.16)

Although these relations are shown for the fluid, they are indeed independent of the phase

over which the averaging is carried out. Another assumption that will be used in the deriva-

tion of the governing equations is that the average of the fluctuations is zero〈
ψ̃
〉f

= 0 (2.2.17)

These conditions are strongly reminiscent of the conditions required for Reynolds averaging

of turbulent equations. In turbulent fluctuations, the assumption that the average of the

fluctuations is zero is due to the random nature of time fluctuations in turbulence. In porous

media, since the averaging is spatial, there will be a relationship between the morphology

of the medium and the fluctuation. This is most easily seen by combining Eqn. (2.2.8) &

Eqn. (2.2.9), to obtain an expression for the fluctuation of a variable as〈
ψ̃
〉f

= −〈yf〉f · ∇〈ψ〉f −
1

2
〈yfyf〉f : ∇∇〈ψ〉f − ... (2.2.18)
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Intuitively, when the fluid phase is well distributed within the REV, such as in isotropic

systems, the average of yfand its moments will be zero. A similar argument can be made

for cases in which the geometry is spatially periodic, and the averaging volume is taken as a

multiple integer of its period. For more complicated geometries, the validity of this assump-

tion needs to be checked on a case to case basis. For more details on this discussion, refer to

Whitaker [67], Carbonell and Whitaker [76]. Governing equations can be derived for cases

where these conditions are not satisfied, and they are usually defined as non-local problems;

however their solution is usually so complex that they end up losing their practicality, and

when possible, a DNS approach would be more accurate and just as complex. In the rest

of this work, it will be assumed that these assumptions are always verified, but they will be

highlighted when necessary.

Now all the tools are in place, to start the derivation of averaged conservation equations

through porous media. It will be assumed that the solid phase of the porous medium is

rigid (does not deform under the influence of forces applied to it) and it has zero velocity.

Furthermore, coupling between conservation equations will be ignored. Coupling is present

for example when mass transfer affects material properties, exothermic or endothermic re-

actions and/or buoyancy effects need to be considered. In the absence of coupling, a general

point-wise conservation equation for quantity ψin the fluid phase can be expressed in the

following form
∂ψf
∂t

+∇ · (vψf ) = −∇ · j (ψf ) + gf (2.2.19)

The tensor j is the flux of ψf in and out of the volume and gf is volumetric generation.

Usually a constitutive relation (e.g. Newtons Law of viscosity, Fouriers Law etc.) is used

to relate the flux to the gradient of ψf . The parameter ψf can be the any parameter

that is conserved in a system e.g. mass, momentum, energy, concentration. Following our

length scale separation, the boundary conditions can be divided into two types of boundary

conditions: interfacial boundary conditions and system boundary conditions. Interfacial

boundary conditions apply to the internal interfaces which have a characteristic length scale

lf . In general, they express conservation at the interfaces between the different phases within
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Figure 2.5: Macroscopic region and averaging volume
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the system

ψf = ψs + f1 (r, t)

and

ni · ∇ψf = ni · ∇ψs + f2 (r, t)

 on Ai (2.2.20)

where Ai is the fluid-solid interfacial area inside the entire porous medium, and the functions

f1 and f2 represent possible surface generation. It will be shown later, that these interfacial

boundary conditions will be directly incorporated in the equations, and their effect on aver-

aged quantities will be taken into account through the closure problem. System boundary

conditions are inputs that are provided on the system boundaries, which have characteristic

length scale L, and they lead to changes in average quantities (see Figure 2.5). These could

be of the general form

γ1ψf + γ2nfe · ∇ψf = f3 (r, t) on Afe (2.2.21)

where Afe is the area of the fluid phase at the system boundaries, γ1 &γ2 are given func-

tions and f3 is the boundary forcing applied to the system. It is important to note that

Eqn. (2.2.19) is defined only in the fluid domain Ωf , and for complex geometries, the dif-

ficulty in its solution lies in the mathematical definition of the domain, and the intricate

interfacial area Ai. Further, the fluid and solid equations are coupled through their interac-

tion over the interfacial boundary conditions. For unsteady problems, an initial condition

also needs to be provided,

ψf = f4 (x, 0) (2.2.22)

Similarly, a general conservation equation in the solid phase has the form,

∂ψs
∂t

= −∇ · j (ψs) + gs (2.2.23)

For a two-phase system, the interfacial area is the same, and interfacial boundary conditions

are of the form

ψs = ψf − f1 (r, t)

and

ni · ∇ψs = ni · ∇ψf − f2 (r, t)

 on Ai (2.2.24)

The, system boundary conditions and initial condition are given, for example, by

γ3ψs + γ4nse · ∇ψf = f5 (r, t) on Ase (2.2.25)
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ψs = f6 (x, 0) (2.2.26)

where Ase is the solid part of the system boundaries, γ3&γ4 are given functions,f4is a solid

boundary forcing term, and f6 is the solid initial condition. Again, the governing transport

equation in the solid, Eqn. (2.2.23), is defined only in the solid domain Ωs, and the difficulty

in its solution lies in the definition of the complex geometrical domain. Conservation in the

fluid phase is considered first, because the discussion dedicated to convective terms leads to

extra complications, which are not present in the solid phase. The averaging process starts

by applying the superficial averaging operator to every term in Eqn. (2.2.19)

1

V

∫
Vf

∂ψf
∂t

dV +
1

V

∫
Vf

[∇ · (vψf )] dV = − 1

V

∫
Vf

[∇ · j (ψf )] dV +
1

V

∫
Vf

gfdV (2.2.27)

Assuming that the averaging volume is constant in time, the transient term can be rearranged

by reversing the order of integration and differentiation

1

V

∫
Vf

∂ψf
∂t

dV =
∂

∂t

 1

V

∫
Vf

ψfdV

 =
∂ 〈ψf〉
∂t

(2.2.28)

For cases in which the volume Vf changes in time due to phase change (e.g. boiling, melting

or solidification), this relationship cannot be used. Quintard et al [69, 96, 97, 98] and

Whitaker [99] studied the application of VAT for two-phase flows, and developed tools to

analyze them. Phase change phenomena are not included in this work, and Eqn. (2.2.28) is

always assumed to be valid. Next, the convective term is considered. This term involves the

average of a divergence thus, application of the SAT gives

〈∇ · (vψf )〉 = ∇ · 〈vψf〉+
1

V

∫
Afs

nfs · (vψf ) dA (2.2.29)

The first term is still expressed as the average of a product, and it will need additional

consideration. Moving on to the flux term, application of the SAT gives

〈∇ · j (ψf )〉 = ∇ · 〈j (ψf )〉+
1

V

∫
Afs

nfs · [j (ψf )] dA (2.2.30)

The volumetric generation term can simply be rewritten as

1

V

∫
Vf

gfdV = 〈gf〉 (2.2.31)
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Substituting back into Eqn. (2.2.27), a form of the averaged equation is

∂ 〈ψf〉
∂t

+∇ · 〈vψf〉+
1

V

∫
Afs

nfs · (vψf ) dA =

= −∇ · 〈j (ψf )〉 −
1

V

∫
Afs

nfs · [j (ψf )] dA+ 〈gf〉
(2.2.32)

It should be noted that this form of the equation is exact and no assumptions or approxima-

tions have been made. Also, this is an averaged transport equation in terms of superficial

averages, thus all quantities are per unit volume of porous media. An alternative form to

Eqn. (2.2.32) expressed per unit volume of fluid phase can be obtained by using Eqn. (2.2.3),

εf
∂〈ψf〉f

∂t
+∇ ·

(
εf〈vψf〉f

)
+

1

V

∫
Afs

nfs · (vfψf ) dA =

= −∇ ·
(
εf〈j (ψf )〉f

)
− 1

V

∫
Afs

nfs · [j (ψf )] dA+ εf〈gf〉f
(2.2.33)

It can be seen that the interfacial boundary conditions enter directly into the equations

through the integral terms. Eqns. (2.2.32) and (2.2.33) still involve the average of a product

in the convective term, and are not yet in a form that can be solved for the averaged

quantities. To address this issue, the decomposition given in Eqn. (2.2.7) can be used,

ψf = 〈ψf〉f + ψ̃f , v = 〈v〉f + ṽ (2.2.34)

which allows one to rewrite the convective term as

〈vψf〉 =
〈
〈v〉f〈ψf〉f + 〈v〉f ψ̃f + ṽ〈ψf〉f + ṽψ̃f

〉
(2.2.35)

Then, using the linearity of the averaging operator, and Eqn. (2.2.16) , the convective term

simplifies further

〈vfψf〉 = εf〈v〉f〈ψf〉f + 〈v〉f
〈
ψ̃f

〉
+ 〈ṽ〉 〈ψf〉f +

〈
ṽψ̃f

〉
(2.2.36)

Given the assumption that the average of fluctuations is zero, a final form of the convective

term is obtained

〈vψf〉 = εf〈v〉f〈ψf〉f +
〈
ṽψ̃f

〉
(2.2.37)
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Carbonell and Whitaker [76] give a lengthy discussion on this simplification of the convective

term, and they state that the approximation is valid when the following length scale condition

is satisfied
lf
Lψ
� r2

0

LψLε
(2.2.38)

where Lψ and Lε are the length scale over which there are significant changes in 〈ψf〉 and

εf respectively. Using this result, Eqn. (2.2.34) can be rewritten as

εf
∂〈ψf〉f

∂t
+∇ ·

(
εf〈v〉f〈ψf〉f

)
+

1

V

∫
Afs

nfs · (vψf ) dA =

= −∇ ·
(
εf〈j (ψf )〉f

)
− 1

V

∫
Afs

nfs · [j (ψf )] dA−∇ ·
(
εf

〈
ṽψ̃f

〉f)
+ εf〈gf〉f

(2.2.39)

If the solid phase is impermeable the area integral on the left hand side will be zero because

of the no-flow through boundary condition

v = 0 on Afs (2.2.40)

In case blowing or suction at the solid wall are present, this integral will not be zero and it

will have to be dealt with. For the rest of this work, it will be assumed that the walls are

impermeable and the integral term will be dropped. Up to this point no assumptions about

the flux terms have been made. However, in most scalar transports, the flux can be modeled

by a general constitutive relationship in which the flux is proportional to the gradient of ψf

j (ψf ) = −αf∇ψf (2.2.41)

and the proportionality constant αf is the diffusivity of ψf in the medium (e.g. thermal or

molecular diffusivity). Substituting this expression in Eqn. (2.2.39), the general transport

equation becomes

εf
∂〈ψf〉f

∂t
+∇ ·

(
εf〈v〉f〈ψf〉f

)
= ∇ ·

(
εf〈αf∇ψf〉f

)
+

+
1

V

∫
Afs

nfs · [αf∇ψf ] dA−∇ ·
(
εf

〈
ṽψ̃f

〉f)
+ εf〈gf〉f

(2.2.42)

It can be seen that the first term on the right hand side contains the average of a gradient.

Although the diffusion coefficient can vary significantly in the entire domain, it is usually
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safe to assume that it is constant within the REV. Physically, this implies that changes in

the diffusion coefficient occur over the macro length scale L, therefore, changes over the

length scale r0 are negligible. Using these assumptions and the SAT, the diffusive term can

be rewritten as

∇ ·
(
εf〈αf∇ψf〉f

)
= ∇ · (αf 〈∇ψf〉) = ∇ ·

αf
∇〈ψf〉+

1

V

∫
Afs

nfsψfdA


 (2.2.43)

Substituting this result into Eqn. (2.2.42), and using Eqn. (2.2.3), the first form of the VAT

conservation equation results

εf
∂〈ψf〉f

∂t
+∇ ·

(
εf〈v〉f〈ψf〉f

)
= ∇ ·

[
αf∇

(
εf〈ψf〉f

)]
+

+∇ ·

αf
V

∫
Afs

nfsψfdA

+
1

V

∫
Afs

nfs · [αf∇ψf ] dA−∇ ·
(
εf

〈
ṽψ̃f

〉f)
+ εf〈gf〉f

(2.2.44)

This form involves integrals of point-wise quantities, and certain closure schemes relate

average quantities directly to these integrals. In other cases, it is required to obtain equations

that involve only average and fluctuation quantities, or a mix of the two. This can be achieved

by again using the decomposition given in Eqn. (2.2.7) to rewrite the first integral term as

1

V

∫
Afs

nfsψfsdA =
1

V

∫
Afs

nfs 〈ψf〉f
∣∣∣
rf
dA+

1

V

∫
Afs

nfs ψ̃f

∣∣∣
rf
dA (2.2.45)

The area integral of the intrinsic average is evaluated at a point other than the centroid,

which would lead to a non-local form. Since it has already been assumed that the intrinsic

average does not change within the REV (see Eqn. (2.2.8)), its value is constant also at

interfaces within the REV, and Eqn. (2.2.45) can be written as

1

V

∫
Afs

nfsψfsdA = 〈ψf〉f

 1

V

∫
Afs

nfsdA

+
1

V

∫
Afs

nfs ψ̃f

∣∣∣
rf
dA (2.2.46)

In cases where the advective and/or inertial terms are negligible (e.g. geological porous

media) or not present (e.g. solid phase), the assumptions invoked during the simplification

of the convective term are not necessary. For such cases, Quintard and Whitaker [31, 32]
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developed a set of definitions and length constraints that ensure that the simplification

involved with the removal of the average from the area integral term in Eqn. (2.2.45) is

physically valid. They found that this approximation is valid when

∇〈yf〉 � I,
r2

0

Lψ1Lε
� 1 (2.2.47)

where Lψ1 is the length scale over which significant changes in ∇∇〈ψf〉f occur. It can be

seen that in general, these are less restrictive conditions than Eqn. (2.2.38). Moving on, the

integral of the normal over the interface area can be obtained by a clever application of the

SAT

〈∇1〉 = ∇

 1

V

∫
Vf

dA


︸ ︷︷ ︸

εf

+
1

V

∫
Afs

nfsdA→
1

V

∫
Afs

nfsdA = −∇εf (2.2.48)

and the area integral can be written as

1

V

∫
Afs

nfsψfsdA = −∇εf〈ψf〉f +
1

V

∫
Afs

nfs ψ̃f

∣∣∣
rf
dA (2.2.49)

Using this relation, another form of the diffusive term is obtained

〈αf∇ψf〉 = εfαf∇〈ψf〉f +
αf
V

∫
Afs

nfsψ̃fdA (2.2.50)

Substituting this result into Eqn. (2.2.42), another expression of the VAT governing equation

is given by

εf
∂〈ψf〉f

∂t
+∇ ·

(
εf〈v〉f〈ψf〉f

)
= ∇ ·

(
αfεf∇〈ψf〉f

)
+

+∇ ·

αf
V

∫
Afs

nfsψ̃fdA

+
1

V

∫
Afs

nfs · [αf∇ψf ] dA−∇ ·
(
εf

〈
ṽψ̃f

〉f)
+ εf〈gf〉f

(2.2.51)

This equation, unlike the point-wise equations from which it was derived, is defined every-

where in the porous medium; its domain is then Ω = Ωf ∪ Ωs. It can be seen how some

closure will be required to model the fluctuation and area integral terms that appear in this

equation. These fluctuations will depend on the microscopic structure of the porous media

and will transmit information from the lower microscopic scale to the macroscopic scale. The
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correct modeling of these terms is the key to obtaining good results in the study of transport

using VAT.

The approximations used are generally safe everywhere in a porous media, except close to

the boundaries of the porous media. In these areas, the geometry, and average quantities

have steep gradients, which implies that the length scale Lε and Lψ are comparable to r0and

a different type of analysis needs to be carried out. The interface with homogenous media is

particularly problematic, and a review of the treatment of boundary conditions will be given

in a later section.

The derivation of a solid phase general transport equation follows closely the fluid phase

derivation, except that obviously there is no flow, and all the velocity terms are equal to

zero. Thus, by simply applying the SAT to Eqn. (2.2.23), and assuming that the flux is

proportional to the gradient, a form of the equation is given by

εs
∂〈ψs〉s

∂t
= ∇ · [αs∇ (εs〈ψs〉s)] +∇ ·

αs
V

∫
Asf

nsfψsdA

+

+
1

V

∫
Asf

nsf · [αs∇ψs] dA+ εs〈gs〉s
(2.2.52)

Since most of the assumptions were made to simplify the convective term, the only assump-

tion for this form of the transport equation is the length scale disparity

ls
L
� 1 (2.2.53)

where ls is the size of the solid particles. It is again of interest to express the first integral

term on the right hand side in terms of intrinsic averages and fluctuations from it. Similar to

the analysis conducted for the fluid phase, the point-wise value is decomposed, the averaged

value is taken out of the integral and the result given in Eqn. (2.2.48) is applied to obtain

the following alternative form

εs
∂〈ψs〉s

∂t
= ∇ · (αsεs∇〈ψs〉s) +∇ ·

αs
V

∫
Afs

nsf ψ̃sdA

+

+
1

V

∫
Afs

nsf · [αs∇ψs] dA+ εs〈gs〉s
(2.2.54)
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and the length constraints associated with this simplification are given by

∇〈yf〉 � I,
r2

0

Lψ1Lεs
� 1 (2.2.55)

Note, that in this case Lψ1 is the length scale associated with changes in∇∇〈ψs〉s, and in

general, it is not equal to Lψ1 defined in Eqn. (2.2.47).

Since in the rest of the study, only steady problems will be considered, little attention will be

devoted to the effects of time variations. For cases in which transport is linear but unsteady,

similar arguments to the ones carried out for the length scales, can be carried out for time

scales. If it can be assumed that the time scales associated with changes in micro scale

phenomena are much smaller than the time scale associated with macro scale quantities, the

closure problem can be considered quasi-steady, and no additional complications arise in the

derivation or closure. On the other hand, when the time scales of variations in the micro and

macro scale phenomena are comparable, these problems are coupled in time and are much

more difficult to solve. Turbulent conservation equations, which are implicitly unsteady, are

treated in a separate section due to the extra complications, and the incomplete state of the

theory. Now that averaged forms of the generalized VAT transport equations in the fluid and

solid have been developed, they can be applied to individual variables to obtain the VAT

form for mass, momentum and energy equations.
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2.3 Development of the VAT Continuity Equation

The VAT mass conservation equation can be obtained by defining ψf = ρf . Furthermore, no

diffusion or generation of mass are present, therefore αf = 0 and gf = 0. Substituting these

definitions in Eqn. (2.2.44), a first form of the VAT mass conservation equation is obtained

εf
∂〈ρf〉f

∂t
+∇ ·

(
εf〈v〉f〈ρf〉f

)
+∇ ·

(
εf〈ṽρ̃f〉f

)
= 0 (2.3.1)

A few studies have been carried out for compressible flow in porous media using VAT [100,

53, 101]; however, there are few examples in which compressible flow models are necessary

in a porous medium. Moin et al. [102] developed a widely used model for LES simulation in

compressible flow, in which the mass conservation equation is very similar to Eqn. (2.3.1).

Sirignano [103], in his analysis of turbulent spray flows, provides an interesting analysis of

both the LES and VAT approach. In all cases considered in the rest of this work, it will be

assumed that the flow is incompressible, and the continuity equation becomes

∇ · 〈v〉 = 0 (2.3.2)

An alternative form is obtained by using the intrinsic average

∇ ·
(
εf〈v〉f

)
= ∇εf · 〈v〉f + εf∇ · 〈v〉f = 0 (2.3.3)

thus

∇ · 〈v〉f = −∇εf
εf
· 〈v〉f (2.3.4)

Note that, when porosity is not constant, the superficial velocity is solenoidal (divergence-

free) while the intrinsic velocity is not. This is an important difference since several analytic

and numerical solution methods take advantage of the divergence-free nature of the velocity

vector field, which suggests that, for variable porosity, it is advantageous to solve for the

superficial velocity.

2.4 Development of the VAT Momentum Equation

The particular form of the flux term in the momentum equation, leads one to start the

development from an earlier form of the governing equations. The quantity conserved is
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momentum, therefore ψf = ρfv. For a Newtonian incompressible fluid the flux is given

by j (ρfv) = −νf∇ (ρfv) + pfI, and the only body force considered is gravity, gf = ρfg.

Substituting these definitions into Eqn. (2.2.39), the following result is obtained

∂ 〈ρfv〉
∂t

+∇ ·
(
εf〈ρfv〉f〈v〉f + εf〈ρf ṽṽ〉f

)
+

1

V

∫
Afs

nfs · (ρfvv) dA =

= ∇ · 〈νf∇ · (ρfv)− pfI〉 −
1

V

∫
Afs

nfs · [−νf∇ · (ρfv) + pfI] dA+ 〈ρfg〉
(2.4.1)

Following the discussion in the previous section, it is important to point out that this form

is only valid when the average velocity vector can be considered constant within the REV,

and the average of fluctuations is zero. For incompressible flow, impermeable solid phase,

and constant gravity, Eqn. (2.4.1) becomes

ρf
∂ 〈v〉
∂t

+ ρf∇ ·
(
εf〈v〉f〈v〉f

)
= −∇〈pf〉+∇ · 〈µf∇vf〉+

− 1

V

∫
Afs

nfs · [−µf∇vf + pfI] dA− ρf∇ ·
(
εf〈ṽf ṽf〉f

)
+ εfρf〈g〉f

(2.4.2)

The convective term can be further simplified using continuity, Eqn. (2.3.3),

∇ ·
(
εf〈v〉f〈v〉f

)
= ∇ ·

(
〈v〉 〈v〉f

)
=

= (∇ · 〈v〉)〈v〉f + 〈v〉 · ∇〈v〉f = εf〈v〉f · ∇〈v〉f
(2.4.3)

If viscosity changes only over the macro-length scale, it can be taken out of the integral and

the diffusive term simplifies to

∇ · 〈µf∇v〉 = ∇ · (µf 〈∇v〉) (2.4.4)

Using the SAT, the velocity gradient tensor can be rewritten as

〈∇v〉 = ∇〈v〉+
1

V

∫
Afs

nfs · vdA (2.4.5)

and, for no flow-through at the interface, the integral term is zero,

〈∇v〉 = ∇〈v〉 (2.4.6)
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Substituting Eqns. (2.4.3) and (2.4.6), into Eqn. (2.4.2), and using Eqn. (2.2.3) a first form

of the VAT equation is obtained

ρfεf
∂ 〈v〉
∂t

+ ρfεf〈v〉f · ∇〈v〉f = −∇
(
εf〈pf〉f

)
+∇ ·

[
µf∇

(
φf〈v〉f

)]
+

+
1

V

∫
Afs

nfs · [−pfI + µf∇v] dA− ρf∇ ·
(
εf〈ṽṽ〉f

)
+ ρfεf〈g〉f

(2.4.7)

The first integral term contains the integral of the pressure and drag forces at the interface. It

will be shown later, that some closure schemes close these point-wise integral terms directly.

Other closure schemes work on equations that are given entirely in terms of velocity and

fluctuations. These equations can be derived by again using the decomposition of velocity

and pressure into their intrinsic average and fluctuation values, and expressing the pressure

and velocity gradient tensor inside the integrals as

1

V

∫
Afs

nfs · (µf∇v) dA =
1

V

∫
Afs

nfs ·
(
µf∇〈v〉f

)
dA+

1

V

∫
Afs

nfs · (µf∇ṽ) dA (2.4.8)

1

V

∫
Afs

nfspfdA =
1

V

∫
Afs

nfs〈pf〉fdA+
1

V

∫
Afs

nfsp̃fdA (2.4.9)

In the decomposition of the convective term, it has been assumed that changes in average

velocity within the REV are negligible. To remove ∇〈v〉f and 〈pf〉f from the integrals, it

needs to be further assumed that changes in these quantities are also negligible within the

REV. With these assumptions, and using Eqn. (2.2.48), it can be shown that

1

V

∫
Afs

nfs · (µf∇v) dA = −µf∇εf∇〈v〉f +
µf
V

∫
Afs

nfs · (∇ṽ) dA (2.4.10)

1

V

∫
Afs

nfspfdA = −∇εf〈pf〉f +
1

V

∫
Afs

nfsp̃fdA (2.4.11)

Whitaker [67] developed some length constraints that need to be satisfied for this assumption

to be valid

∇〈yβ〉 � I,
r2

0

LφLv2

� 1,
r2

0

LφLp1

� 1 (2.4.12)

where Lε, Lv2 , and Lp1 are the length scale associated with changes in ∇εf ,∇∇∇〈v〉f and

∇∇〈pf〉f , respectively. Substituting these results, into Eqn. (2.4.7), a second form of the

45



VAT momentum equation is obtained

ρfεf
∂〈v〉f

∂t
+ ρfεf〈v〉f · ∇〈v〉f = −εf∇〈pf〉f +∇ ·

(
µfεf∇〈v〉f

)
+

+
1

V

∫
Afs

nfs · [−p̃fI + µf∇ṽ] dA− ρf∇ ·
(
εf〈ṽṽ〉f

)
+ εfρf〈g〉f

(2.4.13)

which is entirely in terms of average quantities and fluctuations. It is important to sum-

marize the assumptions made to develop the two forms of the VAT momentum equation,

Eqns. (2.4.7) and (2.4.13). It has been assumed that the fluid is Newtonian, flow is in-

compressible, solid boundaries are impermeable, and viscosity is constant within the REV.

Furthermore, it has been assumed that the intrinsic average of velocity does not change

significantly within the REV, the average of the fluctuations is zero. The form given in

Eqn. (2.4.13) also implies that the length constraints given by Eqn. (2.4.12) are valid. Sev-

eral form of the VAT momentum equation can be developed to suit different type of closure.

However, independently of their form, in order to obtain an equation that involves only the

average velocity, a closure scheme needs to be developed to model the fluctuation terms and

area integrals. Proper modeling of these terms is crucial in order to obtain accurate results

and most of the research in recent years has been geared towards the analysis of these terms.

2.5 Development of the VAT Energy Equation

The VAT energy equation for the fluid phase can be derived by substituting ψf = ρfcpfTf in

the general VAT transport equation Eqn. (2.2.42). The diffusivity is given by the thermal

diffusivity αf = κf = kf/ρfcpf , and a constant volumetric heat source is considered gf = q̇
′′′

f

(e.g. Joule heating).

εf
∂〈ρfcpfTf〉f

∂t
+∇ ·

(
εf〈ρfcpfTf〉f〈v〉f

)
+

1

V

∫
Afs

nfs · (vρfcpfTf ) dA =

= ∇ · 〈κf∇ρfcpfTf〉+
1

V

∫
Afs

nfs · [κf∇ρfcpfTf ] dA−∇ ·
(
εf

〈
ρfcpf T̃f ṽ

〉f)
+ εf

〈
q̇
′′′

f

〉f
(2.5.1)
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In the derivation of this form, following the discussion in the previous section, it is implied

that the averaged values do not change significantly within the REV, and that the average

of fluctuating quantities is zero. Assuming that flow is incompressible, and specific heat is a

constant, Eqn. (2.5.1) simplifies to

ρfcpfεf
∂〈Tf〉f

∂t
+ ρfcpf∇ ·

(
εf〈Tf〉f〈v〉f

)
+ ρfcpf

1

V

∫
Afs

nfs · (vTf ) dA =

= ∇ · 〈kf∇Tf〉+
1

V

∫
Afs

nfs · [kf∇Tf ] dA− ρfcpf∇ ·
(
φf

〈
T̃f ṽf

〉f)
+ εf

〈
q̇
′′′

f

〉f (2.5.2)

Assuming also that the solid phase is impermeable, and using continuity, Eqn. (2.5.2) can

be further simplified to obtain

εfρfcpf
∂〈Tf〉f

∂t
+ εfρfcpf〈v〉f · ∇〈Tf〉f =

= ∇ · 〈kf∇Tf〉+
1

V

∫
Afs

nfs · [kf∇Tf ] dA− ρfcpf∇ ·
(
φf

〈
ṽT̃f

〉f)
+ εf

〈
q̇
′′′

f

〉f (2.5.3)

Next, the diffusive terms on the right hand side needs to be expressed in terms of gradients

of averaged quantities. Assuming that the thermal conductivity is constant within the REV,

and using the SAT, the diffusive term can be rewritten as

∇ · 〈kf∇Tf〉 = ∇ · (kf 〈∇Tf〉) = ∇ ·

kf∇〈Tf〉+
kf
V

∫
Afs

nfsTfdA

 (2.5.4)

Substituting Eqn. (2.5.4) back into Eqn. (2.5.3), and expressing everything in terms of in-

trinsic values, a first form of the VAT energy equation is obtained

εfρfcpf
∂〈Tf〉f

∂t
+ εfρfcpf〈v〉f · ∇〈Tf〉f = ∇ ·

kf∇(εf〈Tf〉f)+
kf
V

∫
Afs

nfsTfdA

+

+
1

V

∫
Afs

nfs · [kf∇Tf ] dA− ρfcpf∇ ·
(
φf

〈
ṽT̃f

〉f)
+ εf

〈
q̇
′′′

f

〉f (2.5.5)

In most closure schemes, the interface flux term, is closed in terms of the heat transfer

coefficient based on the point-wise terms, therefore, the decomposition will be applied only
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to the first term on the right hand side of Eqn. (2.5.5)

∇ ·

kf∇(εf〈Tf〉f)+
kf
V

∫
Afs

nfsTfdA

 =

= ∇ ·

kf∇(εf〈Tf〉f)+
kf
V

∫
Afs

nfs〈Tf〉fdA+
kf
V

∫
Afs

nfsT̃fdA


(2.5.6)

Since average temperature variations have already been assumed negligible within the REV

(in the derivation of the convective terms), the intrinsic average can be taken out of the inte-

gral without additional constraints. Following the development from the previous sections,

the diffusion term becomes

∇ ·

kf∇(εf〈Tf〉f)− kf∇εf〈Tf〉f +
kf
V

∫
Afs

nfsT̃fdA

 =

= ∇ ·
(
εfkf∇〈Tf〉f

)
+∇ ·

kf
V

∫
Afs

nfsT̃fdA


(2.5.7)

Using this result in Eqn. (2.5.3), a second form of the VAT energy equation for the fluid

phase is obtained

εfρfcpf
∂〈Tf〉f

∂t
+ εfρfcpf〈v〉f · ∇〈Tf〉f = ∇ ·

(
εfkf∇〈Tf〉f

)
+∇ ·

kf
V

∫
Afs

nfsT̃fdA

+

+
1

V

∫
Afs

nfs · [kf∇Tf ] dA− ρfcpf∇ ·
(
εf

〈
ṽf T̃f

〉f)
+ εf

〈
q̇
′′′

f

〉f
(2.5.8)

The development of the solid equation is carried out in a similar way. Substituting ψs =

ρscpsTs, αs = κs = ks/ρscps and gs = q̇
′′′
s in Eqn. (2.2.52), a first form of the equation is given

by

εs
∂〈ρscpsTs〉s

∂t
= ∇ · [κs∇ (εs〈ρscpsTs〉s)] +∇ ·

κs
V

∫
Asf

nsfρscpsTsdA

+

+
1

V

∫
Asf

nsf · [κs∇ρscpsTs] dA+ εs

〈
q̇
′′′

s

〉s (2.5.9)
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Assuming that ρscps is constant, Eqn. (2.5.9) can be rearranged as

εsρscps
∂〈Ts〉s

∂t
= ∇ · [ks∇ (εs〈Ts〉s)] +∇ ·

ks
V

∫
Asf

nsfTsdA

+

+
1

V

∫
Asf

nsf · [ks∇Ts] dA+ εs

〈
q̇
′′′

s

〉s (2.5.10)

Assuming that changes in the intrinsic average of the solid temperature are negligible within

the REV, it can be taken out of the integral, and another form of energy conservation in the

solid is given by

εsρscps
∂〈Ts〉s

∂t
= ∇ · [εsks∇〈Ts〉s] +∇ ·

ks
V

∫
Asf

nsf T̃sdA

+

+
1

V

∫
Asf

nsf · [ks∇Ts] dA+ εs

〈
q̇
′′′

s

〉s (2.5.11)

This last assumption implies that the following length conditions are satisfied

∇〈yf〉 � I,
r2

0

LεLT1

� 1 (2.5.12)

where LT1 is the length scale associated with changes in ∇∇〈Ts〉s. Since εs = 1 − εf , the

length scale associated changes in porosity, Lε, will be the same for both phases. The gov-

erning VAT mass, momentum and continuity equations were rigorously derived by applying

the averaging operator, and making certain assumptions about the behavior of the averaged

functions. These assumptions are relatively safe for most real porous media and multi-scale

engineered structures. Modeling of the integral and fluctuation terms is still needed to ob-

tain closed form of the equations, however, before discussing closure, the development of the

turbulence equations is carried out.

2.6 Closure

The accuracy of the analysis of transport phenomena using VAT is strongly dependent on

the accuracy of the closing scheme. Although some assumptions about length scale dispar-

ities are used in the derivation of the governing equations, most of the approximations are
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introduced in the closure models. For natural porous media, the determination of geometric

properties, such as porosity and internal structure can be a challenge and will introduce fur-

ther approximations. In man-made multi-scale systems such as heat exchangers, heat sinks

and packed beds, the determination of these properties is usually much simpler, and can

be obtained analytically. In these systems, the challenges in the solution of the governing

equations all lie in the determination of the integral and fluctuation terms for different flow

conditions. The first step is the definition of the closure parameters. A few closure schemes

will be mentioned, and the closure scheme developed by Travkin and Catton [38] will be

discussed in detail. The second challenge is in the determination of the defined closure

parameters. Three main methods to obtain closure variables are available:

• Analytical

• Experimental

• Numerical

Analytical solutions are usually possible only for very simple geometries, and involve several

approximations and will therefore not be treated in this paper. Experimental closure, when

carried out accurately, is usually the most accurate method and should always be used to

validate results obtained through other means. A review of a few important correlations

will be given in this section. Development of experimental techniques and their implemen-

tation is often time consuming and expensive. As a result, and due to the improvement

in commercially available CFD software, and increase in commonly available computational

power, numerical simulations have quickly become the most common technique to obtain

closure relations. Furthermore, numerical simulations provide solution at any point in the

(discretized) domain and therefore they allow the determination of certain closure parame-

ters that are experimentally very hard to measure. The procedure developed by Zhou [104]

to obtain closure through CFD will be presented, along with selected numerical results. Fol-

lowing the structure of the first section, the laminar equations are closed first, followed by a

discussion of the closure parameters. Closure of the turbulent transport equations, requires
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further closure and approximation due to the double averaging procedure, and it is treated

in a separate section.

2.6.1 Closure of VAT Momentum Equation

In Section 2.4, the laminar VAT momentum equations were rigorously derived by using av-

eraging operators on the point-wise momentum equation, and several forms of the equations

were provided. The closure scheme defined by Travkin and Catton [38] for the laminar mo-

mentum equation is best applied by starting from Eqn. (2.4.7), which is repeated here in

tensor notation

ρfεf
∂ 〈v〉fi
∂t

+ ρfεf 〈v〉fj
∂ 〈v〉fi
∂xj

= − ∂

∂xi

(
εf〈pf〉f

)
+

∂

∂xj

[
µf

∂

∂xj

(
εf 〈v〉fi

)]
+

+
1

V

∫
Afs

nfs,j

[
−pfδij + µf

∂vi
∂xj

]
dA− ρf

∂

∂xj

(
εf〈ṽiṽj〉f

)
+ ρfεf 〈g〉fi

(2.6.1)

The pressure drag resistance integral term is closed by defining a diagonal form drag tensor

cpd,ii =

[
1
V

∫
Afs

nfspfdA

]
i

1/2ρf

(
〈v〉fi

)2

Swp

(2.6.2)

where Swp = Afs,p/V is the cross flow interface projected area per unit volume. The pressure

integral term can then be closed 1

V

∫
Afs

nfspfdA


j

δij =
1

2
ρfSwpcdp,ij

(
〈v〉fj

)2

(2.6.3)

Similarly, the velocity gradient integral, can be closed using a skin friction drag tensor

cf,ij =

[
1
V

∫
Afs

nfs

(
−µf ∂vi∂xj

)
dA

]
j

1/2ρf

(
〈v〉fi

)2

Sw

(2.6.4)

where Sw = Afs/V , and the traction integral can be closed 1

V

∫
Afs

nfs,jµf
∂vi
∂xj

dA


j

=
1

2
ρfSwcf,ij

(
〈vf〉fj

)2

(2.6.5)
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The product of the velocity fluctuations has been treated in several different ways through-

out the literature. Analogy with turbulent dispersion and physical intuition suggests that

the momentum dispersion term should be closed by assuming it will improve momentum dif-

fusion. Therefore, similar to the eddy viscosity, a scalar geometrical diffusivity νg is defined

as

− 〈ṽiṽj〉 = νg
∂〈v〉i
∂xj

(2.6.6)

Substituting this definition into Eqn. (2.6.1) , and dividing through by density yields a closed

form of the VAT momentum equation,

εf
∂〈v〉f

∂t
+ εf〈v〉f · ∇〈v〉f = −∇

(
εf〈pf〉f

)
+

+∇ ·
[
νeff∇

(
εf〈v〉f

)]
− 1

2
Sw

(
cdp

Swp
Sw

+ cf

)
·
(
〈v〉f

)2

+ εf〈g〉f
(2.6.7)

where νeff = νf + νg. Although this seems to be a more rigorous approach, difficulties

with measurements of the dispersion terms, and the historical importance of models such

as Darcys law, and the Brinkmann-Forcheimer models, the velocity fluctuation terms are

usually included in the momentum sink term. Travkin and Catton [38] define an overall

drag coefficient that includes the fluctuation terms,

cd,ij = cdp,ij
Swp
Sw

+ cf,ij +
ρf

∂
∂xj

(
〈ṽiṽj〉f

)
1/2ρf

(
〈v〉fi

)2

Sw

(2.6.8)

Using this definition, the closed VAT momentum equation is given,

εf
∂〈v〉f

∂t
+ εf〈v〉f · ∇〈v〉f = −∇

(
εf〈pf〉f

)
+

+∇ ·
[
νf∇

(
εf〈v〉f

)]
− 1

2
Swcd ·

(
〈v〉f

)2

+ εf〈g〉f
(2.6.9)

It can be seen that the drag term acts as a momentum sink that is proportional to the

square of the velocity. Note that the macroscale kinetic energy is dissipated through the

drag term by the no slip condition at the lower scale fluid-solid interfaces. This is quite

similar to the energy cascade in turbulence where energy is transferred from the mean flow

to the lower scale eddies and is then dissipated through viscous effects. Travkin and Catton

[38] also argue that the drag coefficient has the following form

cd,ij =
Aij

Redh
+Bij (2.6.10)
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where the Reynolds number is based on the magnitude of the intrinsic velocity
∣∣∣〈v〉f ∣∣∣ , and

the VAT hydraulic diameter is defined as

dh =
4εf
Sw

(2.6.11)

The ratio of the porosity to specific surface area defines a length scale that naturally arises

from the non-dimensionalization of the closed VAT momentum and equations. Another

approach to arrive at this ratio for the characteristic length scale of lower scale phenomena,

is by arguing that at the micro scale, information about the macro scale has been lost, and

all the momentum losses are due to the intricate geometry. After homogenization, the only

parameters that describe the geometry are indeed the porosity and the specific surface, and

using scaling arguments they can be combined to obtain their ratio as the length scale. It

was shown by Travkin and Catton [38], that the factor of 4 was a natural consequence of

scaling both globular and capillary geometries. The VAT momentum equation can be directly

related to the Brinkmann-Forchimer equation, a purely empirical but extensively used model

of flow in porous media. This Brinkmann-Forchimer equation was originally developed for

one dimensional flow, and by substituting the proposed form of the drag coefficient in the

one dimensional form of Eqn. (2.6.9) , the following equation is obtained

εf
∂〈u〉f

∂t
+ εf〈u〉f

∂〈u〉f

∂x
= −εf

ρf

∂〈pf〉f

∂x
+ εfνf

∂2〈u〉f

∂x2
− 1

2
Sw

(
A

Re
+B

)(
〈u〉f

)2

(2.6.12)

Then, assuming that the flow is steady and fully developed, rearranging the drag term and

multiplying both sides by the density, Eqn. (2.6.12) becomes

− ∂ 〈pf〉
∂x

+ εfµf
∂2〈u〉f

∂x2
− 1

2
Sw
µfA

dh
〈u〉f − ρfB

(
〈u〉f

)2

= 0 (2.6.13)

Expressing the two constants as

A =
2dh
SwK

, B =
c1

K1/2
(2.6.14)

Eqn. (2.6.13) is the Brinkmann-Forcheimer model that was given at the beginning of this

work, Eqn. (2.0.2). Eqn. (2.6.13) however, is developed by a rigorous upscaling procedure

and closure model. The assumptions behind its derivation can be directly verified, and all
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terms have a physical meaning. It can also be seen that there is a direct correlation between

the drag coefficient defined in Eqn. (2.6.10) and the commonly used permeability tensor.

The form of the drag tensor closely resembles correlations that have been developed for the

Fanning friction factor. It can be shown that these two are indeed strongly related. This

can be illustrated using the definition of the Fanning friction factor

ff =
1

4

∆P

L

dh
1/2ρU2

(2.6.15)

Assuming that the velocity scale is U = 〈uf〉f , and the length scale is the VAT defined

hydraulic diameter, the expression for the Fanning friction factor can be written

1

2
ρfSwff

(
〈uf〉f

)2

= εf
∆P

L
(2.6.16)

The closed VAT momentum equation, Eqn. (2.6.9), for one dimensional, steady, fully devel-

oped flow and negligible diffusion becomes

0 = −εf
ρf

∂〈pf〉f

∂x
− 1

2
Swcd

(
〈uf〉f

)2

(2.6.17)

Integrating over the entire x domain, multiplying through by the density and rearranging,

this equation becomes
1

2
ρfSwcd

(
〈uf〉f

)2

= εf
∆P

L
(2.6.18)

and comparison of Eqn. (2.6.16) & Eqn. (2.6.17), shows that

cd = ff (2.6.19)

In general, this will not be a strong equality, but it is expected that the drag coefficient can be

closely approximated by the Fanning friction factor, cd ≈ ff . This relationship is particularly

useful, because correlations for the Fanning friction factor have been experimentally and

numerically developed for a large number and variety of geometries and, even though they

are not always expressed in the form given by Eqn. (2.6.10), and are based on different

velocity and length scales, they can be recast in the proper form and with the proper scaling.

The form of the drag coefficient expressed in Eqn. (2.6.10) has been widely used to correlate
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pressure drops for packed and fluidized beds. Arguably the most popular correlation for the

Darcy friction factor, was proposed by Erguns [105]

fERG =
150

Rep

(1− εf )2

ε3
f

+ 1.75
(1− εf )
ε3
f

(2.6.20)

where the friction factor is based on the superficial velocity and a characteristic particle

diameter. It can be shown that using the definition of the Fanning friction factor given by

Eqn. (2.6.16), and the VAT hydraulic diameter, the porosity dependence of the coefficients

can be removed, and the Ergun equation becomes

ff =
33.3

Redh
+ 0.5833 (2.6.21)

The first term is dominant in the viscous (also known as Darcy) regime when Rep < 1 ,

while the constant term prevails in the inertial range (also known as Forcheimer) regime

Rep > 100. Amaral Souto and Moyne [106, 107], in their study of two dimensional arrays

of inline, staggered and random media found that the viscous regime is usually accurate up

to Rep = 20 − 30, and confirmed the dependence of the friction factor with the square of

the velocity in the inertial regime, Rep > 100. They also found that in the intermediate

range, the pressure drop has a cubic dependence on the Reynolds number. Erguns equation

was originally developed by a combination of physical arguments and empirical data. In its

original form, it was assumed that the fluid flows through a bundle of tortuous capillaries with

a uniform average cross-sectional area, and that the solid phase was composed of randomly

distributed uniform sized spheres. It was also assumed that the system includes a large

enough number of particles, so the effects of porosity and flow variations at the boundaries

could be neglected. Since its original publication, this equation has been shown to give

surprisingly accurate results for a wide variety of geometries and flow conditions. Macdonald

[108], extended Erguns correlation by extending the curve fit for a large variety of data, and

found that for engineering purposes a modified of the Ergun equation can be used for a wide

variety of shapes and over a wide range of porosities

fMCD =
180

Rep

(1− εf )2

ε3
f

+ 1.8
(1− εf )
ε3
f

(2.6.22)
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Once again, by using the Fanning friction factor and the VAT hydraulic diameter, the poros-

ity dependence of the constants is removed, and the equation reduces to

ff =
45

Redh
+ 0.45 (2.6.23)

Several other modifications of these equations are found in the literature for different geome-

tries, based on curve fits of numerical or experimental data. More recently, Du Plessis [109]

used a combination of the VAT approach, with a generalized REV, to give a physical and

geometrically based arguments for the derivation of the Ergun equation, its modifications,

and its dependence on parameters of the problem. It is well known that surface roughness

or micro scale structures also affect the pressure drop, therefore they have to be taken into

account. Since the scale of these structures is usually orders of magnitude smaller than the

sizes of the REV, their effects are included in the constants of the friction factor. In the vis-

cous regime, usually these effects are negligible, therefore, they enter the correlations through

the inertial term B. Macdonald [108], in the same work, presented a modified version of

Eqn. (2.6.22) for rough particles

fMCD =
180

Rep

(1− εf )2

ε3
f

+ 4
(1− εf )
ε3
f

(2.6.24)

although what rough means is not clear. For cases in which the drag coefficient has not been

determined, it can be obtained through experimental or Computational Fluid Dynamics

(CFD) studies. Zhou and Catton [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,

121, 122, 123, 124] conducted a large number of numerical studies using commercial CFD

software to obtain the VAT defined drag coefficients for a wide variety of heat sink and heat

exchangers geometries. Although it may seem counter intuitive to use DNS to obtain closure

of the VAT equations, since the computational cost of such studies is what motivated the

use of VAT in the first place, the DNS studies can be carried out over only one (or a few)

properly selected REVs providing significant advantages over a full DNS study of the entire

system. It is also important that closure of the governing equations using CFD software be

carefully executed, in order to ensure that the results obtained do not depend on the number

of REVs considered, and/or meshes and numerical methods used. Zhou [104] developed a

five step procedure for the evaluation procedure
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1. Selection of the REV,

2. Determination of the closure length scale,

3. Validation of the model with experimental data,

4. Determination of the number of REVs required, and

5. Correlation of results.

In the first step, the REV for the current geometry is selected such that it is spatially periodic

in the main flow direction. If the system under consideration can be treated as a spatially pe-

riodic porous medium, in most cases, it can be assumed that spatial fluctuations of the lower

scale fields are themselves spatially periodic with period equal to the REV period, and they

do not have a significant effect on the averaged equations. This fact allows simplifications

because the fluctuation field is not always easy to calculate numerically or experimentally,

and the local closure parameters can be obtained from a single REV with periodic boundary

conditions. In the second step, the VAT hydraulic diameter is calculated by determining

the porosity ε and specific surface Sw. For heat transfer systems such as heat exchangers

and heat sinks, an analytical expression for these parameters is easily obtained in terms of

geometrical parameters such as transverse and longitudinal pitches, diameter, thickness etc.

This fact implies one of the key features/assumptions of the porous media modeling of these

systems: the multi-parameter, complex micro scale geometric structure can be reduced to

only two macro scale parameters. In the third step, the results obtained numerically are

compared to available experimental data to ensure that meshing and numerical errors are

negligible. In the fourth step, the number or REVs is increased to study the effects of multi-

ple REVS on the closure parameters. Following the discussion from Section 2.1, the number

of REVs, which is the size of the closure volume, should be chosen such that the averaged

quantities of interest become smooth functions. For example, the heat transfer coefficient

determined using only one REV, might be quite different than the one obtained by using two

REVs, and so forth. Once a certain amount of REVs is reached, this volume is a good overall

representation of the heat transfer processes and adding further REVs will not significantly
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change the heat transfer coefficient. In the last step, simulations are carried out for a range

of Reynolds numbers and Prandtl numbers, and the data is correlated using the definition

of friction factor and VAT hydraulic diameter.

As demonstrated by Erguns and Macdonalds correlations, closure parameters for different

micro scale geometries, can be collapsed onto a single curve by using a length scale defined in

terms of the porosity and specific surface, which are combined in the VAT hydraulic diameter.

Erguns correlation has been shown to provide good results for a wide number of packed beds

and for several different materials. Macdonalds correlation, given by Eqn. (2.6.22), is accu-

rate to within 20% for 14 different types of natural and man-made lower scale geometries.

Zhou et al [124] were able to collapse the closure parameter for six different fin-and-tube

heat exchanger tube diameters and pitches for a large range of Reynolds numbers onto a

single curve (see Figure 2.6). Vadnjal [46] also found that one REV, with periodic boundary

conditions, was enough to obtain a good approximation of the drag coefficient in a packed

bed of spheres. Improvements in micro and nano fabrication techniques has made surface

micro structures a popular method to enhance heat transfer due to their ability to increase

mixing and surface area. These structures, unlike surface roughness which is not designed

and is commonly characterized statistically, are coherent and can be defined through param-

eters similar to those used for regular geometries (e.g. diameter, pitch, height etc.). Zhou

[114, 112], in his study of the effects of fish-scale shape on heat transfer enhancement and

pressure drop, found that the effects of variation in these structures cannot be collapsed onto

one curve simply by using the VAT velocity and hydraulic diameter. This can be explained

by recalling that the main assumption behind the collapse of friction factor curves using VAT

was that the momentum loss in the system is all due to no-slip conditions at surfaces with

the REV geometry, which can be completely characterized by porosity and specific surface.

However, varying the micro structure geometric parameters affects the porosity negligibly,

while significantly affecting the flow field, therefore, the porosity is not a good descriptor of

changes in the micro structure. It should be pointed out that this fact does not mean that

micro enhanced surfaces cannot be studied using VAT; it is only meant to point out that

the effects of changes in micro structures parameters cannot be taken into account simply
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Figure 2.6: Friction factor for different Fin-and-Tube Heat Exchanger geometries
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through changes in the VAT hydraulic diameter.

2.6.2 Closure of VAT Energy Equation

The laminar VAT based energy equations were rigorously derived in the previous sections

using an averaging operator on the microscale energy equation. There are three terms that

require closure in Eqn. (2.5.8) and Eqn. (2.5.11). They are generally defined as

∇ ·

kf
V

∫
Afs

nfsT̃fdA

 : tortuosity

1

V

∫
Afs

nfs · [kf∇Tf ] dA : interfacial flux

∇ ·
〈
T̃f ṽf

〉
: dispersion

(2.6.25)

The same terms, except for the dispersion term, are also found in the solid energy equation.

The non-closed form of the VAT energy equations best suited for the derivation of the closure

scheme are given by Eqn. (2.5.5)

ρfcpfεf
∂〈Tf〉f

∂t
+ ρfcpfεf〈vf〉f∇〈Tf〉f =

= ∇ ·
(
kfεf∇〈Tf〉f

)
+∇ ·

kf
V

∫
Afs

nfsT̃fdA

+
1

V

∫
Afs

nfs · [kf∇Tf ] dA+

− ρfcpf∇ ·
〈
T̃f ṽf

〉
+ εf

〈
q̇
′′′

f

〉f
(2.6.26)

ρscpsεs
∂〈Ts〉s

∂t
= ∇ · (εsks∇〈Ts〉s) +∇ ·

ks
V

∫
Afs

nsf T̃sdA

+

+
1

V

∫
Afs

nsf · [ks∇Ts] dA+ εs

〈
q̇
′′′

s

〉s (2.6.27)

The tortuosity and dispersion terms are usually assumed to be proportional to the gradi-

ent of the average temperature, suggesting that they promote (or impair) diffusion. This

assumption is reminiscent of improved diffusion due to turbulent dispersion, and it was first

shown for laminar flow through a tube by Taylor [125] and Aris [126]. The interfacial flux
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term is assumed to be proportional to the difference between the average fluid and solid

temperatures. These schemes have been extensively used by Kuwahara, [48, 50, 127, 128]

and Nakayama [129, 80, 81, 49]. The interfacial flux is closed by defining a local heat transfer

coefficient

h1 ≡

kf
V

∫
Afs

nfs · ∇TfdA

Sw

(
〈Ts〉s − 〈Tf〉f

) (2.6.28)

The tortuosity and dispersion terms are closed by defining an effective thermal conductivity

tensor

kf,eff · ∇〈Tf〉f = (kf,stag + kf,dis) · ∇〈Tf〉f (2.6.29)

The stagnation thermal conductivity is taken as the sum of the porosity weighted thermal

conductivity and the tortuosity term

kf,stag = εfkfI +
kf
V

∫
Afs

nfsT̃fdA (2.6.30)

The dispersion terms are closed by defining a dispersion thermal conductivity tensor

kf,dis · ∇〈Tf〉f = −ρfcpf
〈
T̃f ṽf

〉
(2.6.31)

Using these closure parameters, a closed form of the VAT fluid conservation equation is

given by

ρfcpfεf
∂〈Tf〉f

∂t
+ ρfcpfεf〈vf〉f∇〈Tf〉f =

= ∇ ·
(
keff,f · ∇〈Tf〉f

)
+ h1Sw

(
〈Ts〉s − 〈Tf〉f

)
+ εf

〈
q̇
′′′

f

〉f (2.6.32)

Since dispersion effects do not enter directly into the solid energy equation, only the stagna-

tion thermal conductivity and interfacial flux are defined, and the solid VAT energy equation

is

ρscpsεs
∂〈Ts〉s

∂t
= ∇ · (kstag,s · ∇〈Ts〉s)− h1Sw

(
〈Ts〉s − 〈Tf〉f

)
+ εs

〈
q̇
′′′

s

〉s
(2.6.33)

where the minus sign in the interfacial flux terms comes from the relation between the

interface normal nsf = −nfs . Numerous studies have been carried out to determine the

tortuosity and dispersion effects. Yang and Nakayama [130] developed a model based on a
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unit cell model to obtain a general expression for stagnation and dispersion, and their results

agreed well with experimental data for a different geometries. Hsu [131] developed a closure

scheme for convective heat transfer in packed beds by considering a dilute array of spheres

with a constant to account for the interaction between spheres. Nakayama and Kuwahara

[50, 48] extended Hsus closure scheme to include convection. Souto [106, 107] studied the two-

dimensional dispersion tensor for an inline, staggered and random array of square obstacles.

The tortuosity terms are generally more important in a purely conductive system, while it

will be negligible for convectively dominated flows. This can be demonstrated for the solid

by considering the solid tortuosity term, and using spatial decomposition

ks
V

∫
Afs

nfsT̃sdA =
ks
V

∫
Afs

nfs (Ts − 〈Ts〉s) dA (2.6.34)

The difference between the point-wise temperature and the average temperature will depend

on point-wise temperature gradients in the solid phase within the REV. When the Biot

number is small, this gradient is negligible, therefore, it can be assumed that the temperature

at the interface will be equal to the volume averaged temperature, Ts = 〈Ts〉s. Therefore

ks
V

∫
Afs

nfs (Ts − 〈Ts〉s) dA ≈ 0, Bi =
hD

ks
� 1 (2.6.35)

where D is a general particle diameter length scale. This also shows that in convective flows,

this term depends on the local heat transfer coefficient, and its distribution. For example, if

stagnation and recirculation areas are present in the flow, there might be areas in which the

Biot number is relatively large, and this term can be significant. This link between tortuosity

and the VAT heat transfer coefficient can be seen also by considering the fluid tortuosity

term. When no reaction at the interface area is present, the point-wise temperatures will be
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equal. Using this fact, and the definition of the decompositions it can be shown that

kf
V

∫
Afs

nfsT̃fdA =
kf
V

∫
Afs

nfs

(
Tf − 〈Tf〉f

)
dA =

kf
V

∫
Afs

nfs

(
Ts − 〈Tf〉f

)
dA =

=
kf
V

∫
Afs

nfs

(
〈Ts〉s − 〈Tf〉f

)
− T̃sdA =

=
kf
V

∫
Afs

nfs

(
〈Ts〉s − 〈Tf〉f

)
dA− kf

ks

ks
V

∫
Afs

nfsT̃sdA


(2.6.36)

The first term depends on the average temperature difference between the two phases and

is directly linked to the local heat transfer coefficient. The second term is dependent on

the ratio of the solid and fluid temperature, and the Biot number. Therefore, in general,

the tortuosity depends on the heat transfer coefficient, the ratio of solid to fluid thermal

conductivity and the Biot number. In most convective flows and material combinations, the

thermal conductivity ratio and the Biot number are very small and the second term can be

ignored. In the numerous studies of thermal dispersion, a relationship between the diagonal

terms of the dispersion tensor is generally found in the form

kdis,ii
kf

= Ci +DiPe
n (2.6.37)

where the Peclet number is based on a lower length scale and the main direction flow

velocity. In general, it is reported that n ≈ 2, the constants Ci and Di are dependent on

the geometry, and that dispersion in the direction perpendicular to the main flow is much

smaller than in the parallel direction. Yang [130] also reports that for convective flows, the

constant Di is inversely proportional to the Nusslet number. Dixon and Cresswell [132] also

found that the effective thermal conductivity for both solid and fluid phases depends on the

heat transfer coefficient. This shows that although tortuosity, dispersion and heat transfer

terms are usually treated as separate entities, they are indeed linked to each other. Based on

the observed dependence of the local heat transfer coefficient on tortuosity and dispersion,

Travkin and Catton [38] used a different closure scheme for the energy equations. Starting

again from the non-closed form of the equation, Eqn. (2.6.26), they define an overall heat
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transfer coefficient as

h ≡

1
V

∫
Afs

nfs · kf∇TfdA

Sw

(
〈Ts〉s − 〈Tf〉f

) +

∇ ·

(
kf
V

∫
Afs

nfsT̃fdA

)
Sw

(
〈Ts〉s − 〈Tf〉f

) −
ρfcpf∇ ·

(
εf

〈
T̃f ṽf

〉f)
Sw

(
〈Ts〉s − 〈Tf〉f

) (2.6.38)

Applying this definition, a closed VAT fluid equation is obtained

εfρfcpf
∂〈Tf〉f

∂t
+ εfρfcpf〈vf〉f∇〈Tf〉f =

= ∇ ·
(
εfkf∇〈Tf〉f

)
+ hSw

(
〈Ts〉s − 〈Tf〉f

)
+ εf

〈
q̇
′′′

f

〉f (2.6.39)

This approach defines a heat source (or sink) in the fluid temperature that is dependent

on the difference between the averaged solid and fluid, while leaving the diffusion coefficient

unchanged. Therefore, dispersion and tortuosity effects are included in the heat transfer

coefficient, and their effects are assumed to be proportional to fluid solid temperature dif-

ference. Defining the heat transfer coefficient this way greatly simplifies its experimental

determination because it removes the added complications of the determination of tortuos-

ity and dispersion. The two closure schemes discussed lead to the same equations for cases

in which tortuosity and dispersion effects are negligible. To close the solid equations, they

argue that conservation of energy dictates that energy entering the fluid must leave the solid,

therefore the energy equation is closed as

ρscpsεs
∂〈Ts〉s

∂t
= ∇ · (εsks∇〈Ts〉s)− hSw

(
〈Ts〉s − 〈Tf〉f

)
+ εs

〈
q̇
′′′

s

〉s
(2.6.40)

The use of the same heat transfer coefficient for both equations might seem mathematically

inconsistent due to the fact that the dispersion terms are not explicitly included in the solid

equation. However, following the previous discussion, it has been shown that both tortuosity

terms, and dispersion will depend on the local heat transfer coefficient. Neither one of these

approaches is exact, because the effects of the coupling of the two equations cannot always

be exactly limited to only one of the closure parameters. Quintard and Whitaker [133]

present a different, more mathematically rigorous closure model, which includes coupling

between the two equations in several terms. They define additional velocity terms that

couple the convective fluid transport with convective-like terms that involve gradients in
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the solid temperature. Furthermore, their definition of the effective thermal conductivity

tensors also couples the fluid and solid temperatures. Quintard and Kaviany [134] solve

those equations for several three dimensional configurations, and provide very useful insight

in the dependence of the different terms on geometry, physical and flow characteristics of

the system. This is a more comprehensive approach, and should be considered for new

problems. However, its practicality is limited by the number of parameters that need to

be determined and the mathematical complications. Each of the different closure schemes

has its merits and in this work, expediency and simplicity are important, and the closure

method discussed in the previous section have been shown to provide accurate results within

their limitations. Much of the discussion of the determination of the closure parameters for

the momentum equation is also valid for closure of the energy equations. In most cases,

following conventional correlations, the Nusselt number can be expressed as

Nudh = C Rendh +DRemdh Pr1/3 (2.6.41)

Handley and Heggs [135], in some of the earliest work done on the determination of the heat

transfer coefficient in packed beds proposed the following correlation

Nup =
0.255

εf
Re2/3

p Pr1/3 (2.6.42)

for Rep > 100, where the length scale p is the average particle diameter . Wakao and Kaguei

[136] used a combination of analysis and experimental data for packed beds to adjust the

previous correlation, and extend it to the limit of zero Reynolds number

Nup = 2 + 1.1 Re0.6
p Pr1/3 (2.6.43)

Whitaker [19], using the VAT defined hydraulic diameter (with a different constant) was

able to collapse the data for a wide number of packed beds and inline and staggered tube

bundles onto a single correlation

Nudh = 2 Re
1/3
dh

Pr1/3, Redh < 102

Nudh =
(

0.5 Re
1/2
dh

+0.2,Re
2/3
dh

)
Pr1/3102 < Redh < 105

(2.6.44)
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Over the years, several new correlations have been proposed for different geometries. Re-

cently, Kuwahara [51] suggested a new correlation based on two dimensional numerical stud-

ies for flow over an array of staggered squares

NuD =

[
2 +

12 (1− εf )
εf

]
+ (1− εf )1/2 Re0.6

D Pr1/3 (2.6.45)

Zhou [111] in a numerical study of fin-and-tube heat exchangers, was able to collapse the

heat transfer coefficient for several different heat exchanger geometries on a single curve

using the VAT defined hydraulic diameter (see Figure 2.7). In general, it is of interest to

Figure 2.7: Fin Side Nusslet number for several Fin-and-Tube geometric configurations using

VAT defined hydraulic diameter

develop some criteria that could allow the use of commonly available correlations for the
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Nusslet number for VAT applications. This would allow one to use the large amount of

literature for common geometries to determine the VAT defined heat transfer coefficient. In

general, most experimental relations for Nusselt numbers are based on the following form

hexp =
Q

A (Ts − Tf,∞)
=

q′′

(Ts − Tf,∞)
(2.6.46)

The definition of the VAT heat transfer coefficient, can be rearranged as

h1 =

∫
Afs

nfs · [kf∇Tf ] dA

Afs

(
〈Ts〉s − 〈Tf〉f

) =
q′′avg(

〈Ts〉s − 〈Tf〉f
) (2.6.47)

where the average heat flux can be obtained from the integral using the mean value theorem.

In general, the heat flux in reported experiments is the heat input divided by the area and

it is generally closely approximated by its VAT equivalent. Following the discussion in the

previous section, when the Biot number is large, it can be assumed that the average and

point-wise solid temperatures will be close, 〈Ts〉s ≈ Ts. The definition of Tf,∞, varies but

the two most common forms are Tf,∞ = Tf,avgand Tf,∞ = Tin, where Tf,avg is usually some

averaged value over the domain. In general, the assumption that Tf,in ≈ 〈Tf〉f is not physi-

cally accurate since the volume averaged temperature can vary significantly throughout the

domain, while Tf,in is a constant. Travkin and Catton [38] argue that using their definition

of the heat transfer coefficient

h ≡

1
V

∫
Afs

nfs · kf∇TfdA

Sw

(
〈Ts〉s − 〈Tf〉f

) +

∇ ·

(
kf
V

∫
Afs

nfsT̃fdA

)
Sw

(
〈Ts〉s − 〈Tf〉f

) −
ρfcpf∇ ·

〈
T̃f ṽf

〉
Sw

(
〈Ts〉s − 〈Tf〉f

) (2.6.48)

the variation in tortuosity and dispersion can take into account the difference between these

definitions, and therefore h ≈ hexp. This allows the use of widely available data for the heat

transfer coefficient in different geometry to be used directly in the VAT equations. This also

implies that for a given Reynolds number, the heat transfer coefficient as defined above will

also be constant in the domain. Although it seems difficult to completely understand the

mathematical assumption of these relations, Vadnjal [46] carried out CFD simulations for

convective heat transfer in a bed of spheres for two different Reynolds numbers, and found

that, except for a small region near the inlet, the heat transfer coefficient is indeed constant
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throughout the domain (see Figure 2.8). Zhou [104] found that the VAT defined heat transfer

coefficient in heat exchangers, at larger Reynolds numbers, was also constant almost every-

where in the domain, which suggests that the this behavior is actually independent of the

Reynolds number. When correlations are not readily available, experiments can be carried

Figure 2.8: Local heat transfer coefficient variation along computational domain (replotted

from [46])

out to determine these parameters. Geb [137] used a single-blow method to experimentally

determine the heat transfer coefficient for random fiber matrices. By also using the VAT

defined hydraulic diameter, and he was able to collapse data for six different random fiber

matrices onto one correlation

Nudh = 0.103 Re0.998
dh

Pr1/3 (2.6.49)
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Geb [138, 139] also used an induction heating method to determine the VAT based heat

transfer coefficient for cylinders and cross flow, mesh matrices and packed beds and found

good agreement with commonly available correlations. The advancement in CFD has made

numerical studies cheaper and faster than experiments. Using the same procedure discussed

for the closure of the momentum equations, CFD studies can be carried out over an REV

to determine the Nusslet number correlation for the given geometry. The number of REVs

that need to be included in the numerical studies to obtain a good representation of the

heat transfer processes in the system needs to be determined. Following the discussion of

Section 2.1, this number does not need to be the same as the one used to determine the

drag coefficient. Vadnjal [46] found that six REVs needed to be included in the computa-

tional domain to obtain a good representation of the heat transfer coefficient in a packed

bed at low Reynolds numbers. Zhou [123], in his study on closure for heat exchangers at

high Reynolds numbers, also found that six REVs were necessary to obtain a good repre-

sentation of the VAT heat transfer coefficient. Also, different boundary conditions (constant

temperature, constant heat flux, and constant volumetric heat generation) can be used to

heat the solid phase in the numerical simulations, which one to use is not clear. Vadnjal [46]

in his study found that the VAT-defined heat transfer coefficient was the same for all three

types of boundary conditions (see [114, 112]), therefore either one of them can be used in the

numerical simulations. These results show that using six REVs, and any type of boundary

conditions, the heat transfer coefficient can be determined numerically, and used in the VAT

energy equations. Following the discussion in the momentum section, the effect of changes in

micro structures parameters cannot simply be taken into account using the VAT hydraulic

diameter, therefore for different micro structures, the correlation does not collapse onto a

single curve.

Once the geometry is defined, and the drag and heat transfer coefficients have been de-

termined, Eqns. (2.6.9), (2.6.39) and (2.6.40) represent a closed set of partial differential

equations (PDE) that can be solved to obtain the average velocities and temperatures in the

entire system. The complex geometry, has now been substituted by a fictitious homogenous

medium, and the governing equations are now defined everywhere in the domain. This ho-
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Figure 2.9: Local heat transfer coefficient for three types of heating. BC:A ⇒ constant

heat flux heating, BC:B⇒ constant wall temperature heating, BC:C⇒ constant volumetric

heating (replotted from [46])
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mogenization process effectively bypasses the numerical issues that arise from the complex

geometry, while including its effects through the closure coefficient.

2.7 Boundary Conditions

It is possible that in certain regions of the domain significant changes in the average quanti-

ties occur over the length scale l and the length scale disparities discussed previously are not

locally verified. In these situations, the two scales cannot be considered separately and their

interaction has to be accounted for. In these regions, the equations become non-local, and

their solution is greatly complicated. In incompressible flow, this length scale breakdown

is often due to sudden changes in geometry which can arise within the medium (e.g. step

changes in geometry) or at the boundaries. At a porous-porous interface, if the difference in

porosity and other average quantities is not too severe, this issue is avoided, however, it can-

not be avoided when interfaces are between porous and homogenous media (e.g. porous-solid

and porous-fluid interfaces). Continuing in our analogy with the continuum approach, this

is similar to the breakdown in length scale disparity that is found at boundaries in microflu-

idics and shock formation in compressible flow. In these regions, changes in the quantities

of interest occur at the mean free path scale where the local Knudsen number is below the

continuum threshold and standard conservation equations and regular boundary conditions

are not accurate. Molecular effects (lower scale effects) have to be included directly in the

governing equations, and jump conditions, (e.g. slip velocity, Rankine-Hugoniot conditions),

need to be defined allowing the lower scale and upper scale quantities to be directly related.

Similarly, for cases where sudden changes in geometry are present, jump condition for the

VAT equations need to be developed.

The development of these conditions is further complicated by noting that in the homoge-

nous region the point-wise equations define quantities that are defined on the particle scale,

while in the porous region, the VAT equations are averaged on the REV scale so tempera-

tures and velocities across the interface have different meaning. To address this issue several

approaches have been developed, with different degrees of rigor, to develop energy and mo-
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mentum jump conditions at such interfaces. Ochoa-Tapia and Whitaker [83, 140, 141], in

their work on the development of stress and heat transfer jump conditions at a porous-fluid

interface, developed a rigorous mathematical framework for the derivation of jump condi-

tions. As a first step, they average the homogenous equations over an REV to bridge the

length scale disparity. Then, the non-local problem is solved by further averaging both equa-

tions over a larger scale to obtain an expression for the excess surface stresses and heat flux

jump conditions. These conditions are given in terms of effective tensors that need to be

closed, for the conditions to be used in practice. Valdes-Parada et al [142] developed a clo-

sure scheme for the aforementioned tensors for a momentum jump at a porous-fluid interface,

and provided numerical values for a few geometries. Hassanizadeh and Grey obtain more

abstract and general momentum and concentration jump conditions in terms of integrals of

point quantities at the interface. Sharaoui and Kaviany [143, 144, 56], numerically studied

the effect of different energy and momentum boundary conditions between porous and ho-

mogenous medium for convection-diffusion and pure diffusion. Vafai and Thiyagaraja [145]

used asymptotic analysis to study porous-porous, porous-solid and porous-fluid interfaces

for different flow conditions and pure conduction. Although all these studies have shed some

light in the behavior of transport phenomena at the interface between porous and homoge-

neous media, a unified approach that defines rigorous but simple interface jump conditions,

and gives closure parameters that can be obtained numerically still needs to be developed,

and is one of the main issues that needs to be addressed.

In this work, VAT will be used for analysis of manufactured geometrically well-defined struc-

tures. This removes the complications resulting from geometry characterization at interfaces

that are common in geological porous structures. In such cases, as shown in the closure

section, direct numerical simulations using CFD software can be used to obtain insight into

the behavior at the lower scale. This is true also for boundary conditions, and CFD solutions

can be used to determine the distribution of heat fluxes at the interface and validate existing

models. Jiang and Lu [146]used CFD to study temperature and heat flux distributions at

the interface between a conducting solid wall and a porous medium composed of uniform

size spheres under laminar convective heat transfer. They considered three different particle
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sizes and two different fluid-solid material combinations to study the effects of particle size

and thermal conductivity ratio on the temperature and heat flux distributions. They found

that, if thermal contact resistances were included, the fluid and solid temperatures at the

interface were quite different from each other, while the heat flux was uniform between the

two phases. They also found, that if contact resistances were not included (e.g. sintered

porous media), the difference in temperature at the interface was negligible, however the

heat flux into the fluid phase was much less than the heat flux into the solid phase. For

the case of negligible thermal contact resistance, they stated that the following energy jump

boundary conditions at the interface best approximated the numerical results

〈Tf〉f = 〈Ts〉s

qs =
ks

εfkf + εsks
qw

qf =
kf

εfkf + εsks
qw

(2.7.1)

where qw is the heat flux applied at the base of the homogenous solid, and qs and qw are

the heat fluxes going into the solid and fluid phase. Imani et al [147] conducted similar CFD

studies to determine the effect of porosity, geometry configuration, Reynolds number and

thermal conductivity ratio on heat flux distribution at the interface between a tube bundle

(considered as a porous medium) and a homogeneous solid for convective heat transfer.

Since contact resistances are not present in this geometrical configuration, they confirmed

that temperature differences between the two phases at the interface are negligible, and,

using a curve-fitting of their findings, they proposed the following correlation for the heat

flux bifurcation

〈Tf〉f = 〈Ts〉s

qs
qw

= 1.244

(
ks
kf

)0.277

ε1.086
f Re−0.037

D

qs
qw

= 1.244

(
ks
kf

)−0.406

ε0.771
f Re0.214

D

(2.7.2)

where the Reynolds number was based on the cylinder diameter but the velocity scale is not

specified. The correlation given in Eqn. (2.7.2) are valid over a wide range of thermal con-

ductivity ratios (0.83-335), porosities (0.39-0.87) and for Reynolds numbers between 1.4 and
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44. Ouyang et al [148] developed a model to determine heat flux bifurcation and temperature

distribution at the interface between porous and solid interfaces for the same condition, and

found good agreement with CFD results. Although these studies provide practical confirma-

tion of analytical studies and useful relationships for certain geometries, to our knowledge,

there has not been a study that develops a porous-solid heat transfer jump condition that

combines a rigorous mathematical approach based on VAT to defined closure variables, and

direct numerical studies to determine their values.

74



CHAPTER 3

Heat Sink Model and Solution Methods

In this chapter, the governing VAT conservation equations developed in the previous section

are applied to model fluid flow and heat transfer in a heat sink. Addition assumptions are

discussed, boundary conditions are introduced, and governing equations are scaled. The

developed scaling is used to simplify the equations, that are then solved numerically. The

numerical methods used are discussed in detail, and particular attention is dedicated to

the treatment of the interface boundary condition. A Finite Difference (FD) method and a

Galerkin Method (GM) solution are developed for the governing equations.

3.1 Model

In addition to the assumption of separation of scale and smoothness, discussed in the previous

section, in the current model, the following assumptions are made:

1. Flow and heat transfer phenomena are steady.

2. No heat generation or viscous dissipation are present.

3. Variations along the width (y-direction) can be ignored. The overall model is two

dimensional.

4. Dispersion and tortuosity effects can be ignored.

5. Drag tensor is diagonal.

6. Fluid and solid temperature at the interface between the channel and the homogenous

base are equal.
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The first two approximations are related to the physics of the problem. It is of interest to

look only at the steady state response of the system, therefore the transient behavior is not

considered. There are no additional physical phenomena that could possibly generate heat

within the solid phase, and the Eckert number is very small so viscous dissipation within the

fluid can be ignored. The third assumption implies that the number of finned rows along the

width is large, therefore variations from row to row are negligible. This will in general be

true, except for regions close to the width boundaries, which will affect the flow. Following

the discussion in Section 2.6, dispersion effects are important only for high Peclet number

flows, and tortuosity effects are significant only for large Biot numbers. In this work, due to

the relatively low Peclet numbers considered and the high thermal conductivities of the solid

phase, these effects will be negligible. The fifth assumption, as discussed in Section 2.6 has

been shown to be true when the thermal conductivity ratio between the fluid and the solid

is large. This is indeed the case in most common heat rejecting devices, and always the case

in the ones considered here. Following these assumptions, the governing VAT conservation

equations in a heat sink are given by mass conservation,

∂ 〈u〉
∂x

+
∂ 〈w〉
∂z

= 0 (3.1.1)

momentum conservation,

〈u〉 ∂〈u〉
f

∂x
+ 〈w〉 ∂〈u〉

f

∂z
= −εf

ρf

∂〈pf〉f

∂x
+ νf

(
∂2 〈u〉
∂x2

+
∂2 〈u〉
∂z2

)
− 1

2
Swcd,xx

(
〈u〉f

)2

(3.1.2)

〈u〉 ∂〈w〉
f

∂x
+ 〈w〉 ∂〈w〉

f

∂z
= −εf

ρf

∂〈pf〉f

∂z
+ νf

(
∂2 〈w〉
∂x2

+
∂2 〈w〉
∂z2

)
− 1

2
Swcd,zz

(
〈w〉f

)2

(3.1.3)

and fluid and solid energy conservation in the channel,

ρfcpf 〈u〉
∂〈Tf〉f

∂x
= kf

∂

∂x

(
εf
∂〈Tf〉f

∂x

)
+ kf

∂

∂z

(
εf
∂〈Tf〉f

∂z

)
+ hSw

(
〈Ts〉s − 〈Tf〉f

)
(3.1.4)

ks
∂

∂x

(
εs
∂〈Ts〉s

∂x

)
+ ks

∂

∂z

(
εs
∂〈Ts〉s

∂z

)
− hSw

(
〈Ts〉s − 〈Tf〉f

)
= 0 (3.1.5)

These equations are solved over the same domain Ω = {(x, z) ∈ R2 : 0 ≤ x ≤ L; 0 ≤ z ≤ Hc}.

In addition, energy conservation in the base is also solved over a different domain Ωb =

{(x, zb) ∈ R2 : 0 ≤ x ≤ L; 0 ≤ zb ≤ tb}
∂2Tb
∂x2

+
∂2Tb
∂z2

b

= 0 (3.1.6)
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and the two are connected at the interface. Mathematically, these type of problems appear

frequently, and are also known as Domain Decomposition Methods (DDM). A schematic

of the system is shown in Figure 3.1. The governing equations are complemented by their

Figure 3.1: Schematic of System Geometry and Energy Boundary Conditions

boundary conditions, which are also shown in Figure 3.1. The boundary conditions for the

momentum and continuity equation are no-slip and no-flow through at the top and bottom

of the channel,

〈v〉 = 0 (3.1.7)

The fluid is assumed to be entering the system at constant temperature,

〈Tf〉f = Tin (3.1.8)
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the top of the heat sink is assumed to be adiabatic,

∂〈Tf〉f

∂z

∣∣∣∣∣
z=Hc

= 0 (3.1.9)

and no heat enters through the outlet.

∂〈Tf〉f

∂x

∣∣∣∣∣
x=L

= 0 (3.1.10)

It is also assumed that heat losses through the solid boundaries at the inlet, top and outlet

are negligible.
∂〈Ts〉s

∂x

∣∣∣∣
x=0

=
∂〈Ts〉s

∂x

∣∣∣∣
x=L

=
∂〈Ts〉s

∂z

∣∣∣∣
x=Hc

0 (3.1.11)

Heat flux losses from the sides of the base are ignored,

∂Tb
∂x

∣∣∣∣
x=0

=
∂Tb
∂x

∣∣∣∣
x=L

= 0 (3.1.12)

and a known heat flux is applied at the bottom of the base,

− ks
∂Tb
∂z

∣∣∣∣
z=0

= q (x) (3.1.13)

As discussed previously, at the interface it is assumed that the fluid, solid and base temper-

atures are equal,

〈Tf〉f = 〈Ts〉s = Tb = Ti (x) (3.1.14)

The interface temperature is not known a priori and it is obtained iteratively by requiring

the system to satisfy the following energy conserving condition,

− εsks
∂〈Ts〉s

∂z

∣∣∣∣
z=0

− εfkf
∂〈Tf〉f

∂z

∣∣∣∣∣
z=0

= −ks
∂Tb
∂z

∣∣∣∣
z=1

(3.1.15)

This boundary condition represents a third boundary condition in the z-direction, while all

the equations are second order. The numerical treatment of this extra boundary condition

will be discussed in detail in the following sections.

3.2 Scaling of Conservation Equations

Before moving on to the numerical solution of the equations, it is always good practice to scale

the governing equations to find possible simplifications, and identify important parameters.
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Furthermore, well scaled equation will reduce computational round-off errors. In the rest

of this section, the ˆ superscript will denote scaled quantities. First, the two domains are

reduced to two unit squares, by applying the following scaling

x̂ =
x

L
, ẑ =

z

Hc

, ẑb =
zb
tb

(3.2.1)

Next, starting from the momentum equation the governing equations are scaled.

3.2.1 Continuity and Momentum Equation

First, the x component of velocity is scaled

〈û〉 =
〈u〉
U

(3.2.2)

In most cases, the average velocity or flow rate of the heat sink fan are provided, in which

case the scale U is given. Substituting this scaling parameters in the continuity equation,

Eqn. (3.1.1), the following form is obtained

U

L

∂u

∂x
+
W

Hc

∂u

∂z
→ W ∼

(
Hc

L

)
U (3.2.3)

Similarly, using the velocity and domain scaling given in Eqns. (3.2.1) and (3.2.2), the scaled

x-momentum equation is(
εfU

2

L

)[
〈û〉 ∂〈û〉

f

∂x̂
+ 〈ŵ〉 ∂〈û〉

f

∂ẑ

]
=

= −εf
ρf

∂〈pf〉f

∂x
+ νf

(
U

L2

∂2 〈û〉
∂x̂2

+
U

H2
c

∂2 〈û〉
∂ẑ2

)
− 1

2
U2Swcd,xx

(
〈û〉f

)2

(3.2.4)

Note that the relation between superficial and intrinsic velocities led to the porosity appear-

ance, and that the pressure gradient has not yet been scaled. Similarly, the same scaling is

applied to the z-momentum equation

εfU
2

L

(
Hc

L

)[
〈û〉 ∂〈ŵ〉

f

∂x̂
+ 〈ŵ〉 ∂〈ŵ〉

f

∂ẑ

]
= −εf

ρf

∂〈pf〉f

∂z
+

+ νf

(
Hc

L

)(
U

L2

∂2 〈ŵ〉
∂x̂2

+
U

H2
c

∂2 〈ŵ〉
∂ẑ2

)
− 1

2

(
Hc

L

)
U2Swcd,zz

(
〈ŵ〉f

)2
(3.2.5)

79



Up to this point, the scaling is quite similar to the scaling that is conducted for the fully

developed assumption in channel flow. However, since our system is multi-scale, somewhere,

the ratio of scales has to appear. This is found by dividing Eqn. (3.2.4) and Eqn. (3.2.5) by

SwU
2 and using the VAT hydraulic diameter defined in Eqn. (2.6.11),(
dh
4L

)[
〈û〉 ∂〈û〉

f

∂x̂
+ 〈ŵ〉 ∂〈û〉

f

∂ẑ

]
=

= − dh
4ρfU2

∂〈pf〉f

∂x
+

1

εfRedh

[(
d2
h

4L2

)
∂2〈û〉f

∂x̂2
+

(
d2
h

4H2
c

)
∂2〈û〉f

∂ẑ2

]
− 1

2
cd,xx

(
〈û〉f

)2
(3.2.6)

(
dh
4L

)[
〈û〉 ∂〈û〉

f

∂x̂
+ 〈ŵ〉 ∂〈û〉

f

∂ẑ

]
=

= − dh
4ρfU2

∂〈pf〉f

∂x
+

1

εfRedh

[(
d2
h

4L2

)
∂2〈û〉f

∂x̂2
+

(
d2
h

4H2
c

)
∂2〈û〉f

∂ẑ2

]
− 1

2
cd,xx

(
〈û〉f

)2
(3.2.7)

where the Reynolds number is based on the average velocity and the hydraulic diameter

Redh =
Udh
νf

(3.2.8)

The length scale dh represents the size of the lower scale geometry, and the length scale ratios

represent the multi-scalicity of the problem. The goal is to find conditions for which the z

component of the velocity will be negligible. It can be seen that there are three possibilities

that would lead to this conclusion

1. The ratio Hc/L is small.

2. The product of the length ratios (dh/L ) (Hc/L ) is small and the z-component of the

drag tensor is negligible.

3. The ratios (dh/L ) and (dh/Hc ) are small and the z-component of the drag tensor is

negligible

The last condition would lead to an over simplification of the x-momentum equation, so

it is assumed that one of the first two conditions are satisfied. With this in mind, the

z-momentum equation implies that

∂〈pf〉f

∂z
= 0, 〈w〉 = 0 (3.2.9)
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Therefore, the continuity and x-momentum conservation equation become

∂ 〈û〉
∂x

= 0 (3.2.10)(
dh
4L

)
〈û〉 ∂〈û〉

f

∂x̂
= − dh

4ρfU2

d〈pf〉f

dx
+

1

εfRedh

(
d2
h

4H2
c

)
∂2 〈û〉
∂ẑ2

− 1

2
cd,xx

(
〈û〉f

)2

(3.2.11)

It can be noted that the scaling revealed that the advective and diffusive terms in the x-

momentum equation will be much smaller than the momentum sink term. Physically this

makes sense because it implies that most of the momentum loss in the system will be due to

the no-slip conditions at the intricate lower scale surfaces, while the momentum loss due to

the system boundaries will be much smaller. This also implies that the pressure term, which

has to be significant, will balance the momentum sink. This assumption will be expanded

and validated in Chapter 4 for several cases. With this in mind, a reference pressure is

defined as

pref =
2ρfcdL

dh

U2

ε2
f

(3.2.12)

Since the superficial velocity is a divergence-free quantity, it is convenient to express ev-

erything in its terms. Substituting the scaled pressure and expressing everything in terms

of superficial averages, Eqn. (3.2.11) becomes (the subscript xx in the drag term will be

dropped from here on)(
dh
4L

)
〈û〉 ∂

∂x̂

(
〈û〉
εf

)
= − cd

2ε2
f

d〈pf〉f

dx
+

1

εfRedh

(
d2
h

4H2
c

)
∂2 〈û〉
∂ẑ2

− cd
2ε2

f

〈û〉2 (3.2.13)

Note also that this derivation was carried out assuming that the porosity is constant. In

cases in which the porosity and the hydraulic diameter are not constant, the scaling values

given in Eqn. (3.2.11), are characteristic values, and can be denoted with a subscript c. In

these cases, the scaled equation becomes

1

εf,c

(
dh,c
4L

)
〈û〉 ∂

∂x̂

(
〈û〉
ε̂f

)
= − cd,c

2ε2
f,c

ε̂f
d〈pf〉f

dx
+

+
1

εf,cRedh

(
d2
h,c

4H2
c

)
∂2 〈û〉
∂ẑ2

− cd,c
2ε2

f,c

Ŝwĉd
ε̂f
〈û〉2

(3.2.14)

Using the continuity equation, the convective term can be expressed in a more suitable form

∂ 〈û〉
∂x

= 〈û〉f ∂εf
∂x

+εf
∂〈û〉f

∂x
= 0→ ∂

∂x

(
〈u〉
εf

)
= −〈û〉f 1

εf

∂εf
∂x

= −〈û〉 1

εf,cL

1

ε̂2
f

∂ε̂f
∂x̂

(3.2.15)
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Substituting this relation back into Eqn. (3.2.14), and rearranging, a final form of the VAT

momentum equation is obtained

2εf,c
cd,cRedh

(
d2
h,c

4H2
c

)
∂2 〈û〉
∂ẑ2

− 1

ε̂2
f

[
Ŝwĉd −

1

cd,c

(
dh,c
2L

)
∂ε̂f
∂x̂

]
〈û〉2 = ε̂f

d〈pf〉f

dx
(3.2.16)

It can be seen that the porosity variation term in the x direction will act as an added

momentum loss (or gain depending on the sign of the porosity gradient) proportional to the

square of the velocity. The length scale ratios that arose in the previous derivation, will also

be present in the scaling of the energy equations, therefore two parameters are defined

Cx =
dh,c
2L

, Cz =
dh,c
2Hc

, (3.2.17)

The momentum equation can be rewritten as

M1
∂2 〈û〉
∂ẑ2

−
[
Ŝwĉd −M3

∂ε̂f
∂x̂

]
〈û〉2 = ε̂f

d〈p̂f〉f

dx̂
(3.2.18)

where the parameters M1 and M2 are defined as

M1 =
2εf,c

cd,cRedh
C2
z , M3 =

Cx
cd,c

(3.2.19)

It is important to point out here that the scaling has shown that the momentum loss will

be balanced by the drag term, therefore, the coefficients of these two terms are of order one.

The other coefficients that are present in the equation will determine the importance of the

other terms in the equation with respect to these two terms. This discussion is carried out

in the next chapter.

3.2.2 Fluid Energy

Next, the fluid energy equation is scaled. The fluid temperature is scaled as follows〈
T̂f

〉f
=
〈Tf〉f − Tin
〈Tf〉favg − Tin

, (3.2.20)

where integral conservation of energy implies that

〈Tf〉favg − Tin =
Q

ṁcpf
(3.2.21)

82



and the mass flow rate is defined as

ṁ = ρfHcW

1∫
0

〈û〉 dz (3.2.22)

Furthermore, the heat transfer coefficient and the specific surface are scaled using their

average values

ĥ =
h

havg
, Ŝw =

Sw
Sw,avg

(3.2.23)

Substituting these quantities in the VAT energy conservation equation, a scaled form of the

energy equation is obtained

RedhPrf
2Nudh

Cx
ε̂f,c
〈û〉

∂
〈
T̂f

〉f
∂x̂

=
C2
x

Nudh

∂

∂x̂

ε̂f ∂
〈
T̂f

〉f
∂x̂

+

+
C2
z

Nudh

∂

∂ẑ

ε̂f ∂
〈
T̂f

〉f
∂ẑ

+ ĥŜw

(〈
T̂s

〉s
−
〈
T̂f

〉f) (3.2.24)

where the non-dimensional parameters are defined as

Nudh =
ĥavgd̂h,avg

k̂f
, Prf =

ν̂f
α̂f

=
ν̂f

k̂f/ρ̂f ĉpf
, Cx =

dh,avg
2L

(3.2.25)

The equation can be rewritten in a simpler form as

F1 〈û〉
∂
〈
T̂f

〉f
∂x̂

= F2
∂

∂x̂

ε̂f ∂
〈
T̂f

〉f
∂x̂

+ F3
∂

∂ẑ

ε̂f ∂
〈
T̂f

〉f
∂ẑ

+ ĥŜw

(〈
T̂s

〉s
−
〈
T̂f

〉f)
(3.2.26)

where the non-dimensional parameters are

F1 =
RedhPrf
2Nudh

Cx
εf,c

, F2 =
C2
x

Nudh
, F3 =

C2
z

Nudh
, (3.2.27)

This equation was scaled in such a way that F4 is of order one. Therefore, the other pa-

rameters in the equation represent their relative importance to the interphase heat transfer

term. The boundary equations are also scaled〈
T̂f

〉f ∣∣∣∣
x̂=0

= 0 (3.2.28a)
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∂
〈
T̂f

〉f
∂x̂

∣∣∣∣∣∣∣
x̂=1

=
∂
〈
T̂f

〉f
∂ẑ

∣∣∣∣∣∣∣
ẑ=1

= 0 (3.2.28b)

〈
T̂f

〉f ∣∣∣∣
z=0

=
Ti (x)− Tin
〈Tf〉favg − Tin

= T̂i (x) (3.2.28c)

3.2.3 Solid Equation

Next, the solid equation is scaled. The solid equation is scaled using the same scaling factor

used for the fluid equation, to avoid extra terms in the interphase heat transfer term and

interface condition, 〈
T̂s

〉s
=
〈Ts〉s − Tin
〈Tf〉favg − Tin

(3.2.29)

Substituting this in the governing equation and rearranging, the following equation is ob-

tained

Rk

Nudh
C2
x

∂

∂x̂

ε̂s∂
〈
T̂s

〉s
∂x̂

+
Rk

Nudh
C2
z

∂

∂ẑ

ε̂s∂
〈
T̂s

〉s
∂ẑ

− ĥŜw (〈T̂s〉s − 〈T̂f〉f) = 0

(3.2.30)

where Rkis the ratio of porosity weighted thermal conductivities

Rk =
εs,cks
εf,ckf

(3.2.31)

This can be rewritten in compact form as

S1
∂

∂x̂

ε̂s∂
〈
T̂s

〉s
∂x̂

+ S2
∂

∂ẑ

ε̂s∂
〈
T̂s

〉s
∂ẑ

− ĥŜw (〈T̂s〉s − 〈T̂f〉f) = 0 (3.2.32)

with

S1 =
Rk

Nudh
C2
x, S2 =

Rk

Nudh
C2
z (3.2.33)

Once again, the coefficients S represent the magnitude of each term with respect to the

interphase heat transfer term. The boundary conditions are also scaled

∂
〈
T̂s

〉s
∂x̂

∣∣∣∣∣∣
x̂=0

=
∂
〈
T̂s

〉s
∂x̂

∣∣∣∣∣∣
x̂=1

=
∂
〈
T̂s

〉s
∂ẑ

∣∣∣∣∣∣
ẑ=1

= 0 (3.2.34a)

〈
T̂s

〉s∣∣∣
z=0

= T̂i (x) (3.2.34b)
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3.2.4 Base and Interface

The base is also non-dimensionalized using the same temperature scaling,

T̂b =
Tb − Tin

〈Tf〉favg − Tin
(3.2.35)

Substituting this, in the governing Laplace equation, the following equation is obtained(
tb
L

)2
∂2T̂b
∂x̂2

+
∂2T̂b
∂ẑ2

b

= 0 (3.2.36)

or

C2
b

∂2T̂b
∂x̂2

+
∂2T̂b
∂ẑ2

b

= 0 (3.2.37)

where

Cb =
tb
L

(3.2.38)

The boundary condition at the bottom of the base becomes

∂T̂b
∂x̂

∣∣∣∣∣
x̂=0

=
∂T̂b
∂x̂

∣∣∣∣∣
x̂=1

= 0 (3.2.39a)

∂T̂b
∂ẑ

∣∣∣∣∣
ẑ=0

= − qw (x) tb(
〈Tf〉f − Tin

)
ks

= −q̂w (x) (3.2.39b)

The scaled interface boundary condition is given by

εs,c
tb
Hc

ε̂s
∂
〈
T̂s

〉s
∂ẑ

+
εf,ckf
εs,cks

εs,avg
tb
Hc

ε̂f
∂
〈
T̂f

〉f
∂ẑ

=
∂T̂b
∂ẑ

(3.2.40)

which can be rewritten as

K1ε̂s
∂
〈
T̂s

〉s
∂ẑ

+
K1

Rk

ε̂f
∂
〈
T̂f

〉f
∂ẑ

=
∂T̂b
∂ẑ

(3.2.41)

where the coefficients K1 is defined as

K1 = εs,avg
tb
Hc

(3.2.42)

A closed set of scaled equations to model heat transfer and fluid flow through a heat sink have

been developed. In the next section, numerical methods for the solution of the equations

will be discussed in detail. Note that from now on, the superscriptˆwill be dropped and all

the equations discussed will be the scaled equations derived in this section.
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Table 3.1: Code Inputs

Geometry Type

Heat Sink Length [mm]

W [mm]

Hc[mm]

Transverse Pitch

Longitudinal Pitch py[mm]

Geometry Varying Direction (none=0, z=1, x=2, x & z =3)

Porosity Variation Function Type

Porosity Variation Function Parameters

Base Thickness tb[mm]

3.3 Solution Methods

In this section, the solution methods employed for the calculation of the geometry, solution

of the governing equations, and the interface matching is discussed.

3.3.1 Geometry

Three type of geometries are considered in this work: inline pin fins, staggered pin fins and

plane fins (micro-channels). For each type of geometry, geometrical variations in the x- and

z- direction are considered. In this cases, calculation of the VAT geometric parameters,

porosity and specific surface require some discussion, which is carried out in this section.

Since the geometric parameters that describe each of these geometries can be different, in

order to develop an input interface to the code that was independent of the geometry, the

definition of the parameters that describe the geometry are not always intuitive. The code

is set up in such a way that the geometric inputs given in are required in all cases, In all

geometries, the quantity that varies is specified by the size of the obstacles, D. For pin

fins, this is obviously the diameter of the pins, while for micro-channels, it represents the

thickness of the fins. In general, D is allowed to be a function of x- and z- and in the following
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sections, the calculation of the VAT geometrical parameters for each configuration will be

explained. Also, to reduce numerical errors in the integration process that is required to

calculate these parameters, the geometric parameters are calculated on a 512x512 grid, and

then interpolated on the solution grid. The parameters to be calculated for each geometry

are the total REV volume V , the fluid volume in the REV Vf and the interface are between

the two phases Afs. Given these parameters, the porosity, specific surface and hydraulic

diameters are calculated using their definitions.

3.3.1.1 Inline Pin Fins

The assumed diameter variation in the x-direction for inline pin fins is shown in the top view

of the REV given in Figure 3.2. The description of the z-direction variations are shown from

a side view in Figure 3.3. These figures, as well as the ones in the next two sections, are

not shown to scale, and they are only meant to elucidate the assumed geometry variations.

The volume of the REV is given by

V = pxpyhREV (3.3.1)

The volume of the solid at each REV location is

Vs =
1

8
π

 z+hREV /2∫
z−hREV /2

[D (x, z̃)]2dz̃ +

z+hREV /2∫
z−hREV /2

[D (x+ px, z̃)]2dz̃

 (3.3.2)

The interface area at each REV location is

Afs = π

 z+hREV/2∫
z−hREV/2

R (x, z̃)

√
1 + [R′ (x, z̃)]2dz̃ +

z+hREV/2∫
z−hREV/2

R (x+ px, z̃)

√
1 + [R′ (x+ px, z̃)]2dz̃


(3.3.3)

where R (x, z) = D(x,z)/2.

3.3.1.2 Staggered Pin Fins

The assumed diameter variation in the x-direction for staggered pin fins is shown in the top

view of the REV given in Figure 3.4. The description of the z-direction variations are shown
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Figure 3.2: Top View of an Inline Pin Fin REV

from a side view in Figure 3.5. The volume of the REV is given by

V = 2pxpyhREV (3.3.4)

The volume of the solid at each REV location is

Vs =
1

8
π

3

z+hREV /2∫
z−hREV /2

[D (x, z̃)]2dz̃ +

z+hREV /2∫
z−hREV /2

[D (x+ px, z̃)]2dz̃

 (3.3.5)

The interface area at each REV location is

Afs = π

3

z+hREV/2∫
z−hREV/2

R (x, z̃)

√
1 + [R′ (x, z̃)]2dz̃ +

z+hREV/2∫
z−hREV/2

R (x+ px, z̃)

√
1 + [R′ (x+ px, z̃)]2dz̃


(3.3.6)

where R (x, z) = D(x,z)/2.
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Figure 3.3: Front View of an Inline Pin Fin REV
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Figure 3.4: Top View of a Staggered Pin Fin REV
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Figure 3.5: Schematic of Front View of a Staggered Pin Fin REV
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3.3.1.3 Plane Fins

Plane fins are continuous, therefore the definition of the parameters is more straightforward.

The top view and side views, with the definition of the parameters are given in Figure 3.6

and Figure 3.7, respectively. The volume of the REV is given by

V = pyhREVLREV (3.3.7)

The volume of the fluid is given by

Vf =

x+LREV /2∫
x−LREV /2

z+hREV /2∫
z−hREV /2

w (x̃, z̃) dz̃dx̃ (3.3.8)

The interface area is given by

Afs = 2

z+hREV /2∫
z−hREV /2

x+LREV /2∫
x−LREV /2

√[
∂w

∂x

]2

+

[
∂w

∂z

]2

+ 1dx̃dz̃ (3.3.9)

The determination of the lower scale geometric parameters obtained solving these integrals

is indeed independent of the actual profile of the fins. For simple cases, such as constant

or linear geometries, these integrals can be solved analytically, however, in the developed

code they are solved numerically (with small grid spacing) such that any profile defined by

a integrable function can be analyzed.

3.3.2 Continuity and Momentum Equations

The continuity and momentum equations were derived in the previous section and their

scaled form, given in Eqns. (3.2.10) and (3.2.18), are repeated here for completeness

∂ 〈û〉
∂x

= 0 (3.3.10)

−M1
∂2 〈u〉
∂z2

+M3 (x, z) 〈u〉2 =
d 〈pf〉
dx

(3.3.11)

where

M1 =
2εf,avg

Redhff,avg
C2
z , M3 =

1

ε2
f

(
Swff −

Cx
ff,avg

∂εf
∂x

)
(3.3.12)
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Figure 3.6: Schematic of Top View of Converging Micro-channel
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Figure 3.7: Schematic of Front View of Trapezoidal Microchannel
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This is a non-linear equation in two dimensions for the superficial velocity, and can be

solved using the methods discussed in the previous section. Using second order accurate

finite difference schemes, the discretized equation is

− M1

∆z2

(
〈u〉i,j−1 − 2〈u〉i,j + 〈u〉i,j+1

)
+M3,i,j 〈u〉2i,j =

d 〈pf〉
dx

∣∣∣∣
i,j

(3.3.13)

Note that the dependency on the x direction is only in the coefficient M2 and the pressure

gradient, therefore, the equations at each x location are independent of each other, and can

be solved as such. The system of equations given by Eqn. (3.3.13), is a non-linear system

and at each i location it is solved using a Newtons method, The discretized equations for

point i at iteration k is given by

gi,j

(
〈u〉|k

)
= −M1

∆z2

(
〈u〉|ki,j−1 − 2 〈u〉|ki,j + 〈u〉|ki,j+1

)
+M3,i,j

(
〈u〉|ki,j

)2

− d 〈pf〉
dx

∣∣∣∣
i,j

(3.3.14)

The Jacobian at each i location is calculated from Eqn. (3.3.14)

[
J
(
〈u〉f

)]
jm

=
∂

∂um

[
gi,j

(
〈u〉f

)]
=



2M1 〈u〉|ki,j−1

∆z2
, j = m− 1

2M1 〈u〉|ki,j
∆z2

+ 2M3,i,j 〈u〉|ki,j , j = m

2M1 〈u〉|ki,j+1

∆z2
, j = m+ 1

0, otherwise

(3.3.15)

The algorithm is implemented by solving the tridiagonal linear system

J

(
〈u〉f

∣∣∣k)∆|k = −g

(
〈u〉f

∣∣∣k) (3.3.16)

using Thomas algorithm [149] and updating the solution

〈u〉f
∣∣∣k+1

= 〈u〉f
∣∣∣k + ∆|k (3.3.17)

until
∥∥∥∆|k

∥∥∥
2
/

∥∥∥∥〈u〉f ∣∣∣k∥∥∥∥
2

≤ σmom. The tolerance is chosen to be σmom = ∆z2. This choice

is justified by the fact that, after the iterative process has converged, the numerical error at

every point i, will be the sum of the local truncation error of the scheme and the iterative

process tolerance. Therefore, lowering σmom much below the local truncation error would
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not significantly improve the accuracy, but could significantly increase computational time.

The assumption that the flow is locally fully developed assumption implies that the pressure

gradient at each x location is independent of the pressure gradient at other x locations.

Therefore, the pressure gradient is determined by enforcing mass flow rate conservation at

each x location separately. In mathematical terms, pressure is simply a Lagrangian variable

in the system that is used to enforce mass conservation. An initial pressure distribution is

defined, then the function to be minimized at each location is

s (xi) = ṁ−
1∫

0

u (xi, z̃) dz̃ (3.3.18)

A Newton-Rhapson method is used for updating the pressure at each iteration,

dp

dx

∣∣∣∣k+1

i

=
dp

dx

∣∣∣∣k
i

− sk (xi)

Sk (xi)
(3.3.19)

where S is the gradient of the function s as a function of the pressure gradient

Sk (xi) =
sk (xi)− sk−1 (xi)

dp
dx

∣∣k
i
− dp

dx

∣∣k−1

i

(3.3.20)

In addition, it was found that for extreme values of the x gradient, an under relaxation factor

was required for stability, and a value of 0.8 was chosen based on numerical experiments.

Once the pressure gradient is obtained, the pressure distribution is obtained by simply

numerically integrating the pressure gradient using a trapezoidal method, where the outlet

value is set to zero. The local friction factor also depends on the local velocity, therefore,

after the velocity and pressure distribution have converged, another fixed point iterative loop

is used to obtain a final solution of the momentum equation. The algorithm for the solution

is given in Figure 3.8. At each iteration, the linear system given in Eqn. (3.3.16) needs to

be solved. In the current version of the code, the system is solved by generating a sparse

matrix representation and solving the linear system using MATLABs sparse solver. The

overall iterative procedure is found to converge on average within 50 iterations, which for a

128x128 grid implies a computational time of about 0.3s.
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Figure 3.8: Momentum equation solution algorithm
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3.3.3 Energy

The energy equations are a set of linear, two-dimensional, coupled partial differential equa-

tions. The coupling is due to the inter-REV heat transfer term, and the interface boundary

conditions. Two different numerical methods have been developed to solve the governing

equations: a Galerkin Method and a Finite Difference method. The Galerkin Method was

developed only for constant porosity cases, while the finite difference method was developed

for both constant and variable porosity cases.

3.3.3.1 Galerkin Method Solution

The Galerkin Method is a subclass of the larger group of spectral methods. The idea at

the bottom of the Galerkin Method is that it is more advantageous to look for the unknown

coefficients of a series expansion of the function, than to solve the domain on a grid. With

this in mind, the fluid and solid temperatures are expanded in a tensor product of modified

Fourier series [150] (using Einsteins summation convention)

〈Tf〉f = bn c (ϕnx) + [lm + fnm s (γnx)] s (γmz) (3.3.21)

〈Ts〉s = bn c (ϕnx) + snm c (ϕnx) s (γmz) (3.3.22)

where γn = (2n+ 1) π/2 , ϕm = mπ/2 and m ∈ [0,M ], n ∈ [0, N ]. Modified Fourier series

were chosen because they can satisfy the homogenous boundary conditions a priori. The

coefficients bn are the cosine coefficients of the interface temperature, and will be determined

by the coupling with the base. Because of the strong discontinuity at the inlet corner, the

fluid inlet temperature is expanded in basis functions with coefficients lm. These two sets

of coefficients are related to each other by setting the fluid inlet temperature equal to the

interface temperature at the inlet corner. The relation is given by

lm =

−2
N∑
n=1

bn

γm
(3.3.23)

The discontinuity leads to oscillations and linear decay of the coefficients (Gibbs phe-

nomenon); however, applying a Lancsoz filter reduces oscillation and improves convergence
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away from the discontinuity

σn =
sin (nπ/N)

nπ/N
(3.3.24)

Any derivative of the temperature distributions can be readily obtained by differentiating its

series expansion. Applying the GM to the governing equations with the given basis functions,

the following set of matrix equations is obtained

G1/2L1FI + G2/4D2sFI + G3/4IFD2s + 1/4IFI− 1/2L
T
2 SI = K1 (3.3.25)

1/2L2FI− C1/4D2cSI− C2/4ĨSD2s − 1/4ĨSI = K2 (3.3.26)

where F and S are matrices of fluid and solid coefficients with F,S ∈ RN×M . All other

left hand side matrices are square, resulting from inner products of basis functions, and are

calculated analytically

(D2s)ij =

 γ2
i , i = j

0, i 6= j
, (D2c)ij =

ϕ2
i , i = j

0, i 6= j
(3.3.27)

(L1)ij = γi

1∫
0

cos (γix) sin (γjx) dx =

=


1

2
if i = j

−
(2i+ 1)

[
(1 + 2i) (−1)j(−1)i − (1 + 2j)

]
[4 (j − i) (1 + j + i)]

otherwise

(3.3.28)

(L2)ij =

1∫
0

cos (ϕix) sin (γjx) dx =
2 (2j + 1)

π
[
(1 + 2j)2 − 4i2

] , (3.3.29)

(L3)ij = ϕj

1∫
0

s (γix) s (ϕjx) dx =

{
j(−1)(j−1)

2i− 2j + 1
− j(−1)(j+i)

2i+ 2j + 1
(3.3.30)

and Ĩ denotes the identity matrix with first element equal to 2. The right hand side matrices

are defined by the boundary conditions

(K1)ij =
(
G1(L3)ij −G2γi(L2)ij

)
bi/γj −

(
G3/2(D2s)ij + 1/2I

)
li/γj

(K2)ij = −C1/2(D2c)ij
bi/γj − 1/2(I)1jli

(3.3.31)
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These equations represent a system of coupled linear equations for the coefficients fnm and

snm. In order to solve the system, it is convenient to use properties of the Kronecker product

of matrices (given symbol ⊗) to cast the previous matrix equation in a matrix-vector product

form. The resulting system, given by Eqn. (3.3.32), represents a skew-symmetric, square,

sparse, linear system of 2NM × 2NM with 3N2M + NM non-zero elements. The matrix

P4 is diagonal while the rest of the left hand side matrices are block diagonal. P1 P2

−PT
2 P4

vec (F)

vec (S)

 =

vec (K1)

vec (K2)

 (3.3.32)

The vec () operator simply stacks the columns of a matrix. To exploit the diagonality of P4,

the system is solved using its Schur complement; the fluid coefficients are therefore obtained

directly by solving the NM ×NM system(
P1 + P2P

−1
4 PT

2

)
vec (F) =

[
vec (K1)−P2P

−1
4 vec (K2)

]
(3.3.33)

The block diagonal structure of the Schur complement implies that its inverse will also be

block diagonal. Hence, eachα-th column, fα, of the fluid coefficient matrix can be obtained

by solving theN ×Nsystem(
P1 + P2P

−1
4 PT

2

)
α
fα =

[
vec (K1)−P2P

−1
4 vec (K2)

]
α

(3.3.34)

These matrices are full and well-conditioned, and are solved using a LU decomposition

with partial pivoting. Once the α-th fluid coefficient column has been obtained, its solid

counterpart is obtained by matrix-vector product

sα =
(
P−1

4

)
α

[
vec(K2)α −

1/2J
T
2 fα
]

(3.3.35)

and the process is repeated for α ∈ [1,M ]. The temperatures and heat fluxes at any point

(or grid) can be reconstructed using the definition of the series expansion solution given in

Eqn. (3.3.21) & Eqn. (3.3.22); while average temperatures can be calculated directly from

the coefficients. For example, the average solid interface temperature, which is used for

Nusselt calculations, is given by

Ti (x) =

1∫
0

Ti (x) dx =

1∫
0

bn c (ϕnx) dx = b0 (3.3.36)
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The average Nusselt number (or any average performance parameter) can therefore be ob-

tained without the additional computational time due to the reconstruction process. This

fact is particularly useful in optimization studies in which local temperature distributions

might not be of interest.

3.3.3.2 Finite Difference Solution

Finite difference solutions are more flexible than Galerkin Method solutions because the

selection of the basis function is not always clear, especially when the coefficients of the

equations are not constant. Furthermore, it was found that due to the discontinuity at

the inlet corner, the convergence of the series solution to the actual function is arithmetic,

while relatively dense matrices need to be solved. Because of these shortcomings, a Finite

Difference (FD) discretization of the problem was also implemented. FD methods are quite

general, easy to implement and can be devised in an efficient way. Although in this work

only two dimensional, steady state problems will be addressed, it is of interest to devise a

solution method that can easily be expanded to three dimensional and unsteady problems.

Before the solution of the problem is explained, the notation used is discussed for clarity.

The function at a given point on the grid (xi, zi) is defined as

fi,j = f (xi, zj) (3.3.37)

Three finite difference schemes will be used. A second order backward difference for the

convective term and interface heat flux

f ′i =
3fi − 4fi−1 + fi−2

2∆x
(3.3.38)

and a second order centered difference for the diffusive term with variable porosity

∂

∂x

[
α (x)

∂f

∂x

]
=
α
(
xi−1/2

)
∆x2

fi−1 −
α
(
xi+1/2

)
+ α

(
xi−1/2

)
∆x2

fi +
α
(
xi+1/2

)
∆x2

fi+1 (3.3.39)

A derivation of the finite difference schemes and their local truncation errors are given in

Appendix A. Note that no upwinding is necessary in the convective term since the velocity

will always be in the positive x direction. In order to keep the second order convergence, the
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adiabatic conditions at the interface are addressed using the ghost point idea

∂f

∂x

∣∣∣∣
1

=
f2 − f0

2∆x
= 0→ f2 = f0 (3.3.40)

Using these discretizations, the scaled fluid energy equation derived in the previous section

is discretizes as follows

F1

(〈u〉i,j
2∆x

〈Tf〉fi−2,j +
2〈u〉i,j

∆x
〈Tf〉fi−1,j −

3〈u〉i,j
2∆x

)
〈Tf〉fi,j +

+ F2

(
εf,i−1/2,j

∆x2
〈Tf〉fi−1,j −

εf,i−1/2,j + εf,i+1/2,j

∆x2
〈Tf〉fi,j +

εf,i+1/2,j

∆x2
〈Tf〉fi+1,j

)
+

+ F3

(
εf,i,j−1/2

∆z2
〈Tf〉fi,j−1 −

εf,i,j−1/2 + εf,i,j+1/2

∆z2
〈Tf〉fi,j +

εf,i,j+1/2

∆z2
〈Tf〉fi,j+1

)
+

− hi,jSw,ij 〈Tf〉fi,j + hi,jSw,ij 〈Ts〉si,j

(3.3.41)

The grid is assumed to be uniform with N and M panels in the x and z direction respectively

(N + 1 and M + 1 grid points). A schematic of a 4 × 4grid is given in Figure 3.9. Since

the temperature at the inlet and at the bottom of the channel is given, the fluid equation is

solved on at N ×Mpoints. Using the ghost point approximation given in Eqn. (3.3.40), at

the outlet of the channel, i = N , the x diffusion term becomes(
εf,N−3/2,j + εf,N+1/2,j

∆x2

)
〈Tf〉fN−1,j −

(
εf,N−3/2,j + εf,N+1/2,j

∆x2

)
〈Tf〉fN,j (3.3.42)

Similarly, at the top of the channel, j = M , the z diffusion term becomes(
εf,i,M−3/2 + εf,i,M+1/2

∆z2

)
〈Tf〉fM−1,j−1 −

(
εf,i,M−3/2 + εf,i,M+1/2

∆z2

)
〈Tf〉fM,j (3.3.43)

Similarly, using the second order scheme given in Eqn. (3.3.39), the discretized solid equation

is

S1

(
εs,i−1/2,j

∆x2
〈Ts〉si−1,j −

εs,i−1/2,j + εs,i+1/2,j

∆x2
〈Ts〉si,j +

εs,i+1/2,j

∆x2
〈Ts〉si+1,j

)
+

+ S2

(
εs,i,j−1/2

∆z2
〈Ts〉si,j−1 −

εs,i,j−1/2 + εs,i,j+1/2

∆z2
〈Ts〉si,j +

εs,i,j+1/2

∆z2
〈Ts〉si,j+1

)
+

− hi,jSw,ij 〈Ts〉si,j + hi,jSw,ij 〈Tf〉fi,j = 0

(3.3.44)

Note that since the boundary condition for the solid is adiabatic at the inlet, the solid equa-

tion is solved on (N + 1)×Mgrid points. The boundary conditions are again implemented
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Figure 3.9: Example of a 4x4 Computational Grid

103



using the ghost point, at points i = 1and i = N + 1 the x diffusive term becomes

−
(
εs,1/2,j + εs,3/2,j

∆x2

)
〈Ts〉s1,j +

(
εs,1/2,j + εs,3/2,j

∆x2

)
〈Ts〉s2,j (3.3.45)

(
εs,N+1/2,j

∆x2
+
εs,N+3/2,j

∆x2

)
〈Ts〉sN,j −

(
εs,N+1/2,j + εs,N+3/2,j

∆x2

)
〈Ts〉sN+1,j (3.3.46)

while at j = M the z diffusion term becomes(
εs,i,M+1/2 + εs,i,M+3/2

∆z2

)
〈Ts〉si,M−1 −

(
εs,i,M+1/2 + εs,i,M+3/2

∆z2

)
〈Ts〉si,M (3.3.47)

These discretized equations represent a set of coupled linear systems of size 2NM+2 (N + 1)M

for the solid and fluid temperatures at the grid points. Two solutions for the given system

have been developed: a direct method, and a pseudo transient method. In the direct method,

the temperature at the grid points are expanded in a single vector

t =



〈Tf〉f1,1
〈Tf〉f2,1

...

〈Tf〉fN,M
〈Ts〉s1,1
〈Ts〉s2,1

...

〈Ts〉sN+1,M



(3.3.48)

and the resulting linear system

At = b (3.3.49)

is solved using MATLABs built in sparse solver. The matrix A is very sparse (see Figure 3.10)

therefore the system can be solved quite efficiently for moderate grids. The vector b contains

the boundary conditions, and it will be shown later that the ability of the direct solver to

handle multiple right hand side vectors efficiently, will be exploited in the coupling of the

interface condition. This type of solution is not very scalable since the computational time

increases dramatically as the grid size increases, and it cannot be easily extended to transient

problems. To address this shortcoming, a transient fractional step method was developed.
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Figure 3.10: Matrix Structure of Coupled VAT Energy Equations
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The idea behind this method of solution is to set up the previous system in the following

way

∂

∂t

Tf

Ts

 = −

F1Cx 0

0 0

Tf

Ts

+

F2Df,xx 0

0 S1Ds,xx

Tf

Ts

+

+

F3Df,zz 0

0 S2Ds,zz

Tf

Ts

+

−H H

H −H

Tf

Ts


(3.3.50)

The main problem in the solution of the system is the coupling between the fluid and solid

equations, which is represented by the last term in the equation. The coupling adds a

non-zero diagonal far away from the banded diagonal terms, which significantly increases

computational time. This is similar to the problem that is encountered in the solution of a

two dimensional Laplace (or Poisson) equation, in which the second dimension add non-zero

diagonal terms away from the main diagonal. The idea that was developed here is to address

the problem in the same way it is addressed by ADI; use Strang splitting [151]. The idea is

to split the solution of the system in three decoupled steps and use a trapezoidal method in

time to ensure stability Step 1

T∗f −Tk
f

∆t/2

=
1

2
(−F1Cx + F2Df,xx + F3Df,zz −H) Tk

f+

+
1

2
(−F1Cx + F2Df,xx + F3Df,zz −H) T∗f + HTk

s

(3.3.51)

Step 2

Tk+1
s −Tk

s

∆t
=

1

2
(S1Ds,xx + S2Ds,zz −H) Tk+1

s +
1

2
(S1Ds,xx + S2Ds,zz −H) Tk

s + HT∗f

(3.3.52)

Step 3

Tk+1
f −T∗f

∆t/2

=
1

2
(−F1Cx + F2Df,xx + F3Df,zz −H) T∗f+

+
1

2
(−F1Cx + F2Df,xx + F3Df,zz −H) Tk+1

f + HTk+1
s

(3.3.53)

This splitting implies that now a NM system (twice) and a (N + 1)M system are solved

separately. Note also, that, except at the initial and final step, Step 1 and Step 3 can be

combined to reduce the computational time, which is the beauty of Strang splitting. In
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addition, each step is further separated, and Peaceman-Rachford [152] ADI scheme can be

applied. Using this idea, Step 1 and 3 are divided in two additional steps

T∗∗f −Tk
f

∆t/4

=
1

2

(
−F1Cx + F2Dxx −

1

2
H

)
Tk
f +

1

2

(
−F1Cx + F2Dxx −

1

2
H

)
T∗∗f +

1

2
HTk

s

(3.3.54)
T∗f −T∗∗f

∆t/4

=
1

2

(
F3Df,zz −

1

2
H

)
Tk
f +

1

2

(
F3Df,zz −

1

2
H

)
T∗∗f +

1

2
HTk

s (3.3.55)

Note that the first step requires the solution of a quad-diagonal system, while the second

step requires the solution of a tri-diagonal system. The tri-diagonal system can be carried

out efficiently using Thomas algorithm [149], while the quad-diagonal system can be solved

using a slight variation of the same algorithm. The solid equation is also divided in two

substeps,

T∗∗s −Tk
s

∆t/2

=
1

2

(
S1Ds,xx −

1

2
H

)
T∗∗s +

1

2

(
S1Ds,xx −

1

2
H

)
Tk
s +

1

2
HT∗f (3.3.56)

Tk+1
s −T∗∗s

∆t/2

=
1

2

(
S2Ds,zz −

1

2
H

)
Tk+1
s +

1

2

(
S2Ds,zz −

1

2
H

)
T∗∗s +

1

2
HT∗f (3.3.57)

and both steps reduce to solving a set of tri-diagonal matrices. The overall algorithm is

given in Figure 3.11. This solution method is second order accurate in time and space, and

absolutely stable. Also, the extension to a three dimensional system can be easily obtained

by substituting the Peaceman-Rachford ADI method with a Douglas-Rachford [153] ADI

method.

In the rest of this work, only steady state solutions will be considered. The direct method

is implicitly steady state, while a steady state solution using the transient method can be

obtained by evolving the system until

∂

∂t

Tf

Ts

 ≤ tol (3.3.58)

The absolute stability of the method developed implies that any time step can be used

to obtain a steady state solution, however, the number of time steps required will vary

significantly depending on the selection of the time step. When the intermediate transient

solutions are not of interest, the selection of the optimal time step is an important parameter
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Figure 3.11: Flowchart of Iterative Energy Solution Procedure
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in the problem.

It is a well-known fact that strongly elliptic equations lead to slow decay of the low frequency

content of the solution. This issue is most often dealt with in Poissons equation, and has

lead to the development of transform and multi-grid methods for its solution. In our case,

the scaling in Section 3.2 revealed that diffusion is negligible in the fluid equation, while it

is dominant in the solid equation. This suggest that the convergence will be limited by the

convergence of the solid equation, and a time stepping method to accelerate its convergence

will lead to a much faster steady state solution.

Douglas [153] developed a variable time stepping scheme that leads to improved convergence

for a Poisson type equation. The idea is to develop a variable time stepping method that will

lead to improve decay of the low frequency solution. The derivation carried out by Douglas

is repeated for the Helmholtz type VAT solid energy equation, and a variable time step is

found

∆tk =
4

S1(π/2k∆x)
2 + 1/2hSw

(3.3.59)

where k is the iteration number. The Nyquist frequency of the grid is kmax = log2 (N) + 1,

and the parameter k is varied in V sweeps. The derivation was carried out for constant

coefficients and a one dimensional system, however, through numerical experiments, it was

found that by adjusting the time step variation as

∆tj =
4

min (S1, S2) (π/2j∆x)
2 + 1/2 min (hSw)

(3.3.60)

a steady state solution is almost always obtained in two sweeps.

The solution methods developed in this section lead to an efficient calculation of the temper-

ature distribution for a given interface temperature. However, this interface temperature is

not known a priori, and will be determined by the interface energy conserving condition given

in Eqn. (3.2.41). The implementation of this condition will be discussed in Section 3.3.5.

3.3.4 Base

The solution of the Laplace equation in the base is obtained analytically for the case of an

applied heat flux. The derivation for a given temperature can be extended easily, but it
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will not be discussed here. The solution of the Laplace equation for the given conditions

can be found by separation of variables. The linearity of Laplaces equation implies that the

problem can be separated into two separate solution. The first solution, Tb,1 (x, z), is found

by a problem with the following boundary conditions

Tb,1 (x, 1) = 0,
∂Tb,1
∂x

∣∣∣∣
x=0

=
∂Tb,1
∂x

∣∣∣∣
x=1

= 0,
∂Tb,1
∂z

∣∣∣∣
x=0

= −q′′ (x) (3.3.61)

Applying separation of variables to Eqn. (3.2.37), it can be written

C2
bX
′′Z +XZ ′′ = 0→ C2

b

X ′′

X
= −Z

′′

Z
= −λ2 (3.3.62)

where since the first equation is a function of x only and the second equation is a function

of z only, λ has to be a constant. This leads to two separate problems

C2
bX
′′ + λ2X = 0 (3.3.63)

Z ′′ − λ2Z ′′ = 0 (3.3.64)

The solution of the first equation is given by

X = a cos

(
λ

Cb
x

)
+ b sin

(
λ

Cb
x

)
(3.3.65)

Since botha and b cannot be zero (or there would be no variation in x), by enforcing the

boundary conditions, it is found that the following condition has to be satisfied

a
λ

Cb
sin

(
λ

Cb
x

)
= 0 (3.3.66)

This condition is satisfied when λ takes the following form, for any integer multiple values

of n,s

λn = nπCb (3.3.67)

Therefore, the x series solution is given by

X = an cos (nπx) (3.3.68)

Now that λ has been determined, it can easily be shown that a solution to Eqn. (3.3.64), is

given by

Z = cn sinh [nπCb (z − 1)] + en cosh [nπCb (z − 1)] (3.3.69)
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where the shift was applied to ensure that both boundary conditions can be applied. Ap-

plying the boundary condition at z = 1 implies that

Z (1) = 0 = en (3.3.70)

and a solution to the problem is given by

Tb,1 (x, z) = dn cos (πnx) sinh [nπCb (z − 1)] (3.3.71)

In addition, a zero eigenvalue solution is added and,

Tb,1 (x, z) = d0 (z − 1) + dn cos (πnx) sinh [nπCb (z − 1)] (3.3.72)

The coefficients dn are the scaled cosine coefficients of the heat flux distribution q (x) and

can be determined using the orthogonality of cosines

d0 = −
1∫

0

q (x) dx = −qavg

dn = − 1

cosh [nπCb]

1∫
0

q (x) cos (nπx) dx

(3.3.73)

To satisfy the top boundary condition, a second solution to Laplaces equation is found, with

the following boundary conditions

Tb,2 (x, 1) = Ti (x) ,
∂Tb,2
∂x

∣∣∣∣
x=0

=
∂Tb,1
∂x

∣∣∣∣
x=1

= 0,
∂Tb,2
∂z

∣∣∣∣
x=0

= 0 (3.3.74)

Repeating the separation of variable procedure, but with the new boundary conditions, leads

to the following solution

Tb,2 (x, zb) = a0 + an cos (nπx) cosh (nπCbz) (3.3.75)

where the coefficients an are the modified cosine coefficients of the interface,

a0 =

1∫
0

Ti (x) dx = Ti,avg

an =
1

cosh (nπCb)

1∫
0

Ti (x) cos (nπx) dx

(3.3.76)
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It can be easily verified that, by construction, the sum of these two solutions satisfy all

the boundary conditions, and the governing equations. Therefore, a solution to the base

conduction equation is given by

Tb (x, zb) = Ti,avg − qavg (z − 1) +

+
N∑
n=1

cos (ϕnx) {an cosh (Cbϕnz) + dn sinh [Cbϕn (z − 1)]}
(3.3.77)

3.3.5 Interface Matching

The interface energy conservation boundary condition is given as a linear combination of

fluid and solid heat fluxes, which are fully determined once an interface temperature is set.

The condition is repeated here for convenience

K1εs (x, 0)
∂〈Ts〉s

∂z

∣∣∣∣
z=0

+
K1

Rk

εf (x, 0)
∂〈Tf〉f

∂z

∣∣∣∣∣
z=0

=
∂Tb
∂zb

∣∣∣∣
zb=1

(3.3.78)

where K1 = εs,avg t̂b/Ĥc and Rk = εs,avgks/εf,avgkf . In previous computer codes developed,

this condition was found by iterating the interface temperature at the grid points attempting

to match the heat flux. The iteration procedure was computationally very expensive, due to

the large number of iterations required. A new treatment, based on a spectral representation

of the coefficients, is proposed here. The interface temperature, which is equal in the solid,

fluid and base, is expanded in its cosine series

〈Ts〉s = 〈Tf〉f = Ti (x) = bn cos (nπx) (3.3.79)

where the coefficients bn are unknown and will be determined to satisfy Eqn. (3.3.78). The

idea is to express the heat fluxes at the interface in a cosine series and obtain an equation for

its residual that is an implicit function of the coefficients bn. Then, the interface temperature

will be determined by the set of coefficients that minimizes the residual. Mathematically,

the coefficients bn are Lagrangian variables that enforce energy conservation at the interface,

similar to the way that pressure can be seen as a Lagrangian variable that enforces mass

conservation for incompressible flow. The solid and fluid heat flux at the interface are found

using a second order backward difference given in Eqn. (3.3.38). Then, the cosine coefficients
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defined as

s0 =

1∫
0

εs (x, 0)
∂〈Ts〉s

∂z

∣∣∣∣
z=0

dx

sn =

1∫
0

εs (x, 0)
∂〈Ts〉s

∂z

∣∣∣∣
z=0

cos (nπx) dx

(3.3.80)

f0 =

1∫
0

εf (x, 0)
∂〈Tf〉f

∂z

∣∣∣∣∣
z=0

dx

fn =

1∫
0

εf (x, 0)
∂〈Tf〉f

∂z

∣∣∣∣∣
z=0

cos (nπx) dx

(3.3.81)

can be obtained using a Discrete Cosine Transform (DCT). The base solution is already

expressed in terms of its cosine series in the x direction. The base heat flux is found from

the series solution

∂Tb
∂z

= −qw,avg +
N∑
n=1

Sbϕn cos (ϕnx) {dn + an sinh (Sbϕn)} (3.3.82)

Then, substituting these expressions in Eqn. (3.3.78), an equation in terms of the coefficients

is obtained

K1sn cos (nπx) +
K1

Rk

fn cos (nπx) = −qw,avg+

+ Sbϕn cos (ϕnx) {dn + an sinh (Sbϕn)}
(3.3.83)

Multiplying both sides by cos (ϕjx), integrating over the interface, and using the orthogo-

nality of cosines, the following N + 1 set of equations is obtained

j = 0

[g (b)]0 = K1s0 + K1

Rk
f0 + qw,avg = 0

1 ≤ j ≤ N

[g (b)]j = 1/2K1sn + 1/2
K1

Rk
fn − 1/2Sbϕn {dn + an sinh (Sbϕn)} = 0

(3.3.84)

The function g is the residual at the interface, and it is an implicit linear function of the

coefficients b. The problem now becomes an unconstrained minimization problem

minimize g (b) (3.3.85)
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Due to the linearity of g, given a starting point b0 for the coefficients, a new set b∗, which will

satisfy Eqn. (3.3.85), can be found by expanding the function g in a Taylor series expansion

g (b∗) = 0 = g
(
b0
)

+ ∇g|b∆b (3.3.86)

where ∆b = b0 − b∗, and the influence matrix ∇g|b is defined by

[∇g|b]ij =
∂gi
∂bj

(3.3.87)

Then, a solution to Eqn. (3.3.86) is found by solving the linear system

∇g|b∆b = −g
(
b0
)

(3.3.88)

and the set of coefficients that satisfies Eqn. (3.3.84) is given by b∗ = b0 + ∆b. The

evaluation of the influence matrix can be carried out in two ways: direct or iteratively. In

the direct case, the matrix is evaluated by perturbing the starting point b0 by an amount δ

in each directionbδ,i = b0 + δei, calculating the corresponding gδ,i value, and calculating its

derivative with a first order finite difference.

∂gi
∂bj

=
gδ,i − g0

δ
(3.3.89)

This type of evaluation of the influence matrix ∇g|b requires the solution of the energy

equations, and evaluation of coefficients fn and sn for N + 2 different input temperatures.

When a direct solver is used to solve the energy equations, the influence matric can be

calculated efficiently by carrying out the LU factorization of matrix A in Eqn. (3.3.49) once

and then applying it to each right hand side vector bδ,i. When an iterative solver is used for

the energy equations, this type of solution is not advantageous since each right hand side

vector has to be computed individually.

In such cases, an alternative solution is to guess a form of the influence matrix, and update

it at each iteration. These types of solutions are called quasi-newton methods and are

extensions of the bisection methods for 1D equations. In this work, a Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [154] update method is used (although without line search). In

this study, an initial guess for the influence matrix is taken as a diagonal matrix, and its
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inverse is directly updated at each step using the following formula

[∇g]−1
k =

(
I − ∆b∆gT

∆gT∆b

)
[∇g]−1

k

(
I − ∆g∆bT

∆bT∆g

)
+

∆b∆bT

∆g∆b
(3.3.90)

with ∆b = bk−bk−1,∆g = gk−gk−1. The stability and efficiency of the solution depends on

the initial guess. An initial guess is taken by assuming that the influence matrix is diagonally

dominant, and solving the equations for two inputs b0, bδ,i = b0 + δ. Then an initial guess

for the inverse of the influence matrix is given by

[∇g]−1 = diag

[
δ

g (bδ)− g (b0)

]
(3.3.91)

It was found that this initial guess is very good for cases in which most of the energy is

conducted in the solid equation, but it can diverge when that is not the case. In general the

iteration was found to converge to a tolerance of 1e− 7 within about 10− 12 iterations.
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CHAPTER 4

Heat Sink VAT Model Limits

In the previous sections, the governing equations for fluid flow and heat transfer in a heat

sink were developed, and numerical methods for their solutions were discussed. It was shown

how the application of VAT to the complex multi-scale structures geometrically homogenizes

the domain of the solution, and defines equations that are valid everywhere in the domain

of the system. In this section, the accuracy and limits of the model are discussed. Deter-

mination of the limits of applicability of the model are crucial, in order to ensure that the

results of the optimization procedure, which will be carried out in the next chapter, are not

affected by shortcomings of the model.

The chapter is divided into three sections. In the first section, the limits for cases of constant

porosity are discussed. Solution and closure methods are validated by comparing predicted

and experimental results for several micro-channel and pin fin heat sinks. Subsequently, the

limits of applicability of the model are determined by comparing the error between predicted

results and high fidelity CFD results. In the second section, the procedure is repeated for

heat sinks with linear porosity variation in the z-direction. In the third and last section of

the chapter, the procedure is repeated for converging and diverging channels, to determine

the limits of applicability of the model when variation in the x-direction are present.

The geometrical heat sink configurations, along with methods for the determination of poros-

ity and specific surface, have been discussed in detail in Section 3.3.1. The friction factor

closure correlation for channels is taken from the analytical solution for hydrodynamically

fully developed flow between parallel plates,

f =
24

Redh
(4.0.1)
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The Nusslet number is taken from the asymptotic matching correlation proposed by Awad

[155] for thermally developing flow for parallel plates with constant temperature,

Nudh =

[(
1.849

x∗
1/3

)3.5

+ (7.514)3.5

]1/3.5

(4.0.2)

where the developing length scale is defined as

x∗ =
L

Redh,avgdhPrf
(4.0.3)

The Reynolds number is always based on the local intrinsic velocity and the VAT hydraulic

diameter defined in Eqn. (2.6.11). For variable geometries, the friction factor and Nusselt

numbers are assumed to scale with the local hydraulic diameter i.e. for trapezoidal mi-

crochannels, the heat transfer coefficient will vary linearly with the Nusselt number in the

z-direction. The accuracy of these assumptions and closure schemes will be discussed in

detail the next sections.

A staggered pin fin heat sink is also considered. In this case, the friction factor the flow

develops thermally and hydrodynamically within the first few rows, and the friction factor

and Nusselt number correlations are taken from Zukauskas [156] experimental correlations.

Khan [157] conveniently used Zukauskas data to develop a single correlation that includes

the dependence on the pitches, diameter and Reynolds number

f = K1

387.6/
S

13.1/ST
T

Re
0.68/

S1.29
T

D

(4.0.4)

where K1 is a correction factor given by

K1 = 1.175
SL

ST Re0.3124
D

+ 0.5 Re0.0807
D (4.0.5)

where ST and SL are the non-dimensional pitches

ST =
py
D
, SL =

px
D

(4.0.6)

The Nusselt number for staggered pin fins is taken directly from Zukauskas

NuD = 1.04 Re0.4
D

0.36

Pr
f

ReD < 300

NuD = 0.71 Re0.5
D

0.36

Pr
f

300 < ReD < 1000

NuD = 0.4 Re0.6
D

0.36

Pr
f

ReD > 1000

(4.0.7)
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These correlations are based on a different length scale and velocity, therefore appropriate

scaling parameters are applied to ensure that the velocity and length scales match the VAT

definition. Lets also note that these correlations have been developed for long tubes held at

constant temperature. Using these correlations, the VAT energy and momentum equations

can be solved to model transport phenomena in these two types of heat sinks. Following the

discussion from Chapter 2, the friction factor can in general be case in the form

f =
A

Redh
+B (4.0.8)

where the first term dominates at low to moderate Reynolds numbers, while the second term

becomes dominant at large Reynolds, and it can be seen that this is indeed the case for the

given geometries.

Numerical simulations of laminar, constant property flow in a heat sink using Computational

Fluid Dynamics (CFD) are quite reliable. To ensure that no numerical errors are present in

the CFD results, the solution is taken as converged, when the RMS residual is less than1×

10−6, and the imbalances in the domain are less than 1%. A mesh sensitivity study is

also carried out to ensure that the solution is mesh independent. The mesh-independent

results are then compared to experiments to ensure that the physics of the problem have

been captured correctly by the numerical solution. Since experimental results for heat sinks

with variable geometries are not available, the experimental validation of the CFD results

is carried out only for heat sinks with constant geometry. To ensure that the physics of

the problem are captured for variable geometry heat sinks, the mesh size is increased by

20%. This is probably an unnecessary step that will increase computational time, however,

in our case accuracy is crucial so some computational efficiency can be sacrificed. All the

numerical simulations are carried out using the ANSYS CFX package. The workflow of the

CFD studies is given Figure 4.1. Since the flow is assumed to be hydrodynamically fully

developed, a developing inlet section is added to the computational domain to ensure that

it matches the VAT closure model. This also implies that any entrance constriction and

outlet expansion pressure drops are not included in the two models. An example of the

computational domain for a trapezoidal micro-channel is given in Figure 4.2. The definition

of the geometries and the parameters that defined them for each heat sink configuration can

118



Figure 4.1: CFD Studies Workflow
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Figure 4.2: Example of Computational Domain for CFD Runs
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be found in Section 3.3.1.

4.1 Heat Sinks with Uniform Geometry

Heat sinks without geometry variations are considered first in order to validate the model,

the closure and the numerical solution. In addition, this allows us to show the computational

advantages of using a VAT, compared to classic CFD modeling. The results obtained for a

straight micro-channel and a staggered circular fin heat sink are compared to experimental

results and numerical solutions.

4.1.1 Limiting Parameters

For constant porosity and specific surface, the scaled VAT conservation equation derived in

Chapter 3

M1
∂2 〈u〉
∂z2

− f〈u〉2 =
d〈pf〉f

dx
, (4.1.1)

F1 〈u〉
∂〈Tf〉f

∂x
= F2

∂2〈Tf〉f

∂x2
+ F3

∂2
〈
T̂f

〉f
∂z2

+ h
(
〈Ts〉s − 〈Tf〉f

)
(4.1.2)

S1
∂2〈Ts〉s

∂x2
+ S2

∂2〈Ts〉s

∂z2
− h

(
〈Ts〉s − 〈Tf〉f

)
= 0 (4.1.3)

Since porosity is constant, the characteristic values of porosity, specific surface and hydraulic

diameter are simply the constant values

M1 =
2εf

favgRedh

(
dh

2Hc

)2

,

F1 =
RedhPrf
2Nudh

Cx
εf
, F2 =

C2
x

Nudh
, F3 =

C2
z

Nudh
,

S1 =
Rk

Nudh
C2
x, S2 =

Rk

Nudh
C2
z ,

(4.1.4)

The heat transfer coefficient, and friction factors remain in the equation due to their varia-

tions in the z direction, however they are scaled quantities and are therefore of order 1.

The scaling of the momentum equation was carried out by assuming that the pressure gra-

dient will be balanced by the momentum sink term. With this in mind, the parameter M1

represents the ratio of frictional losses due to the no-slip condition at the system boundary,
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to frictional losses due to the lower scale geometry. This is clear by the appearance of the

ratio of length scales dh/Hc , which is the ratio of the size of the internal geometry features

to the size of the system.

In order to find the limits of applicability of the VAT equations, it is important to recall the

main assumption at the base of the VAT model, which implies that the system scale is much

larger than the lower geometry scale. In the current problem, this ratio is represented by

that the ratio dh/Hc . Note that this was one of the assumptions that was used in Chapter 2,

and gives the averaging process statistical sense. In other words, when the two scales are

not disparate, the averaging process does not make sense. Therefore, this suggests that a

requirement for the validity of the VAT momentum conservation equation is

M1 � 1 (4.1.5)

Physically, this condition implies that most of the momentum loss in the system is due to

the intricate lower scale geometry i.e. in a pin fin heat sink, pins are responsible for most of

the pressure drop, and the pressure drop due to the base and/or top wall are negligible. If

this parameters is not small, the lower and upper scale geometry are close, and lower scale

phenomena will no longer depend only on the local velocity, but will be dependent on the

velocity at other locations in the system. The product fRedh, given the form of the friction

factor given in Eqn. (4.0.8), implies that M1 will be independent of the Reynolds number

at low to moderate Redh, while it will be inversely proportional to it for large Redh. The

assumption given in Eqn. (4.1.5), and the actual value that will delimit the validity of the

equation will be discussed in Section 4.1.3. Mathematically, M1 represents the curvature of

the velocity profile, and Figure 4.3 shows that small values of M1 result in a mostly uniform

velocity profile.

Moving on to the energy equations, recall that the scaling was carried out by comparing each

term to the interphase heat transfer term. Lets consider the fluid equation first. Following the

previous discussion, the length scale ratios Cx and Czare ratios of the lower scale geometry

scale to the system scale. The multi-scale nature of the problem implies that they will

be smaller than one, therefore, their squared values will be much smaller than one. In

addition, the diffusive terms are divided by the Nusselt number, and they will be very small.
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Figure 4.3: Velocity Profile for Different Values of M1

123



This suggests the F1 term, which is the ratio of the Peclet number to the Nusselt number

will balance the interphase heat transfer term. Near the boundary at z = 0, the velocity

goes to zero, therefore the convective term vanishes, and the fluid and solid temperature

are assumed to be equal, so the interphase term is also zero. The scaling of the heat flux

interface condition implies that, when the ratio of thermal conductivities is large (which is

the case in almost all heat sinks), most of the heat from the base enters the solid phase, which

implies that the fluid z-diffusive term will be small. In addition, the interphase fluid and

solid temperature is assumed to be equal, which implies that near the boundary all terms in

the fluid equations are small. Therefore, the diffusive terms in the fluid energy equation are

small everywhere. Overall, the scaling revealed that heat enters through the solid phase, its

diffused and transferred to the fluid through the fins, and it is then convected away. This is

an accurate description of the heat transfer physics in a heat sink. The fact that the diffusive

terms are negligible everywhere implies that the gradients of the velocity profile near the

boundaries do not affect the energy equations strongly. As long as the velocity distribution

is accurate in the bulk of the flow, the energy equations will be accurate. Because of this

fact, when the limits of applicability of the equations are discussed, only the terms in the

momentum equation will be considered.

4.1.2 Validation

In this section, the VAT heat sink model is validated by comparing the results to experimental

data for two heat sink geometries and material combinations: a water cooled microchannel

heat sink, and an air cooled staggered pin fin heat sink.

4.1.2.1 Microchannel Heat Sink

The geometry and experimental results for the microchannel heat sink, are taken from Lee

and Garimella [158]. They fabricated five heat sinks by machining ten micro-channels, of

different heights and widths, on a 25.4× 25.4× 70 mm copper block. Four cartridge heaters

were machined into the base, and used to heat deionized water flowing through at flow rates

124



Table 4.1: Micro-channel heat sink geometric parameters

Test Nc wc [mm] Hc [mm] L [mm] W [mm] Dh [mm] αc (= Hc/wc )

1 10 0.194 0.884 25.4 25.4 318 4.56

2 10 0.229 1.250 25.4 25.4 387 5.46

3 10 0.300 1.520 25.4 25.4 501 5.07

4 10 0.339 1.895 25.4 25.4 575 5.59

5 10 0.534 2.910 25.4 25.4 902 5.45

of 0.1 to 2.2l/min. They define the Nusselt and Reynolds numbers as

Nuexp =
hDh

kf
=

QDh

NAfkf (Tw − Tm)
(4.1.6)

Reexp =
uavgDh

νf
(4.1.7)

where Qis the heat input, Dh = 2wcHc/(wc +Hc) is the hydraulic diameter, N is the number

of fins,Af = L (wc + 2Hc) is the interface area per fin, Tw is the average wall temperature at

the bottom of the channel, and Tm is the average of inlet and outlet fluid temperature. The

average velocity uavg is determined from the flow rate, the heat flux is kept at 45W/cm2 ,

and all fluid properties are evaluated at Tm. The uncertainty in the experimental results is

6-17%, with the higher error occurring at higher flow rates. The geometric parameters for

the five different heat sinks considered are given in Table 4.1.

The base of the heat sink is arbitrarily chosen to be 10 mm thick, which corresponds to

a base aspect ratio Sb of about 0.4. This thickness is chosen to ensure that base conduction

is not negligible; moreover, because of the high thermal conductivity, a uniform heat flux

applied at the bottom of the base closely approximates experimental conditions (embedded

cartridge heaters in 70 mm thick substrate). The porosity and specific surface can be found

by analytically solving the integrals in Section 3.3.1.3.

εf =
wc
py
, Sw =

2Hc + 2wc
Hcpy

(4.1.8)

The hydraulic diameter than becomes

dh = 2wc (4.1.9)
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which is consistent with the parallel plate length scale that was used in the closure. The

parameter M1 depends than on the inverse of the aspect ratio of the channel α. In all

the cases, the aspect ratio is quite large, which leads to values of M1 of O
(
10−3

)
. The

numerical results for overall Nusselt number and pressure drop as a function of Reynolds

number are shown in Figure 4 4, along with the experimental results. Both VAT and CFX

predicted values are in very good agreement with experimental data, with mean errors of

3.3% and 3.8%, respectively, which are well within experimental uncertainty. The error

is defined as the absolute value of the relative difference of two values. The results for

Figure 4.4: Comparison of Nusselt Number Obtained Numerically With Experimental Re-

sults for Test #3
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pressure drop as a function of Reynolds number are shown in Figure 4.5, and the agreement

is again very good with a mean error of 5.4%. The values obtained with the two codes

Figure 4.5: Comparison of Pressure Drop Obtained with VAT Code and CFX for Test #3

are in very good agreement with each other and with experimental data over the entire

Reynolds number range considered, but the VAT code gives a solution 4.3× 103 times faster

than CFX. The accuracy of the VAT code is further validated by comparing the predicted

Nusselt number for the remaining micro-channel geometries Table 4.1 with experimental

data. In all cases, the lower and upper limits of the Reynolds numbers range were determined

by the lowest experimental point available and transition to turbulence, respectively. The

results for Nusselt vs. Reynolds number, given in Figure 4.6, show that the agreement

with experimental data is excellent. In all geometric configurations and over the entire
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range of Reynolds numbers, the predicted Nusselt number agrees well with experimental

results, and the average error is less than 4.5%, which is again well within experimental

uncertainty. It has been shown that the VAT code can very quickly and accurately predict the

Figure 4.6: Comparison of Nusselt Number Obtained Numerically With Experimental Re-

sults for Tests #1-2, 4-5

average Nusselt and Reynolds number for several geometric configurations when a constant

heat flux is applied. In order to check the accuracy of the VAT code in predicting base

temperature distributions, its results are compared with those obtained using CFX for a

heat sink with applied non-uniform heat flux. Test #3 is chosen because the CFX solution

has been validated. A square heat flux is applied at the bottom of the base to simulate an
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attached heat generating component, and Re = 948 is chosen. The component is given an

arbitrary length of 10 mm, width equal to base width, and is located at the center of the

base. The component is assumed to generate 45W/cm2 heat flux while the rest of the base

is insulated. From a mathematical point of view, a two-dimensional slice of such an input is

the difference of two shifted opposite Heaviside step functions H (x)’

qw (x) = qw,max

{
H
[
x−

(
xc − Wc/2

)]
−H

[
x−

(
xc + Wc/2

)]}
(4.1.10)

where xcand Wc are the non-dimensional center and width of the input, respectively (see

Figure 4.7). Numerically, the function can be approximated by

qw (x) =
qw,max

2

{
tanh

[
k
(
x− d−

)]
− tanh

[
k
(
x− d+

)]}
(4.1.11)

where d± = (xc ±Wc/2 ), while k defines the sharpness of the transition. The average of the

function can then be found analytically while the cosine coefficients are found numerically

by using MATLABs built-in integrate function. It is found that k = 200 provides a good

approximation of the step function, and is well approximated by a cosine series with N = 128.

A schematic of the heat flux applied to CFX case, its approximation Eqn. (4.1.11), and its

truncated cosine Fourier series are shown in Figure 4.7. It can be seen that, although the

steep gradient causes some fluctuations in the cosine series, the agreement between all three

functions is good. Figure 4.8 shows the temperature distribution at the bottom of the base

obtained using the VAT code and CFX with applied non-uniform heat flux. The agreement

between the two solutions is excellent with a maximum error of about 5%; however, while

the CFX requires about 3500s to obtain a solution, the VAT code requires only 2s, which

is approximately 1.8 × 103 times faster. The huge computational time reduction obtained

with the combination of VAT and a faster solution procedure makes multi-parameter and

multi-objective optimization possible. This solution procedure is not meant to replace full

numerical solutions in all cases; rather, it demonstrates that if details of the flow are not

of interest, accurate performance parameters and component temperatures can be obtained

much more efficiently using the VAT based code. This study shows that the VAT code

can quickly, and accurately predict the performance of micro-channels for a wide range of

Reynolds numbers.
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Figure 4.7: Non-uniform Heat Flux Applied at Bottom of Base to Test #3
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Figure 4.8: Base Bottom Temperature for Non-Uniform Heat Flux obtained with CFX and

VAT Code
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Next, in order to ensure that the solution is accurate for a wide range of porosities, four more

micro-channel heat sinks are studied. The details of the geometry are given in Table 4.2.

Their geometric parameters are somewhat randomly chosen, however, the aspect ratio is

Table 4.2: Geometrical Parameters of Straight Micro-channels used in Low M1 Numerical

Experiments

L[mm] W [mm] Hc[mm] py[mm] w[mm] ε M1

50 50 13.5 2.5 2.25 0.9 3.75E-03

50 50 7.5 2.5 1.25 0.5 2.31E-03

50 50 1.5 2.5 0.5 0.2 9.41E-03

50 50 1.5 2.5 0.25 0.1 4.63E-04

kept high, to ensure that M1 will be small. The Reynolds number has been fixed at 1100.

The results for the overall friction factor and Nusselt number are given in Figure 4.9 and

Figure 4.10, respectively. In addition, the percent error is plotted at each experimental point

on the right axis, and it can be seen that for both Nusselt and friction factor, the error is

always less than 4%. [ht!] It can be seen that once again the agreement between the values

predicted by CFX and the VAT code are in excellent agreement.

4.1.2.2 Pin Fin Heat Sink

Pin fin heat sinks are also commonly used in thermal management of electronics. Stagnation

points and vortex structures created by the pins improve the heat transfer performance

of these types of heat sinks, when compared to simple straight channels. Two types of

geometrical configurations are commonly found for pin fin heat sinks: inline and staggered.

Staggered pin fins lead to better thermal performance, however, as often is the case, they

also lead to an increase in pressure drop. Temperature, velocity and pressure distributions

around cylinders are quite complicated due to the formation of transient trailing vortices

(Von Karman vortices). Extensive CFD studies have been carried out to investigate these

interesting phenomena; nonetheless, when the details of the flow around pins are not of

interest, and all is required is performance evaluation of the entire heat sink, a VAT model
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Figure 4.9: Friction Factor as a Function of Porosity for Four Heat Sinks with Low M1
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Figure 4.10: Nusselt Number as a Function of Porosity for Four Heat Sinks with Low M1
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Table 4.3: Geometric Parameter for Staggered Pin Fin Heat Sink

L[mm] W [mm] Hc[mm] tb[mm] D[mm] px[mm] py[mm] Tin[K] Q[W ]

114.3 114.3 38.1 8.25 3.175 3.3665 6.731 298 125

is a very efficient way to obtain it. The advantage of VAT lies in the fact that the same

code developed in the previous section, with different closure parameters can be used to

study these complex phenomena. The complexity of the lower flow structure is included

in the closure parameters, while the quantities of interest are determined on the system

scale. This type of separation is not possible using a full CFD solution, all the physics of

the problem have to be calculated directly, leading to considerable computational times.

Continuing our comparison with the continuum approach, different geometries are to VAT

what different fluids are to the Navier-Stokes equations. The same Navier-Stokes equations

are used to calculate velocity and pressure distribution in a system containing air or water.

The molecular behavior of the two fluids is quite different however, when solving the Navier-

Stokes equations, the only differences are the values of density and viscosity, which are the

lower scale closure parameter. In this section, a VAT approach will be applied to determine

performance parameters for a staggered pin fin heat sink. A schematic of a pin fin heat

sink, along with the geometric parameters are shown in Figures 3.4 and 3.5. The results

obtained using VAT will be validated by comparison with experimental results. The heat

sink geometry and experimental results are taken from Rizzi [159]. The experiments were

conducted by placing a staggered aluminum pin fin heat sink in a wind tunnel, and attaching

it to a copper block with cartridge heaters inserted into it. The cooling fluid was air, and

a shroud was inserted about the fin tips, to eliminate any flow bypass. The geometric and

thermal input parameters are given in Table 4.3 The experimental Nusselt and Reynolds

numbers are defined using the VAT hydraulic diameter and the average intrinsic velocity

Nuexp =
hdh
kf

, Reexp =
〈uf〉favg dh

νf
(4.1.12)

The heat transfer coefficient is defined in terms of the maximum temperature difference

h =
Q/Ab

Tb,max − Tin
(4.1.13)
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where Ab = W · L is the area of the base on which the heat load is applied. The porosity

and specific surface for constant porosity can be found by analytically solving the integrals

in Section 3.3.1.2.

εf = 1− πD2

8pxpy
, Sw =

πD

2pxpy
(4.1.14)

The non-dimensional parameter M1 for this heat sink was found to be O
(
10−5

)
or smaller,

while volume fraction weighted thermal conductivity ratio Rh was of order O
(
10−5

)
, there-

fore, all the assumptions discussed in the previous sections are still valid. The predicted fric-

tion factor and Nusselt number as a function of Reynolds number are shown in Figure 4.11,

along with Rizzis experimental results [159, 160]. It can be seen that the agreement in for

both parameters with experimental results is again excellent. The average error in the Nus-

selt number is 3.2% with a maximum error of 5.1%, while the average and maximum error

for the friction factor are 2.6% and 4.5% respectively.

4.1.3 Determination of Limits on M1

In the previous sections, it has been shown that when M1 is small, the VAT code can

accurately predict the thermal and hydraulic performance of two geometrically different

systems. It is of interest now to find a limiting value of M1, after which the VAT model

is no longer applicable. To this purpose, the same study defined in Table 4.2 is repeated,

but the height of the channel is kept fixed at 4 mm, such that as the width increases, the

parameter M1 increases. Although there is no Reynolds number dependence, for consistency,

the Reynolds number is again kept fixed at 850. The results for the friction factor predicted

by the VAT model and the CFD solution are shown in Figure 4.12. Also in Figure 4.12, the

percentage difference between the two solutions is plotted on the right axis. It is quite clear

that as predicted, the VAT model loses accuracy as M1 increases. If an error of about 10%

is considered acceptable, the limit of applicability of the VAT model for constant geometry

is given by

M1 < 0.04 (4.1.15)
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Figure 4.11: Comparison of Friction Factor and Nusselt Number for a Staggered Pin Fin

Heat Sink with Experimental Results by Rizzi
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Figure 4.12: Friction Factors Predicted by VAT and CFX as a Function of M1
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In addition, the predicted Nusselt number is shown in Figure 4.13. It can be seen that the

accuracy decreases with an increase in M1, however the increase is much more gradual, and

the accuracy is indeed limited by the momentum solution. In both the CFD and the VAT

Figure 4.13: Nusselt Number Predicted by VAT and CFX as a Function of M1

code, the average velocity was assumed to be the known quantity, which implies that the F1

parameter is calculated correctly. Therefore, as discussed in Section 4.1.1, the error in the

Nusselt number will be much smaller, which is evident by comparison of Figure 4.12 and

Figure 4.13. The VAT model is geometry independent, therefore so should its limits. To

prove that this is indeed the case, the last study is repeated for the staggered pin fin heat

sink defined by Rizzi [160]. The geometry was reproduced in ANSYS CFX, and the height

139



was adjusted to study the effects of decreasing M1 on the accuracy. The results for the

pressure drop are shown in Figure 4.14. For pin fins, it is found that the error also increases

Figure 4.14: Friction Factors Predicted by VAT and CFX as a Function of M1 for Staggered

Pin Fin Heat Sink

as a function of M1 and it reaches 10% at M1 ≈ 0.02, which is a slightly lower limit than the

one given in Eqn. (4.1.15). The fact that the error is larger for pin fins does not come as a

surprise, since the lower scale flow and heat transfer structures are much more complicated

than for straight channels, and, in general, the closure approximation will introduce a higher

error. Nonetheless, it can be seen clearly that the increase in error trend and the order of

magnitude of the limit are the same for both geometries.
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4.2 Heat Sinks with Variable Geometry in Cross-Flow Direction

In the previous section, it has been shown that the parameter M1 determined the limits of

applicability of the VAT model for constant geometry. In this section, a similar analysis is

carried out for heat sinks in which the porosity varies in the z-direction only. These types

of heat sinks include trapezoidal micro-channel heat sinks and tapered pin fin heat sinks.

Although only linear profiles are considered here, the code and the model developed are

independent of the profile.

4.2.1 Limiting Parameters

The VAT conservation equations derived in Chapter 3, when porosity variations are present

in the z direction only, simplify to

M1
∂2 〈u〉
∂z2

− Swf〈u〉2 = εf
d〈pf〉f

dx
(4.2.1)

F1 〈u〉
∂〈Tf〉f

∂x
= F2εf

∂2〈Tf〉f

∂x2
+ F3

∂

∂z

(
εf
∂〈Tf〉f

∂z

)
+ hSw

(
〈Ts〉s − 〈Tf〉f

)
(4.2.2)

S1εs
∂2〈Ts〉s

∂x2
+ S2

∂

∂z

(
εs
∂2〈Ts〉s

∂z2

)
− hSw

(
〈Ts〉s − 〈Tf〉f

)
= 0 (4.2.3)

Following the discussion in the previous section, the accuracy of the equations will be limited

by the accuracy of the momentum equation. Consequently, only its limits will be explored.

The porosity dependence of the momentum equation, Eqn. (4.2.1), is hidden in the diffusive

term. The diffusive term is expanded to explicitly show this dependence on the porosity

variations (where it is assumed that porosity variation is linear, therefore its second order

derivative is zero)

M1εf
∂2〈u〉f

∂z2
+ 2M1

∂εf
∂z

∂〈u〉f

∂z
− Swf〈u〉2 = εf

d〈pf〉f

dx
(4.2.4)

It can be seen that a new parameter arises in the equation, that will be defined as M2

M2 = 2M1

∣∣∣∣∂εf∂z
∣∣∣∣ =

4εf,c
fRedh

(
dh,c
Hc

)2 ∣∣∣∣∂εf∂z
∣∣∣∣ (4.2.5)

Note that this parameter depends on M1 and the porosity gradient. This term represents

the ratio of friction losses due to the lower scale geometry, to system scale friction losses due
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to the porosity variations. The characteristic porosity and hydraulic diameter are taken as

the average values.

Similar to the discussion that was carried out for the constant geometry, assuming that

M1 is small, large values of the porosity gradient (M2 is significant) imply that the lower

scale phenomena are not anymore dependent only on the local velocity, but are affected

by variations at the system scale. Physically, this implies that in such cases, the porosity

gradient is felt in large parts of the domain. The effects of M2 on the velocity profile are

shown in Figure 4.15, and it can be clearly seen that the magnitude of M2 determines the

steepness of the gradient in the z direction within the channel. This suggests that a condition

Figure 4.15: Velocity Profile as a Function of M2
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for the accuracy of the VAT momentum equation for variable porosity in the z-direction is

M1 � 1, M2 � 1 (4.2.6)

Eqn. (4.2.5) shows that the M2 is a product of M1 and the porosity gradient, therefore

Eqn. (4.2.6) states that the aspect ratio of the channel has to be large, and porosity gradi-

ents have to be small. The determination of the limiting value of M2 will be discussed in

Section 4.2.3, but first, it is shown that when the conditions given are satisfied, the solution

is indeed accurate.

4.2.2 Validation

A set of numerical experiments are carried out for cases in which Eqn. (4.2.6) is satisfied.

The friction factor and Nusselt number obtained are compared to the VAT model to ensure

that the two match. Five trapezoidal micro-channels were designed in such a way that the

porosity gradient changes but Eqn. (4.2.6) is always satisfied. The geometry of the five

micro-channels is given in Table 4.4. The Reynolds number, defined using the commonly

Table 4.4: Geometry for Low M2 Trapezoidal Micro-channels

L[mm] W [mm] Hc[mm] py[mm] wb[mm] wt[mm] ∆εf

50 50 4 2.5 0.25 0.25 0

50 50 4 2.5 0.25 0.75 0.2

50 50 4 2.5 0.25 1.25 0.4

50 50 4 2.5 0.25 1.75 0.6

50 50 4 2.5 0.25 2.25 0.8

used definition of hydraulic diameter (see Eqn. (4.2.7)) and the average intrinsic velocity,

was kept fixed at 1100.

Dh =
2l + wb + wt
H(wb+wt)/2

(4.2.7)
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l is the length of the sides of the trapezoidal channel. The Nusselt and friction factor were

defined as follows

Nu =
q′′Dh

(Tb,avg − Tin) kf
, f =

∆P

1/2ρ
(
〈u〉f

)2 (4.2.8)

The friction factors obtained using CFX and the VAT model, along with their percent

difference, as a function of the porosity gradient are shown in Figure 4.16. It can be seen

Figure 4.16: Comparison of CFD and VAT Friction Factor Predictions for Trapezoidal Mi-

crochannels with Low M2

that, as hypothesized, the VAT model is very accurate over the entire range of porosity

gradients, with a maximum error of about 2%. The results for the Nusselt number are

shown in Figure 4.17, and once again the VAT model accurately predicts the behavior of the
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system. This shows that indeed, when Eqn. (4.2.6) is satisfied, the VAT model can effectively

Figure 4.17: Comparison of CFD and VAT Nusselt Number Predictions for Trapezoidal

Microchannels with Low M2

predict the behavior of the system.

4.2.3 Determination of Limits on M2

Now that it has been shown that the solution is accurate for low values of M2, it is of interest

to show that M2 is indeed the limiting parameter for the accuracy of the VAT model, and

to determine its limiting value. In order to achieve this, the previous numerical experiments

are repeated by repeating the study for the larges porosity gradient (last configuration in
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Table 4.4) and varying its height. Effectively, this process varies M2, which allows us to

study the limits of applicability.

The comparison of the friction factors and Nusselt number obtained using CFX and the VAT

model, along with their percentage difference, are shown in Figure 4.18 and Figure 4.19,

respectively. It can be seen that the error seems to grow quadratically as a function of

Figure 4.18: Comparison of CFD and VAT predicted friction factors as a function of M2

M2. If an error of about 10% is deemed as the bounding value, it seems that the limit of

applicability of the VAT equation is given by

M2 < 0.05 (4.2.9)
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Figure 4.19: Comparison of CFD and VAT predicted Nusselt Number as a function of M2
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Therefore, it has been shown that the value of M2 will determine the validity of the VAT

model for geometries with porosity variations in the z-direction.

4.3 Heat Sinks with Variable Geometry in Streamwise Direction

In this section, the accuracy and limits of applicability of the VAT model for heat sinks

with porosity variations in the x-direction is considered. These types of heat sinks include

converging and diverging micro-channels, and pin fin heat sinks with variable diameter in the

x-direction. The determination of parameters that define the accuracy of the model is carried

out first. It is then shown that the model is accurate for low values of the given parameter by

comparison with numerical experiments. A limit of the value is then determined by exploring

the increase in error as a function of the limiting parameter.

4.3.1 Limiting Parameters

For porosity variations in the x-direction, the VAT equations derived in Chapter 3, become

M1
∂2 〈u〉
∂z2

−
[
Swf −M3

∂εf
∂x

]
〈u〉2 = εf

d〈pf〉f

dx
(4.3.1)

F1 〈u〉
∂〈Tf〉f

∂x
= F2

∂

∂x

(
εf
∂〈Tf〉f

∂x

)
+ F3

∂

∂z

(
εf
∂〈Tf〉f

∂z

)
+ hSw

(
〈Ts〉s − 〈Tf〉f

)
(4.3.2)

S1
∂

∂x

(
εs
∂〈Ts〉s

∂x

)
+ S2

∂

∂z

(
εs
∂〈Ts〉s

∂z

)
− hSw

(
〈Ts〉s − 〈Tf〉f

)
= 0 (4.3.3)

Once again, the accuracy of the model will be limited by the VAT momentum equation,

therefore only its limits will be considered. Two constants are now present in the VAT

momentum equation. The constants in the equations are repeated here for clarity

M1 =
2εf,c
fcRedh

(
dh,c
2Hc

)2

, M3 =
1

fc

(
dh,c
2L

) ∣∣∣∣∂εf∂x
∣∣∣∣ (4.3.4)

The characteristic values have been chosen as the average values. The meaning of M1 has

been discussed in detail in the previous sections. The second parameter, represent the ratio

of pressure drop (momentum sink/source) due to the porosity variations in the x-direction,
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to the pressure drop due to the lower scale geometry. Although, unlikeM1, this term does

not directly multiply a gradient, it will determine the gradients of the velocity in the x-

direction, through the mass conservation equation. This is due to the fact that, for variable

porosity in x, the pressure gradient is now a function of x and it enforces conservation of mass

at each x location. Therefore, porosity gradients in x lead to x variations in the pressure

gradient, which in turn leads to velocity gradients in x. Therefore, like in the previous two

cases, the value of M3 quantifies velocity gradients in the x direction. Figure 4.20 shows

the centerline velocity as a function of the scaled length for three different values of M3,

and it is clear that M3 determines the gradients in the x-direction. Large gradients in the

Figure 4.20: Centerline Velocity Profile as a Function of M3

velocity profile away from the boundaries, imply that there are large variations of the velocity
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within an averaging volume, which then implies that the lower scale phenomena are no longer

dependent only on the local value of the velocity, and the closure condition breaks down.

Therefore, the validity of the VAT momentum equation for variations in the x-direction is

that the gradients in velocity induced by these variations, are relatively small. Since the

parameters M1 and M3 quantify these gradients, the condition for the applicability of the

VAT equations in the presence of porosity gradients in the x-direction is

M1 � 1, M3 � 1 (4.3.5)

Given the form of the friction factor given in Eqn. (4.0.8), for relatively low Reynolds num-

bers, M3 will be proportional to the Reynolds number since the friction factor is inversely

proportional to it. As the Reynolds number increases, the friction factor attains a constant

value and M3 will become independent of it. Although, as shown in previous sections, these

bounds are not dependent on the geometry, to better understand the physical reasons be-

hind this phenomenon, it helps to think about the case of converging (or diverging) channels.

M3 represents the degree of convergence (or divergence) of the channel, and for high values

of M3, flow upstream will be aware of the downstream conditions. For slowly converging

channels, the downstream converging geometry will not significantly affect the downstream

flow, and the approximation of the local dependence of the friction factor on the velocity

is still accurate. As the gradient of porosity variations increases, the upstream flow starts

significantly affecting the downstream conditions and the friction factor is no longer due

only to the local flow. The Reynolds number dependence of the condition can similarly

be explained. At lower Reynolds number the flow will be more aware of the downstream

conditions due to the importance of the viscous effects, while at high Reynolds, inertia will

take over and the flow downstream is less affected by the conditions upstream.

4.3.2 Validation

The hypothesis given in Eqn. (4.3.5) is first confirmed by first ensuring that when it is

actually satisfied, our model can predict correctly the physics of the problem. This is carried

out by carrying out a series of numerical experiments for converging and diverging channels
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with various porosity gradients, keeping M3small by adjusting the Reynolds number, and

comparing the results with those predicted by the VAT model (M1 is always kept small).

The geometric and physical parameters of this study for converging and diverging channels

are given in Table 4.5 and Table 4.6, respectively.

Table 4.5: Geometries and Reynolds Numbers for Low M3 Converging Channels Study

L[mm] W [mm] Hc[mm] py[mm] wi[mm] wo[mm] ∆εf Re

50 50 13.5 2.5 2.25 2.25 0.00 850

50 50 13.5 2.5 2.25 1.58 0.268 100

50 50 13.5 2.5 2.25 0.92 0.532 37

50 50 13.5 2.5 2.25 0.25 0.800 35

Table 4.6: Geometries and Reynolds Numbers for Low M3 Diverging Channels Study

L[mm] W [mm] Hc[mm] py[mm] wi[mm] wo[mm] ∆εf Re

50 50 1.5 2.5 0.25 0.25 0.00 850

50 50 2.5 2.5 0.25 0.34 0.036 121

50 50 2.5 2.5 0.25 0.75 0.200 121

50 50 8.5 2.5 0.25 1.4 0.460 51

50 50 15.0 2.5 0.25 2.4 0.860 20

The Poiseuille number f Re is plotted as a function of the porosity gradient for converging

channels in Figure 4.21. The Poiseuille number is plotted in this case since the Reynolds

number was not kept fixed. It can be seen that the VAT model accurately predicts the

pressure drop over the entire range of porosity gradients, and the maximum error is about

4%. The results for diverging channels are shown in Figure 4.22, and once again for low

M3, the values predicted by the VAT model are in excellent agreement with experimental

results, with a maximum error of 4%. Now that it has been shown that the code is accurate

for cases in which Eqn. (4.3.5) is satisfied, it is of interest to determine what is the limiting

value of M3, after which the VAT approximation exceeds a given accuracy.
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Figure 4.21: Poiseuille Number for Converging Channels as a Function of the Porosity Gra-

dient for Low M3
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Figure 4.22: Poiseuille Number for Diverging Channels as a Function of the Porosity Gradient

for Low M3
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4.3.3 Determination of Limits on M3

To determine the limiting values, and confirm the Reynolds number dependence, two sets of

numerical experiments are carried out and its results are compared to those predicted by the

VAT model. First, a diverging channel with a porosity gradient of ∆εf = 0.2 (third geometry

in Table 4.6) is chosen and solved for four Reynolds numbers, which leads to variations in

M3 . The values of the Poiseuille number obtained with CFD and the VAT model, along

with their percent difference, as a function of M3 are shown in Figure 4.23. It can be seen,

Figure 4.23: Poiseuille Number for Diverging Channels vs M3 for Varying Reynolds Number

that as expected, the accuracy of the VAT model decreases with increasing M3. If 10% is
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chosen as an acceptable error in the model, a limiting condition is given by

M3 < 0.1 (4.3.6)

Next, to confirm the dependence of M3 on the porosity gradient, the study given in Table 4.5,

is repeated but this time the Reynolds number was kept fixed at 121. The results for the

Poiseuille number predicted by the VAT model and the numerical experiments, along with

their percent difference, as a function of M3 are shown in Figure 4.24. As predicted, the

Figure 4.24: Poiseuille number for Converging Channels vs M3 by Varying Porosity Gradient

VAT model only for low values of M3, and the limit for a 10% accuracy in the results is given

by same condition obtained by varying the Reynolds number. Although the study was not

repeated for staggered pin fin heat sinks, it can be expected that the same behavior would

155



be observed, since the VAT model is itself independent of geometry, and therefore also its

limits should be.
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CHAPTER 5

Spatially Evolving Micro-channel Heat Sinks

Optimization

The main goal behind the development of the VAT model described in the previous sections,

is to exploit its computational efficiency to explore design parameters that will lead to a more

efficient heat rejecting device. To this end, in this section the developed code is coupled to

a population-based Genetic Algorithm (GA) to determine geometric that will optimized the

performance of a micro-channel heat sink.

Genetic Algorithms are a subset of the larger group of optimization algorithms known as evo-

lutionary algorithms. The name genetic algorithm, as well as the first application of the GA,

is attributed to the pioneer work of Bagley [161]. In 1975, De Jong and Holland [162]carried

out the first studies entirely dedicated to GAs, which was then significantly advanced in the

80s by Grefenstette [163], Baker [164] and Goldberg [165]. A complete review and descrip-

tion of GAs and other evolutionary computational methods can be found in Ashlocks book

[166], and many other volumes on the subject. The application of GAs to heat transfer

problems is more recent, and started approximately with the work by Queipo [167]. Since

then, the number of publications on the subject was limited until 2005 when the GA start

growing significantly in popularity in the heat transfer field. The major drawback of GAs

for heat transfer application is the large number of function evaluations that are required

by the algorithm; since each function evaluation implies the numerical solution of a complex

CFD/FEM model, the required computational time can be prohibitive. Therefore, the re-

cent popularity of the application of GAs to heat transfer problems is largely attributed to

the improvement in computational efficiency of CFD/FEM methods, along with the advent

of commercially available parallel processors.
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Several researchers have tried to bypass the time-consuming performance evaluations of heat

sinks using CFD, by using resistance models or algebraic correlations [168, 169, 170]. In these

studies, the negligible computational time required for each function evaluation allowed the

exploration of several parameters with wide parameter bounds. However, these models can-

not effectively take into account the conjugate heat transfer phenomena in a heat sink, and

their accuracy is limited. Other studies have been carried out by coupling a GA directly

to a CFD/FEM solver [167, 171, 172, 173], which allows for a very accurate determination

of the physics of the problem. Nonetheless, the extensive time required for the evaluation

of each design implies that only small ranges and limited number of design parameters can

be considered. In another effort to reduce computational times, Gosselin et al [174, 175]

have used porous media models to optimize heat transfer in heat sinks. The use of a porous

media approach allowed these researchers to reduce the computational time, and therefore

expand the search space and consider the effect of several parameters on the heat transfer.

Yet, the porous media models employed are based on empirical correlations and do not take

into account the limitation of the model used, which could lead to physical inaccuracies.

Most recently, Geb [138] used a VAT model and a GA to find a plane fin heat sink that

exceeded state-of-the-art currently available heat sinks. In this work, the combination of

the expanded VAT model and GA is used to determine the effects of geometry variations on

heat sink efficiency.

A short description of the idea behind GAs is given here. This is meant to give the reader

a general picture of how a GA leads to an optimum solution, and it is not meant to be a

through description of it. For more detail refer to [176]. The GA is based on the Darwinian

assumption of survival of the fittest. Each heat sink is treated as an individual. Each indi-

vidual has its own DNA, which is a combination of its chromosomes (the design parameters).

The length of the DNA is then equal to the number of design parameters that define each

individual. Each individual is also assigned a fitness parameter, which for minimization

problems can be seen as the negative of the function to be minimized (such as the fittest

individuals have the largest value of the fitness function). An initial population of size NP

is generated as a random combination of the design parameter within the specified range.
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Each individual is then assigned a fitness parameter by evaluation of the objective function.

The population is then ranked, from fittest to least fit, and the top 5% of the population

is advanced to the next generation. This step is called elitism. The rest of the population

in the next generation is created by crossover and mutation. In the crossover process, two

parents are taken and mated, and their child is a combination of their chromosomes. In

the mutation process, children are created by mutating some of its parents chromosomes.

A graphical explanation of elitism, crossover and mutation are shown in Figure 5.1. The

Figure 5.1: Graphical Explanation of Elitism, Crossover and Mutation [177]

elite children, along with the children obtained through crossover and mutation define a new

population that takes the place of the previous population, and the process is repeated until

a stopping criterion is met. A graphical representation of the GA is shown in Figure 5.2, In

this work, the stopping criteria are either that the optimal (scaled) objective function has

changed less than 10−6 over the last 20 iterations, or that the number of generations is less

than NG. If the second stopping criteria is met, it implies that an optimal solution might

have not been reached yet, and the problem needs to be defined better, of the maximum

number of generations needs to be increased. The definition of the fitness parameter for a

heat sink is dependent on the goal of the design. Different researchers have defined different
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Figure 5.2: Schematic of Genetic Algorithm

efficiency parameters such as cost, entropy generation, thermo-hydraulic efficiency, thermal

resistance etc. In this work, two types of commonly chosen optimization parameters will be

minimized, entropy generation and thermal resistance. Entropy generation for a heat sink

has been defined by Bejan [178],

Ṡgen = Q

(
1

Tin
− 1

Tb

)
+
PP

ρTin
=

Q2

TinTb
Rth +

PP

ρTin
(5.0.1)

where pumping power and thermal resistance are defined as

Rth =
Tb,max − Tin

Q

[
K

W

]
, PP = Ncṁ∆P [W ] (5.0.2)

and Nc is the number of channels in the heat sink and it will be equal to Nc = py/W . For

fairness it should be pointed out that in its physical sense entropy generation is based on the
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Table 5.1: Heat Sink Parameters Fixed in Optimization Studies

L [mm] 50

W [mm] 50

Tin [K] 300

q [W/m2] 1.60E+05

∆P [Pa] 1000

Solid Material Copper

Fluid Water

average base temperature of the base Tb,avg, not on its maximum value Tb,max as defined here.

Nonetheless, in this study the physical value of entropy generation is not of interest, but it

is considered as a parameter that combines hydraulic and thermal performance. In addition,

to quantify the effect of different geometries on the ability of the heat sink to spread heat, a

hot spot factor (HSF) is defined as

HSF =
Tb,max − Tf,avg
Tb,avg − Tf,avg

(5.0.3)

This is a parameter commonly used in nuclear studies [179] to quantify temperature gradients

within a reactor. The same concept is applied here to quantify temperature gradients that

would be found on the heat generating component. Large temperature gradients on elec-

tronic components lead to thermal stresses, local electron migration and other performance

degradation mechanisms, therefore a low value of the HSF is desirable. In the subsequent

optimization studies, the HSF will not be taken into account in the definitions of the fitness

function, therefore any improvement in spreading are only a by-product of the optimal con-

figurations. For each geometry, two optimization studies will be carried out. In all cases,

the heat sink materials, the pressure drop, the heat flux, the inlet temperature as well as the

length and width of the heat sink are kept fixed. These parameters are given in Table 5.1.

The entropy generation optimization study will be used to determine whether heat sinks

with variable geometries are more efficient from an overall energy point of view, which takes

into account a combination of pressure drop and heat transfer simultaneously. The thermal

resistance optimization study will determine whether heat sinks with variable geometry are
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a more efficient way to improve the heat transfer performance of the system. MATLABs

global optimization toolbox GA was used, and an example script is given in Appendix D.

5.1 Straight Channel Heat Sink Optimization

In order to fairly compare the performance of heat sinks with variable geometry, the opti-

mization study is first carried out for straight micro-channels (see Figure 5.3). For straight

channels, the effect of four parameters on the fitness function is considered: the height of

the channels Hc, the transverse pitch py, the width of the channel w and the thickness of the

base tb. The range of parameters is selected based on experience and other publications, and

is given in Table 5.2. The constraints of the problem are given by the geometric constraint

Table 5.2: Range of Geometric Parameters for Constant Straight Micro-channels

min max

H[mm] 2 6

py[mm] 0.3 2.5

w[mm] 0.1 1

tb[mm] 1 5

that the thickness of the fins has to be larger than a minimum value

py − w ≤ Dmin = 0.1mm (5.1.1)

and, following the discussion of the limits on the parameter M1, the aspect ratio has to be

greater than 3,
Hc

w
> 3 (5.1.2)

It was determined that a 128x128 grid provided an optimal balance between speed and

accuracy for straight channels, and it will be therefore used in the optimization study. The

maximum number of generation NG was set at 200, and the initial population Np at 100.

First, the optimization study is carried out to minimize entropy generation. The GA found

an optimal solution after 83 generations, and the evolution of the geometrical configuration
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Figure 5.3: Straight Micro-channel Geometry Cross Section View
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Figure 5.4: Evolution of Geometric Parameters of Minimum Entropy Generation Individual

at Each Generation Straight Channels
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of the fittest individual at each iteration is shown in Figure 5.4. The optimal configuration

is found to be

Hc = 6

py = 0.78

w = 0.34

tb = 1

(5.1.3)

The optimal configuration selected has a minimum entropy generation value of Ṡgen = 2.77×

10−2 [W/K ], which corresponds to a pumping power PP = 1.67W , a thermal resistance

of Rth = 1.66 × 10−2 [K/W ], and a hot spot factor of HSF = 1.49.The optimizer always

chooses the minimum base thickness in the specified range. This is due to the fact that,

for constant heat flux, the spreading effect of a thicker base is negligible, however large

thicknesses lead to larger temperature gradients and increase the resistance in the base. The

optimizer also chooses the maximum height since high channels will increase the heat transfer

area without significantly affecting the pressure drop. The rest of the parameters are chosen

within the specified range, which indicates that our bounds were properly selected.

Next, the study is repeated by setting the thermal resistance as the fitness parameter. The

optimizer found an optimal solution after 69 iterations, and the geometrical configuration of

the fittest individual at each generation is shown in Figure 5.5.

The optimal configuration with respect to thermal resistance is found to be

Hc = 6

py = 0.74

w = 0.47

tb = 1

(5.1.4)

with a value of the thermal resistance of Rth = 1.33× 10−2 [K/W ], and a hot spot factor of

HSF = 1.17. For the same reason discussed in the previous section, the optimizer chooses

again the minimum base thickness. Indeed, this will always be the case for constant heat

fluxes, therefore, base thickness will be kept fixed at 1 mm in subsequent studies. To optimize

heat transfer, the optimizer chose a larger width and the maximum allowed height, since, for

constant pressure drop, these parameters maximize flow speed, and therefore increase the
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Figure 5.5: Evolution of Geometric Parameters of Minimum Thermal Resistance Individual

at Each Generation Straight Channels
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heat transfer coefficient. This configuration results in a 20% and 21% improvement in the

thermal resistance and hot spot factor, respectively, over the minimum entropy configuration;

however, the optimal heat transfer configuration requires a pumping power of PP = 5.08W ,

which is a 200% increase. This is due to the fact that, for straight micro-channels, the only

way to increase the heat transfer is to squeeze the channel, which leads to a large increase in

the pumping power. In both cases the optimal configuration has a high aspect ratio, which

corresponds to values of M1 less than 10−3, therefore the optimal solutions are expected

to be accurate. This also suggests that the limit on M1 plays no role in the optimization

studies.

5.2 Trapezoidal Channel Heat Sink Optimization

The optimization study is now repeated for trapezoidal micro-channels to determine if ge-

ometry changes in the z direction can improve the efficiency and heat transfer of the system.

The number of parameters to be optimized in the problem now increases by one since two

widths are now available: bottom and top width, wb and wt respectively (see Figure 5.6). In

practice, since the base thickness was removed as a parameter, the number of variables to

be optimized stays constant. The range of the two widths is kept the same as in the study

for straight micro-channels (see Table 5.3). The constraints on the problem are given by

Table 5.3: Range of Parameters for Trapezoidal Micro-channel Optimization Studies

min max

H[mm] 2 6

py[mm] 0.3 2.5

wb[mm] 0.1 1

wt[mm] 0.1 1

tb[mm] 1 5
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Figure 5.6: Schematic of Trapezoidal Micro-channel Geometry (Cross Section)
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choosing a minimum fin thickness (equal to the straight channel one),

py − wb ≤ Dmin = 0.1mm

py − wt ≤ Dmin = 0.1mm
(5.2.1)

and a maximum aspect ratio greater than 3, so that the condition on M2discussed in the

previous section is satisfied,
Hc

wb
> 3,

Hc

wt
> 3 (5.2.2)

It was found that again a 128x128 grid provides a good balance between accuracy and com-

putational speed. Since the number of parameters is the same as in the previous discussion,

the population size Np is again set as 100, and the maximum number of iteration NGis set

at 200.

The GA optimizer is ran first using the entropy generation as the fitness parameter, and a

converged solution was found after 103 generations. The evolution of the geometric param-

eters for the fittest individual at each generation is given in Figure 5.7. The values of the

optimal solution are

Hc = 6.0

py = 0.78

wb = 0.36

wt = 0.30

(5.2.3)

with a minimum entropy generation Ṡgen = 2.75×10−2 [W/K ] . This heat sink configuration

implies that the pumping power required is PP = 1.65W , the thermal resistance isRth =

1.65 × 10−2 [K/W ], and the hot spot factor is HSF = 1.49. The optimal solution is a

slightly tapered micro-channel with wider channels at the bottom than at the top. The

optimizer chooses this configuration because near the top of the fins, the heat transfer is

usually weaker because the fin temperature will be close to the inlet temperature. Therefore,

a wider channel near the bottom will speed up the flow in these areas and increase the heat

transfer at the interface and in the bottom half of the fins, while keeping the pumping

power close to its value for straight micro-channels. The difference between this heat sink

configuration and the optimal entropy generation configuration with straight channels, is

minimal with a reduction in entropy generation of only 0.5%. The pumping power decreases
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Figure 5.7: Evolution of Geometric Parameters of Minimum Entropy Generation Individual

at Each Generation Trapezoidal Channels
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by 1.5% while the thermal resistance was reduced by 0.6%. This is a modest improvement in

the performance, which suggests that trapezoidal micro-channels do not provide significant

improvements in the overall efficiency of the system. The optimization is then repeated

taking the thermal resistance as the fitness parameter. The GA found a solution in 66

generations (see Figure 5 8), and the optimal configuration is found to be

Figure 5.8: Evolution of Geometric Parameters of Minimum Thermal Resistance Individual

at Each Generation Trapezoidal Channels

Hc = 6.0

py = 0.79

wb = 0.47

wt = 0.51

(5.2.4)
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with an optimal an optimal thermal resistance Rth = 1.32 × 10−2 [K/W ]. It can be seen

that again the optimizer chose a maximum height, and a slightly tapered fin to improve the

heat transfer. However, the decrease in the thermal resistance, compared to a straight micro-

channel is of only 1.5%, while the pumping power was found to be PP = 5.12W , which

is a 0.8% decrease over the thermally optimized straight micro-channels. In both cases,

although the optimizer chose a slightly tapered trapezoidal channel, it was found that the

improvement in performance with respect to straight channels was minimal, and the added

geometric variability in the z-direction did not lead to significant improvement in efficiency.

5.3 Converging/Diverging Channel Heat Sink Optimization

Two more optimization studies are carried out to study the effects of linearly converging

or diverging channels on the performance of heat sinks. The optimization parameters are

taken as the height of the channel, the inlet and outlet width and the longitudinal pitch (see

Figure 5.9). For consistency, the bounds on the system are kept constant (see Table 5.4)

The geometric bounds on the system are given by a minimum fin thickness,

Table 5.4: Range of Parameters for Converging \Diverging Micro-channel Optimization

Studies

min max

H[mm] 2 6

py[mm] 0.3 2.5

wb[mm] 0.1 1

wt[mm] 0.1 1

py − wi ≤ Dmin = 0.1mm

py − wo ≤ Dmin = 0.1mm
(5.3.1)

a minimum aspect ratio that satisfies the limits on M1

Hc

wi
> 3,

Hc

wo
> 3 (5.3.2)
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Figure 5.9: Schematic of Converging/Diverging Micro-channel Heat Sink (Top View)
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The limits on M3 are harder to implement, however the pressure drop has been chosen such

that Reynolds numbers will be relatively low, therefore to ensure that the condition is met

(or close), a bound on the porosity gradient is defined

0.5 ≤ wi
wo
≤ 2 (5.3.3)

First, the GA optimization is carried out setting entropy generation as the fitness parameters.

The initial population Np was set at 100, and the maximum number of generation was set

at NGat 200. The optimizer found a solution after 66 generations, and the evolution of

the geometric parameters of the fittest individual are shown in Figure 5.10. The optimal

Figure 5.10: Evolution of Geometric Parameters of Minimum Entropy Generation Individual

at Each Generation Converging Channels
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configuration was found to be

Hc = 6

py = 0.79

wi = 0.34

wo = 0.34

(5.3.4)

with a minimum entropy of Ṡgen = 2.77 × 10−2 [W/K ]. The thermal resistance, HSF and

pumping power are Rth = 1.66×10−2 [K/W ], 1.48, and 1.66W , respectively. It can be seen

that the optimizer chose the same straight channel configuration given in Section 5.1. This

means that in terms of overall entropy generation, straight channels are optimal.

Next, the optimization study was repeated by defining thermal resistance as the fitness

parameter. The optimizer found a solution after 97 generations, and the evolution of the

individual with the lowest thermal resistance at each generation is shown in Figure 5.11.

The optimal parameters are found to be

Hc = 6

py = 0.9

wi = 0.59

wo = 0.42

(5.3.5)

with a minimum value of the thermal resistance of Rth = 1.25 × 10−2 [K/W ] and a hot

spot factor of 1.04, with a pumping power of PP = 3.89W . Compared with the minimal

thermal resistance configuration found for straight micro-channels, this converging channel

configuration leads to a 23% reduction in the pumping power, and a 6% improvement in the

thermal resistance. Also, the temperature uniformity improves significantly, as determined

by the 9% decrease in the hot spot factor. It was found that, M3 for this solution is 8×10−2,

which implies that the results for the optimal solution is expected to be accurate. These

last two optimization studies show that, although straight channels have the overall lowest

entropy generation, converging channels are a more efficient way to improve the heat transfer

of a heat sink. This is due to the fact that the only means for improving heat transfer in

a straight channel is to increase the width, to improve the heat transfer coefficient. Since

the width is adjusted everywhere, the heat transfer coefficient is improved everywhere in the
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Figure 5.11: Evolution of Geometric Parameters of Minimum Thermal Resistance Individual

at Each Generation Converging Channels
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system, even in areas, such as near the entrance, where it is already quite high and heat

transfer is diffusion controlled. On the contrary, the added geometric degree of freedom of

a converging channel allows a selective local improvement of the heat transfer coefficient in

areas where it is relatively low, e.g. away from the inlet, which leads to a reduction in the

pumping power.

In a final step, the insight gained through the previous studies is used to design a heat sink

with linear geometric variation in both x and z variation with the same performance thermal

performance as the thermally optimized straight channel, but with reduced pumping power.

It was found through iteration that a heat sink with the following geometrical design

Hc = 6

py = 0.89

wb = 0.68

wt = 0.58

wo = 0.41

(5.3.6)

has the same thermal resistance value as the thermally optimized straight micro-channel

(Rth = 1.32× 10−2 [K/W ]), but a pumping power of only PP = 2.82W . This means that

a heat sink with varying geometry in the x- and z direction, with the same thermal perfor-

mance as a straight channel, will reduce the pumping power by 44%. In the process, the

temperature uniformity of the system was also significantly improved, and it was found that

this last configuration has a HSF of 1.02, which is a decrease of 11% with respect to straight

channels. The scaled temperature at the base bottom is shown in Figure 5.12, and it can

be seen that the trapezoidal converging micro-channel has an almost uniform temperature.

The optimization studies have shown that, although from an entropy generation perspec-

tive, straight channels are optimal, there is no efficient way to improve their heat transfer

performance. Converging channels present a better solution to improve the heat transfer

in the system, and it has been shown that an optimized converging channel can reduce the

thermal resistance by 6% while decreasing the pumping power by 23%, when compared to a

thermally optimized straight channel. Finally, it was found that a combination of trapezoidal

and converging channel can achieve the same thermal resistance as a thermally optimized
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Figure 5.12: Comparison of Temperature Distribution at Base Bottom for Straight and

Trapezoidal Converging Micro-channels
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Figure 5.13: Summary of Pumping Power vs Thermal Resistance Results of Optimization

Studies

straight channel, with a reduction in pumping power of 44%, and a significant reduction of

temperature gradients. The fact that the added geometric degrees of freedom lead to a better

way to improve heat transfer is clearly visible in Figure 5.13, where the thermal resistance

versus pumping power were plotted for all the systems considered. The slope of the line

(interpolated between only two points), shows the amount of energy input that is required

to improve the heat transfer of the heat sink. It can be seen that with increasing degrees

of freedom, the slope clearly decreases which shows that benefit of a trapezoidal converging

channel. In order to validate the optimization results, the performance parameters for three

optimal configurations were validated using CFX. The designs to be validated were chosen
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as the three limiting designs in Figure 5.13: the minimum entropy straight channel, the min-

imum thermal resistance straight channel, and the optimal trapezoidal converging channel.

The result of the validation study are shown in Table 5.5, It can be seen that the agreement

Table 5.5: Validation of Optimal Designs

Straight Channel Minimum Sgen, Eqn. (5.1.3)

VAT CFD %∆

PP [W ] 1.67 1.66 0.60%

Rth[W/K] 1.66 · 10−2 1.65 · 10−2 0.61%

Straight Channel Minimum Rth, Eqn. (5.1.4)

VAT CFD %∆

PP [W ] 5.08 5.17 1.7%

Rth[W/K] 1.32 · 10−2 1.36 · 10−2 2.9%

Trapezoidal Converging Channel Minimum Rth, Eqn. (5.3.6)

VAT CFD %∆

PP [W ] 2.82 3.42 17.5%

Rth[W/K] 1.32 · 10−2 1.32 · 10−2 0.3%

is excellent for the straight channel optimal configurations, and the error between VAT and

CFD is within 3%. For the trapezoidal converging configuration, the actual pumping power

is 17.5% higher than predicted, which is still a relatively good result considering the compli-

cated nature of the geometry, and the fact that the interaction between the x and z direction

variation has not been taken into account. Nonetheless, the CFD validation confirmed that

the use of VAT leads to a heat sink geometric configuration which has approximately the

same thermal performance of a straight channel, but a 34% reduction in pressure drop. This

study was carried out with a fixed value of the pressure drop at 1000 Pa, therefore our

solutions represent one point along the Pareto optimal curve. It is indeed possible that the

results and conclusions would be different at different values of the pressure drop. Since the

thermal resistance and pumping power represent the two energy parameters in the system,

a multi-objective optimization study should be carried out to indeed determine the Pareto
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optimal curve for a wide range of parameters. Nonetheless, the design shows that using

a VAT base model allows the exploration of a wide range of design parameters, and the

determination of an optimal solution in significantly reduced computational times. Since on

average about 6000 function evaluations were required by the GA during the optimization

studies, the determination of the optimal geometry that has been carried out in this chapter,

would have required about 420 days using a full CFD solution of the conjugate problem.
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CHAPTER 6

Conclusions

The main purpose of this work was to explore the effects of added geometric degrees of free-

dom on performance of heat rejecting devices. The importance and challenges of improving

cooling solution models were discussed and provided in Chapter 1. Following recent studies,

it was hypothesized that adding geometrical variations to a heat sink can lead to better

cooling solutions. A VAT model was proposed as an efficient modeling alterative to reduce

the considerable computational times required by CFD studies and allow the use of large

scale optimization algorithms to find optimal configurations. In Chapter 2, the fundamentals

of VAT were discussed, and the governing equations for laminar fluid flow and heat transfer

through multi-scale systems were derived. Analogies between VAT, the continuum approach

used in mechanics, and the LES methods of turbulence were used to show that these meth-

ods are similar in the way they deal with the multi-scale nature of the problem at hand.

The analogies developed were used throughout the paper to explain some of the issues that

arise from averaging techniques, and in particular, the need for closure schemes to account

for information loss. Analysis of different closure schemes established that complete models,

although more accurate, require too many unknowns to be determined, and simpler models

lead to good results when all significant effects are properly accounted for. Issues due to

length disparities at boundaries between a homogenous and porous media were identified, a

few studies were reviewed, and further avenues of research to advance this theory were noted.

The momentum and energy equations were closed using constitutive closure relations, and

their determination using available data and numerical simulations were discussed. It was

shown that the VAT hydraulic diameter and intrinsic velocity could be used to collapse

data for a wide range of disparate geometries onto a single curve. Particular attention was
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given to the determination of closure parameters using CFD, and a five step process was

outlined that ensures the results give an accurate description of the momentum and energy

transport at the lower scale. It was noted that the momentum pressure and drag terms

could be obtained numerically using one REV with periodic boundary conditions, while six

REVs were necessary to obtain a good representation of the heat transfer coefficient. It was

also observed that the numerical boundary conditions used to determine the VAT defined

heat transfer coefficient did not affect the results, and the heat transfer coefficient in the

domain was constant everywhere except for very small regions near the boundaries of the

computational domain.

In Chapter 3, the VAT model was applied to heat sinks with variable geometry. First, a

scaling procedure was developed to reduce momentum conservation to a one dimensional

equation. Then, numerical methods for the solution of the resulting set of partial differen-

tial equations were developed. The momentum equation was solved using finite differences

and a Newton-Rhapson scheme for pressure updating. Two numerical methods were devel-

oped for the solution of the coupled system of energy conservation equations. A Galerkin

methods solution, which has been shown to be useful for constant geometries, was discussed

first. Next, a transient finite difference solution procedure was outlined. Strang splitting

was used to address the coupling between the fluid and solid energy equations and reduce

computational time. In addition, an ADI technique was used to reduce the solution of the

entire system to the solution of a series of tri-diagonal systems. For steady-state cases, an

optimal variable time-stepping technique was derived to improve the decay of the low fre-

quency spectrum of the solid solution. An analytical solution of the Laplace equation for

the temperature distribution in the homogenous base was derived for arbitrary heat fluxes.

To address the coupling between the VAT energy equations and the homogenous base, the

interface condition was posed as a minimization problem in spectral space, and a direct and

iterative method was applied to find the optimal solution. It is found that the combination

of the analytical and finite difference solutions of the equations, and the iterative solution of

the interface minimization problem leads to significant improvement in code efficiency.

Chapter 4 was devoted to determining limitations of VAT applicability for heat sinks with
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constant geometry, as well as for heat sinks with geometry variations in the x- and z- direc-

tions. The scaling developed in Chapter 3 was exploited to determine three non-dimensional

parameters that define the limits of accuracy in these equations. The first parameter, M1, is

related to the ratio of the hydraulic diameter to the height of the channel, and it is indepen-

dent of the Reynolds number. It was first shown that for low values of M1 the VAT model

was accurate by comparing the predicted values with numerical and empirical studies. Two

geometries were considered: a water cooled micro-channel heat sink and an air cooled pin fin

heat sink. In both cases, the error between the predicted values and the experimental and

numerical values was less than 5%. Furthermore, several additional heat sinks geometries

were studied to determine the error in the VAT model as a function of the parameter M1,

and a maximum error of 10% was deemed acceptable. It is determined that a M1 ≤ 0.05 was

required for the VAT model to satisfy the accuracy condition. The study was then repeated

for a trapezoidal micro-channel heat sink to study the effects of porosity variation in the

z-direction on the accuracy. The second parameter resulting from scaling, M2, is shown to

be the determining factor for accuracy. When this parameter was small, the VAT model was

shown to be again accurate, with a maximum error of 5% when compared to CFD results.

It is also found that M2 ≤ 0.05 is the limiting value on the accuracy of the model. A third

parameter, M3, arose from scaling when porosity variations in the x-direction were present.

It is shown that this parameter depends on the porosity gradient in the x-direction and the

Reynolds number. It was confirmed that for low values of this parameter the VAT model

was accurate by comparing predicted values for both converging and diverging channels to

numerical experiments. The error again was found to be less than 5% when this condition

was satisfied. The increase in error as a function of M3 was then explored, and the limiting

value is determined to be M3 ≈ 0.1. In Chapter 5, the computational savings obtained

by using the VAT model, along with the numerical solution developed in Chapter 3, were

exploited to conduct an optimization study. A Genetic Algorithm (GA) was employed to

carry out two optimization studies for straight, trapezoidal, and converging micro-channel

heat sinks. In one optimization study, the overall efficiency of the system was defined as

the entropy generated by the heat sink, which combines its thermal and hydraulic perfor-
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mance. It is found that trapezoidal micro-channels are optimal, although the difference in

entropy generation with respect to straight micro-channels is minimal. In a second optimiza-

tion study, the pressure drop was kept constant, and the thermal resistance was optimized.

This study shows that converging channels are the most effective way to increase the heat

transfer performance of the system. The thermally optimized converging channel provides

a reduction in pumping power and thermal resistance of 6% and 23%, respectively, over a

thermally optimized straight channel. Furthermore, the temperature uniformity of the heat

source, quantified by the hot spot factor, improves by 9%. Lastly, variation in both direc-

tions were manually combined to design a trapezoidal converging heat sink which boasts the

same thermal resistance of the thermally optimized straight channel, but a 44% reduction

in pressure drop. It is also found that the uniformity of the component temperature im-

proves by 13%. These results confirm that geometrical non-uniformity is an efficient way

to improve the thermal performance of a heat sink. Several unanswered questions remain

about the fundamentals of VAT, the numerical solutions of its equation, as well as of the

determination of optimal heat sink configurations with variable geometry. From a theoretical

point of view, boundary conditions of the VAT equations are an area that requires further

research. In particular, better models for dispersion effects and momentum boundary con-

ditions near walls need to be developed to extend the accuracy of the model to lower aspect

ratio systems. Also, a better heat flux splitting model for the interface condition between the

homogenous base, which takes into account the effects of geometry, Reynolds number, and

thermal conductivity ratio would not only improve the rigor of the model, but also greatly

reduce issues with the numerical iteration procedure currently carried out at the interface.

From a numerical point of view, solution methods for the VAT two-dimensional momentum

equations need to be developed. In general, the same numerical methods that are used for

the solution of the Navier-Stokes equations could be applied, although the effects of the non-

linear momentum sink term on the stability of solution methods for the N-S equations is not

clear at the moment. Also, the numerical solution of the energy equation could be greatly

improved by using a predictor-corrector method. The setup of the iteration procedure shown

in Chapter 3 implies the interface temperature is a Lagrangian variable that enforces the
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interface energy condition in a similar way that pressure enforces mass conservation for the

N-S equations. Therefore, it is indeed possible to develop an equivalent of the pressure Pois-

son equation (and a KKT optimal condition), which is solved at every time step and used

to update the interface temperature. The implementation of this type of solution method

would significantly reduce the computational time. Although optimization studies like the

one conducted here can give good indication of performance trends, the only way to define

an optimal heat rejection system is to carry out a full multi-objective optimization study.

As it has been shown, a model based on VAT gives a good balance between computational

efficiency and accuracy, and it is therefore a good candidate for multi-objective optimization

studies. Furthermore, if the improvements discussed above are properly implemented, the

range of applicability of the VAT model would be expanded, its computational advantages

improved, and very large scale optimization studies could be accomplished. My main goal

for this work was to apply my physical and mathematical understanding of VAT to show

how adding geometric degrees of freedom is a simple, yet efficient way of improving heat sink

performance. My hopes are that the detailed discussion, examples, and analogies help to

de-mystify the VAT process and also demonstrate, behind the somewhat convoluted mathe-

matics, how the fundamental concepts are beautifully simple. I hope to convince the reader

that, within its limits, VAT is an accurate modeling procedure, and that varying the heat

sinks geometry is indeed an efficient way to enhance heat transfer. The next step in this

research progression might be to use the developed model to explore the effects of non-linear

geometry variations on thermal performance, as well as studies on variable geometry heat

sinks for hot spot mitigation. Ultimately, I hope that this works theoretical and numerical

treatment of VAT, and the demonstration of performance improvements with geometrically

non-uniform heat sinks will lead to the application of these techniques to determine optimal

configuration for a wide variety of heat transfer devices.
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APPENDIX A

Derivation of Finite Difference Schemes and

Truncation Errors

A.1 Forward Difference

Take the Taylor series expansion of fi+1 around i

fi+1 = fi + f ′i (xi+1 − xi)︸ ︷︷ ︸
∆xi+1

+
1

2!
f ′′i∆x

2
i+1 +

1

3!
f ′′
′
i ∆x3

i+1 +
1

4!
f IVi ∆x4

i+1 +O
(
∆x5

i+1

)
(A.1.1)

and rearranging

f ′i =
fi+1 − fi

∆xi+1

− 1

2!
f ′′i∆xi+1 −

1

3!
f ′′
′
i ∆x2

i+1 −
1

3!
f IVi ∆x3

i+1 −O
(
∆x4

i+1

)
(A.1.2)

and the truncation error is defined as the leading term of the reminder

τi = − 1

2!
f ′′i∆xi+1 −

1

3!
f ′′
′
i ∆x2

i+1 −
1

3!
f IVi ∆x3

i+1 −O
(
∆x4

i+1

)
= O (∆xi+1) (A.1.3)

A.2 Backward Difference

Similarly, expanding fi−1 around i

fi−1 = fi + f ′i (xi−1 − xi)︸ ︷︷ ︸
−∆xi

+
1

2!
f ′′i(−∆xi)

2 +
1

3!
f ′′
′
i (−∆xi)

3 +
1

4!
f IVi (−∆xi)

4 +O
(
∆x5

i

)
=

= fi − f ′i∆xi +
1

2!
f ′′i∆x

2
i −

1

3!
f ′′
′
i ∆x3

i +
1

4!
f IVi ∆x4

i +O
(
∆x5

i

)
(A.2.1)

Then rearranging

f ′i =
fi − fi−1

∆xi
+

1

2!
f ′′i∆xi −

1

3!
f ′′
′
i ∆x2

i +
1

4!
f IVi ∆x3

i +O
(
∆x4

i

)
(A.2.2)
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and the truncation error is given by

τi =
1

2!
f ′′i∆xi −

1

3!
f ′′
′
i ∆x2

i +
1

4!
f IVi ∆x3

i +O
(
∆x4

i

)
= O (∆xi) (A.2.3)

A.3 Centered Difference

Lets take the difference between the D+f −D−f

fi+1 = fi + f ′i∆xi+1 +
1

2!
f ′′i∆x

2
i+1 +

1

3!
f ′′′i∆x

3
i+1 +O

(
∆x4

i+1

)
−fi−1 = fi − f ′i∆xi +

1

2!
f ′′i∆x

2
i −

1

3!
f ′′′i∆x

3
i +O

(
∆x4

i

)
fi+1 − fi−1 = f ′i (∆xi+1 + ∆xi) +

1

2!
f ′′i
(
∆x2

i+1 −∆x2
i

)
+

+
1

3!
f ′′′i

(
∆x3

i+1 + ∆x3
i

)
+O

(
∆x4

i+1 + ∆x4
i

)
(A.3.1)

Then rearranging

f ′i =
fi+1 − fi−1

(∆xi+1 + ∆xi)
− 1

2!
f ′′i

(
∆x2

i+1 −∆x2
i

)
(∆xi+1 + ∆xi)

− 1

3!
f ′′
′
i

(
∆x3

i+1 + ∆x3
i

)
(∆xi+1 + ∆xi)

+O

(
∆x4

i+1 + ∆x4
i

(∆xi+1 + ∆xi)

)
(A.3.2)

and the local truncation error is

τi = − 1

2!
f ′′i

(
∆x2

i+1 −∆x2
i

)
(∆xi+1 + ∆xi)

− 1

3!
f ′′
′
i

(
∆x3

i+1 + ∆x3
i

)
(∆xi+1 + ∆xi)

+O

(
∆x4

i+1 + ∆x4
i

(∆xi+1 + ∆xi)

)
= O

(
∆x2

i+1 −∆x2
i

∆xi+1 + ∆xi

)
(A.3.3)

It can be seen that if ∆xi+1 = ∆xi the first term in the local truncation error will cancel

and the approximation will be second order as expected. But for the case of non-uniform

meshes, the order of the truncation error is still one.
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A.4 2nd Order Forward Difference

A 2nd order forward difference to the first derivative is needed at the interface, therefore, a

method is developed. First, expand the fi+2 around i

fi+2 = fi + f ′i (xi+2 − xi)︸ ︷︷ ︸
xi+2−xi+1+xi+1−xi=

=∆xi+2+∆xi+1

+
1

2!
f ′′i(∆xi+2 + ∆xi+1)2 +

1

3!
f ′′′i(∆xi+2 + ∆xi+1)3+

+O
(
(∆xi+2 + ∆xi+1)4) = fi + f ′i (∆xi+2 + ∆xi+1) +

1

2!
f ′′i(∆xi+2 + ∆xi+1)2+

+
1

3!
f ′′
′
i (∆xi+2 + ∆xi+1)3 +O

(
(∆xi+2 + ∆xi+1)4)

(A.4.1)

Then, we seek a combination of fi+1 and fi+2 to obtain second order accuracy. Lets create

a linear combination of the two

− (α + β) fi + αfi+1 + βfi+2 = f ′i [α∆xi+1 + β (∆xi+2 + ∆xi+1)] +

+ f ′′i

[
α

2
∆x2

i+1 +
β

2
(∆xi+1 + ∆xi+2)2

]
+ f ′′

′
i

[
α

3!
∆x3

i+1 +
β

3!
(∆xi+1 + ∆xi+2)3

]
+

+O
(
(∆xi−1 + ∆xi)

4)
(A.4.2)

we want to arrange the coefficients in such a way to obtain as high an accuracy as possible.

Therefore, we choose a solution to the system∆xi (∆xi−1 + ∆xi)

∆x2
i

2
1
2
(∆xi−1 + ∆xi)

2

α
β

 =

 1

0

 (A.4.3)

A solution is given by

α =
(∆xi+1 + ∆xi+2)

∆xi+1∆xi+2

β = − ∆xi+1

∆xi+2 (∆xi+1 + ∆xi+2)

(A.4.4)

Therefore, the scheme can be written as

f ′i = −

(
(∆xi+1 + ∆xi+2)2 −∆x2

i+1

∆xi+1∆xi+2 (∆xi+1 + ∆xi+2)

)
fi+

+
(∆xi+1 + ∆xi+2)2

∆xi+1∆xi+2 (∆xi+1 + ∆xi+2)
fi+1 −

∆x2
i+1

∆xi+2∆xi+1 (∆xi+1 + ∆xi+2)
fi+2

(A.4.5)
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with truncation error

τi = −1

6
f ′′′i

[
(∆xi+1 + ∆xi+2) ∆xi+1

∆xi+2

∆xi+1 −
(∆xi+1 + ∆xi+2) ∆xi+1

∆xi+2

(∆xi+1 + ∆xi+2)

]
+

+O
(
(∆xi−1 + ∆xi)

4)
(A.4.6)

Now, assuming that ∆xi−1 = ∆xi , this gives

α =
4

2∆x

β = − 1

2∆x

(A.4.7)

and the scheme is given by

f ′i = −
(

3

2∆x

)
fi +

4

2∆x
fi+1 −

1

2∆x
fi+2 −

1

4
f ′′
′
i ∆x2 +O

(
∆x3

)
(A.4.8)

This difference will be used to calculate the heat flux at the interface, therefore, at z=0, j=1,

the solution gives

f ′1 = −

(
(∆x2 + ∆x3)2 −∆x2

2

∆x2∆x3 (∆x2 + ∆x3)

)
fi+

(∆x2 + ∆x3)2

∆x2∆x3 (∆x2 + ∆x3)
fi+1−

∆x2
2

∆x2∆x3 (∆x2 + ∆x3)
fi+2

(A.4.9)

Recall that: ∆xi = xi − xi−1

A.5 2nd Order Backward Difference

A 2nd order backward difference to the first derivative is needed at the interface, therefore,

a method is developed. First, expand fi−2 around i

fi−2 = fi + f ′i (xi−2 − xi)︸ ︷︷ ︸
xi−2−xi−1+xi−1−xi=

=−(∆xi−1+∆xi)

+
1

2!
f ′′i(− (∆xi−1 + ∆xi))

2 +
1

3!
f ′′′i(− (∆xi−1 + ∆xi))

3+

+O
(
(∆xi−1 + ∆xi)

4) = fi − f ′i (∆xi−1 + ∆xi) +
1

2!
f ′′i(∆xi−1 + ∆xi)

2+

− 1

3!
f ′′′i(∆xi−1 + ∆xi)

3 +O
(
(∆xi−1 + ∆xi)

4)
(A.5.1)

And recall

fi−1 = fi − f ′i∆xi +
1

2!
f ′′i∆x

2
i −

1

3!
f ′′
′
i ∆x3

i +
1

4!
f IVi ∆x4

i +O
(
∆x5

i

)
(A.5.2)
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Then, we seek a combination of fi−1 and fi−2 to obtain second order accuracy. Lets create

a linear combination of the two

− (α + β) fi + αfi−1 + βfi−2 = [−α∆xi − β (∆xi−1 + ∆xi)] f
′
i+[

α

2
∆x2

i +
β

2
(∆xi−1 + ∆xi)

2

]
f ′′i −

[
α

3!
∆x3

i +
β

3!
f ′′
′
i (∆xi−1 + ∆xi)

3

]
f ′′
′
i +O

(
∆x4

i

)
(A.5.3)

we want to arrange the coefficients in such a way to obtain as high an accuracy as possible.

Therefore, we choose a solution to the system−∆xi − (∆xi−1 + ∆xi)

∆x2
i

2
1
2
(∆xi−1 + ∆xi)

2

α
β

 =

 1

0

 (A.5.4)

A solution is given by

α =
(∆xi−1 + ∆xi)

∆xi [∆xi − (∆xi−1 + ∆xi)]
= −(∆xi−1 + ∆xi)

∆xi∆xi−1

β = − ∆xi

−(∆xi−1 + ∆xi)
2 + ∆xi (∆xi−1 + ∆xi)

=
∆xi

∆xi−1 (∆xi−1 + ∆xi)

(A.5.5)

Now, assuming that , this gives

α = − 4

2∆x

β =
1

2∆x

(A.5.6)

and the scheme is given by

f ′i =
3fi − 4fi−1 + fi−2

2∆x
+

1

4
f ′′
′
i ∆x2 +O

(
∆x4

)
(A.5.7)

A.6 2nd Order Centered Second Difference

In order to derive a second order approximation of the second derivative, lets take a linear

combination of fi−1 and fi+1

βfi−1 − (α + β) fi + αfi+1 = f ′i (α∆xi+1 − β∆xi) +
1

2
f ′′i
(
α∆x2

i+1 + β∆x2
i

)
+

+
1

3!
f ′′
′
i

(
α∆x3

i+1 − β∆x3
i

)
+

1

4!
f IVi

(
α∆x4

i+1 + β∆x4
i

)
+O

(
∆x5

i

) (A.6.1)
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And we have the following conditions on the coefficients∆xi+1 −∆xi

∆x2
i+1/2

∆x2
i /2

α
β

 =

 0

1

 (A.6.2)

and the solution is found to be

α =
2

∆xi+1 (∆xi+1 + ∆xi)
=

1

∆xi+1∆x̄i

β =
2

∆x2
i + ∆xi+1∆xi

=
1

∆xi∆x̄i

(A.6.3)

Also, using the notation

(∆xi + ∆xi+1)

2
=
xi − xi−1 + xi+1 − xi

2
=
xi+1 − xi−1

2
= ∆x̄i (A.6.4)

And the solution can be written as

f ′′i
′′

=
2

(∆xi+1 + ∆xi)

[∆xi+1fi−1 − (∆xi + ∆xi+1) fi + ∆xifi+1]

∆xi∆xi+1

+

− 1

6
f ′′
′
i

(
α∆x3

i+1 − β∆x3
i

)
1/2

(
α∆x2

i+1 + β∆x2
i

) − 1

4!
f IVi

(
α∆x4

i+1 + β∆x4
i

)
1/2

(
α∆x2

i+1 + β∆x2
i

) +O
(
∆x5

i

) (A.6.5)

So the scheme is

fi
′′ =

1

∆x̄i

[∆xi+1fi−1 − (∆xi + ∆xi+1) fi + ∆xifi+1]

∆xi∆xi+1

(A.6.6)

And the truncation error is given by

τi = −1

3
f ′′
′
i

(
∆x2

i+1 −∆x2
i

)
(∆xi+1 + ∆x1)

− 1

12
f IVi

(
∆x3

i+1 + ∆x3
i

)
(∆xi+1 + ∆x1)

+O
(
∆x5

i

)
(A.6.7)

For the first interior point, this can be written as

f2
′′ =

2

(∆x3 + ∆x2)

[∆x3f1 − (∆x2 + ∆x3) f2 + ∆x2f3]

∆x2∆x3

(A.6.8)

It can be seen that when the spacing is uniform, this becomes

fi
′′ =

[fi−1 − 2fi + fi+1]

∆x2
(A.6.9)

with a truncation error

τi = − 1

12
f IVi ∆x2 +O

(
∆x5

i

)
(A.6.10)
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which is the well-known second order scheme.

In the solution of the equations, we will also need to calculate the Laplacian of the following

function

f = εT (A.6.11)

in this case, the schemes will not change, and the second derivative is now given by

∂2 (εT )

∂x2
=

1

∆x̄i

[
∆xi+1(εT )i−1 − (∆xi + ∆xi+1) (εT )i + ∆xi(εT )i+1

]
∆xi∆xi+1

∂2 (εT )

∂z2
=

1

∆z̄i

[
∆zi+1(εT )i−1 − (∆zi + ∆zi+1) (εT )i + ∆zi(εT )i+1

]
∆zi∆zi+1

(A.6.12)

and the truncation errors will be

τi = −1

3
(εT )i

′′′
(
∆x2

i+1 −∆x2
i

)
(∆xi+1 + ∆x1)

− 1

12
(εT )IVi

(
∆x3

i+1 + ∆x3
i

)
(∆xi+1 + ∆x1)

+O
(
∆x5

i

)
=

= −1

3
[Ti (εi

′′′) + εi (Ti
′′′)]

(
∆x2

i+1 −∆x2
i

)
(∆xi+1 + ∆x1)

− 1

12

[
Ti
(
εi
IV
)

+ εi
(
Ti
IV
)] (∆x3

i+1 + ∆x3
i

)
(∆xi+1 + ∆x1)

+O
(
∆x5

i

)
(A.6.13)

It can be seen that the LTE now will depend on the derivative, as well as the point values

of the quantities.

A.7 2nd Order Centered Second Difference with Variable Coeffi-

cients

To obtain a second order approximation of the following type of diffusive term

∇ (α∇f) (A.7.1)

then using the divergence theorem on a volume around the gridpoint, it can be written∫
∆V

∇ (α∇f) dV =

∫
∆S

(α∇f) · ndS (A.7.2)

In a one-dimensional case, when the volume is dx/2 in each direction around point xi this

becomes

1

∆x

xi+
∆x/2∫

xi−∆x/2

∂

∂x

[
α (x)

∂f

∂x

]
dx =

1

∆x

[
α
(
xi+1/2

) ∂f
∂x

∣∣∣∣
x1+1/2

− α
(
xi−1/2

) ∂f
∂x

∣∣∣∣
x1−1/2

]
(A.7.3)
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Then, approximating the two derivatives using a forward difference

1

∆x

xi+
∆x/2∫

xi−∆x/2

∂

∂x

[
α (x)

∂f

∂x

]
dx =

1

∆x

[
α
(
xi+1/2

) fi+1 − fi
∆x

− α
(
xi−1/2

) fi − fi−1

∆x

]
(A.7.4)

the following scheme is obtained

∂

∂x

[
α (x)

∂f

∂x

]
=
α
(
xi−1/2

)
∆x2

fi−1 −
α
(
xi+1/2

)
+ α

(
xi−1/2

)
∆x2

fi +
α
(
xi+1/2

)
∆x2

fi+1 (A.7.5)
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APPENDIX B

Definition of Porosity Variations

The variations in the x and z directions for the diameter are assumed to be separable func-

tions. In CAD models, the easiest way to define these types of variations is to define an inlet

profile and then extrude it along guide lines. The inlet profile can be seen as the z variation

of the diameter (or width) and the guide lines are the x variations. The subsequent section

discusses the determination of the parameters in the equations for different cases.

B.1 Linear x —Linear z

The first combination considered is a linear-linear combination

D (x, z) = (ax + bxx) (az + bzz) (B.1.1)

Following the previous discussion, the parameters are defined as

D00 = D (0, 0) , D0H = D (0, H) , DL0 = D (L, 0) (B.1.2)

Using these definitions, the parameters in Eqn. (B.1.1) can be found

D00 = axaz → ax = az =
√
D00 (B.1.3)

D0H = axaz + axbzH → bz =
D0H −D00

H
√
D00

(B.1.4)

DL0 = axaz + azbxL→ bx =
DL0 −D00

L
√
D00

(B.1.5)

Therefore, when the three parameters given in Eqn. (B.1.2) are given, the diameter is set.
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B.2 Quadratic x —Linear z

The second combination considered is a quadratic in x and linear in z

D (x, z) =
(
ax + bxx+ cxx

2
)

(az + bzz) (B.2.1)

The parameters in this case are

D00 = D (0, 0) , D0H = D (0, H) , Dxmax0 = D (xmax, 0) ,

∂D
∂x

∣∣
xmax,0

= 0
(B.2.2)

Using these definitions, the parameters in Eqn. (B.2.1) can be found

D00 = axaz → ax = az =
√
D00 (B.2.3)

D0H = axaz + axbzH → bz =
D0H −D00

H
√
D00

(B.2.4)

Dxmax0 = axaz + azbxxmax + azcxx
2
max →

[
azxmax azx

2
max

]bx
cx

 = Dxmax0 −D00 (B.2.5)

∂D

∂x

∣∣∣∣
xmax,0

= azbx + 2azcxxmax =
[
az 2azxmax

]bx
cx

 = 0 (B.2.6)

The last two equations represent a set of 2 equations in 2 unknowns and can be easily solved

to find that

bx = 2
Dxmax0 −D00

xmax

√
D00

cx = −Dxmax0 −D00

x2
max

√
D00

(B.2.7)

To check that the solution is correct, the solution is substituted in the governing equations

Dxmax0 −D00 = 2 (Dxmax0 −D00)− (Dxmax0 −D00)

2
Dxmax0 −D00

xmax

− 2
Dxmax0 −D00

xmax

= 0
(B.2.8)

and it can be seen that the equations are satisfied.

196



B.3 Linear x —Quadratic z

The third combination considered is linear in x and quadratic in z

D (x, z) = (ax + bxx)
(
az + bzz + czz

2
)

(B.3.1)

The parameters in this case are

D00 = D (0, 0) , D0zmax = D (0, zmax) , DL0 = D (L, 0) ,

∂D
∂z

∣∣
0,zmax

= 0
(B.3.2)

The set of equations defining the parameters are

D00 = axaz → ax = az =
√
D00 (B.3.3)

DL0 = azax + azbxL→ bx =
DL0 −D00

L
√
D00

(B.3.4)

D0zmax = axaz + axbzzmax + axczz
2
max (B.3.5)

∂D

∂z

∣∣∣∣
0,zmax

= 0 = axbz + 2axczzmax (B.3.6)

The last two equations represent a system of two equations in two unknowns and the solution

can be found to be

bz = 2
D0zmax −D00

zmax

√
D00

cz = −D0zmax −D00

z2
max

√
D00

(B.3.7)

And by substitution, it can be confirmed that they are solution to the given equations

D0zmax −D00

zmax

√
D00

= 2
D0zmax −D00

zmax

√
D00

− D0zmax −D00

zmax

√
D00

2
D0zmax −D00

zmax

− 2
D0zmax −D00

zmax

= 0

(B.3.8)

B.4 Quadratic x —Quadratic z

The fourth combination considered is quadratic in x and quadratic in z

D (x, z) =
(
ax + bxx+ cxx

2
) (
az + bzz + czz

2
)

(B.4.1)
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The parameters in this case are

D00 = D (0, 0) , D0zmax = D (0, zmax) , Dxmax0 = D (xmax, 0) ,

∂D
∂x

∣∣
xmax,0

= 0, ∂D
∂z

∣∣
0,zmax

= 0
(B.4.2)

The set of equations defining the parameters are

D00 = axaz → ax = az =
√
D00 (B.4.3)

Dxmax0 = axaz + azbxxmax + azcxx
2
max (B.4.4)

∂D

∂x

∣∣∣∣
xmax,0

= 0 = azbx + 2azcxxmax (B.4.5)

D0zmax = axaz + axbzzmax + axczz
2
max (B.4.6)

∂D

∂z

∣∣∣∣
0,zmax

= 0 = axbz + 2axczzmax (B.4.7)

The last four equations represent a system of four equations in four unknowns. Since the x

and z equations are independent, except for the constant terms which are set by Eqn. (B.4.3)

, the solution to the two independent systems are given by the ones given in Eqns. (B.2.7)

and (B.3.7), and are repeated here

bx = 2
Dxmax0 −D00

xmax

√
D00

, cx = −Dxmax0 −D00

x2
max

√
D00

bz = 2
D0zmax −D00

zmax

√
D00

, cz = −D0zmax −D00

z2
max

√
D00

(B.4.8)

198



APPENDIX C

Derivation of Integral VAT Conservation Equations

C.1 Mass and Momentum Conservation

The momentum equation is integrated over the entire domain

1∫
0

1∫
0

∂ 〈u〉
∂x

dxdz = 0→
1∫

0

〈u〉x=1dz −
1∫

0

〈u〉x=0dz = 0 (C.1.1)

which is simply a statement that the volume mass flow rate at the outlet is equal to the

mass flow rate at the outlet. The momentum equation given, is integrated over the domain

1∫
0

1∫
0

[
−M1

∂2 〈u〉
∂z2

+M2 (x, z) 〈u〉2
]
dxdz =

1∫
0

1∫
0

M3 (x, z) dxdz (C.1.2)

The shear stress term can be rearranged using the independence of the integration limits

from x and z

−M1

 1∫
0

∂ 〈u〉
∂z

∣∣∣∣
z=1

dx−
1∫

0

∂ 〈u〉
∂z

∣∣∣∣
z=0

dx

 (C.1.3)

These are the energy losses due to the shear stress. The z-derivatives at the boundaries are

integrated using a second order one sided finite difference. The other two terms are simply

integrated entirely over the domain. The first term,

1∫
0

1∫
0

[
M2〈u〉2

]
dxdz (C.1.4)

represent the losses due to the lower scale geometry. The RHS represents the energy supplied

to the system through pressure
1∫

0

1∫
0

M3dxdz (C.1.5)
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In order for the forces to match, the difference between the LHS and RHS of the equations

should be small. A convergence criterion for the code is that the momentum imbalance is

less than 1%. All the integrals are calculated using a trapezoidal method over the solution

grid to obtain second order accuracy.

C.2 Energy Conservation

The fluid energy equation is integrated over the domain

1∫
0

1∫
0

[
F1 〈u〉

∂〈Tf〉f

∂x
− F2

∂

∂x

(
εf
∂〈Tf〉f

∂x

)
− F3

∂

∂z

(
εf
∂〈Tf〉f

∂z

)
− F4

(
〈Ts〉s − 〈Tf〉f

)]
dxdz

(C.2.1)

The convective term can be rearranged as

F1

1∫
0

1∫
0

〈u〉 ∂〈Tf〉
f

∂x
dxdz = F1

1∫
0

〈u〉 〈Tf〉f ∣∣∣1
0
−

1∫
0

�
�
�∂ 〈u〉

∂x
〈Tf〉f

 dz (C.2.2)

where the second term cancels by continuity. The term can then be arranged as

F1

1∫
0

1∫
0

〈u〉 ∂〈Tf〉
f

∂x
dxdz = F1

1∫
0

〈u〉 〈Tf〉f
∣∣∣
x=1

dz −
1∫

0

〈u〉 〈Tf〉f
∣∣∣
x=0

dz (C.2.3)

This term represents the heat that convected away by the fluid. The x diffusive term can be

rearranged as

F2

1∫
0

[
εf
�
�
�
�∂〈Tf〉f

∂x

]
x=1

−

[
εf
∂〈Tf〉f

∂x

]
x=0

dz = F2

1∫
0

[
−εf

∂〈Tf〉f

∂x

]
x=0

dz (C.2.4)

where the first term is zero by the boundary condition. The temperature gradient in the

second term will always be positive (for heating) because as the fluid enters, its temperature

increases for the inlet temperature as it comes to contact with the fins, and from conduction

from the hotter fluid ahead. In general, this term represent heat exiting the domain by back

conduction at the inlet and should in general be small. The z diffusive term can similarly
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be rearranged as

F3

1∫
0

1∫
0

∂

∂z

(
εf
∂〈Tf〉f

∂z

)
dzdx = F3

1∫
0

[
εf
�
�

�
�∂〈Tf〉f

∂z

]
z=1

−

[
εf
∂〈Tf〉f

∂z

]
z=0

dx =

= F3

1∫
0

[
−εf

∂〈Tf〉f

∂z

]
z=0

dx

(C.2.5)

where the first term is zero due to the boundary conditions. The remaining term represents

the heat entering in the channel through the base. The inter REV heat transfer term is

simply integrated over the entire domain

1∫
0

1∫
0

F4

(
〈Ts〉s − 〈Tf〉f

)
dxdz (C.2.6)

and represent the heat entering the fluid through the fins.

The solid energy equation is also integrated over the domain to obtain

Qs =

1∫
0

1∫
0

[
S1

∂

∂x

(
εs
∂〈Ts〉s

∂x

)
+ S2

∂

∂z

(
εs
∂〈Ts〉s

∂z

)
− S3

(
〈Ts〉s − 〈Tf〉f

)]
dxdz (C.2.7)

The x diffusion term can easily be shown to be zero by using the boundary conditions

S1

1∫
0

[
εs
∂〈Ts〉s

∂x

]x=1

x=0

dz = S1

1∫
0

[
εs
�

�
��∂〈Ts〉s

∂x

]
x=1

dz − S1

1∫
0

[
εs
�

�
��∂〈Ts〉s

∂x

]
x=0

dz (C.2.8)

Using again the boundary conditions, the z diffusion term can be rewritten as

S2

1∫
0

1∫
0

∂

∂z

(
εs
∂〈Ts〉s

∂z

)
dxdz = S2

1∫
0

1∫
0

∂

∂z

(
εs
∂〈Ts〉s

∂z

)
dzdx =

= S2

1∫
0

[
εs
∂〈Ts〉s

∂z

]z=0

z=1

dx = S2

1∫
0

[
εs
�

�
��∂〈Ts〉s

∂z

]
z=1

dx− S2

1∫
0

[
εs
∂〈Ts〉s

∂z

]
z=0

dx =

= S2

1∫
0

[
−εs

∂〈Ts〉s

∂z

]
z=0

dx

(C.2.9)

where the last term represents the heat entering the solid through the base. The inter REV

term is simply integrated over the domain

1∫
0

1∫
0

S3

(
〈Ts〉s − 〈Tf〉f

)
dxdz (C.2.10)
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and represent the heat loss in the solid due to transfer to the fluid. An overall energy

conservation equation is obtained by subtracting the fluid and solid integral conservation

equations. In this case, the interphase heat transfer cancels out and the only terms remaining

are

F1

1∫
0

〈u〉 〈Tf〉f
∣∣∣
x=1

dz −
1∫

0

〈u〉 〈Tf〉f
∣∣∣
x=0

dz − F2

1∫
0

[
−εf

∂〈Tf〉f

∂x

]
x=0

dz+

− F3

1∫
0

[
−εf

∂〈Tf〉f

∂z

]
z=0

dx− S2

1∫
0

[
−εs

∂〈Ts〉s

∂z

]
z=0

dx = 0

(C.2.11)

An overall conservation of energy gives that the all of the heat entering through the base

has to be transferred to the fluid, and then advected away at the outlet and conducted

through the inlet which is expressed from the previous equation. This can be easily seen if

the equation is rearranged as

F1

1∫
0

〈u〉 〈Tf〉f
∣∣∣
x=1

dz − F1

1∫
0

〈u〉 〈Tf〉f
∣∣∣
x=0

dz

︸ ︷︷ ︸
Qconv,out

−F2

1∫
0

[
−εf

∂〈Tf〉f

∂x

]
x=0

dz

︸ ︷︷ ︸
Qcond,out

=

= F3

1∫
0

[
−εf

∂〈Tf〉f

∂z

]
z=0

dx+ S2

1∫
0

[
−εs

∂〈Ts〉s

∂z

]
z=0

dx

︸ ︷︷ ︸
Qin,HS

+∆QHS

(C.2.12)

where ∆QHS is the imbalance due to numerical errors between the energy exiting the system

and the energy entering the system. Ideally, the heat conducted in the heat sink should be

equal to the heat conducted in the base; however, in the interface process, some of the energy

contained in the truncated part of the base series is lost. Persevals theorem states that the

energy content in the full energy series is the same as its actual function, however since the

series in the solution is truncated, some energy is lost. To assess the amount of energy lost,

another energy imbalance condition is given by

F3

1∫
0

[
−εf

∂〈Tf〉f

∂z

]
z=0

dx+ S2

1∫
0

[
−εs

∂〈Ts〉s

∂z

]
z=0

dx

︸ ︷︷ ︸
Qin,HS

−Qin,base = ∆Qint (C.2.13)
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and ∆Qint is the energy lost at the interface due to numerical errors. In general, one of the

convergence criteria is that the imbalances in the integral conservation equations are less

than 1%. In general, for 128x128 grids, this imbalances are always satisfied.
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% This script runs the PSO optimization of the heat sink
close all
clc
if exist('outputs/bestValues.mat', 'file')==2
  delete('outputs/bestValues.mat');
end

% addpath 'F:\Documents\Research\MATLAB Accesories\psopt'
curDir = pwd;
funPath=fullfile(curDir,'vatCodeX');
addpath(funPath)

%%%%%%%%%%%%%%%%%% SET CONSTRATINTS FOR CONSTANT GEOMETRY %%%%%%%%%%%
%%%%%%
% Microchannels
% Inputs are Hc, py, wi, wo, tb
minThick=-0.1;  % minimum fin thickness
minAR = 2;      % minimum aspect ratio
minPor = 0.65;  % minimum porosity
maxGrad = 0.5;
A=zeros(4,4); b=zeros(4,1);
A(1,:)=[0, -minPor*1, 1, 0]; b(1)=0;   % Constraint that bottom width
 is less than py (py-wb)>=tMin --> -py+wb<=-tMin
A(2,:)=[0, -minPor*1, 0, 1]; b(2)=0;   % Constraint that top width is
 less than py (py-wt)>=tMin --> -py+wt<=-tMin
% A(3,:)=[-1, 0, minAR*1, 0]; b(3)=0;    % Constraint that minimum
 aspect ratio is less than minimum minAR*wb-H<=0
% A(4,:)=[-1, 0, 0, minAR*1]; b(4)=0;    % Constraint that minimum
 aspect ratio is less than minimum minAR*wt-H<=0
A(3,:)=[0, 0, maxGrad*1, -1]; b(3)=0;  % Constraint that maximum width
 variation is less than minimum gradient
A(4,:)=[0, 0, -1/maxGrad*1, 1]; b(4)=0;    % Constraint that minimum
 aspect ratio is less than minimum minAR*wt-H<=0
LB = [3; 0.3; 0.1; 0.1];   % Lower bounds
UB = [6; 1; 1; 1];         % Upper bounds

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%

%%%%%%%%%%%%%%%%%%%%%%% RUN OPTIMIZER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
tStartOpt = tic;    % start timer

% Set GA options
% Plot best function value (and mean) vs generation and vector values
 of
% the best individual.
% Set parallel option to be true.
% Set creation function such that every member is feasible.
% Set mutation function and cross over functions to maintain
 feasibility.
% Set initial population size



2

options=gaoptimset('PlotFcns',
{@gaplotbestf,@gaPlotValuesEvol},'UseParallel',true,...
  
  'CreationFcn',@gacreationlinearfeasible,'MutationFcn',@mutationadaptfeasible,...
  
  'CrossoverFcn',@crossoverarithmetic,'PopulationSize',100,'OutputFcns',@gaValuesEvol,'Generations',200);

% Run GA optimizer
[x,fval,exitflag,output] = ga(@(x) mainOptimX(x),4,A,b,[],[],LB,UB,
[],options);

tEndOpt = toc(tStartOpt); % end timer

% Sound to notify of end run
load gong
sound(0.2*y,Fs)
clc

PRINT RESULTS AND PLOT
Output results

fprintf('Optimization run has terminated in %2g mins with message
 \n',round(tEndOpt/60,3,'significant'))
fprintf([output.message ' \n'])
fprintf('The optimal configuration is p_y=%3.3e [mm], w_i=%3.3e [mm],
 w_0=%3.3e [mm] \n',x(1),x(2),x(3))
fprintf('with a minimum optimal parameter of %3.3e \n',fval)

% % Load evolution of parameters and copy results in outputs directory
load('bestValues.mat')  % Load results
s=regexprep(datestr(dateTime),'\W','');    % string with date and time
save(['outputs/results'
 s '.mat'],'bestValues','dateTime','x','fval','output','A','b')
delete('bestValues.mat');

% Plot evolution of best parameters
figure
plot(0:output.generations,bestValues,'-','linewidth',2)
title('Evolution of Best Values Converging Microchannel -
 R_{th}','fontsize',14)
xlabel('Generation','fontsize',14)
hLegend = legend('$H_c$','$p_y$','$w_i$','$w_o$','Location','Best');
hLegend.Interpreter='latex';
hLegend.FontSize=14;
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Table of Contents
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function outputs=main(varargin)

%MAIN   Solve 2D VAT mom and energy
%
%   This function is the main function for the solution of the two
%   phase (fluid-solid) VAT energy and momentum equations.
%
%   outputs=main returns an outputs structure array containing the
 results
%   obtained from solving the equations with inputs extracted from the
%   first set of inputs from file inputs.txt assumed to be in the same
%   folder
%
%   outputs=main(inputs) returns an output structure array contining
 the
%   results obtained from solving the equations with inputs specified
 in
%   the array inputs. inputs is a regular array of at least 25 inputs
%
%   outputs=main(inputs,testType) runs the code and runs the test
 specified
%   by the string testType. testType options are given in testHSwB and
 can
%   be 'all','ener','mom','base',interface','solver'.

maxArg=3;
narginchk(0,maxArg)
% Maximum number of inputs of cell array
maxNumParam=25;
switch nargin
    case 0
        % Load first case from the inputs.txt file located in the
 folder
        try
            fid=fopen('inputs.txt');
            inputTot=textscan(fid,'%u%f%f%f%f%f%f%s%u%q%f%f%u%f%u%f%u
%u%f%f%u%u%f%f%f','Headerlines',1);
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            fclose(fid);
            inputs = cell(maxNumParam,1);
            for i=1:maxNumParam
                inputs{i} = inputTot{i}(1);
            end

        catch
            error('Unable to run standalone. Possibly no inputs.txt in
 same folder as main')
        end
        % No test
        testDef='';
        testMode='reg';
        fprintf('-------------------- STANDALONE MODE
 ------------------------ \n \n \n')
        % Plot
        wannaPlot='yes';
    case 1
        % Run in test mode
        % Load first case from the inputs.txt file located in the
 folder
        try
            fid=fopen('inputs.txt');
            inputTot=textscan(fid,'%u%f%f%f%f%f%f%s%u%q%f%f%u%f%u%f%u
%u%f%f%u%u%f%f%f','Headerlines',1);
            fclose(fid);
            inputs = cell(maxNumParam,1);
            for i=1:maxNumParam
                inputs{i} = inputTot{i}(1);
            end

        catch
            error('Unable to run test. Possibly no inputs.txt in same
 folder as main')
        end
        % Run specified test with regular outputs
        testDef=varargin{1};
        testMode='reg';
        fprintf('-------------------- TEST MODE
 ------------------------ \n \n \n')
        wannaPlot='no';
    case 2
                % Run in test mode
        % Load first case from the inputs.txt file located in the
 folder
        try
            fid=fopen('inputs.txt');
            inputTot=textscan(fid,'%u%f%f%f%f%f%f%s%u%q%f%f%u%f%u%f%u
%u%f%f%u%u%f%f%f','Headerlines',1);
            fclose(fid);
            inputs = cell(maxNumParam,1);
            for i=1:maxNumParam
                inputs{i} = inputTot{i}(1);
            end
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        catch
            error('Unable to run test. Possibly no inputs.txt in same
 folder as main')
        end
        testDef=varargin{1};
        testMode=varargin{2};
        wannaPlot='no';
    case 3
        testDef=varargin{1};
        testMode=varargin{2};
        inputs=varargin{3};
        wannaPlot='no';
end

-------------------- STANDALONE MODE ------------------------ 
 
 

EXTRACT DATA FROM INPUTS ARRAY
% Get start time
tStart=tic;
% Start parameter counter
paramCount=1;
% Type of geometry
geomType=inputs{1}; paramCount=paramCount+1;
% Heat Sink Length
geomL=inputs{paramCount}*1e-3; paramCount=paramCount+1;
% Heat Sink Width
geomW=inputs{paramCount}*1e-3; paramCount=paramCount+1;
% Channel height
geomHc=inputs{paramCount}*1e-3; paramCount=paramCount+1;
% Obstacle width
geomD=inputs{paramCount}*1e-3; paramCount=paramCount+1;
% Obstacle pitch in transverse direction
geomPy=inputs{paramCount}*1e-3; paramCount=paramCount+1;
% Obstacle pitch in longitudinal direction
geomPx=inputs{paramCount}*1e-3; paramCount=paramCount+1;
% Parameter to be varied
varParam=inputs{paramCount}; paramCount=paramCount+1;
% Function type of input
porosityVarType=inputs{paramCount}; paramCount=paramCount+1;
% Function parameters
funParam=inputs{paramCount}; paramCount=paramCount+1;
% Base Thickness
geomtb=inputs{paramCount}*1e-3; paramCount=paramCount+1;
% Inlet Temperature
enerBcTin=inputs{paramCount}; paramCount=paramCount+1;
% Type of boundary condition at bottom of base
enerBcType=inputs{paramCount}; paramCount=paramCount+1;
% Value of boundadry condition at bottom of the base
enerBcVal=inputs{paramCount}; paramCount=paramCount+1;
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% Type of boundary condition for momentum
momBcType=inputs{paramCount}; paramCount=paramCount+1;
% Value of boundary condition for momentum
momBcVal=inputs{paramCount}; paramCount=paramCount+1;
% Solid Material
propTypeS=inputs{paramCount}; paramCount=paramCount+1;
% Fluid Material
propTypeF=inputs{paramCount}; paramCount=paramCount+1;
% Number of Basis functions in x
N=inputs{paramCount}; paramCount=paramCount+1;
% Number of Basis functions in z
M=inputs{paramCount}; paramCount=paramCount+1;
% Solver type:
% 1 - Finite Difference
% 2 - Galerkin Method
solverType=inputs{paramCount}; paramCount=paramCount+1;
% Convection scheme:
% 1 - First order upwind
% 2 - Second order upwind
convScheme=inputs{paramCount}; paramCount=paramCount+1;

% Extra inputs for variable heat flux
switch enerBcType
    case 1
        % Sharpness of step input
        enerBcKs = 0;
        % Width of step input
        enerBcWc = 0;
        % Center of step input
        enerBcXc = 0;
        % Add three to counter
        paramCount=paramCount+2;

    case 2
        % Sharpness of step input
        enerBcKs = inputs{paramCount}(1); paramCount=paramCount+1;
        % Width of step input
        enerBcWc = inputs{paramCount}(1); paramCount=paramCount+1;
        % Center of step input
        enerBcXc = inputs{paramCount}(1);

    otherwise
        error('Wrong energy boundary type specification')

end
% Check that all parameters have been inputted
assert(paramCount==maxNumParam,'Input parameters do not match');
% Clear the input cell
clearvars inputs;

tIO = toc(tStart);  % Time to extract data from text file



5

EXTRACT FLUID AND SOLID PROPERTIES
Fluid and solid properties are specified here in SI units.

prop=propHandler(propTypeS,propTypeF);

GENERATE GRID
griddata= gridGen(N,M,solverType);

tGrid = toc(tStart)-tIO;    % Time to generate grid

GEOMETRY, REFERENCE AND DERIVED VAL-
UES

geom=geomCalc(geomType,geomL,geomW,geomHc,geomD,geomPx,geomPy,geomtb,varParam,porosityVarType,funParam,griddata);

tGeom = toc(tStart)-tGrid;  % Time to calculate geometrical parameters

INITIALIZE SOLUTION AND GRIDS
[ ener, mom, griddata, rundata,util ] = initHSwBase( solverType,
 convScheme, enerBcTin, enerBcType, enerBcVal, enerBcKs, enerBcWc,
 enerBcXc, momBcType, momBcVal, griddata, geom, prop);

tInitialized = toc(tStart);

--------------- Finite Difference Solver -------------------- 
 
------------- 2nd Order Backward Conv Scheme ---------------- 
 

MOMENTUM SOLUTION
Solve the momentum equation for the superficial velocity

tMomStart = tic;

[mom, clos] = vatMomSolver(geom,prop,mom,griddata);
% Copy Re and ff numbers in closure structure
clos.Redh=mom.Redh;

% If the Re is turbulent, print out a warning.
if max(max(mom.Redh)) >= 2300;

    warning(['Turbulent flow. Re_dh = ' num2str(max(max(mom.Redh)))])
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end

tMom = toc(tMomStart);
fprintf('------------------- Momentum Solved -------------------------
 \n')
fprintf('---------------- Execution time %3.3e s ----------------- \n
 \n',tMom)

Momentum converged 70 total iterations, errM = 9.032e-09 errP =
 2.815e-07 
------------------- Momentum Solved ------------------------- 
---------------- Execution time 7.037e-01 s ----------------- 
 

NUSSELT NUMBER CALCULATIONS
tEnerStart = tic;

clos = nuss(geom,prop,mom,clos);

% Calculate average Nusselt
ener.h = clos.Nudh*prop.f.k./geom.dh;
ener.hAve = trapz(griddata.xv,trapz(griddata.zv,ener.h,2));
ener.hND = ener.h/ener.hAve;
ener.NuAve = ener.hAve * geom.dhAve/prop.f.k;

ENERGY SOLUTION
%%%%%%%%%%%%%%%% NON-DIMENSIONAL PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
% Temperature nondimensional scale Q/(m_dot*cp)
ener.scaleT=(ener.bc.Q/(mom.mdot(1)*prop.f.cp));

% Non-dimensional heat flux scale tb/(ks*DT);
ener.qScale = geom.tb/(prop.s.k*(ener.scaleT));

% Porosity weighted thermal conductivity ratio
ener.Rk=geom.epscAve*prop.s.k/(geom.epsAve*prop.f.k);

%%%%%%%%%%%% Fluid equation non dimensional parameters  %%%%%%%%%%%%%
%%%%%%
% Convective Term Non-Dimensional Constant
ener.G1 = mom.ReAve*prop.f.Pr/(2*ener.NuAve)*(geom.Cx/geom.epsAve);
% x diffusion Term Constant
ener.G2 = (geom.Cx^2)/ener.NuAve;
% z diffusion Term Constant
ener.G3 = (geom.Cz^2)/ener.NuAve;
% Inter REV transfer Matrix
ener.G4 = ener.hND.*geom.SwND;

%%%%%%%%%%%% Solid equation non dimensional parameters  %%%%%%%%%%%%%
%%%%%%
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% x diffusion Term Constant
if geom.conn ==0;       % Disconnected geometry
    ener.C1=0;
elseif geom.conn ==1;   % Connected geometry
    ener.C1=ener.Rk/ener.NuAve*geom.Cx^2;
end

% z diffusion Term Constant
ener.C2 = ener.Rk/ener.NuAve*geom.Cz^2;

% Inter REV transfer Matrix
ener.C3 = ener.hND.*geom.SwND;

%%%%%%%%%%%%%%%% Interface nondimensional parameters   %%%%%%%%%%%%%%
%%%%%%
ener.K1 = geom.epscAve.*geom.tb/geom.Hc;
ener.K2 = 1/ener.Rk*geom.epscAve.*geom.tb/geom.Hc;

%%%%%%%%%%%%%%%% Apply nondimensionalization %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
% Non-dimensionalize heat flux
ener.qAveND = ener.bc.qAve*ener.qScale;
ener.bc.D = ener.bc.D.*ener.qScale;

%%%%%%%%%%%%%%%% SOLVE EQUATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
% Perturbation size
eps_b = 0.01;

switch rundata.solver
    case 'Finite Difference'
        % Guess initial bottom temperature coefficients
        B=zeros(griddata.Nx+1,1);
        B(1)=1; % Constant temperature equal to 1

        % Perturbe coefficients by eps_b
        B1 = [B repmat(B,1,griddata.Nx+1)+diag(eps_b*ones(griddata.Nx
+1,1))];

        % Reconstruct bottom wall temperature on the grid
        scalingFactor=sqrt(2/(N+1))*ones(N+1,N+2);
        scalingFactor(1,:)=sqrt(1/(N+1))*ones(1,N+2);
        Twall=idct(B1./scalingFactor);

        % Obtain flux for all inputs
       
 soln=FDSolver(rundata.convScheme,ener,mom,geom,griddata,Twall);

        % Take DCT of the flux
        soln.s=dct(repmat(geom.epscND(:,1),1,griddata.Nx
+2).*soln.DTsDz);
        soln.f=dct(repmat(geom.epsND(:,1),1,griddata.Nx
+2).*soln.DTfDz);
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        % Scale
        soln.s=soln.s.*scalingFactor;
        soln.f=soln.f.*scalingFactor;

        % Generate vector to account for different value for n=0 of
 cosine
        delC = [1; 0.5*ones(griddata.N,1)];
        % phi value for base
        phi = ((0:griddata.N)*pi)';
        % Calculate value of interface condition with initial guess B
        f0 =
 (ener.K1.*delC).*soln.s(:,1)+(ener.K2.*delC).*soln.f(:,1)-
(delC.*geom.Sb.*phi).*(ener.bc.D
+B.*tanh(geom.Sb*phi))+ener.qAveND.*[1;zeros(griddata.N,1)];

        % Calculate influence matrix
        infM=zeros(griddata.N+1,griddata.N+1);
        for i=2:griddata.N+2    % Calculate Jacobian entries Jij=fij-
f0
            infM(:,i-1) =
 (ener.K1.*delC).*soln.s(:,i)+(ener.K2.*delC).*soln.f(:,i)-
(delC.*geom.Sb.*phi).*(ener.bc.D
+B1(:,i).*tanh(geom.Sb*phi))+ener.qAveND.*[1;zeros(griddata.N,1)]-f0;
        end

        % Divide influence matrix by perturbation size
        infM = infM./eps_b;
        % Clear B1 variable
        clearvars B1;

        % Solve for dB
        dB = -infM\f0;
        % Calculate new interface coefficients
        B = B + dB;

        % Reconstruct wall temperature on grid with new coefficients
        Twall=idct(B./scalingFactor(:,1));

        % Evaluate f with new B
       
 soln=FDSolver(rundata.convScheme,ener,mom,geom,griddata,Twall);

        % Take DCT of the flux
        soln.s=dct(geom.epscND(:,1).*soln.DTsDz);
        soln.f=dct(geom.epsND(:,1).*soln.DTfDz);

        % Scale
        soln.s=soln.s.*scalingFactor(:,1);
        soln.f=soln.f.*scalingFactor(:,1);

        % Calculate final of interface condition with new B
        fNext = (ener.K1.*delC).*soln.s(:)+(ener.K2.*delC).*soln.f(:)-
(delC.*geom.Sb.*phi).*(ener.bc.D
+B.*tanh(geom.Sb*phi))+ener.qAveND.*[1;zeros(griddata.N,1)];
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        % Calculate residual in interface condition
        errI = norm(fNext,inf);

        % Store final vector of interface coefficients
        soln.B=B;

        tEner = toc(tEnerStart);

        fprintf('-------------------- Energy solved
 -------------------------- \n')
        fprintf('-------------- Max Error in interface %3.3e
 ------------- \n', errI)
        fprintf('-------------- Energy solution time %3.3e s
 ------------- \n \n',tEner)

        % Recombine base basis
        soln=basisRecomb(soln,ener,util,geom,griddata,rundata.solver);

        % Add boundary and match to meshgrid
        Tf = zeros(N+1,M+1);     Tf(2:N+1,2:M+1)=soln.Tf;
        Tf(:,1) = Twall;     soln.Tf = Tf';
        Ts = zeros(N+1,M+1);     Ts(:,2:M+1)=soln.Ts;
        Ts(:,1) = Twall;     soln.Ts = Ts';
        tTot = toc(tStart);
        fprintf('-------------- Total solution time %3.3e s 
 ------------- \n \n',tTot)

    case 'Galerkin Method'
        % Extract data for run
        N=rundata.N;
        M=rundata.M;
        % Guess bottom wall temperature
        B=zeros(N+1,1);
        B(1)=1;
        % Compute perturbed solution
        B1 = [B repmat(B,1,N+1)+diag(eps_b*ones(N+1,1))];
        % Calculate coefficients for perturbed solution
        [soln,util]=FGSolver(ener,util,B1);

        % Calculate value of interface condition with initial guess B
        f0 = 1/2*ener.K1*util.Jdelc*reshape(soln.S(:,1),N+1,M
+1)*util.gamZ + ener.K2*util.J2*reshape(soln.F(:,1),N+1,M+1)*util.gamZ
  ...
            - util.Jdelc*(B1(:,1).*tanh(geom.Sb*util.phi)+ener.bc.D) +
 (ener.qAveND+ener.K2*util.gamZ'*soln.I(:,1))*util.k;

        % Calculate Jacobian
        infM=zeros(N+1,N+1);
        for i=2:N+2
            % Calculate Jacobian entries Jij=fij-f0
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            infM(:,i-1) = 1/2*ener.K1*util.Jdelc*reshape(soln.S(:,i),N
+1,M+1)*util.gamZ + ener.K2*util.J2*reshape(soln.F(:,i),N+1,M
+1)*util.gamZ +...
                -
 util.Jdelc*(B1(:,i).*tanh(geom.Sb*util.phi)+ener.bc.D) + (ener.qAveND
+ener.K2*util.gamZ'*soln.I(:,i)).*util.k-f0;

        end
        % Divide Jacobian by perturbation distance
        infM = infM./eps_b;
        % Choose dB by solving the linear system
        dB = -infM\f0;
        % Calculate new interface coefficients
        B = B + dB;
        % Evaluate f with new B
        [soln,util]=FGSolver(ener,util,B);
        % Calculate value of f with new B
        fNext = 1/2*ener.K1*util.Jdelc*(soln.S*util.gamZ) +
 ener.K2*util.J2*(soln.F*util.gamZ)  ...
            - util.Jdelc*(B.*tanh(geom.Sb*util.phi)+ener.bc.D) +
 (ener.qAveND+ener.K2*util.gamZ'*soln.I)*util.k;
        % Calculate residual in f
        errI = norm(fNext,inf);
        tEner = toc(tEnerStart);
        % Store final vector of interface coefficients
        soln.B=B;

        fprintf('---------------- Coefficients Obtained
 ---------------------- \n')
        fprintf('-------------- Max Error in interface %3.3e
 ------------- \n', errI)
        fprintf('----------------- Execution time %3.3e s
 ---------------- \n',tEner)

        soln=basisRecomb(soln,ener,util,geom,griddata,rundata.solver);
        tTot=toc(tStart);

        fprintf('---------------- Solution Evaluated on Grid
 ----------------- \n')
        fprintf('--------------- Total Execution time %3.3e s
 ------------ \n \n',tTot)

    otherwise
        error('Solver type could not be recognized in iterative
 process');
end

-------------------- Energy solved -------------------------- 
-------------- Max Error in interface 2.670e-11 ------------- 
-------------- Energy solution time 3.266e+00 s ------------- 
 
-------------- Total solution time 4.960e+00 s  ------------- 
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POST-PROCESSING AND PLOTTING
Calculate non-dimensional outlet temperature

TfAveOut = trapz(griddata.zv,mom.uSuperf(griddata.Nx
+1,:).*soln.Tf(:,griddata.Nx+1)',2)./
trapz(griddata.zv,mom.uSuperf(griddata.Nx+1,:),2);

% Dimensionalize all quantities
soln.TfAveOut = TfAveOut.*ener.scaleT+ener.bc.Tin;

% Dimensionalize temperatures
soln.Tf=soln.Tf.*ener.scaleT+ener.bc.Tin;
soln.Ts=soln.Ts.*ener.scaleT+ener.bc.Tin;
soln.Tb=soln.Tb.*ener.scaleT+ener.bc.Tin;

postData = postProc(soln,ener,mom,griddata,prop,geom);

% CALCULATE IMBALANCES
% MASS BALANCE
massImb = (trapz(griddata.zv,mom.uND(griddata.Nx
+1,:))-trapz(griddata.zv,mom.uND(1,:)))./
trapz(griddata.zv,mom.uND(griddata.Nx+1,:));
fprintf('The mass imbalance in the system is: %3.2f %%
 \n',massImb*100);
% MOMENTUM BALANCE
% Shear stress at the two walls
SS = trapz(griddata.xv,(3*mom.uND(:,griddata.Nz
+1)-4*mom.uND(:,griddata.Nz)+mom.uND(:,griddata.Nz-1))/
(2*griddata.dz))...
    - trapz(griddata.xv,(-3*mom.uND(:,1)+4*mom.uND(:,2)-mom.uND(:,3))/
(2*griddata.dz));
SS = mom.M1*SS;
% Momentum sink
MS=mom.M2.*mom.uND.^2; MS(isnan(MS))=0;
MS = trapz(griddata.xv,trapz(griddata.zv,MS,2));
% Pressure contour integral
intP = trapz(griddata.xv,trapz(griddata.zv,mom.M3,2));
% Imbalance
momImb = -SS + MS -intP;
fprintf('The momentum imbalance in the system is: %3.2f %%
 \n',momImb*100);

% Calculate heat load from integral VAT energy
HL =
 prop.f.rho*prop.f.cp*geom.Hc*geom.W*(trapz(griddata.zv,mom.uSuperf(griddata.Nx
+1,:).*soln.Tf(:,griddata.Nx+1)')-
trapz(griddata.zv,mom.uSuperf(1,:).*soln.Tf(:,1)'));
% Solid flux
Qs = -
prop.s.k*geom.W*geom.L*geom.epscAve*geom.epscNDzv(1)*trapz(griddata.xv,geom.epscNDxv'.*(-3*soln.Ts(1,:)+4*soln.Ts(2,:)-
soln.Ts(3,:))./(2*griddata.dz*geom.Hc));
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% Fluid flux
Qf = -
prop.f.k*geom.W*geom.L*geom.epsAve*geom.epsNDzv(1)*trapz(griddata.xv,geom.epsNDxv'.*(-3*soln.Tf(1,:)+4*soln.Tf(2,:)-
soln.Tf(3,:))./(2*griddata.dz*geom.Hc));
% Energy lost to back conduction at inlet
backLoss = -prop.f.k*geom.Hc*geom.W*trapz(griddata.zv,
(-3*soln.Tf(:,1)+4*soln.Tf(:,2)-soln.Tf(:,3))./
(2*griddata.dx*geom.L));
% Energy entering from the base
interfQ = Qs+Qf;
% Imbalance between what is applied to the base and what enters the
 domain
imbalB = (Qs+Qf-ener.bc.Q)/ener.bc.Q;
% Imbalance between what enters the channel and what exits
imbalDomain = (HL-(Qs+Qf+backLoss) ) / interfQ;
fprintf('The given heat input into the base is: %3.3e \n',ener.bc.Q);
fprintf('The heat load entering the channel is: %3.3e \n',interfQ);
fprintf('The imbalance between channel heat input and bottom heat load
 is: %3.2f %% \n',(imbalB*100));
fprintf('The sensible heat input in the channel is: %3.3e \n',HL);
fprintf('The imbalance in the channel domain is: %3.2f %% \n \n',
(imbalDomain*100));

% Extract grid data
x=griddata.x;
z=griddata.z;
xb=griddata.xb;
zb=griddata.zb;
xv=griddata.xv;

plotCount=1;

switch wannaPlot
    case 'yes'
        figure(plotCount)
        surf(x,z,soln.Tf);
        xlabel('x/L')
        ylabel('z/H_c')
        zlabel('T_f')
        title('Fluid Solution')
        plotCount=plotCount+1;

        figure(plotCount)
        surf(x,z,soln.Ts)
        xlabel('x/L')
        ylabel('z/H_c')
        zlabel('T_s')
        title('Solid Solution')
        plotCount=plotCount+1;

        figure(plotCount)
        surf(xb,zb,soln.Tb)
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        xlabel('x/L')
        ylabel('z/t_b')
        zlabel('T_b')
        title('Base Solution')
        plotCount=plotCount+1;

        figure(plotCount)
       
 plot(xv,soln.Tf(1,:),xv,soln.Ts(1,:),'o',xv,soln.Tb(griddata.Nzb
+1,:),'x')
        xlabel('x/L')
        ylabel('T')
        legend('Fluid','Solid','Base','Location','Best')
        title('Interface Temperature')
        plotCount=plotCount+1;

        figure(plotCount)
       
 plot(xv,soln.Tb(1,:),xv,soln.Tf(floor(griddata.Nz/2),:),xv,soln.Ts(floor(griddata.Nz/2),:))
        xlabel('x/L')
        ylabel('T')
        legend('Bottom Base Temperature','Fluid T @ z=0.5','Solid T @
 z=0.5','Location','Best')
        plotCount=plotCount+1;

        figure(plotCount)
       
 plot(soln.Tf(:,floor(griddata.Nx/2)),griddata.zv,soln.Ts(:,floor(griddata.Nx/2)),griddata.zv)
        xlabel('z/H')
        ylabel('T')
        legend('Fluid T @ x=0.5','Solid T @ x=0.5','Location','Best')
        plotCount=plotCount+1;

        figure(plotCount)
        surf(griddata.xv,griddata.zv,mom.uIntr')
        xlabel('x/L')
        ylabel('z/Hc')
%         legend('Superficial Velocity','Intersticial Velocity')
        title('Velocity')
        plotCount=plotCount+1;

        figure(plotCount)
        plotyy(griddata.zv,geom.eps,griddata.zv,geom.Sw)
        xlabel('z/H_c')
        legend('Porosity','Specific Surface','Location','Best')
        title('Geometric Parameters')
        plotCount=plotCount+1;

        figure(plotCount)
        fillColor = [0.25 0.25 0.25];
        h=fill([0; -geom.D(1)/2; -geom.D(griddata.Nz+1)/2; 0;
 geom.D(griddata.Nz+1)/2; geom.D(1)/2; 0],[0; 0; geom.Hc; geom.Hc;
 geom.Hc; 0; 0],fillColor);
        title('Fin Profile')
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%         axis equal

        rundata.numFig=plotCount;

    case 'no'
        rundata.numFig=0;
end

% Define the number of figures created by the main code

The mass imbalance in the system is: 0.00 % 
The momentum imbalance in the system is: -0.05 % 
The given heat input into the base is: 3.810e+02 
The heat load entering the channel is: 3.781e+02 
The imbalance between channel heat input and bottom heat load is:
 -0.76 % 
The sensible heat input in the channel is: 3.743e+02 
The imbalance in the channel domain is: -0.99 % 
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CALCULATE DATA NECESSARY IN POSTPRO-
CESSING

% Save data to outputs structure
outputs.mom=mom;
outputs.geom=geom;
outputs.ener=ener;
outputs.griddata=griddata;
outputs.rundata=rundata;
outputs.clos=clos;
outputs.soln=soln;
outputs.util=util;
outputs.postData=postData;
outputs.prop=prop;
outputs.time=[tInitialized, tGrid, tGeom, tMom, tEner, tTot];

if strcmp(testDef,'')==0;
    % Run specified test
    fprintf('--------------------- Running Tests 
 ------------------------ \n \n')
    testHSwB(outputs,testDef,testMode);
else
end

end

ans = 

         mom: [1x1 struct]
        geom: [1x1 struct]
        ener: [1x1 struct]
    griddata: [1x1 struct]
     rundata: [1x1 struct]
        clos: [1x1 struct]
        soln: [1x1 struct]
        util: []
    postData: [1x1 struct]
        prop: [1x1 struct]
        time: [0.9264 0.2901 0.5718 0.7037 3.2658 4.9595]

Published with MATLAB® R2015a
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