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Highlights

•	 In our North American study region, annual 
precipitation is predictive of fire occurrence across 
a sub-humid to semi-arid biogeographic gradient.

•	 Future climates under a variety of carbon emission 
scenarios may impact the probability of fire 
occurrence across environmental gradients.

•	 Species Distribution Models (SDMs) provide a means 
of exploring the interactions between fire occurrence 
and biogeographic characteristics of landscapes.

Abstract

Fire is an integral part of semiarid to moderately 
humid ecosystem dynamics in North America. The 
biogeographical settings in which fires readily occur 
are affected by global processes like climate change, as 
well as local and regional characteristics such as terrain, 
proximity to human infrastructure, and vegetation 
structure. Increasing numbers and severity of fires 
today requires high-resolution and accurate predictions 
of fire probability. Species distribution models (SDM) 
allow researchers to identify environmental predictors 
of fire and depict the probability of fire occurrence. We 
applied a Maximum Entropy (Maxent) SDM to identify 
fire predictors and fire risk across a broad biogeographic 
humid to semi-arid climate gradient within the state 
of Texas. We used 15 years (2001-2016) of remotely 
sensed fire occurrence data, along with 13 biophysical 
variables representing climate, terrain, human activity, 
and landcover to generate multiple models. Annual 
precipitation was the primary predictor of fire occurrence, 
followed by elevation and landcover. After projecting 
fire probability onto three climate scenarios, we found 
moderate change in fire distribution. Humid and sub-
humid areas had higher probabilities of fire occurrence 
while arid regions had lower probabilities under those 
scenarios. Overall, the linkage between fire occurrence 
and annual precipitation suggests that climate-driven 
fire probabilities will be variable under projected future 
climates.

Introduction
Global climate change is predicted to change fire 

activity across all terrestrial biomes, with fires generally 
increasing in number and severity (Dennison et  al. 
2014). In particular, fire activity in sub-humid and 
semi-arid drylands has increased alongside climate 
change and human activity over the past 50 years 

(Ortega  et  al. 2012). These trends in fire activity 
vary based on historical climate, vegetation type, 
and topography, each influencing fire-environment 
interactions (Parisien  et  al. 2012). Given projected 
changes in fire activity due to changes in the fire 
environment, there is an accompanying need to study 
how these changes may affect current and future fire 
occurrences (Morgan et al. 2001).
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Sub-humid and semi-arid drylands comprise 41% 
of all terrestrial land area, and 34% of the world’s 
population resides within these biomes (Maestre et al. 
2012, SCBD 2013). Vegetation productivity in these 
regions is frequently water-limited and subjected to 
regular drought and fire activity (Vallejo et al. 2012). 
Temperature and precipitation seasonality determine 
effective length of the fire season, and temperature 
extremes hasten or slow the drying of fuel (Dale et al. 
2001). Although climate warming is expected to 
alter climate controls on fire occurrence globally 
(Flannigan et al. 2009), a regional understanding of 
climate controls and their future shifts is necessary to 
prepare for alternative fire-regime futures.

Landscape characteristics and human activity 
are additional factors that modify the distribution 
of fire occurrence (Cary  et  al. 2006, Syphard  et  al. 
2007, Mann  et al. 2016). Landscape characteristics 
such as terrain (e.g., elevation, ruggedness) and 
landcover influence the distribution of fire because 
they create fine-scale mosaics of heterogeneous fire 
environments (Kane et al. 2015). Human activity is 
also well-known to influence fire distribution directly 
through fire ignitions and suppression and indirectly 
through climate and fuel modification (Archibald 2016). 
Modeling fire occurrence using climate and landscape 
characteristics will help identify important predictors 
of fire distribution and their relative importance to 
accurately modeling fire distribution across the sub-
humid to dryland gradient.

One method of parsing out interactions within the 
fire environment is using species distribution models 
(SDMs) to estimate the probability of fire occurrence 
and quantify the relative importance of local fire 
environments under present and future climate 
scenarios (Parisien and Moritz 2009, Parisien et al. 
2014). Using recorded fire occurrences and descriptive 
environmental variables, these models allow for 
flexible applications across different scales and regions 
(Parisien  et  al. 2012). In previous work, SDMs and 
similar models have been successfully used to model 
fire occurrence across heterogeneous landscapes with 
varying spatial extents (Parisien et al. 2012, Young et al. 
2017). However, there is a knowledge gap regarding 
the drivers of fire across ecoregion transitions such 
as the sub-humid to semi-arid gradient. Harnessing 
the spatial distribution of recorded fires, we sought 
to assess whether the landscape and climatic controls 
that mediate wildfire across the sub-humid to dryland 
transition can be predicted.

We applied SDMs to determine the extent to 
which climate and landscape characteristics are 
capable of predicting fire occurrences across a broad 
biogeographical gradient that represents a sub-humid 
to dryland transition within the state of Texas. We ask 
how well climate alone predicts fire occurrence and 
how including landscape characteristics modify the 
prediction of fire occurrence. We hypothesize that 
climate is a major driving factor of the distribution of fire 
occurrence, but that including landscape characteristics 
will improve model performance, especially because 
humans now cause most fire ignitions and are 

responsible for fire suppression (Syphard et al. 2007, 
Parisien  et al. 2016). We project the probability of 
fire occurrence on multiple future climate scenarios 
to determine where we should anticipate changes in 
the distribution of fire occurrence.

Materials and Methods
We used a Maximum Entropy (MaxEnt) SDM with 

fifteen years of remotely sensed fire occurrence data to 
explore the influence of environmental characteristics 
in predicting fire occurrences in the south-central 
United States under contemporary and predicted 
future climate scenarios. We accomplished this by 
modeling the probability of fire occurrence using a suite 
of climate, terrain, human, and landcover descriptors 
at a one-km resolution across the sub-humid and 
semi-arid climate gradient in the U.S. state of Texas, an 
area encompassing nearly 696,000 km2. We generated 
fire occurrence models for each of four descriptive 
variable categories and compared them to a fifth 
comprehensive model using all variables. With these 
five models, we sought to identify geographic areas 
with different fire prediction levels and the specific 
variables contributing to these fire occurrences. Finally, 
we applied our comprehensive fire prediction model 
to future climate scenarios to identify how they may 
potentially change fire probability.

Study Area
Within the south central United States, the state 

of Texas encompasses a transition from humid to 
semi-arid environments. Precipitation ranges from 
more than 1,340 mm in the east to less than 360 mm 
annually in the west (Hijmans et al. 2005). Elevation 
across the transition ranges from sea level to 2667 m 
(USGS 2008). Texas is home to three of the ten most 
populous cities in the U.S. and has population densities 
ranging from 1007 people per sq. km in Harris County 
to 0.03 people per sq. km in Loving County (Census 
Bureau, 2010). Vegetation across the state changes 
along a longitudinal precipitation gradient, with 
pine and mixed pine-hardwood forests dominating 
the humid eastern portions of the state, oak-juniper 
savannas prevailing in the central part of the state, 
and mixed shrub-grasslands covering the western part 
of the state (McMahan et al. 1984). The cartographic 
boundary for the state was defined based on the 
2010 Census boundary and served as the clipping and 
processing extent for all predictor variables.

Remotely sensed fire occurrence
Fire occurrence data were collated from the USDA 

Active Fire Mapping Program (https://data.fs.usda.
gov/geodata/maps/active-fire.php) between the 
years 2001 and 2016, and includes 135,798 fires. 
These fire occurrences are generated from the MODIS 
active fire product, which detects fire in one km pixels 
using middle-infrared and thermal infrared brightness 
(Giglio  et  al. 2009). This platform provides daily 
detections across the United States. Prior to input into 
our model, data were clipped to retain only the points 



Brooke et al. Fire occurrence across ecological gradients

Frontiers of Biogeography 2021, 13.2, e49497 © the authors, CC-BY 4.0 license  3

within the study area, and data from multiple years 
were merged into a single comprehensive dataset for 
the 15 year time period. It is worth noting that due to 
the temporal resolution of the detection platform, data 
do not include fires that started and were suppressed 
prior to the sensor flyover. Additionally, the spatial 
resolution of the detection algorithm inhibits our 
ability to identify small fires that were suppressed 
before they reached a measurable extent (~1km). 
Thus, our data do not include short or small fires. We 
used the kernel density function in ArcMap to visualize 
the density of fire occurrences as the number of fires 
per 1km2 raster cell within our study area.

Environmental variables
Environmental variables were selected from 

a suite of climate, terrain, landcover, and human 
variables chosen for their hypothesized influence 
on fire occurrence and spread (Table 1). To remove 
redundancy, improve model performance, and 
improve interpretation of results, we conducted a 
correlation analysis of 21 environmental variables, 
reviewed those variables that were strongly correlated 
(r > 0.7), and retained the variables most strongly 
connected to fire occurrence or variables that were 
previously used in SDM studies of fire occurrences, 
so as to make direct comparisons among studies 
(Merow  et  al. 2013) (Table  S1). Removing highly 
correlated variables improves interpretation of MaxEnt 
models and projection of models into future climate 
scenarios (Braunisch et al. 2013). Seven variables were 
removed. The remaining 13 variables were grouped 

into four variable sets based on their representation 
of climate, terrain, human, and landcover influence 
(categories are marked in Table 1). All environmental 
variables were downloaded at, or resampled to, a 
1 km2 spatial resolution and projected to NAD1983 
projected coordinate system.

The climate dataset was sourced from a suite of 
19 biologically important climate variables provided 
in the WorldClim database of global weather and 
climate data (Hijmans  et  al. 2005) (Table S1). The 
climate variables are interpolated at approximately 
one km spatial resolution from 50 year averages of 
climate station data across the globe. All the climate 
data were downloaded at 30 arc-second resolutions 
and resampled to a one km spatial resolution. These 
data are commonly used for SDMs and are particularly 
well-suited for occurrence-based distribution modeling 
(Booth et al. 2014). After conducting the correlation 
analyses, we selected 5 variables that are particularly 
relevant to fire occurrence in our study area. Given 
the seasonality of drought and fire-conducive weather, 
measuring mean annual temperature, and the 
maximum temperature of the warmest month provide 
context for the hot conditions that regularly occur 
and vary across the area. Additionally, the selection 
of annual precipitation and the mean temperatures of 
the wettest and driest months provide insight into the 
role that precipitation and the interactions between 
temperature and precipitation have in predicting fire 
occurrence.

To determine potential effects of terrain on fire 
occurrence, we used a suite of terrain variables 

Table 1. Environmental variables for Maxent representing a suite of climate, terrain, landcover, and human influences on 
fire occurrence. Each variable was computed or acquired at one km resolution.

Category Variable Units Reference
Climate Mean annual temperature C WorldClim (Hijmans et al. 2005)

Max Temperature of Warmest 
Month

C WorldClim (Hijmans et al. 2005)

Mean Temperature of Wettest 
Quarter

C WorldClim (Hijmans et al. 2005)

Mean Temperature of Driest 
Quarter

C WorldClim (Hijmans et al. 2005)

Annual Precipitation mm WorldClim (Hijmans et al. 2005)
Terrain Elevation m US National Elevation Database (USGS 2017)

Topographic Roughness Index Calculated from elevation from US National 
Elevation Database (USGS 2017)

Solar Radiation Calculated from elevation from US National 
Elevation Database (USGS 2017)

Aspect Direction Calculated from elevation from US National 
Elevation Database (USGS 2017)

Landcover Landcover Type Categorical National Landcover Database (USGS 2011)
Human Population Density Pop. per km2 2010 US Census (Census 2010)

Distance to Nearest Municipal 
Boundary

km Municipal Boundaries Dataset (USGS 2017)

Distance to Nearest Major Road km National Road Atlas (USGS 2017)
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generated from a one km digital elevation model 
(DEM) from the US National Elevation Dataset (USGS 
2008). These calculated and derived rasters included 
elevation, topographic roughness index, and aspect. 
Topographic roughness, which represents elevation 
difference between adjacent pixels (Riley 1999), is 
the squared root of the sum of squared differences in 
elevation between a center cell and its eight neighbors. 
Roughness values ranged from near zero, representing 
relatively smooth topography, to 1227, indicating large 
abrupt variations in adjacent elevation. Aspect was 
calculated using the DEM to determine the direction 
of a slope as a range between 0 and 360 degrees. Solar 
radiation is a measure of the insolation of a landscape 
in watt hours per square meter per year. This measure 
reflects direct sun exposure and, therefore, indirectly 
captures evapotranspiration and drying potential for 
fine fuels.

We incorporated the influence of human activity 
and infrastructure on fire occurrence by calculating 
population density (population per km2), distance 
to the nearest city boundary (km), and the distance 
to the nearest interstate highway (km) These data 
were downloaded January 2017 as shapefile vectors 
and converted to rasters matching the 1km2 spatial 
resolution as the rest of the data using ArcMap. 
Population density was extracted from the 2010 census 
block data (Census of Population and Housing, 2010), 
locations of municipal boundaries were also obtained 
from the USGS Municipal Boundaries shapefile, 
which includes all incorporated and unincorporated 
local communities within the state. The distances to 
the closest interstate and nearest community were 
calculated using the Euclidian Distance tool in ArcMap 
to identify isolated areas with large distances between 
municipalities or interstate highways, which may be 
more removed from firefighting capabilities and road 
access.

The influence of landcover type on fire occurrence 
is tied to the fuels present and the contiguity of fuel 
for fire spread (Littell and Gwozdz 2011). We used 
the 2011 National Landcover Database (Homer et al. 
2015) to define the primary form of landcover present. 
This database contains 20 classes of landcover types 
including shrublands, coniferous forests, urban, and 
water, among others. We resampled this layer to the 
1km2 spatial resolution and clipped it to the extent of 
the study area. Using categorical data for landcover 
type allows the MaxEnt model to test the predictivity 
of the various discrete classes within the dataset.

Modeling the probability of fire occurrence
We modeled the probability of fire occurrence using 

the Maxent model (Version 3.3.3k) (Phillips et al. 2006). 
Maxent is an SDM, which uses values of environmental 
variables at occurrence points to build algorithms to 
predict probability of occurrence (Elith et al. 2011). 
Maxent uses randomly selected background points 
within the extent of the study area as pseudo absences 
to calibrate entropy algorithms. To validate a Maxent 
model, the occurrence data are split into training 
and testing datasets. The model generates response 
curves that are used to map the relative probability 

of occurrence within the area of study and outputs a 
list of the relative contributions of each input variable 
(Phillips et al. 2006).

We ran a series of models to estimate the 
probability of fire occurrence and projected models 
onto three future climate scenarios. The series included 
a comprehensive model with all variables and one 
sub-model for each variable suite: climate, terrain, 
human impact, and landcover. By partitioning these 
variable suites, we were able to identify regions of 
dissimilar estimation and compare the influence of 
each variable suite with a model that included all of 
the variable suites. For each model, response curves 
and jackknife calculations were performed to identify 
variable predictive ranges and to calculate variable 
importance. Variable response curves detail predictivity 
across the range of values for each environmental 
variable. Jackknife calculations generate independent 
Maxent models using only one variable and compare 
the predictivity of that single variable model to the 
overall model using all of the environmental variables. 
Additionally we defined 135,000 background points, 
which provide the Maxent model a random sample 
of values from within the study extent to compare 
the environmental data of the occurrence points to 
the background points for fitting model algorithms 
(Elith et al. 2011). We withheld a random sample of 
20% of the occurrence points for model validation 
(i.e. for the testing dataset).

Assessing model performance
We assessed model performance using the area 

under the receiving operator curve (AUC) (Elith et al. 
2011). This curve represents the plot of sensitivity of 
true positives over the specificity of false positives. AUC 
values range from 0.5, where the model prediction is no 
better than any random selection of test points, to one, 
which represents perfect model prediction accuracy 
(Phillips  et  al. 2006). Previous work in using SDMs 
for modeling fire occurrence found that models with 
an AUC greater than 0.6 are considered informative 
(Parisien and Moritz 2009). Additionally, the percent 
contributions of each variable are calculated to provide 
insight in the relative predictivity of each input into 
the model. To identify areas with differing model 
results, we calculated a series of anomaly maps - the 
prediction from the comprehensive model minus the 
prediction from the model using each variable category. 
The resulting raster values are zero where there is 
no difference between predictions, negative where 
the comprehensive model had a lower probability of 
occurrence than the other models, and positive where 
the comprehensive model had a higher probability of 
occurrence than the other models.

Modeling future climate predictions
In order to predict changing probabilities of fire 

occurrence given future climates, we projected our 
models into various future climate scenarios. We used 
the NOAA Geophysical Fluid Dynamics Laboratory 
Climate Model 3 (GFDL-CM3) (Griffies  et  al. 2011). 
This climate model has been used for previous studies 
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in Texas, and is well suited for analyzing precipitation 
and temperature at the state and regional level 
(Rainwater 2013). We selected three climate scenarios 
generated from the climate model to represent the 
best case (RCP26), middle case (RCP45), and worst case 
(RCP85) emission scenarios for 2050. Each of these 
scenarios was clipped to the boundary of the study 
area and added as a projection in our Maxent model. 
We calculated anomaly maps between modern and 
future projections of probability of fire occurrence 
to evaluate change in probability of fire occurrence.

Results

Density of fire occurrences
Fifteen years of remotely-sensed fire occurrences 

in our study area showed the distribution of fire across 
the semi-arid to sub-humid gradient (Figure 1). There 
was a high density of fire occurrences in the pine and 
mixed pine-hardwood forests in the sub-humid to 
humid east and there were relatively few remotely-
sensed fire occurrences in the mixed shrub-grasslands 
in the semiarid west, except in a few places like the 
Davis Mountains hosting a cooler wetter landscape 
than the surrounding arid lowland desert. In the oak-
juniper savannas in the central region, there were 

heterogeneous densities of fires ranging from regions 
of extremely high fire occurrence to many regions with 
extremely low fire occurrence. There were also a few 
high density fire occurrences in the thorn shrub and 
subtropical woodlands of the south.

Modeling fire occurrences
Modeling fire occurrences with SDMs showed 

that the comprehensive model had the highest AUC, 
and therefore predictability, followed by the climate, 
terrain, landcover, and human impacts models, 
respectively (Table 2). The human impacts model did 
not reach the AUC model threshold of 0.6.

The comprehensive model predicted higher 
probability of fire occurrence in the central, 
eastern, and coastal portions of the state, as well 
as a particularly high area in the Davis Mountains 
surrounded by very low probability in the arid west 
(Figure 2). This is similar to the climate and terrain 
sub-models (Figure 2B,C), which also predicted higher 
probabilities of fire occurrence across the eastern, 
central, and coastal regions of the state and in the Davis 
Mountains region in the arid west. The human impacts 
model showed a surprisingly high probability across 
most of the state and moderate levels near major 
roadways (Figure 2D). The landcover model primarily 

Figure 1. Kernel density of the 135,798 fires detected between 2001-2016 by the MODIS Active Fire Monitoring Program 
in occurrences per square kilometer across the state of Texas. Areas of darker red indicate higher densities of fire, while 
lighter areas indicate regions of lower fire density.
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predicted fire occurrence in the eastern portions of 
the state dominated by pine forests (Figure 2D) and 
failed to identify regions of higher fire density in the 
central and southern portions of the state indicated 
by the distribution of fire density, as well as in the 
comprehensive, climate and terrain models.

Predictors of Fire Occurrence
Fire occurrence was best predicted in the 

comprehensive model by annual precipitation, 
accounting for 53.4% of the variation in that model 
(Table 2). In the climate model, annual precipitation 
was again the primary predictor of fire occurrence 
(76.1% model contribution) with the other climate 
variables contributing less than 23.7% to the model. 
The second and third highest contributing predictors 
of the comprehensive model, elevation and landcover 
respectively, were also top predictors of the terrain and 
landcover models. The human impact variables did not 
contribute meaningfully to the comprehensive model. 
As landcover was the only variable of the landcover 
model, it accounted for all variation within that model.

The environmental variables with higher overall 
contributions to the five models indicated the range of 
conditions that are associated with fire occurrence. The 
most predictive variable, annual precipitation, indicated 
that fires were more likely to occur in the central semi-arid 
to sub-humid transition zones and eastern sub-humid 
regions which receive over 450 mm of precipitation each 
year. While other climate variables did not contribute 
as much to the overall model prediction, fire was more 
probable in areas that had annual mean temperatures 
over 17°C and maximum temperatures of the warmest 
quarter under 37°C. Fire probability was also higher in 
dry semi-humid areas dominated by evergreen forests, 
deciduous forests, and shrublands (Figure 2).

Projected changes in future climate and fire 
occurrence

Future climate scenarios show an increase in mean 
annual temperature across our study area, averaging 
0.24 C, 0.28 C, and 0.33 C for the RCP 25, RCP45, and 
RCP85 scenarios, respectively. Annual precipitation is 
projected to increase by an average of 37 mm, 20 mm, 
and 10 mm, respectively. Climate trends show the area 

Table 2. Variable importance for the comprehensive model and the four type models for fire occurrence across Texas. Area 
under the receiving operating characteristic curve (AUC is shown for each model). Variables used to build each model, 
their percent contribution to the model, and their permutation importance are listed next to the model type and its AUC.

Model AUC Variable Percent 
Contribution

Permutation 
Importance

Comprehensive 0.681 Annual Precipitation 53.4 55.5
Elevation 11.1 5.5
Landcover Type 8.2 11.3
Max. Temperature of the Warmest Month 5.8 5
Mean Annual Temperature 5.6 5.1
Topographic Roughness 5.3 5.7
Distance to City 4.6 6.4
Mean Temperature of Driest Quarter 3.4 1.8
Population Density 1.1 1.3
Distance to Highway 0.8 0.8
Mean Temperature of wettest quarter 0.7 1.4
Solar Radiation Exposure 0.1 0.1
Aspect 0 0

Climate 0.67 Annual Precipitation 76.1 64.9
Max. Temperature of the Warmest Month 9.5 13.1
Mean Temperature of Driest Quarter 7.6 4.3
Mean Annual Temperature 4.8 13.6
Mean Temperature of Wettest Quarter 1.8 4.2

Terrain 0.642 Elevation 92.1 86.5
Topographic Roughness 7.3 11.9
Solar Radiation Exposure 0.4 0.7
Aspect 0.3 0.9

Human 0.581 Distance to City 77.1 62.7
Distance to Highway 14.5 24.2
Population Density 8.4 13.1

Landcover 0.616 Landcover Type 100 100
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growing warmer and slightly wetter over time, even 
in the most optimistic of carbon emissions scenarios. 
These climate trends drive changes in predicted 
fire occurrence across this sub-humid to semi-arid 

gradient (Figure 3). Across climate scenarios, there 
was a consistent decline in fire probability across the 
central and northern part of the state, whereas the 
rolling plains and the high plains of the Panhandle and 

Figure 2. (A) Probability of fire occurrence across Texas for the comprehensive model. Fire probability for the climate (B), 
terrain (C), human (D), and landcover (E) models. Darker red indicates higher probability of fire, while areas of lighter red 
indicate regions of low probability of fire.

Figure 3. Projected climate model depicting probability of fire occurrence across Texas based on RCP26 (A), RCP45 (B), 
and RCP85 (C) future climate scenarios centered on the year 2050. Areas of darker red indicate higher probability of fire, 
while lighter areas indicate regions of lower probability of fire. Anomaly maps for the RCP26 (D), RCP45 (E), and RCP85 
(F) future climate scenarios. Areas in purple indicate areas of increasing fire probability under future climate scenarios 
compared to the contemporary climate model (Figure 2B), while areas in green indicate areas decreasing in probability 
of fire occurrence under future climate scenarios.



Brooke et al. Fire occurrence across ecological gradients

Frontiers of Biogeography 2021, 13.2, e49497 © the authors, CC-BY 4.0 license  8

the gulf prairies and marshes had an increase in fire 
probability (Figure 3).

Discussion
In a 15-year period with 135,798 remotely-sensed 

fires, annual precipitation was the strongest predictor 
of fire occurrence across the sub-humid to semi-arid 
transition in our study area. This corresponds with 
the previous work such as that of Parisien & Moritz 
(2009) which found similar relationships in fire-
vegetation-climate analysis. The strong influence of 
annual precipitation on predicted fire occurrence likely 
reflects a linkage between increased precipitation and 
increased plant growth and biomass accumulation, 
which dries out in the droughty summer months and 
becomes susceptible to ignition. The rain-drought cycle 
has been identified in other, similar, semi-arid and sub-
humid regions (Turner et al. 2008, Wang et al. 2016), 
and plays a critical role in where and when fires may 
occur. However, as our comprehensive and landcover 
models show, precipitation is more explanatory than 
vegetation type for the patterns we observed where 
landcover had a weaker predictive relationship with fire 
occurrence. This disconnect may illustrate that fuels 
and precipitation are both critical for fire to occur. Even 
when fuels accumulate, if they are not dry enough to 
ignite, then a fire is unlikely to occur and propagate.

Under several future climate scenarios, our 
models showed that the increase in temperature 
and precipitation drive heterogeneous changes in the 
probability of fire occurrence. While our fire occurrence 
projections consistently included widespread areas of 
reduced fire probability and pockets of increased fire 
probability, they do not inform on the expected severity 
of future fires. Fire severity is likely to increase over 
time, regardless of the numbers of fires, due to the 
higher overall temperatures and increased drought 
periods (Barbero et al. 2015). Future modeling efforts 
should include the impacts of these scenarios on fire 
severity in the study region.

Overall, we found that annual precipitation was a 
strong predictor of fire occurrence, both directly and 
through secondary linkages to ecological characteristics 
like vegetation type in sub-humid and semi-arid lands. 
The patterns we found support similar fire-vegetation-
climate cycles identified in analogous ecological 
regions across the globe. Projection on future climate 
scenarios showed a widespread decrease in the 
probability of fire occurrence across great parts of 
the grasslands, juniper and oak woodlands, and live 
oak and mesquite savannah, as well as in the cross 
timbers and prairies in the central parts of the state 
most closely related to the transition zone between 
sub-humid to semi-arid environments. Interestingly, 
given the uncertainties that future climate conditions 
bring, we found little changes to the projections of the 
distribution of probability of fire occurrence among 
the three projected climate scenarios.

In light of the climate-driven drought cycles, 
land management practices provide the most 
direct modifications to the annual precipitation-fire 
occurrence relationship by inducing or suppressing 

fire and changing the vegetative structure. This is 
particularly relevant in sub-humid and semi-arid 
rangelands that are being converted into woodlands, 
cropland, and other ecosystems (Twidwell  et  al. 
2013, Bestelmeyer et al. 2015, Leis et al. 2017). As 
an example, the conversion of grass-dominated 
rangelands to afforested woodlands introduces a shift 
in fire occurrence that may become more detectable 
to remote observation platforms such as the MODIS 
active fire product (Roy et al. 2008). Additionally, these 
changes in land-use and landcover across the Great 
Plains are a major driver in changes in carbon storage 
(Bouchard et al. 2011) and decreasing soil moisture 
(Zou et al. 2018). These vegetative shifts may therefore 
be managed to reduce the impact of climate shifts on 
fire occurrence and fire detection.

Rural landownership in Texas has been slowly 
trending away from traditional agricultural use and 
towards lifestyle and multiple-use management 
which generally shifts grassland ecosystems towards 
afforested juniper woodlands (Sorice et al. 2012). As 
these historical rangelands are encroached upon by 
woody plants, thus reducing the livestock carrying 
capacity while incurring significant land clearing costs 
to the landowner (Teague 2001). Our models of future 
projected increase in fire probability in the south-
central plains combined with this continued landowner 
change suggests that we should continue to focus fire 
management efforts and vegetation restoration in the 
south-central plains.

Limitations to interpreting models projected 
on future climate scenarios include uncertainty 
surrounding the controls on fire occurrence with SDM, 
uncertainty in future climate scenarios, no-analog 
future climate conditions, and not incorporating 
future projections of vegetation cover or human 
impact. Projected models of future probability of 
fire occurrence are best viewed as representing the 
expectation of fire occurrence given various future 
suites of climate conditions. Future modeling efforts 
could include more in-depth projections for climate, 
landcover, and human impact variables over time and 
how such integrated future projections will change 
fire probability in the region.

SDMs like Maxent provide one method of exploring 
patterns of disturbance in modern and future climates, 
and are readily applicable to a variety of regional and 
global problems. Using tools like Maxent to explore 
fire occurrence as it relates to vegetation density, 
fire size, and comparing predictions based on annual 
climate, fire season, and fire size would all make for 
interesting future investigations. Another important 
aspect for future investigation includes evaluating 
different types of precipitation variables. Here, we 
chose to focus on annual precipitation because it 
was highly correlated to other precipitation variables. 
However, one study in the humid southeastern United 
States found precipitation seasonality or variability is 
more important than annual precipitation in that high 
moisture environment (Lafon and Quiring 2012). Thus, 
future research should investigate this in the sub-humid 
to semi-gradient across Texas. The global significance of 
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sub-humid and semi-arid lands makes them critical for 
understanding fire disturbance patterns in the modern 
environment and into the future. Understanding how 
environmental characteristics influence fire occurrence 
in these areas is a key component to facilitating 
their roles as natural ecosystem components when 
managing lands and to mitigating negative effects on 
these regions.
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