
UC Berkeley
International Conference on GIScience Short Paper Proceedings

Title
Fast Computation of Continental-Sized Isochrones

Permalink
https://escholarship.org/uc/item/71h533kp

Journal
International Conference on GIScience Short Paper Proceedings, 1(1)

Authors
Bolzoni, Paolo
Helmer, Sven
Lachish, Oded

Publication Date
2016

DOI
10.21433/B31171h533kp

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/71h533kp
https://escholarship.org
http://www.cdlib.org/

Fast Computation of Continental-Sized Isochrones
Paolo Bolzoni1, Sven Helmer1, Oded Lachish2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
Email: {firstname.lastname}@unibz.it

2 Dept. of Computer Science and Information Systems, Birkbeck, University of London, London WC1E 7HX, United Kingdom
Email: oded@dcs.bbk.ac.uk

Abstract
We propose an approach to speed up the computation of isochrones, which are maps showing the
reachability of locations given a starting point and a time constraint. The core idea of our technique
is to materialize large parts of an isochrone, demonstrating how this can be achieved for multi-modal
transport networks in a scalable way. We illustrate the effectiveness of our method with the help of an
experimental evaluation.

1. Introduction
Isochrone maps, which given a starting location show the reachability of places within a certain time
span, have been around for more than a hundred years. Before the introduction of computer sys-
tems and the digitization of map data, creating these artifacts was a very time-consuming task. The
easy availability of geographical information systems (GIS), such as PostGIS, and map data, such as
OpenStreetMap, has sparked a renewed interest in isochrones. The applications of isochrone maps are
manifold. For example, in urban and regional planning they can be used to determine the location of
public services, such as hospitals, schools, police and fire stations, making sure that catchment areas
cover an adequate part of the population. When planning new transport links, isochrones can help in
identifying zones that are not well-connected. Establishing evacuation routes for emergency situations
can be facilitated as well. In real estate applications potential buyers and tenants can check which ac-
commodations are within easy reach of workplaces and schools. Finally, planning trips on the fly to
quickly determine which places are reachable in an acceptable time frame is also made easier.

Currently, there are no isochrone algorithms that scale to very large and detailed maps. Our goal
is to compute isochrones very efficiently, in the ideal case in real-time. While there are efficient al-
gorithms for route planning, most of them are uni-modal, i.e., only one mode of transportation, e.g.
by car, is used. Usually, people change their mode of transportation a few times when moving from
one location to another, though. There are only a few sophisticated algorithms for multi-modal route
planning, e.g. Bast et al. (2015), but they only compute shortest paths from point to point.

While a lot of the early work on algorithms for computing isochrones, and also some of the
more recent work, assumes that the underlying network is fairly homogeneous, Gamper et al. (2012)
specifically investigate isochrones for multi-modal transportation networks. These approaches are
implemented on top of database systems utilizing geographical information system features. On the
one hand, this makes it easier to implement the computation of isochrones, as some general-purpose
database system functionality can be re-used. On the other hand, not even geographical information
systems support or are optimized for the direct computation of isochrones, so there is still a lot of code
outside of the database system that needs to be written.

Our technique offers a highly scalable approach for computing isochrones on multi-modal trans-
portation networks efficiently. In summary, we make the following contributions: we develop a data
structure that precomputes and materializes a large part of an isochrone map; as a result, our algorithm
can assemble large parts of the answer by sequentially scanning the data structure and in the case of a

GIScience 2016 Short Paper Proceedings

21

single-mode scenario only a single sequential scan is required; we evaluate our technique experimen-
tally using real-world data extracted from OpenStreetMap for Europe, showing that we can compute
large isochrones quickly.

2. Problem Definition
Let us briefly define the multi-modal transportation network we use (it is similar to the one used by
Booth et al. (2009)). Vertices represent noteworthy points in the street network like crossings or bus
stops, arcs represent connections between these points. Given an arc ewe define d(e) as its destination,
and s(e) as its source. Moreover, we need a set M of transportation modes that are associated with
arcs. Each mode m ∈ M has a label (e.g. pedestrian, car, bus, train) and a description whether the
mode is discrete or continuous in space (ds or cs) and discrete or continuous in time (dt or ct). An
example for a continuous space and time (csct) mode is a pedestrian network. Any point can be reached
at any time. Public transport systems, such as trains and buses, are discrete in space and time (dsdt),
as they only run at specific times and can only be boarded or left at certain locations, e.g. stations and
bus stops. Examples for a mode that is discrete in space and continuous in time (dsct) are escalators
and tunnels: they operate continuously, but a person cannot get off before reaching the end. Finally,
a mode continuous in space and discrete in time (csdt) are roads closed at specific times. Due to the
multiple different modes, we actually have a multiset of edges, i.e., parallel arcs are possible (e.g. by
walking or taking the bus between two stops).

In order to compute an isochrone Iso, we need a starting location q, a time threshold tmax, and
a starting time ts (needed for the departure times of ds arcs). The isochrone for a query includes all
parts of the network that can be reached from q within tmax. The answer to q very likely consists of
partial arcs around the boundary of the isochrone (see Figure 1(a) for a query q, located in the lower
left corner, with tmax = 25; please also note the different transportation modes, in fact the bus on the
dsdt arc is intended to depart at ts+9 and it is impossible to cross the discrete arcs in the bottom right).
Furthermore, the location q does not have to be a vertex: it can lie on continuous space (cs) arcs and
then has to be converted to queries starting from the endpoints of the arcs. In Figure 1(b) q lies on the
arcs e1 and e2, both of which have a weight of 10. Moreover, we know that q has a distance of 8 to
d(e1) and a distance of 2 to d(e2), which means that at d(e1) we have 17 minutes left and at d(e2) 23
minutes.

..
tl=23

.
tl=17

............ 10..
q

. 10. 10.

10

.

10

.

10

.2 .

8

.
10

.
10

.

2

.

8

.

13

..........

csct

...

dsct

..

csdt

..

dsdt

..
tl=23

.
tl=17

............ 10. e1..
e2

.
q

. 10. 10.

10

.

10

.

10

..

8

..
10

.
10

.

2

.

8

.

13

..

csct

...

dsct

..

csdt

..

dsdt

(a) Example (b) Starting queries

Figure 1: Isochrones

3. Our Approach
The basic idea of our approach is to precompute and materialize a large part of isochrones, namely
those along the pedestrian network (or any other large csct network). For every node x ∈ V we create

GIScience 2016 Short Paper Proceedings

22

a list Lx of triplets ((e, δ(x, s(e)), we), where e ∈ A (A being a multiset of directed edges, or arcs),
we is the weight of the arc e, and δ(u, v) computes the minimal distance between u ∈ V and v ∈ V .
Basically, we compute the distance δ from node x to the starting node s(e) of every arc e. This also
includes starting nodes of arcs that are not part of the csct network. However, to compute δ(x, s(e))
we only use csct arcs and the triplets in a list are sorted in increasing distance of s(e) from x. This
data structure allows us to do a very fast computation of the csct components of an isochrone: we just
need to sequentially scan Lx. Every time we encounter a non-csct arc, though, we have to trigger a
new subquery. In our case we use the algorithm by Johnson (1977)1 applied to the pedestrian network
computing the all-pairs shortest paths to determine the values for δ.

However, applying our technique in a straightforward way does not scale: in the worst case we
need storage space quadratic in the number of nodes. Therefore, we partition the graph and apply our
technique to every partition (connecting the individual partitions in the process). We employ METIS
by Karypis and Kumar (1999), a fast and readily available state-of-the-art algorithm for partitioning
graphs; we use the kMETIS variant. We configured it to create partitions minimizing the number of
cut arcs under the constraints of producing contiguous partitions and balancing them (in our case the
allowed difference in size is at most 3%).

Querying works in the following way. We store the queries to be processed in a priority queue Q,
which is initialized with the starting point q (or two starting points, in case q lies on an arc), the starting
time ts, and tmax. Q sorts the queries by partition identifier (in order of appearance), breaking ties via
the duration of a query in descending order. In other words, if the partition of the starting node vi of a
query qi that is added to Q is already in Q, then qi is grouped with these queries (ordering the queries
in this group by the remaining time tli). Otherwise, qi is appended to the end of the queue. Grouping
queries by partitions means we can keep the processing localized, not jumping back and forth between
different parts of the graph. Ordering queries by duration allows us to do effective pruning. If we have
already run a query from a starting node vi with more time remaining, then there is no reason to run
one from the same point with less time remaining. The former query will always cover a greater area.

While the query in front of the queue is still in the same partition as the previously executed one,
we process it, remove it from the queue, add new (partial) arcs to the isochrone, and enqueue any new
queries resulting from the processing of the current one (no new queries will be scheduled if the distance
of the nodes in the materialized list becomes too great). If the next query to be processed accesses a
different partition, we switch to a new partition. Once Q runs empty, the algorithm terminates.

Processing a triplet also depends on what kind of arc we are facing: csct, csdt, dsct, or dsdt. The
simplest case is csct, as this means that we are staying within the materialized network. We merely
have to figure out which part of the arc we cover. We calculate the fraction le of the arc we can reach,
given the time that is left after arriving at s(e) and the (partial) arc le is added to the isochrone. If the
arc e crosses into another partition, we have to schedule a new query, which is added to Q. The other
types of arcs are not much more difficult to handle. csdt arcs, which are closed at certain times, may
introduce waiting times, but apart from this are treated in the same way as csct arcs. The discrete space
arcs (dsct and dsdt) can only be traversed fully or not at all.

4. Experimental Evaluation
We evaluated our algorithm on a PC with an Intel i7-4800MQ CPU running at 2.7 GHz, 24 GBytes
RAM, and a 120GB solid state disk. The dataset, taken from OpenStreetMap, is a map of continental
Italy comprising 3.7 million vertices and 9.7 million edges.

Figure 2(a) shows a comparison of our technique to runningDijkstra’s algorithm to find an isochrone
1For sparse networks, Johnson’s algorithm is more efficient than Floyd-Warshall.

GIScience 2016 Short Paper Proceedings

23

...
..

0

.
10,000

.
20,000

.
30,000

.1 .

2

.

3

.

4

.

5

.

query time (seconds)

.

ru
n
tim

e
(s
ec
on
ds
)

.

. ..our algorithm

. ..dijkstra

...
..

10,000

.
15,000

.
20,000

.
25,000

.
2

.
4

.

6

.

8

.

10

.

12

.

14

.

16

.

nr partitions

.

ru
nt
im

e
(s
ec
on
ds
)

.

. ..our algorithm

. ..dijkstra

(a) Run time comparison (b) Effect of partitioning

Figure 2: Experiments

using 20,000 partitions. We make a couple of observations. Gamper et al. (2012) implemented Di-
jkstra’s algorithm by loading the whole network into main memory, resulting in a suboptimal perfor-
mance. For an isochrone of ten hours Dijkstra took 100 seconds and their algorithm MINEX even
longer than that. We adapted Dijkstra to profit from the graph partitioning as well, leading to a much
more competitive approach. Nevertheless, our algorithm still outperforms it for large isochrones, mak-
ing it much more scalable. We also investigated the effect of the number of partitions on the perfor-
mance (see Figure 2(b) for ten hour queries). As it turns out, there is a sweet spot: a small number of
large partitions means we load too much unused data during query processing, a large number of small
partitions means we lose time due to too many I/O operations. We suppose that the optimal number
of partitions is related to the number of (urban) agglomerations, but at the moment we determine this
number experimentally.

5. Conclusion and Future Work
We show how to implement the computation of isochrones in a scalable way, i.e., we can determine
large isochrones on OpenStreetMap graphs very quickly (e.g. a ten hour isochrone for a map of Italy
takes on average less than three seconds). We manage to do so by precomputing and materializing
parts of the solution. For future work, we see optimization potential in parallelizing the algorithm and
developing more intelligent partition loading strategies. Additionally, we want to work on efficiently
rendering the full contours of an isochrone.

References
Bast, H., Delling, D., Goldberg, A. V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., and Werneck, R. F.

(2015). Route planning in transportation networks. Computing Research Repository (CoRR), abs/1504.05140.
Booth, J., Sistla, P., Wolfson, O., and Cruz, I. F. (2009). A data model for trip planning in multimodal transportation sys-

tems. In Proc. of the 12th Int. Conf. on Extending Database Technology (EDBT’09), pages 994–1005, Saint Petersburg,
Russia.

Gamper, J., Böhlen, M. H., and Innerebner, M. (2012). Scalable computation of isochrones with network expiration. In
Proc. of 24th Int. Conf. Scientific and Statistical Database Management (SSDBM’12), pages 526–543, Chania, Crete,
Greece.

Johnson, D. B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM , 24(1), 1–13.
Karypis, G. and Kumar, V. (1999). A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM

Journal on Scientific Computing, 20(1), 359–392.

GIScience 2016 Short Paper Proceedings

24

