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Significance of the incoherent interface for modelling of1

the olivine–spinel transformation2

S. J. S. Morrisa3

aDepartment of Mechanical Engineering, University of California4

Berkeley, CA 94720, USA5

Abstract6

We compare two models of growth of a rim of high–pressure phase on a
sphere which is initially at uniform pressure p0, and whose surface is kept at
that pressure. The models share these features: the same thermodynamic po-
tential is used to describe the effect of strain energy on interface kinetics; stress–
free strain enters only into the relation between pressure within an element of
product phase, and the volume strain experienced by it from its initial state as
parent phase; at the interface, the normal component of displacement is con-
tinuous, and the shear stress vanishes. The models differ in one respect. In
one, deviatoric stress within an element of product is determined by the total
deviatoric strain from the initial state. In the other, deviatoric stress is de-
termined by the increment in deviatoric strain subsequent to transformation;
memory of prior deviatoric strain is erased within the incoherent interface as
the lattice is rebuilt. The first model is not consistent with experiments on the
olivine–ringwoodite transformation in single crystals: it predicts that samples
should have transformed completely at a roughly constant rate; instead, growth
slowed, and may even have ceased. The second model predicts this behaviour:
evem with purely elastic deformation, theory and experiment agree adequately
for samples having 75–200 ppmw of water. For nominally anhydrous samples,
rims are thinner than predicted. As creep is not essential to this model, these
very thin rims suggest water may be essential to lattice reconstruction.

1. Introduction7

With increasing pressure, olivine, the chief constituent of earth’s upper man-8

tle, undergoes a series of densification phase changes, first to a modified spinel9

structure (wadsleyite), then to the spinel structure (ringwoodite). Deviatoric10

stress so generated has been proposed as a cause for deep earthquakes within11

subducting oceanic plates (Brudzinski and Chen 2005). Morris (2017, p.256)12

shows that, although existing models predict that the volume reduction gen-13

erates a deviatoric stress ∼GPa, the predicted magnitude is an artefact of the14

modelling assumptions. Those models do not account for microstructure: com-15

paction occurs at the grain scale, and produces a large deviatoric stress at that16
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scale. The mechanism by which devatoric stress at the grain scale produces de-17

viatoric stress at the seismic scale is not understood. However, the grain–scale18

is accessible experimentally, and, if the physics at that scale were understood,19

the behaviour of polycrystals could be treated by computation. There are two20

major problems: accounting for the sensitivity of the phase change to traces of21

hydrogen (water), and formulating a constitutive relation for the product.22

We show here that experiments on single crystals can illuminate both prob-23

lems. In these experiments, a sphere or cube cut from a single crystal of San24

Carlos olivine is raised to the desired pressure and (then) temperature within25

the stability field of the spinel structure. Product nucleates rapidly to form26

a continuous rim, which then grows at the expense of the olivine (Kubo et al.27

1998a,b; Liu et al. 1998; Mosenfelder et al. 2000; Diedrich et al. 2009; Du Frane28

et al. 2013). Growth is sensitive to water. At 18 GPa and 1373 K, a 0.5 mm29

sphere with initial water concentration of ∼ 300 ppmw transformed completely30

in about 1 hour (my estimate); however, after 3 hours at those conditions, the31

rim on a sphere of nominally anhydrous olivine was only 17 µm thick (Diedrich32

et al. 2009, table 1). Because the phases differ in specific volume (inverse of33

the density), growth of the rim implies the presence of deviatoric strain within34

the rim. Deviatoric strain will cause a deviatoric stress, whose magnitude will35

depend on the rheology of the rim. Though the rheology is poorly known,36

observations of dislocation microstructure are consistent with the presence of37

deviatoric stress within the rim. They also suggest that water facilitates creep38

within the rim (Kubo et al. 1998a,b). However, Mosenfelder et al. (2001, p.169)39

have stressed that water may also affect interface kinetics. Theory is needed to40

disentangle those alternatives.41

This brings us to the second problem: formulating the constitutive relation.42

Because the sample initially consists of olivine alone, all material within the43

rim has been processed by passing through the thin interphase region. The44

constitutive relation for the product might be expected to depend on the nature45

of that region. In these experiments, no preferred crystallographic orientation46

is observed between the product rim and the olivine core; such interfaces1 are47

described as being incoherent (Kerschhofer et al. 1998, Kubo et al. 1998b,48

Mosenfelder et al. 2000). But, unlike the term coherent interface, whose im-49

plications are precisely defined by the condition that the lattice (and so the50

displacement vector) are continuous across it, the absence of preferred orienta-51

tion does not determine the corresponding physical model.52

Here, we analyse two constitutive models. In the first (existing) model, stress53

is assumed to be uniquely determined by the total strain from the initial state,54

independent of the path taken to reach the current state (Larché and Cahn 1973,55

p.1056; Larché and Cahn 1985, §4.1). The incoherent interface is assumed to56

differ from a coherent interface only in the boundary condition imposed upon57

1In this work, ‘incoherent’ refers only to the interface. The word is also used to describe
a particle of precipitate within which all deviatoric stress has been relaxed (Christian 1965,
p.416; Lee and Johnson 1978; Mura 1987, pp. 226, 417).
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the tangential component of displacement. At a coherent interface, the displace-58

ment vector is continuous; at an incoherent interface, the normal component of59

displacement is continuous, and free slip is allowed along the interface (Nabarro60

1940; Larché and Cahn 1978, equation 25). For spherically–symmetric growth,61

slip is absent and the distinction between coherent and incoherent interfaces is62

lost (Christian 1965, p. 416).63

To show the implication of path–independence, we note that when an olivine64

sphere is transforming to ringwoodite, a material element within the rim initially65

consisted of olivine at uniform pressure p0, and currently consists of ringwood-66

ite in a certain state of deviatoric strain. Suppose that the element was first67

transformed, without deviatoric strain, to ringwoodite at uniform pressure p0;68

then, as ringwoodite, deformed into its current state of deviatoric strain. If the69

deviatoric stress is independent of path, the same deviatoric stress will result70

if the element is first deformed into its current state of deviatoric strain, then71

transformed to ringwoodite without further deviatoric strain. But, if there is72

no relation between the lattices, the lattice within that very element must have73

been rebuilt as the interface passed over it. One might expect that to erase74

the memory of deviatoric strain suffered by the element before, or during, its75

transformation.76

This idea is consistent with physical picture of the incoherent interface given77

in the literature. Of nucleation and growth, Christian (1965) writes: ‘individual78

atoms move independently, there is no correlation between the initial and final79

positions of the atoms after retransforming to the original phase.’ (p.12). . . ’In80

some nucleation and growth transformations in the solid state, there is no re-81

lation between the orientations of the two lattices.’ (p.13) Those passages im-82

ply that if the interface is incoherent, individual atoms cross it independently.83

Likewise, Sung and Burns (1978, p.192) write that ‘the original olivine structure84

disintegrates . . . the migration of atoms across the interfaces to join spinel nuclei85

may not follow a definite path but may be achieved by a complicated process of86

random walk.’ By developing a continuum model incorporating the idea that87

the lattice is rebuilt, we test that atomistic picture.88

With this motivation, in the new model, we assume that, within a material89

element, deviatoric stress depends only on the increment in deviatoric strain90

since the element was transformed. For the first time, the distinction between91

coherent, and incoherent, interfaces is retained for spherical–symmetric growth.92

In §2, §3 the problem is stated, and the new constitutive relation is formu-93

lated. In §4, we state those properties of spherically symmetric deformation94

which are independent of the constitutive assumption; these results are used95

to simplify analysis of the models discussed here. In §5, the interface kinetic96

relation is described. The rate parameter λ (ratio of interface speed to potential97

difference driving propagation) is assumed to be independent of time.98

In §6, the existing model is analysed. The treatment differs from that in99

Morris (2014), because it is organized about the aim of showing that the two100

models can be distinguished experimentally. To this end, compressibility of the101

phases is included here. The analysis predicts the existence of a threshold for the102

applied pressure p0. Below the threshold no product forms; above it, transfor-103
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mation should occur at a rate which is, roughly speaking, independent of time.104

(Broadly similar behaviour is found for elastic, and for elastic perfectly plastic,105

bodies.) That prediction is not consistent with experiment: near but above the106

coexistence (Clapeyron) curve, Kubo et al. (1998b; 1303 K, 13.5 GPa) observe107

a well–defined product rim; well above the coexistence curve (Mosenfelder et108

al. 2000; 1373 K, 17 GPa) observe an interface velocity which decreases with109

time. Though water is preferentially partitioned into the high–pressure phases110

(wadsleyite, ringwoodite), this might be expected to enhance plastic deforma-111

tion within the rim, but also, by removing water from the interface, inhibit the112

reaction occurring there (Mosenfelder et al. 2001). There seems to be be no113

simple way to reconcile existing theory with experiment.114

The new model is analysed in §7. It predicts behaviour consistent with115

observation. Whenever the applied pressure p0 exceeds the Clapeyron pressure116

p̄ at which the phases would coexist in a common hydrostatic state, a product117

rim grows at a rate which decreases with time. This leads to a state in which118

the rim and the core of parent olivine coexist on the laboratory time scale. The119

thickness of this equilibrium rim vanishes for p0 = p̄, and increases with excess120

pressure p0 − p̄.121

In §8, experiment and theory are compared in detail. For purely elastic122

deformation, the new theory contains no adjustable constants: in this simple123

form, it agrees adequately with experiments on samples containing 75–200 ppmw124

of water. For nominally anhydrous (< 6 ppmw of water) samples, however, the125

new model predicts much thicker rims than observed. This could be explained126

if the rate parameter λ decreased with time for the drier samples. Predictions127

are relatively insensitive to plastic deformation.128

As for conditions in the oceanic lithosphere, Peslier and Bizimis (2015, table129

1) report a bulk water content of only 45 ppmw in a peridotite xenolith from130

the Pali vent on O’ahu, Hawaii; they argue that this sample is representative131

of unmetasomatized Pacific lithosphere. If water is essential to the reconstruc-132

tive process occurring at the phase interface in the single crystal experiments,133

and also to the competing process of intracrystalline growth, deciding whether134

metastable olivine can exist within subducting slabs will require further exper-135

iments showing the behaviour as a function of water content in the range 5–50136

ppmw. If, at low water fractions, the reconstructive process is water–limited,137

the size of a metastable wedge could be controlled by mass transfer within the138

oceanic lithosphere.139

Better experiments are needed for a more exacting test of the new theory.140

Because drier samples tend to gain water over long times, determining large–141

time behaviour may require extrapolation; this will be more reliable if scatter142

is reduced, a sufficient number of data are acquired, and measurements are143

repeated by independent groups. The new theory will have served its purpose144

if attempts to falsify it lead to systematic measurements of rim thickness as a145

function of time and thermodynamic state.146
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2. Formulation147

For an arbitrary tensor tij , its deviator t
′
ij = tij −

1

3
tkkδij . The summation148

convention applies, and δij denotes the unit tensor.149

In the initial (reference) state, the sample consists of parent phase at uniform150

pressure p0. A subscript ‘0’ denotes a variable evaluated in this uniform state.151

According to Morris (2014, p.131), rim growth causes a strain which is of the152

order of the fractional difference in specific volume between the phases. Because153

that difference is less than 7% for the olivine–ringwoodite transformation, we154

assume infinitesimal strain.155

The infinitesimal strain tensor eij is defined in terms of the displacement ui

of a material element from its position in the initial state:

eij =
1

2

( ∂ui

∂xj
+

∂uj

∂xi

)

. (1)

For the initial state, the stress tensor is −p0δij . The tensor σij represents the
additional stress caused by rim growth. Quantities representing absolute stresses
are denoted by a tilde. Pressure is defined as the negative of the mean normal
stress: the relative pressure p = − 1

3
σkk and the absolute pressure p̃ = p0 + p.

In this notation,
σ̃ij = −{p+ p0}δij + σ′

ij . (2)

3. Constitutive relation156

Because the conduction time is of the order a few seconds for the mm–sized157

samples used in the experiments, we assume the process to be isothermal. In an158

elastic material, the thermodynamic state of a material element is then uniquely159

specified by the phase, and the components eij of the deformation tensor. In160

particular, σij depends on eij , and on the phase. The two constitutive models161

differ in the relation assumed for deviatoric stress, but have the same relation162

for pressure.163

3.1. Mean normal stress164

We assume that, within a phase, specific volume V = 1/ρ and relative
pressure satisfy

V = V0{1− κp} ; (3)

The compressibility κ is evaluated at the initial pressure p0; V0 denotes the165

specific volume of the phase at pressure p0. For the experiments at issue, the166

linear approximation (3) is satisfactory because κp is typically small.167

Because the equation of equilibrium refers to a material element, we express
(3) in terms of u. A material element which has been converted into product
phase 2 began as parent phase 1 at the reference pressure p0 with specific volume
V10. In its current state, it is at pressure p with specific volume V2(p). The
change in its specific volume is

V2(p)− V10 = {V2(p)− V20}+ {V20 − V10}.
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According to the theory of infinitesimal strain, V2(p)−V10 = V10 div u. On the168

right hand side, the first term contains only properties of a single phase: it is169

given by (3) with the appropriate value of κ. The remaining term V20 − V10170

represents the difference in specific volumes of the phases in the initial state.171

Let

θ0 =
V20 − V10

V10

. (4a)

In the terminology used by Eshelby (1961, p.91), the tensor e0ij =
1

3
θ0δij defines

the ‘stress–free’ or ‘transformation’ strain. Also let

θ = div u. (4b)

Then, dilatation θ and relative pressure p satisfy

θ =
{ θ0 − κ2 p (product),

−κ1 p (parent).
(5a, b)

Consistent with the small strain assumption, in (5a), a factor V20/V10 multiply-172

ing p has been set to unity. Equation (5) holds for both constitutive models.173

3.2. Deviatoric stress174

3.2.1. Existing model175

Within both parent and product, the deviatoric stress tensor σ′
ij and devia-

toric strain tensor e′ij satisfy Hooke’s law:

σ′
ij = 2µe′ij , (6)

with the appropriate value of µ. The constitutive relation consisting of (5) and176

(6) is analogous to the Duhamel–Neumann law in thermoelasticity; compare177

Larché and Cahn (1985, equation 4.2) with Sokolnikoff 1956, equation 99.4).178

In writing (6), we imply that, even though the lattice is reconstructed, de-179

viatoric stress within an element of product depends on the total deviatoric180

strain experienced by that element from its initial state as olivine. Though181

this assumption is reasonable for a coherent interface, it can hardly be correct182

when the interface is incoherent, and the lattice is rebuilt. By eliminating this183

assumption from the new model, we examine its implications.184

3.2.2. New model185

We assume that the crystal lattice is rebuilt, and that, while an element of186

the solid is in that incoherent state, all memory of deviatoric strain experienced187

by the element before, or during, its transformation is erased. As a result, within188

the product, deviatoric stress within an element of material depends only on the189

deviatoric strain experienced by that element since its transformation.190

Let τ denote the time at which the material element at position x is trans-
formed. Also e′2ij(x, τ) denote the strain evaluated within the product so
formed; because the deviatoric strain proves to be discontinuous across the
interface, the subscript 2 is used to indicate the phase to be used. (Strain is,
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of course, calculated using (1), and the unique reference state already defined.)
Then,

σ′
ij(x, t) =

{

2µ2

{

e′2ij(x, t)− e′2ij(x, τ)
}

t > τ ,
2µ1e

′
1ij(x, t) t < τ .

(7a, b)

If x is now taken to approach the interface from the product side, τ → t, and191

(7a) implies that σ′
ij vanishes within the product at the interface. This leads to192

the boundary conditions at the interface.193

Let ni, {u1i, σ1ij} and {u2i, σ2ij} denote, respectively, the unit normal to the
interface, and the displacement vector and stress tensor at the interface within
the phase indicated as 1 or 2. Then, at the interface,

(u2i − u1i)ni = 0, (8a)

σ1ijnj = σ2klnknl ni. (8b)

According to (8a), the phases remain in contact, but do not overlap. This condi-194

tion can be obtained by integrating the finite quantity div u over an infinitesimal195

volume spanning the interface, then using the divergence theorem. Next, (8b)196

follows from (7) and the usual condition of continuity of σijnj ; together, these197

require the stress vector within the parent 1 to be perpendicular to the interface.198

In the existing model, coherent and incoherent interfaces differ only because199

there is no–slip along a coherent interface; along an incoherent interface, phases200

slip freely, and the shear stress vanishes. (Larché and Cahn 1985, p.332). For201

spherically symmetric growth, symmetry excludes slip, and the distinction be-202

tween the two types of interface disappears. In the new model, the distinction203

is retained even then.204

Plastic deformation is included in the usual way, as detailed when needed.205

By using the elastic–plastic rheology, we only account for inelastic deformation206

on the single time scale imposed through interface kinetics. Longer time scales207

may be set, for example, by diffusion of water, or by creep.208

4. Properties of spherically symmetric growth209

In experiments on single spheres machined from single crystal olivine, the210

phase interface remains approximately spherical (Mosenfelder et al. 2001, fig-211

ure 2). Because there is no evidence for any instability, we now specialize to212

spherically symmetric growth.213

Fig.1 shows the geometry of the problem to be analysed. Parent phase214

of compressibility κ1 occupies the central sphere; product of rigidity µ and215

compressibility κ2 occupies the annular rim R(t) < r ≤ b. The object is to216

predict R(t). Because |θ0| ≪ 1, sample radius b can be taken as constant217

throughout the entire transformation. The displacement field is u = u(r)er.218

For the special case κ1 = 0 = κ2 of incompressible phases, expressions given219

here for the strain for arbitrary κ reduce to those in Morris (2014). Other220

expressions in that work are the special cases, for zero compressibility, of results221

given here for the existing model.222

The following properties are independent of the constitutive assumption.223
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R

p0
b

κ2

µ

κ1

Figure 1: Product rim (rigidity µ, compressibility κ2) consuming the parent (compressibility
κ1). Phase interface radius R(t); sample radius b.

4.1. Strain compatibility and its implications224

Boundary condition (8a) is equivalent to the following condition of strain
compatibility:

err(R
+)− err(R

−) = θ(R+)− θ(R−). (9)

This follows by evaluating the identity θ = err + 2u/r on each side of the225

interface, then equating the results. With (8a) now incorporated, we need not226

consider u further.227

As it is transformed, a material element suffers a discontinuous deviatoric
strain: by (9), because e′rr = 0 for r < R(t),

3

2
e′rr(R

+) = θ(R+)− θ(R−). (10)

The identity err = e′rr +
1

3
θ has been used. (That e′rr = 0 for r < R is proved228

below (12); (10) is not used there.) Equation (10) is the basis of the distinction229

between the two models considered here.230

4.2. Properties involving the stress231

Owing to spherical symmetry, the deformation tensor is diagonal when ex-
pressed in spherical polar coordinates {r, θ, φ}. (In this paragraph, only, θ
denotes a coordinate, rather than the dilatation.) The stress tensor, too, is
diagonal: the principal axes of stress and strain coincide because the material
is isotropic; and the displacement, purely radial. The non–zero stress compo-
nents are σrr = −p + σ′

rr and σθθ = σφφ = −p − 1

2
σ′
rr; all depend only on

r. The circumferential components of the equations of equilibrium are satisfied
identically; the radial component is

0 = r3
dσrr

dr
+ 3r2σ′

rr = −r3
dp

dr
+

d(r3σ′
rr)

dr
. (11a, b)

The conditions of mass conservation and mechanical equilibrium together
require that

3

2
e′rr + κσ′

rr =
C(t)

r3
, (12)
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with C(t) an arbitrary function (Morris 1995, equation 3.2). Equation (12)
follows by integrating the equation obtained by using the identity

r3
dθ

dr
=

3

2

d

dr
(r3e′rr)

to eliminate p between (11b) and the equation of state (5).232

Because, owing to the phase change, the form taken by (5) differs within the233

core, and product rim, the function C(t) is evaluated separately for core and234

rim. (It is consistent with this logic, that in §6.2.1, where we consider plasticity,235

we take C(t) to be identical on either side of the yield surface: no change of236

phase occurs there.)237

Within the core, C(t) = 0 because e′rr and σ′
rr are finite at r = 0. Then, (12)238

requires that 3

2
e′rr + κσ′

rr = 0. Because we are concerned with growth of a rim239

of product into the core of parent, the distinction between constitutive models240

affects only the rim. Within the core, Hooke’s law applies for either model: so,241

e′rr = 0 = σ′
rr, and p is uniform by (11b). Let this uniform pressure be p1(t).242

Within the rim, C(t) = {θ0 + (κ1 − κ2)p1(t)}R
3, and

3

2
e′rr + κ2σ

′
rr =

{

θ0 + (κ1 − κ2)p1(t)
}R3

r3
. (13)

The equation for C(t) follows by setting r = R in (12), then substituting the243

relation obtained by eliminating θ between (5) and (10), and imposing continuity244

of the normal stress. In (13), terms in braces represent the sources of deviatoric245

stress. These are the difference between the specific volumes of the phases, and246

differential contraction owing to their differing compressibilities.247

The uniform core pressure is given by

p1(t) = −3

∫ b

R

σ′
rr

dr

r
. (14)

This follows by integrating (11a) from r = R to r = b, using continuity of the248

normal stress, and imposing the condition σrr(b) = 0.249

In this formulation, core pressure p1 is determined as a function of interface250

radius R by (13), (14) and the constitutive relation. To complete the formula-251

tion, interface kinetics must be included.252

5. Interface kinetics253

Let F and σ̃nn = p0 +σnn denote the Helmholtz function (isothermal strain254

energy) per unit mass, and absolute normal stress σ̃ijninj ; as previously defined,255

ni denotes the unit normal to the interface. Also let Φ = F − V σ̃nn.256

Then, provided the shear stress vanishes on the interface, the mass flux J
across the interface from phase 1 into phase 2 satisfies

J{Φ1 − Φ2} > 0 : (15)

9



the phase having the higher potential converts into that having the lower po-
tential (Vaughan et al. 1984; see also Morris 2017, §5). Equivalently, phase 1
converts into phase 2 if, and only if,

V2σ̃2nn − V1σ̃1nn > F2 − F1 :

a particle of phase 1 converts into phase 2 if the compression work performed257

on it during transformation exceeds the increase in its strain energy. Compres-258

sion work drives transformation; storage of free energy impedes it. Because259

deviatoric stress influences both effects, it can either inhibit, or promote, trans-260

formation (Morris 2014, above equation 25).261

Because (15) is to be satisfied for an arbitrary transformation, J must be a262

function of Φ1 − Φ2 having the same sign as Φ1 − Φ2. Consequently, J must263

vanish when Φ1−Φ2 = 0. Because the existing model can be distinguished from264

the new model by comparing their predictions of when transformation starts,265

and stops, it is sufficient to assume the linear relation J ∝ Φ1 − Φ2. By (15),266

the constant of proportionality is positive.267

J is related to the interface speed Ṙ = dR/dt, and to the velocity v and
density ρ of the material by J = ρ1{v1 − Ṙ}. This can be replaced by J = ρ1Ṙ,
because v1 proves to be smaller than Ṙ by a factor ∼ |θ0| ≪ 1. Hence, by (15),

dR

dt
= −λ{Φ1 − Φ2}. (16)

The potential Φ is evaluated at the interface, on the side indicated by the268

subscript. The rate parameter λ is non–negative, by the remark ending the269

previous paragraph. Equation (16) is written so as to make it clear that a rim270

of phase 2 (spinel) grows into the core of phase 1 (olivine) if phase 1 is at a271

higher potential than phase 2.272

We assume λ to be independent of time.273

For spherically–symmetric deformation, σ̃nn = σ̃rr. As already shown in
§4, within the core, the stress is hydrostatic, σ̃1rr = σ̃θθ = σ̃φφ = −p̃1, and
continuity of the normal stress across the interface requires that σ̃2rr = −p̃1.
So Φ = F + p̃1V, and

Φ2 − Φ1 = {F2 + p̃1V2(p̃2)} − {F1 + p̃1V1(p̃1)}. (17)

In (17), F and V are evaluated for the thermodynamic state appropriate to the274

side of the interface on which phase exists. The terms p̃1V2(p̃2) and p̃1V1(p̃1)275

are evaluated using the equation of state in the form (3). As for the function of276

state F , it is a property of a given polymorph at given stress and temperature.277

Consequently, the formula for it differs from the usual expression for a single278

phase only because, here, we must incorporate the initial pressure p0.279

Because the process is isothermal,

dF = V0σ̃ijdeij ,= −{p0 + p}dV + V0σ
′
ijde

′
ij . (18a, b)

Equation (2) has been used. We must now specialize to a particular model.280
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6. Existing model281

6.1. Elastic solid282

6.1.1. Stress283

By eliminating e′rr between Hooke’s law (6), and (13)

(κ2 +
3

4
µ−1)σ′

rr = {θ0 + (κ1 − κ2)p1(t)}
R3

r3
. (19)

Together, (19) and (14) determine the pressure p1(t) within the core, and the284

radial deviatoric stress σ′
rr(r, t) with the product rim.285

Let

km =
|θ0|

κ2 +
3

4
µ−1

, (20a)

ε =
κ2 − κ1

κ2 +
3

4
µ−1

; (20b)

km is a measure of the stress caused by the volume difference between the phases.286

ε controls the magnitude of the differential contraction which occurs when the287

phases differ in compressibility; −∞ < ε < 1.288

Then,

p1 = −
kmf2
1− εf2

sgn θ0, (21a)

σ′
rr =

km
1− εf2

R3

r3
sgn θ0, (21b)

f2 = 1−R3/b3 denotes the volume fraction of product. Equation (21) is equiv-289

alent to a result by Lee and Tromp (1995).290

It is instructive to compare the physical motivation of the two analyses. Lee291

and Tromp determine the stress within a composite sphere comprising shells292

of different materials. The shell radii are given constants and the composite is293

initially stress–free. Lee and Tromp were motivated by the process of metamic-294

tization: in a mineral containing radioactive elements, their decay can cause the295

crystalline structure to become amorphous (metamict). In their model, amor-296

phization and the change in specific volume are assumed to occur sequentially.297

In the present problem, the processes are not sequential. As the interface prop-298

agates over it, a material element changes phase; simultaneously, the lattice is299

rebuilt, and the element experiences the discontinuity in deviatoric strain. In300

using the existing model, we implicitly assume that this rapid increase occurs301

within the product, instead of within the thin interphase layer.302

Compressibility weakens the effect of deviatoric stress: as κ2 → ∞ (increas-303

ing compressibility), km → 0 and σ′
rr and p1 both vanish, as if µ were zero. We304

also note that for θ0 < 0 (dense rim), p1 > 0 and σ′
rr < 0; also, p1 vanishes305

initially (when f2 = 0) and increases roughly linearly with volume fraction of306

product f2, but σ
′
rr is non–zero whenever any product is present. These results307

can be understood using (13) for the special case κ1 = 0 = κ2; then ε = 0.308
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Because Hooke’s law (6) requires σ′
rr and e′rr to have the same sign, (13) re-309

quires σ′
rr to have the same sign as θ0: radial deviatoric stress with a rim of310

dense elastic product is negative (compressive). The condition of mechanical311

equilibrium (14) then requires p1 > 0: the absolute pressure within the core of312

remnant olivine exceeds the applied pressure. Though this effect of deviatoric313

stress proves to promote, rather than to inhibit, transformation in an elastic314

body, we now show that storage of strain energy acts in the opposite sense.315

6.1.2. Potential316

Let F0 denote the Helmholtz function for the initial hydrostatic state p0. By
integrating (18b), we obtain

F = F0 + κV0 p0 p+
1

2
V0{κp

2 + 3

4
µ−1(σ′

rr)
2}. (22)

This equation expresses F as the sum of a contribution from the externally
applied pressure p0, and additional terms due to stress internal to the sample
grain. The term linear in the relative pressure p describes work done by the
initial pressure p0 as the specific volume V changes owing to the internal pres-
sure. Quadratic terms (in braces) describe work done by the internal stress
in compressing and deforming the material element; these terms correspond to
the usual expression giving F for an elastic body deformed from a state of zero
initial stress (Fung 1965, §12.8). Let G0 = F0 + p0V0 denote the usual Gibbs
function evaluated in the hydrostatic initial state. Also let [G0]

2
1 = G20 −G10,

and let [V0]
2
1 = V20 − V10. (Larché (1990, p.84) calls [G0]

2
1 the ‘chemical free

energy’.) Then, Φ2 −Φ1 is given in terms of the relative pressure p1 within the
core, and the deviatoric stress σ′

rr within the rim at the interface as follows:

Φ2 − Φ1 =
{

[G0]
2
1 + [V0]

2
1 p1 −

1

2
[κV0]

2
1 p

2
1

}

+ 1

2
V20

(

κ2 +
3

4
µ−1

)

(σ′
rr)

2. (23)

Because deviatoric strain is proportional to θ0, (23) is accurate to the order
of θ20. To the same order of accuracy, we may set V10 = V20,= V0 in the
coefficients of p21 and (σ′

rr)
2. In this approximation, θ0 = [V0]

2
1/V0, and

Φ2 −Φ1 =
{

[G0]
2
1 + V0θ0 p1 −

1

2
V0(κ2 − κ1) p

2
1

}

+ 1

2
V0

(

κ2 +
3

4
µ−1

)

(σ′
rr)

2. (24)

Because rim thickness increases if Φ2 < Φ1, the sign of each term in (23) de-317

termines whether it represents an impediment, or a cause, of growth. The term318

proportional to (σ′
rr)

2 represents an impediment. Because σ′
rr is independent319

of [G0]
2
1, so is the magnitude of this impedance.320

The cause of growth, by contrast, increases with the magnitude of [G0]
2
1. In321

(23), this cause is represented by the term in braces. To interpret it, we note322

that within the core, the stress is hydrostatic, σ̃ij = −p̃1δij . For this state,323

the Gibbs function G(p̃1) is defined for each phase; the term in braces is the324

Taylor expansion of the difference G2(p̃1)−G1(p̃1) about p̃1 = p0, and, as such,325

depends on p0 only through the Taylor coefficients. For transformation to be326

possible, phase 2 must have smaller Gibbs free energy than phase 1 in the initial327
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state: [G0]
2
1 must be negative. The next term, [V0]

2
1 p1, is negative because p1328

is proportional to −θ0: because the linear term tends to make G2(p̃1)−G1(p̃1)329

more negative, it represents an effect promoting growth. The final, quadratic,330

term modifies this tendency without eliminating it.331

This leads to an essential conclusion. Because the magnitude of the im-332

peding term is independent of [G0]
2
1, this term will become negligibly small in333

experiments performed sufficiently far from the equilibrium boundary. The dif-334

ference in Gibbs energies in the initial state is then so large as to overwhelm335

the impeding effect of strain energy. A similar result holds when plasticity is336

included. This effect does not seem to have been recognized before.337

6.2. Elastic perfectly plastic solid338

6.2.1. Stress339

For spherical symmetry, the von Mises yield criterion requires that (σ′
rr)

2 =
k2 ; the yield parameter k is related to stress difference by |σrr − σθθ| =

3

2
k.

Because k is non–negative, σ′
rr is related to radial deviatoric strain rate

.
γ by

σ′
rr = k sgn

.
γ . (25)

The factor sgn
.
γ ensures that the dissipation–rate is non–negative.340

According to (21), |σ′
rr| attains its maximum at the phase interface; because

there, |σ′
rr| = km/(1− εf2), deformation is plastic at the interface if

(1− εf2)k ≤ km. (26)

Initially, f2 = 0 and (26) is satisfied if k ≤ km.341

For k < km, deformation is plastic within an inner shell R < r < c, and
elastic for r > c. The elastic region lies outside the plastic region because,
in the existing model, the magnitude of σ′

rr decreases with increasing distance
from the phase interface. Within the elastic region, Hooke’s law (6) applies;
with (13), it requires that

σ′
rr =

{

(kmsgn θ0 − εp1)
R3

r3 , r > c ;

k sgn
.
γ, R < r < c.

(27a, b)

The core pressure p1(t) is determined next.342

The boundary condition at the outer surface of the sample grain is imposed343

when (27) is used to evaluate the pressure integral (14). There are two cases,344

according as c ≷ b.345

Let

k∗ =
k

km
, (28)

where km is defined by (20). Also, let f1 = R3/b3 denote the volume fraction of
parent olivine. Then,

p1
k

= sgn
.
γ ln f1, for c > b ; (29a)
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p1
k

= −
{

ln
( c3

R3

)

sgn
.
γ +

1

k∗

(R3

c3
− f1

)

sgn θ0

}/{

1− ε
(R3

c3
− f1

)}

, (29b)

for c < b.346

To determine the radius c of the yield surface, we need the stress within the
elastic region c < r < b. It is determined by (27a), where p1 is given by (29b)
because c < b. On eliminating p1 between those equations, then rearranging,
we obtain

σ′
rr

k

r3

R3

{

1− ε
(R3

c3
− f1

)}

=
1

k∗
sgn θ0 + ε ln

c3

R3
sgn

.
γ .

Then, by imposing the yield criterion |σ′
rr| = k, we find that c satisfies

∣

∣

∣

∣

c3

R3
− ε

(

1− f1
c3

R3

)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

k∗
sgn θ0 + ε ln

( c3

R3

)

sgn
.
γ

∣

∣

∣

∣

. (30)

Here, sgn
.
γ is determined by taking the partial time derivative of (13).347

6.2.2. Simplifying features of the case ε = 0348

According to (20b), ε = 0 if the phases have identical compressibilities.349

Because the complicating effect of differential contraction is then absent, the350

solution simplifies. This case is relevant for the olivine–spinel transformation:351

though κ1 and κ2 differ by about 25%, |ε| + 0.1.352

The solution now has the following special properties.353

Within both the elastic region, and the plastic region,

sgn
.
γ= sgn(θ0Ṙ). (31)

This follows by taking the time derivative of (13).354

The solution of (30) is
c3 = R3/k∗. (32)

If the rim yields, c > R. This is possible if k∗ < 1; the yield parameter k < km.355

For k∗ ≥ 1, deformation is elastic.356

The expression (29) for core presssure simplifies:

p1
k

=

{

( sgn
.
γ) ln f1, f1 > k∗ ;

( sgn
.
γ) ln k∗ − (1− f1/k∗)sgn θ0, f1 < k∗.

(33a, b)

The compressibility κ now enters only through the dimensionless yield param-357

eter k∗; otherwise (33) is identical with the corresponding relation between p1358

and f1 for incompressible phases (Morris 2014, equation 39). Equation (33a)359

describes the case in which the rim is entirely plastic; (33b), that in which the360

core has become sufficiently small for an outer elastic region to exist.361
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6.2.3. Potential for ε = 0362

In an elastic–plastic solid, part of the strain is associated with reversible363

distortion of the crystal lattice, part with motion of defects within the lattice.364

Because the former is recoverable (Hill 1950, p.26), it can be associated with a365

Helmholtz function F . By following the procedure given in Morris (2014, §4.1),366

we find that F is given by (22) above, with |σ′
rr| now replaced by k when a367

plastic region is present.368

After using the equation of state (3) to evaluate the term p1[V ]21, we obtain

Φ2 − Φ1 = −[G0]
1
2 + V0θ0 p1 +

1

2
V0|θ0|

k2

km
. (34)

The definition of km has been used. In (34), p1 is given by either (33a) or (33b),369

according as f1 ≷ k∗.370

Consistent with the notation [G0]
2
1 = G02−G01, we write [G0]

1
2 = G01−G02371

for the positive difference between the Gibbs functions of the parent and product372

phases in the initial hydrostatic state.373

Let

G =
[G0]

1
2

V0|θ0|km
= (κ2 +

3

4
µ−1)

[G0]
1
2

V0θ20
, (35a, b)

where (20a) has been used. The dimensionless parameter G expresses the differ-374

ence [G0]
1
2 of the Gibbs energies in units of strain energy per unit mass. For a375

given value of [G0]
1
2, G increases with κ2: by weakening the effect of deviatoric376

stress, compressibility promotes transformation.377

By using the definition of G,

Φ2 − Φ1 = [G0]
1
2

{

− 1 + G−1

( p1
km

sgn θ0 +
1

2
k2∗

)}

. (35c)

The first term in braces represents the potential difference applied in the initial378

state; terms in parentheses represent the modification of that potential difference379

by the internal deviatoric stress.380

Let
R∗ = R/b, t∗ = t/tK ; tK = b/(λ[G0]

1
2). (36a, b, c)

tK is the time taken by a sample at uniform pressure p0 to transform completely.381

Together, (35), (33) and (16) require that, for ε = 0,

dR∗

dt∗
=







−1 + G−1{ 1

2
k2∗ − k∗ lnR

3
∗}, k∗ < R3

∗ < 1

−1 + G−1{R3
∗ +

1

2
k2∗ − k∗(ln k∗ + 1)}, R3

∗ < k∗.
(37a, b)

For G → ∞ (highly compressible rim, or vanishing rigidity, or large [G0]
1
2),382

interface speed is uniform, and unaffected by deviatoric stress. Equation (37)383

holds if k∗ ≤ 1; for k∗ = 1, the entire rim deforms elastically for all R∗ < 1. For384

k∗ < 1, (37a) describes the first stage of growth: the rim is then sufficiently thin385

for the deformation to be everywhere plastic. In the second stage, the rim is386
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sufficiently thick for deformation to be elastic in its outer part; (37b) describes387

this stage.388

According to this model, rim growth begins if the difference between the
Gibbs functions of the phases in the initial hydrostatic state exceeds a criti-
cal value depending on specific volume, yield parameter, and elastic constants.
Indeed, for the interface speed to be negative for R∗ = 1, (37a) requires that
G > 1

2
k2∗; in dimensional form,

[G0]
1
2 >

{

1

2
V0k

2(κ2 +
3

4
µ−1) for k < |θ0|

/

(κ2 +
3

4
µ−1)

1

2
V0θ

2
0

/

(κ2 +
3

4
µ−1) otherwise.

Only if the yield parameter k = 0, so that the stress is hydrostatic, does growth389

start for an arbitrarily small positive value of [G0]
1
2.390

This property originates in the compatibility condition (10). According to391

it, an element of new product has been subjected to deviatoric strain during392

its transformation. Because, in the existing model, deviatoric stress within the393

product depends on the total deviatoric strain from the initial hydrostatic state,394

strain having occurred during transformation is manifested as stress within the395

fresh product. Including plasticity modifies that deviatoric stress, without elim-396

inating it. As a result, strain energy is stored on the product side of the interface397

immediately upon its formation (Morris 2014, p.134). This property is not con-398

sistent with the idea that ‘elastic strain energy increases continuously as the399

rims increase in width . . . growth eventually becomes inhibited [emphasis added]400

by the accumulated strain energy’ (Mosenfelder et al. 2001, p.168).401

Fig.2a summarizes the behaviour predicted for purely elastic deformation.402

The figure is drawn for the case ε = 0. If G < 1

2
, no rim forms. This is403

the metastable regime; within it, deviatoric stress within the rim prevents the404

formation of any product, even though [G0]
1
2 > 0, so that product is at a lower405

potential than the parent phase in the initial hydrostatic state. If G > 1

2
, the406

rim forms, and grows without stopping to convert the entire sample.407

Fig.2b shows the effect of plasticity. In addition to allowing transformation
to start for a smaller value of G, plasticity introduces a new behaviour. De-
pending on the relation between G and k∗, rim growth may start but then stop
before transformation is complete: for G > 1

2
k2∗, growth can start, as discussed

above. Growth can, however, only continue without stopping if the maximum
value of the right hand side of (37) is negative; otherwise, growth ceases before
the sample is entirely transformed. The maximum occurs at R3

∗ = k∗; it is
positive if G < 1

2
k2∗ − k∗ ln k∗ ≤ 1

2
. When growth ceases, dR∗/dt∗ = 0 and

G =
1

2
k2∗ − k∗ lnR

3
∗. (38)

By treating k∗ as a free parameter, (38) can be used to fit the existing theory408

to measurements of the rim thickness at which growth ceased.409

By applying the corresponding equation for incompressible phases to the410

results of Kubo et al. (1998b), Morris (2014, §6.1) estimates the strength of411

wadsleyite at 13.5 GPa and 1303 K. Using (38) to include compressibility re-412

duces the estimate by less than 10%, and the result remains consistent with413

16



partial complete no rim

metastable parent
G
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1
2
k2∗ − k∗ ln k∗

1
2k

2
∗

1
2

0

0

(a)

(b)

1
2

A

A′A′′ A

Figure 2: Behaviour predicted by existing model. For k∗, see (28); for G, (35a). (a), k∗ = 1
(elastic). (b), k∗ < 1 (elastic–perfectly plastic); as k∗ → 1, points A′, A′′ coalesce with the
fixed point A, and case (b) collapses to case (a).

p T phase K µ ρ V0 θ0
GPa K GPa GPa Mg/m3 cm3/mol

15 1500 α 156a 3.60a
39.76 -0.056e

β 200b 110b 3.80b

18 1273 α 192c 3.68a,c
38.62 -0.067f

γ 247d 126d 3.93d

Table 1: Numerical values assumed for (Mg0.9Fe0.1)2SiO4. Polymorphs: α, olivine; β, wads-
leyite; γ, ringwoodite. Sources: a, Anderson and Isaak (1995) with 3rd order finite strain; b,
Liu et al.(2009) with linear extrapolation; c, Nunez–Valdez et al. (2013); d, Higo et al.(2008);
e, f , Rubie (1996) gives similar values {−0.06,−0.08}.

deformation experiments by Kawazoe et al.(2010) not involving phase change.414

(The estimate given in Morris (2014) for incompressible phases can, of course,415

also be obtained using (38) with the appropriate value of κ, and G.) When the416

same method was applied to the ringwoodite rims in nominally anhydrous ex-417

periments (Diedrich et al. 2009; Du Frane et al. 2013), the strength was found418

to be ‘implausibly large’. That puzzle was left unexplained (Morris 2014, §6.2).419

Fig.2b provides the explanation. For those experiments, the value of [G0]
1
2420

is such that, if, as in Morris (2014), the phase are taken to be incompressible,421

G is only slightly less than 1

2
. For any transformation to occur, point A′ must422

lie to the right of the experimental value of G. For the experimental value423

of G, this is only possible if k∗ is close to unity, i.e. k → km. By setting424

κ2 = 0 in (20a), we see that this requires the yield parameter k → 4

3
µ|θ0|.425

This corresponds to a stress difference comparable with the ideal strength. This426

explains the question left open in Morris (2014, §6.2). As we shall now see, for427

values of [G0]
1
2 in the ringwoodite experiments, compressibility results in a value428

of G > 1

2
: transformation should, according to this model, be complete, and,429

roughly speaking, unaffected by internal deviatoric stress.430
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Figure 3: According to the existing model, a sample grain should transform completely at 18
GPa and 1273 K for either elastic, or elastic perfectly plastic deformation. Broken line: µ = 0
(uniform sample pressure). Curve (a), Eq.(37) for k∗ = 1 (elastic). Other curves: Eq.(37) for
k∗ corresponding to |σrr − σθθ| equalling (b) 4.75 GPa, and (c) 0.95 GPa. For tK , see (36).

6.3. Example: rim growth for the conditions of the Du Frane experiments431

For experiments at 18 GPa and 1273 K, [G0]
1
2 = 14.3± 2.0 kJ/mol (Mosen-432

felder et al. 2001), and for the material constants given in Table 1, G = 0.8.433

According to Fig. 2, the rim should grow without stopping, even if deformation434

were perfectly elastic.435

Fig.3 shows the dimensionless radius R∗ = R/b of the phase interface as a436

function of t∗ = t/tK . The broken line shows the solution of (37) for µ = 0,437

corresponding to uniform pressure throughout the sample. In this case, dR/dt438

is constant, and, owing to the choice (35) of timescale, R vanishes at dimen-439

sionless time t = 1. Curve (a) shows the solution of (37) for purely elastic440

deformation, with constants appropriate to the conditions of Du Frane experi-441

ments: for purely elastic strains, the interface speed is initially reduced by the442

deviatoric stress, but then increases with t. For t > 0.6 (roughly) the speed443

exceeds the value it would have in a sample at uniform pressure. Roughly444

speaking, however, we may say that above the threshold, transformation occurs445

at a constant speed. In §8, we shall see that this prediction is not consistent446

with experiment.447

This behaviour results because compression work, and storage of strain en-448

ergy are opposing effects. As a result, when G > 1

2
(i.e. outside the metastable449

regime), the behaviour of the transformation as whole is determined by the450

value of [G0]
1
2, and the graph of R∗ against t∗ differs only slightly from that for451

a solid at uniform pressure.452

Based on that result, we might expect plastic deformation to have little effect453
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Figure 4: Sketch used to interpret the constitutive relation (7a) assumed for the product in
the new model.

on the transformation time. Curves (b) and (c) confirm this expectation. The454

detailed shape of the graph is altered, of course. In Morris (2014), curve (e) in455

figure 12 shows behaviour similar to that of curves (b) and (c) in the present456

Fig.3. The simplicity of this outcome being a consequence of partial cancellation457

of strain energy storage and compression work, we should not expect it if either458

was absent. This leads to the new model.459

7. New model460

In this section, results are given only for the case θ0 < 0 (dense product).461

Using Fig.4, we interpret the constitutive relation (7) for spherically–symmetric462

growth of a product rim. In the figure, point P represents a material element at463

position r; this element transformed at time τ , corresponding to point A in the464

figure. In (7a), the term e′2ij(x, τ) represents the deviatoric strain at a point465

within the product adjacent to A. Point B represents the current location of466

the interface. By evaluating (13) at the appropriate value of t, and recalling467

that σ′
2ij vanishes at the interface, we may express e′rr at each of those points468

in terms of core pressure p1 and θ0. In general, the term p1(t) in (13) implies469

that σ′
2ij depends on the history of the transformation.470

Because the aim is to show the behaviour predicted by this model, we now
treat only the case ε = 0. As (13) then requires that e′rr(R

+) = 2

3
θ0,

e′rr(r, t)− e′rr(r, τ
+) = e′rr(r, t)−

2

3
θ0. (39)

7.1. Elastic behaviour471

7.1.1. Stress472

For ε = 0, the constitutive relation requires that

e′rr =
1

2µ
σ′
rr +

2

3
θ0. (40)
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rr
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R

Figure 5: Radial deviatoric stress σ′

rr within a dense elastic rim (θ0 < 0) as a function of
r. (a) new model: σ′

rr > 0 with greatest magnitude at r = b. (b) existing model: σ′

rr < 0
(compressive) with greatest magnitude at r = R.

By (40) and (13), within the product rim

σ′
rr = km

(

1−
R3

r3

)

. (41)

In the new model, radial deviatoric stress is tensile; in the existing model,473

compressive.474

Fig.5 shows the distribution of radial deviatoric stress σ′
rr for the two models,475

assuming purely elastic deformation. In the new model, the magnitude of the476

deviatoric stress increases with distance from the phase interface; in the existing477

model, it decreases.478

Within the dense rim,

p(r) = km

{

3 ln
r

b
+ 1−

R3

b3

}

, (42)

by (41), (11b) and the boundary condition −p̃+ σ′
rr = −p0 holding at r = b.479

Because σ′
rr(R

+) = 0, p is continuous across the phase interface, and the480

pressure within the core is obtained by setting r = R in (42). As R → 0,481

p1(R) → −∞. Because the absolute pressure p̃1 = p0 + p1, the infinity in the482

relative pressure p means only that in this model, p0 must be infinitely large483

to convert the entire sample. Indeed, it is shown below, in §7.3, that during484

conversion to a high–pressure phase, the absolute pressure within the core is485

always greater than, or equal to, the Clapeyron pressure.486

Fig.6 shows the pressure distribution given by (42) with rim volume fraction487

f2 as a parameter. For f2 → 0, p → 0; throughout the sample, the absolute488

pressure p̃ approaches the applied pressure p0. With increasing f2, the minimum489

pressure (within the core of parent) falls increasingly below the applied pressure.490
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Figure 6: Dimensionless pressure as a function of position for the following values of volume
fraction f2 of product : (a) 0.25, (b) 0.5 and (c) 0.75. For km, see (20a). Absolute pressure
p̃ is always greater than, or equal to, the Clapeyron pressure; but, within the core, it is less
than the applied pressure p0: the relative pressure p = p̃− p0 is negative within the core.

The pressure–gradient is positive, and the relative pressure p changes sign within491

the product rim. For any constitutive relation, the volume–averaged pressure492

is required by the equation of equilibrium to equal the pressure applied at the493

sample surface. Because, in this model, core pressure is less than the applied494

pressure, pressure in the outer part of the rim must exceed it, as the figure. The495

opposite is true in the existing model.496

7.2. Plasticity497

In the elastic solution, |σ′
rr| increases with distance from the phase interface.

As a result, deformation is elastic within a spherical shell immediately outside
the phase interface. By setting |σ′

rr| = k in (41), we obtain the radius of the
yield surface:

c = R(1− k∗)
−1/3. (43)

As previously defined, k∗ = k/km. In the early stages of rim growth, the entire498

rim deforms elastically. As R decreases, σ′
rr increases in the outer part of the499

rim, and yielding first occurs when c = b; then R = b(1 − k∗)
1/3. For k∗ = 1,500

the corresponding value R = 0; deformation is then elastic everywhere.501

The radial deviatoric stress within the rim is given by

σ′
rr =

{

km

(

1− R3

r3

)

, R < r < c,

k, c < r < b.
(44)

Within a dense rim, radial deviatoric stress is positive (tensile) throughout the502

rim.503
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Within the core, the absolute pressure p̃1 is determined by substituting (44)
into (14):

p̃1 − p0
km

=

{

1−R3
∗ + 3 lnR∗, R3

∗ > 1− k∗,
(1− k∗) ln(1− k∗) + k∗(1 + 3 lnR∗), R3

∗ < 1− k∗,
(45a, b)

R∗ = R/b. For k∗ = 1, deformation is elastic for all R∗ 6= 0; p1/km is then504

given by (45a) for all R∗. For k∗ < 1, deformation is initially elastic throughout505

the rim; but, because stress increases with distance from the phase interface, an506

outer plastic region forms when the rim is sufficiently thick.507

When a rim of dense product forms, R∗ → 1, and (45a) applies: we see that508

p̃1 − p0 is then negative; it is, by contrast, positive according to the existing509

model. When transformation is nearly complete, R∗ → 0, and (45b) applies:510

we see that (p̃1 − p0)/km → −∞. This condition implies that, for complete511

transformation, p0 → ∞, because, as we shall see below (50), p̃1 ≥ p̄ (Clapeyron512

pressure).513

7.2.1. Potential514

In this model of an incoherent interface, deviatoric stress is assumed to
vanish within the new product at the interface. Because, for the present case
of spherical symmetry, the deviatoric stress also vanishes within the core, each
phase at the interface is in a hydrostatic state. The potential Φ reduces to the
usual Gibbs function G from hydrostatic thermodynamics, but now evaluated
at the absolute pressure p0 + p1 existing at the interface. By setting p1 = p2 in
(24), and recalling that ε = 0, we obtain

Φ2 − Φ1 = [G0]
2
1 + [V0]

2
1 p1. (46)

According to the discussion below (24), the terms on the right side of (46)515

represent the Gibbs function evaluated in the hydrostatic state p̃1 = p0 + p1.516

Growth ceases when [G(p̃1)]
1
2 = 0. Within the core, the absolute pressure is517

then equal to the coexistence (Clapeyron) pressure. This result holds only for518

spherical symmetry: in general, it would be necessary to account for deviatoric519

strain energy on the parent side of the interface.520

Together, (16) and (46) require that

dR∗

dt∗
= −1−

p1
Gkm

, (47)

p1 is given by (45). As defined by (36), R∗ = R/b and t∗ = t/tK . At t∗ = 0,521

R∗ = 1.522

Fig.7 shows the solution of (47) for k∗ = 1 (elastic), and conditions corre-523

sponding to the DuFrane et al. experiments at 18 GPa and 1273 K. Because524

results are shown for the case ε = 0, as curves (a) and (b), the solution is given525

for two different estimates of κ, the first corresponding to the compressibility of526

olivine and the second to ringwoodite. The solution is insensitive to the value527

chosen to represent κ. Curve (c) shows the solution for κ = 0, corresponding to528
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Figure 7: According to the new model, for elastic deformation, ringwoodite growth in an
olivine grain will cease after a finite time at 18 GPa and 1273. For tK , see (36). Curves,
Eq. (47) for k∗ = 1 and (a) κ = 192 GPa, (b) 247 GPa, and (c) 0 (incompressible). Other
parameters, as in Table 1. For plasticity, see Fig.8. For the behaviour of the existing model
at the same conditions, see Fig.3.

incompressible phases. The behaviour is similar for all three curves. Interface529

speed falls to zero in finite time, and rim thickness approaches an equilibrium530

value. The (modest) effect of plastic deformation is shown in Fig.8. This be-531

haviour of the new model contrasts with that of the existing model (Fig.3) for532

identical conditions.533

When growth stops, −p1/km = G. By substituting for p1, then solving for
the value of R3

∗, we obtain

R3
∗ =

{

−W
(

− e−1−G
)

if G < −k∗ − ln(1− k∗) ;

(1− k∗)
1−1/k∗e−1−G/k∗ if G > −k∗ − ln(1− k∗).

(48a, b)

The Lambert function W (z) is the solution of W eW = z (dummy variable z).534

For k∗ = 1, deformation is elastic, and (48a) applies for all G. For k∗ = 0, the535

stress is hydrostatic, (48b) holds for all G > 0 and R3
∗ = 0.536

The rim thickness x∞ at equilibrium is obtained from (48), and the expres-537

sion x∞ = b{1 − R∗}. As shown in Fig.8, x∞/b vanishes for G = 0, increases538

continuously with G, and approaches unity only as G → ∞. There is no thresh-539

old pressure: whenever [G0]
1
2 > 0, some product is formed.540

8. Comparison with experiment541

Experiments are performed on an ensemble of geometrically similar samples542

cut from a single crystal of San Carlos olivine. A sample is kept at fixed tem-543

perature and pressure for a specified time. The reaction is then quenched by544
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reducing first the temperature, then the pressure. Because rim thickness x is545

measured by sectioning the sample, each value of x(t) is obtained using a new546

sample. Kubo et al. (1998a,b) used cubes of edge length approximately 1 mm;547

all other authors used spheres with diameters from 425–500 µm (e.g. Diedrich548

et al. 2009, p.90).549

In the next two figures, the observations are compared with the predicted550

value obtained from (48). For Fig.8, we fit values of rim thickness xmeasured for551

a given state (T , p0 and water content) at a given time to the three–parameter552

function x = c0 + c1e
−c2t (constants c0, c1, c2). Because, according to this fit,553

x → c0 as c2t → ∞, the constant c0 can be compared with the predicted554

quantity x∞. This is done in Fig.8, which is meant to reveal the trend in the555

observations. With that trend made evident, in Fig.9 the data themselves are556

presented and compared with the prediction of (48).557

The exponential function is, of course, appropriate for cases in which trans-558

formation is complete, as well as those in which it is not. For example, in559

experiments on samples with 300 ppmw of water, Diedrich et al.(2009, p. 94)560

found that one sample transformed completely. By excluding that sample, and561

fitting the exponential to the remaining data in that set, we reach the same562

conclusion. We obtain: c0 = 257.5µm, c1 = −251.4µm and c2 = 0.0543 min−1.563

Because the value of c0 exceeds the radius of even their largest spheres, samples564

would have transformed completely on a timescale equalling c−1
2 .565

We use the exponential fit because the data are open to interpretation. Of566

their experiments at four different conditions, Kubo et al.(1998b) write that567

‘growth eventually ceased’. Kerschhofer et al.(1998, p.95) consider that growth568

ceased in three sets, but merely ’slowed considerably’ in the fourth. Ambiguity569

arises because the sets differ in duration. Two extend to 600 minutes. For570

these, Kubo et al. drew curves implying that the interface velocity vanished571

after about 200 minutes. For the fourth set, the last measurement was made at572

only 200 minutes, and the authors drew a curve suggesting that the interface573

speed was decreasing, but still non–zero. On fitting the exponential to that set,574

we obtain: c0 = 186.2µm, c1 = −141.1µm and c2 = 0.0376 min−1. Though575

extrapolation is required, c0 is only about one third the radius of the sphere576

inscribed within their cuboid samples: the fit is consistent with the statement577

by Kubo et al.(1998b).578

In Fig.8, curves show the equilibrium rim thickness calculated from (48).579

Symbols show values of x∞/b inferred from experiment. The theory provides580

an economic explanation of the observations. The overall trend is adequately581

described by curve (a) for purely elastic phases. (The two nominally dry samples582

are an exception, discussed below.) Curves (b), (c) show the effect of plasticity.583

For wadsleyite, the scale km = 4.5 GPa for the numbers given in table 1, so that584

the value k∗ = 0.3 used for curve (b) corresponds to |σrr − σθθ| =
3

2
k∗ km,= 2.0585

GPa, comparable with the value of 2–3 GPa reported by Kawazoe et al.(2010,586

figure 8) for a fine–grained polycrystalline wadsleyite deformed without phase587

change.588

Though the observations are scattered around the curve for purely elastic589

deformation, they do not lie systematically above it. Consequently, it would not590
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Figure 8: Equilibrium rim thickness x∞ in units of b as a function of G = [G0]12/V0km|θ0|.

Curves, (48) with (a) k∗ = 1 (elastic), (b) 0.3, (c) 0.1. Vertical line, G = 1

2
. Symbols, values

inferred using an exponential fit to following data. Wadsleyite rim: Kubo et al.(1998b) 200
ppmw water, �, 1303 K, 13.5 GPa; at 14 GPa, •, 1403 K and N, 1503 K; H, 1603 K, 15 GPa.
Mosenfelder et al.(2000) at 1373 K ⋄, 16 GPa and ©, 17 GPa. Ringwoodite rim at 18 GPa:
(Diedrich et al.2009) ×, (nom.anhydrous); Du Frane et al. (2013) 75 ppmw water, ▽, 1373
K; △, 1173 K. Du Frane et al. 2013) nom. anhydrous +, 1273 K. Sample radius b in µm: 230
(Diedrich, Du Frane); 250 (Mosenfelder); 500 (Kubo, cubes modelled by the inscribed sphere).

be possible to use the yield parameter as a fitting parameter.591

Curve (c) is included to show the behaviour for a lower value of the yield592

stress; of course, for k∗ → 0, x∞/b → 1 for all G 6= 0.593

Now consider the existing model. To explain these observations, it requires594

the addition of separate effects, according as G ≷ 1

2
. As discussed in §6.3,595

for G > 1

2
, the potential difference [G0]

1
2 in the initial state is large enough596

to overwhelm the effect of internal strain energy: if the rate parameter λ were597

constant, all samples lying to the right of the line G = 1

2
should have transformed598

entirely. To explain why growth instead ceased, one might, for example, suggest599

that the reconstructive process at the interface is limited by water content over600

the range from < 6 ppmw (nominally anhydrous) to at least 75 ppmw, and601

possibly higher.2 For G < 1

2
, the existing model predicts metastability. As602

we have seen in §6.2, plastic deformation is required to explain the formation603

2For the Mosenfelder experiments, only the water content of the starting material is known
(Mosenfelder et al.2000, p.65; Mosenfelder, personal communication July 2017). Because
Kubo et al.(1998a) measured 200 ppmw of water in the wadsleyite rim of a recovered sample
transformed from similar material, there is no reason to expect less water in the rims of
Mosenfelder et al.
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Figure 9: For 8 of 11 sets of published data, x/x∞ → 1 ± 0.5, where x∞ is obtained from
(48) with k∗ = 1. The exceptions are the wet series (�; 300 ppmw water; Diedrich et al.2009)
in which complete transformation occurred; and two nominally anhydrous series (×, +). See
text for speed c, and symbols at ct/x∞ = 0.01. Broken curve, x = ct.

of any product at all. Using that model to explain the observations requires604

two additional effects, each specific to a particular range of G. This might be605

considered special pleading.606

Fig.9 shows measured rim thickness as a function of time. In this figure, only607

x∞ is predicted. The constant c represents the interface speed at the instant608

when x = 0. It is empirical: c = c2 c0 where c2 and c0 are obtained from the fit609

already described. In the original papers, a few data were assigned a nominal610

time t = 0; these data are shown here at ct/x∞ = 0.01.611

In some cases ( Kubo,�) the agreement is adequate; in others (Mosenfelder,612

©), agreement is promising, but measurements are needed at longer times; in613

yet other cases (Du Frane, ▽), x/x∞ first increases to about 0.75 then de-614

creases to about 0.5. As can be seen by consulting the original papers, the615

non–monotonicity reflects uncertainty in the measurements.616

Because these are difficult experiments, testing the new theory provides a617

challenge to experimentalists. Because, as noted by Du Frane et al. (2013),618

samples having lower water contents are prone to gain over long times, effort619

might, perhaps, be better placed in controlling experimental error at shorter620

times: with less scatter, the exponential fit would be more reliable.621

In both figures, it is clear that, for the nominally anhydrous samples (×,622
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+), measured rim thickness is one tenth to one fifth that predicted. Product623

growth involves processes within the bulk phases, and within the atomically624

thin interphase region; and water could affect growth through either region.625

Mosenfelder et al.(2001) discuss the difficulties in distinguishing between those626

possibilities. Our results suggest a way to do so.627

We have shown that, if the rate parameter in (16) were independent of628

time, purely elastic deformation would permit the formation of much thicker629

rims than are observed for the nominally anhydrous samples of Du Frane et630

al. and Diedrich et al. If further experiments on nominally anhydrous samples631

consistently produce the very thin rims seen by those authors, we might reason-632

ably conclude that hydrogen is essential to the reconstructive process occurring633

within the interfacial region. By isolating that effect, our analysis would permit634

the effect of hydrogen on interface kinetics to be measured.635

Unlike the existing model, the new model appears consistent with an obser-636

vation by Vaughan et al.(1982). When the externally applied stress is nearly637

hydrostatic, the olivine to spinel transformation in magnesium orthogermanate638

Mg2GeO4 occurs by the mechanism of incoherent nucleation and growth. Though639

transformation occurs by the same mechanism when the applied stress includes640

a small deviatoric part ∼ 0.1–0.6 GPa, spinel crystals now grow preferentially641

in the direction of maximum compressive external stress. But, according to the642

existing model (Eq.27b), the deviatoric stress induced at the phase interface is643

of the order of the yield stress. It is unclear how, in the presence of that large644

internal stress, a smaller external stress could impose a preferred direction for645

growth. In the new model, that puzzle is resolved: deviatoric strain occurring646

as the lattice is being reconstructed should not cause deviatoric stress.647

9. Conclusions648

In the existing model of transformation via an incoherent intermediate state,649

it is implicitly assumed that the lattice records deviatoric stress experienced by650

a material element as it is transformed. This model predicts the existence of651

a threshold for the applied pressure. The threshold results from a competition652

between two mechanisms. First, as the phase interface passes over a material653

element, the element suffers a discontinuous deviatoric strain. The magnitude654

of this strain proves to be independent of how far the interface has propagated.655

Consequently, as each unit mass is transformed, the same amount of compres-656

sion work must be performed to supply that strain energy. Production of that657

potential energy represents the fixed cost of transformation. Second, as a thin658

spherical shell is transformed, it contracts circumferentially. In an elastic body,659

this creates a hoop tension, which compresses the core of parent olivine. As660

a result, the core pressure exceeds the externally applied pressure. This ef-661

fect promotes transformation, and competition between the effects creates the662

threshold.663

Because the energetic cost is fixed, transformation occurs at, roughly speak-664

ing, a constant rate. This prediction of the the existing model is not consistent665

with experiment. Mosenfelder et al. (2000), Diedrich et al. (2009), Du Frane et666
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al. (2013) performed at an applied pressure exceeding the threshold: in these667

experiments, product growth slowed and appears to have ceased before the sam-668

ples were completely transformed. Something, however, is inhibiting growth in669

these experiments. That fact leads to the new model.670

Here, for the first time, we have argued that the character of the incoherent671

interface must be considered: if the lattice is, in fact, rebuilt as the interface672

propagates through it, deviatoric strain experienced by a material element as it673

is transformed can not be recorded within that element. That idea leads to the674

constitutive relation (8). Even without any adjustable parameters, such as a675

yield stress, the new model adequately predicts the final values of rim thickness676

for olivine single crystals containing 75–200 ppmw of water. For the nominally677

anydrous samples, however, measured rim thickness is much less than that pre-678

dicted. Because the new model predicts that purely elastic strain permits more679

product to form than is observed experimentally, we conclude that water may680

be essential to lattice reconstruction.681

By providing a experimental system allowing the effect of water on inter-682

face kinetics to be quantified, experiments on single crystals in which grain683

boundary nucleation dominates may also provide insight into the alternative684

process of intracrystalline nucleation of plateletes; for, according to Kerschhofer685

et al.(2000, p.69), transformation of the entire crystal by platelet growth occurs686

by propagation of an incoherent interface.687
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