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Integrative common and rare variant 
analyses provide insights into the genetic 
architecture of liver cirrhosis

We report a multi-ancestry genome-wide association study on liver cirrhosis 
and its associated endophenotypes, alanine aminotransferase (ALT) and 
γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases 
with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver 
function tests and a validation cohort of 21,689 cases and 617,729 controls, 
we identify and validate 14 risk associations for cirrhosis. Many variants  
are located near genes involved in hepatic lipid metabolism. One of  
these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and 
diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We 
develop a polygenic risk score that associates with the progression from 
cirrhosis to HCC. By focusing on prioritized genes from common variant 
analyses, we find that rare coding variants in GPAM associate with lower  
ALT, supporting GPAM as a potential target for therapeutic inhibition.  
In conclusion, this study provides insights into the genetic underpinnings  
of cirrhosis.

Cirrhosis of the liver results from prolonged hepatic inflamma-
tion and replacement of healthy liver tissue with scar tissue. It is an  
irreversible and progressive disease that is associated with high 
morbidity and mortality due to liver failure, cardiovascular and 
renal complications and a high rate of hepatic malignancies1. Major  
lifestyle and environmental risk factors for cirrhosis include chronic 
viral hepatitis, alcohol abuse and fatty liver disease. Mirroring  
the obesity pandemic, obesity-associated fatty liver disease is  
projected to soon become the most common cause of cirrhosis 
globally1,2.

Estimates from twin studies have shown that approximately 
half of the variation in cirrhosis risk is attributed to genetic factors3. 
Identifying the implicated risk loci has progressed steadily over 
the last decade, mainly due to ever-larger genome-wide associa-
tion studies (GWAS). The largest of these included 4,829 cases and 
72,705 controls in the discovery cohort and identified 12 loci to be 
associated with cirrhosis in multitrait GWAS with plasma alanine 
aminotransferase (ALT), a biochemical marker of liver cell injury4. 
However, the number of sequence variants linked to cirrhosis is 

low when compared to the hundreds of risk loci identified for other 
complex traits and diseases.

A better understanding of the genetic factors that predispose to 
cirrhosis may improve our ability to predict, prevent and ultimately 
treat the disease. Using polygenic risk scores (PRSs) that account for 
the influence of multiple risk loci may assist in identifying individuals 
who are at an increased risk of developing cirrhosis5. Furthermore, 
the discovery of genetic variants linked to a reduced risk of cirrho-
sis may provide potential molecular targets for pharmacological 
intervention6–9.

The aims of this study were fourfold. First, we conducted meta- 
analyses of 12 cohorts comprising 18,265 cirrhosis cases and nearly 
1.8 million controls, aiming to discover new risk loci for cirrhosis. 
Second, we conducted a range of analyses to elucidate the potential 
of PRSs to predict the onset and progression of cirrhosis. Third, we 
examined interactions of the genetic risk variants with alcohol con-
sumption, adiposity and type 2 diabetes mellitus (T2D). Fourth, we 
used whole-exome sequencing data to gauge the expected effects of 
therapeutic inhibition of both known and new risk genes.
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Validation
A total of 36 risk variants were identified through cirrhosis GWAS and/
or the endophenotype-informed analysis, of which 35 were available for 
replication in the MVP cohort (21,689 cases and 617,729 controls). Repli
cation of ALDH2 rs671 was not possible due to its absence in non-East 
Asian populations. Of the 35 variants, 14 (40%) reached Bonferroni 
significance (P < 1.4 × 10−3 (0.05/35 variants)) and 6 were nominally 
significant (P < 0.05) with concordant directions of effect in MVP (Sup-
plementary Table 10). Of the 20 variants associated with a P < 0.05 in 
MVP, 10 were initially identified in stage 1 or 2 of the GWAS, whereas 10 
were identified solely via endophenotype-informed analyses. For the 
15 variants that did not replicate at P < 0.05, we found a high level of 
concordance in the magnitudes and directions of effects between the 
two datasets (Pearson’s r2 = 0.73, P = 1.8 × 10−3; Supplementary Table 10).

Phenome-wide association study (PheWAS)
To identify the mechanism by which a variant or gene is linked to 
a disease, it is important to comprehend the range of phenotypic 
consequences resulting from carrying a specific sequence variant. 
Here we tested each of the 36 risk variants identified in GWAS and/or 
endophenotype-driven analyses for association with 41 binary and quan-
titative traits. As expected, many of the variants were associated with  
risk factors for liver disease (for example, alcohol dependence and 
lipids) and/or with fatty liver disease (Fig. 2). For example, more than half 
of the variants (n = 21/36) were associated with non-high density lipopro-
tein cholesterol (non-HDL-C; FDR < 0.05), 16/36 variants were associated 
with liver fat and 18/36 variants were associated with a registry-based 
diagnosis of nonalcoholic fatty liver disease (NAFLD; Fig. 2 and Supple-
mentary Table 11). Variants associated with either liver fat or NAFLD had 
directionally concordant effects on cirrhosis. Three variants (rs739846 
in TM6SF2, rs80215559 in HFE and rs738408 in PNPLA3) associated with 
higher liver fat, but lower levels of non-HDL-C (Supplementary Table 11). 
Other variants were associated with proteins and metabolites produced 
by the liver, such as uric acid (n = 23/36), sex hormone-binding globulin 
(n = 20/36) and albumin (n = 19/36). Of the newly identified variants, 
rs1229984 in ADH1B associated with a lower risk of alcohol dependence, 
alcoholic liver disease (ALD), cardiovascular risk factors (for example, 
hypertension, body mass index (BMI)) and cardiovascular disease (for 
example, coronary artery disease). Similarly, rs1937455 in PDE4B was 
associated with a lower risk of alcohol dependence, lower GGT levels 
and lower BMI. rs9663238 in HKDC1 associated with lower HbA1c levels 
and T2D risk. Other previously unreported variants associated with lipid 
traits and fatty liver disease, including rs2792735 in GPAM, rs2980888  
in TRIB1, rs13389219 in COBLL1, rs8178824 in APOH and rs339969 in  
ICE2 (Fig. 2 and Supplementary Table 11).

Comparison of genetic effects on NAFLD, ALD and cirrhosis
Next, we compared the effect sizes on cirrhosis and NAFLD (ncases = 22,944) 
of 18 previously reported NAFLD variants along with the 36 cirrhosis 
variants identified here (totaling 38 distinct variants). Eight variants 
had significantly higher effects on cirrhosis compared with NAFLD  
(P value for heterogeneity (PHet) < 0.05/38; Fig. 3a and Supplementary 
Table 12). Of those, we found that rs72613567 in HSD17B13 and known 
risk variants in SERPINA1 (p.Glu366Lys) and HFE (p.Cys282Tyr) exhibited 
stronger effects on cirrhosis than on NAFLD. Moreover, we found that the 
variants near HKDC1, HLA-DQB1 and MAMSTR likely influence cirrhosis 
via pathways distinct from those related to fatty liver disease. We also 
found that variants in TRIB1, TM6SF2 and APOE had stronger effects on  
NAFLD compared with cirrhosis, indicating that they may primarily exert 
their effect on cirrhosis via fatty liver disease. Variation in GCKR was 
strongly associated with NAFLD but had no effect on cirrhosis. The previ-
ously reported NAFLD variants p.Thr165Ala in MTARC1 and p.Ile148Met 
in PNPLA3 had proportional effects on cirrhosis. We then compared  
the effects of the 36 cirrhosis variants with their respective effects  
on ALD (ncases = 2,931) and NAFLD (ncases = 22,944; Fig. 3b). We found 

Results
Genome-wide association results
An overview of the study design is shown in Fig. 1. In stage 1, we per-
formed a GWAS meta-analysis of nine studies, comprising 15,225 
cases with cirrhosis and 1,564,786 controls of European ancestry 
(Supplementary Table 1). The genomic inflation factor (λGC) for the 
European-specific meta-analysis was 1.11 with linkage disequilibrium 
(LD) score regression (LDSC) intercept of 1.02 (s.e. = 0.007), indicat-
ing that the observed inflation is due to polygenicity. In stage 1, we 
identified 12 genome-wide significant variants (Fig. 1 and Supple-
mentary Table 2), 5 of which have not been previously reported in a 
cirrhosis GWAS. In stage 2, we conducted a cross-ancestry fixed-effects 
meta-analysis with individuals of East Asian (9.9%), African American  
(1.2%), Hispanic (1.0%) and European (87.9%) ancestries (Supple-
mentary Table 1), totaling 18,265 cases and 1,782,047 controls. In the 
cross-ancestry meta-analysis, we identified 15 variants, including  
8 previously unreported variants (Fig. 1, Table 1 and Supplementary 
Table 3). Of the 15 unique variants identified in stage 2, 3 were specific 
to the cross-ancestry analysis, whereas 12 reached genome-wide sig-
nificance in both stages (Supplementary Table 3). The ALDH2 locus was 
driven by a missense variant (rs671, p.Glu504Lys), which is common 
in East Asian populations, but is rare or absent in other ancestries 
(Supplementary Table 3). Similarly, the missense variant in SERPINA1 
(rs28929474, p.Glu366Lys) was only present in Europeans. The fol-
lowing two variants showed heterogeneous effects across ancestries 
(P < 0.003): PNPLA3 rs738408 and TM6SF2 rs739846. We estimated the 
heritability (the proportion of variation that is attributed to common 
genetic variants) using LDSC. We found that the SNP-based heritability 
estimates were consistent between Europeans (h2 = 5.1%, 95% confi-
dence interval (CI): 3.5–6.8) and East Asians (h2 = 2.7%, 95% CI: −2.7 
to 8.1; Supplementary Table 4). We could not estimate heritability 
in African American and Hispanic samples because of limited statis-
tical power (Supplementary Table 4). We also reappraised variants 
that have been previously linked to cirrhosis in GWAS or candidate 
gene studies but were not detected in stage 1 or 2 of our study (Sup-
plementary Table 5). Of the nine variants, we found evidence to sup-
port association (P < 0.05) with cirrhosis for four (in CENPW, TOR1B, 
MBOAT7 and MAFB).

Endophenotype-driven analyses
We used liver enzyme GWAS associations as priors to enhance genomic 
discovery for liver cirrhosis. Analysis of up to 1 million individuals of 
European ancestry yielded 314 independent genome-wide signals for 
ALT, including 114 previously unreported (Fig. 1a and Supplementary 
Table 6), and 419 independent genome-wide signals for γ-glutamyl 
transferase (GGT), with 106 previously unreported (Fig. 1a and Sup-
plementary Table 7). Of the 307 ALT and 403 GGT lead variants that 
were available in the cirrhosis datasets, 21 ALT and 20 GGT variants 
were associated with cirrhosis (false discovery rate (FDR) < 0.05; Table 1 
and Supplementary Table 8). Nine variants were identified through 
both ALT- and GGT-informed analyses. Of 32 unique variants, 11 were 
genome-wide significant in the cirrhosis meta-analyses, 2 had been 
implicated in cirrhosis in prior GWAS (TOR1B rs7029757 and MBOAT7 
rs4806498)4,10, whereas the remaining 19 have not been associated 
with cirrhosis before (Table 1 and Supplementary Table 8). Of the 21 
ALT variants, 2 were directionally discordant with cirrhosis risk, spe-
cifically rs9663238 in HKDC1 and rs79287178 in TNFSF10 (Supplemen-
tary Table 8), whereas all 20 GGT variants had concordant direction 
of effects with cirrhosis. We found that a PRS using these 21 variants 
identified via endophenotype-driven analysis associated significantly 
with cirrhosis in the UK Biobank (UKB; odds ratio (OR): 1.15 per s.d., 
95% CI: 1.11–1.20, P = 1.8 × 10−11) and Million Veteran Program (MVP, 
OR: 1.09 per s.d., 95% CI: 1.07–1.11, 1.20, P = 3.6 × 10−19), but contributed 
only little to the variance explained (r2

UKB = 0.2% and r2
MVP = 0.1%; Sup-

plementary Table 9).
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Fig. 1 | Study design and main results. a, Overall study design, with stage 
1 representing the European-specific GWAS meta-analysis and stage 2 
representing the cross-ancestry GWAS meta-analysis. b, Miami plot of cirrhosis 
GWAS. The x axis is the chromosomal location of SNPs and the y axis is the 
strength of association −log10(P). Note that the y axis includes a break at 50. The 
lead SNPs and SNPs located within ±1 Mb are highlighted, and the nearest genes 

are annotated. The top plot shows results from the European-specific GWAS 
meta-analysis, whereas the bottom plot displays results from the cross-ancestry 
GWAS meta-analysis. The dashed red line represents the threshold for genome-
wide significance (P < 5 × 10−8). P values were two-sided and based on an IVW 
fixed-effects meta-analysis, and not adjusted for multiple testing.
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proportional effects between NAFLD and ALD, except for three vari-
ants (p.His48Arg in ADH1B, PHet = 4.4 × 10−14; rs28636836 in HSD17B13, 
PHet = 1.8 × 10−4; and rs28712821 in KLB, PHet = 7.9 × 10−4), which had  
significantly larger effects on ALD than on NAFLD (PHet < 0.05/36).

Mendelian randomization (MR)
To explore potential causal relationships between significant PheWAS 
findings and cirrhosis risk, we performed MR analyses. Consistent with 

observational data, we found evidence to support a causal role of higher 
BMI (PIVW = 3.1 × 10−16) and higher alcohol intake (PIVW = 3.3 × 10−7) with 
increased risk of cirrhosis (see Supplementary Table 13 for summary of 
results). The results were not driven by the effect of individual variants 
(see Supplementary Figs. 1 and 2 for effect and leave-one-out plots). To 
evaluate the potential mediating effect of NAFLD on the association 
between higher BMI, alcohol intake and cirrhosis, we conducted multi-
variable Mendelian randomization (MVMR) analyses while accounting 

Table 1 | Cirrhosis risk loci identified in the cross-ancestry GWAS meta-analysis and endophenotype-informed analyses

Locus SNP Chr:bp Consequence Nearest genea EA/
NEA

EAF gnomAD 
NFE

Meta-analysis CA Known 
locus

β s.e. P

Cross-ancestry GWAS meta-analysis

1 rs7534143 1:66470379 intron_variant PDE4B T/G 0.459 −0.0642 0.0116 3.27 × 10−8 New

2 rs2642439 1:220970499 intron_variant MTARC1 A/G 0.319 −0.1199 0.0125 6.21 × 10−22 Known

3 rs10174815 2:43241234 regulatory_region_variant ZFP36L2/HAAO C/A 0.292 0.0715 0.0121 3.94 × 10−9 New

4 rs404910 2:126994530 intergenic_variant GYPC G/C 0.165 0.0826 0.0142 5.63 × 10−9 New

5 rs28636836 4:88231865 intron_variant HSD17B13 T/C 0.251 −0.1419 0.0126 2.11 × 10−29 Known

6 rs17526590 4:100269045 intron_variant ADH1B A/G 0.110 0.1100 0.0181 1.34 × 10−9 New

7 rs80215559 6:25918225 intron_variant SLC17A2/HFE C/T 0.059 0.1602 0.0244 4.70 × 10−11 Known

8 rs146650659 6:220970499 intergenic_variant HLA-DQB1 G/A 0.052 0.1472 0.0249 3.14 × 10−9 New

9 rs2980888 8:126507308 intron_variant TRIB1 T/C 0.290 0.0692 0.0119 6.98 × 10−9 New

10 rs2792735 10:113921825 intron_variant GPAM G/A 0.288 0.0776 0.0119 8.32 × 10−11 New

11 rs671 12:112241766 missense_variant ALDH2 G/A N/A −0.2797 0.0337 1.03 × 10−16 New

12 rs28929474 14:94844947 missense_variant SERPINA1 T/C 0.018 0.5000 0.0362 2.15 × 10−43 Known

13 rs739846 19:19419071 intron_variant SUGP1/TM6SF2 A/G 0.070 0.2598 0.0186 2.37 × 10−44 Known

14 rs483082 19:45416178 upstream_gene_variant APOC1/APOE T/G 0.226 −0.1008 0.0132 2.68 × 10−14 Known

15 rs738408 22:44324730 synonymous_variant PNPLA3 T/C 0.224 0.4116 0.0118 2.99 × 10−267 Known

Endophenotype-informed analysis

16 rs2110944 2:37090233 intron_variant STRN T/C 0.483 −0.038 0.011 8.34 × 10−4 New

17 rs77375846 2:103155075 downstream_variant SLC9A4 C/T 0.116 0.062 0.019 8.80 × 10−4 New

18 rs10164853 2:158481992 intron_variant ACVR1C G/A 0.074 0.062 0.019 1.31 × 10−3 New

19 rs13389219 2:165528876 intron_variant COBLL1 T/C 0.394 −0.042 0.012 5.17 × 10−4 New

20 rs12633863 3:149211512 intron_variant TM4SF4 G/A 0.466 −0.036 0.011 8.94 × 10−4 New

21 rs79287178 3:172294500 intron_variant TNFSF10 A/G 0.033 0.124 0.034 2.95 × 10−4 New

22 rs28712821 4:39413780 intron_variant KLB G/A 0.397 −0.048 0.011 2.05 × 10−5 New

23 rs12500824 4:77416627 intron_variant SHROOM3 A/G 0.341 0.041 0.011 2.48 × 10−4 New

24 rs28431971 4:100487315 intron_variant MTTP A/G 0.241 −0.042 0.013 1.50 × 10−3 New

25 rs7667391 4:146785400 intron_variant ZNF827 T/A 0.160 0.053 0.014 2.37 × 10−4 New

26 rs35611012 7:128564825 intergenic_variant IRF5 T/C 0.324 −0.040 0.012 1.16 × 10−3 New

27 rs7029757 9:132566666 intron_variant TOR1B A/G 0.086 −0.098 0.019 2.67 × 10−7 Known

28 rs1658425 10:60331547 intron_variant BICC1 G/C 0.491 0.036 0.012 2.07 × 10−3 New

29 rs9663238 10:70983629 intron_variant HKDC1 A/G 0.292 0.060 0.013 1.57 × 10−6 New

30 rs10887777 10:89807366 downstream_variant KLLN C/T 0.240 0.037 0.013 3.27 × 10−3 New

31 rs3184504 12:111884608 missense_variant SH2B3 T/C 0.467 0.062 0.012 5.44 × 10−7 New

32 rs339969 15:60883281 intron_variant ICE2 C/A 0.358 −0.036 0.012 2.14 × 10−3 New

33 rs8178824 17:64224775 intron_variant APOH T/C 0.027 0.118 0.039 2.27 × 10−3 New

34 rs11666792 19:49227043 intron_variant RASIP1/MAMSTR A/G 0.491 0.051 0.012 3.49 × 10−5 New

35 rs4806498 19:54674742 intron_variant TMC4/MBOAT7 T/C 0.425 0.044 0.011 5.69 × 10−5 Known

36 rs113469203 20:25343258 intron_variant ABHD12 G/A 0.446 0.061 0.016 1.54 × 10−4 New
aNearest protein-coding gene. The shown P values are two-sided, based on an IVW fixed-effects meta-analysis, and not corrected for multiple testing. The P value threshold for statistical significance 
was set at 5 × 10−8 for the GWAS analysis. We used an FDR < 0.05 to define statistical significance in the endophenotype-informed analysis (Supplementary Table 8). Chr:Bp, chromosome:position on 
the Genome Reference Consortium Human Build 37 (hg19); CA, cross-ancestry; EA, effect allele; EAF, effect allele frequency; NEA, noneffect allele; NFE, non-Finnish Europeans.
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Fig. 2 | Cross-trait associations between cirrhosis variants and selected 
metabolic and hepatobiliary traits relevant for cirrhosis. The heatmap shows 
associations of variants identified through cirrhosis GWAS meta-analysis or 
endophenotype-driven analyses with 41 binary and quantitative traits sampled 
from meta-analysis of data from CHB-CID/DBDS, deCODE, Intermountain 
Healthcare, FinnGen, UKB and external sources, where available. The number 
of cases for binary traits and sample size for quantitative traits are shown in 
parenthesis following each trait. Shown are variants and phenotypes with 
significant associations after correcting for multiple testing using an FDR of 
<0.05. P values (two-sided) were derived from linear and logistic regression 

models. Hierarchical clustering was performed on a variant level using the 
complete linkage method based on Euclidian distance. Coloring represents 
z scores for each respective trait or disease, oriented toward the cirrhosis 
risk-increasing allele. Red indicates an increase in the trait or disease risk, 
while blue indicates a decrease in the trait or disease risk. SHBG, sex hormone-
binding globulin; IGF-1, insulin growth factor 1; ApoA, apolipoprotein A; ApoB, 
apolipoprotein B; COPD, chronic obstructive pulmonary disease; WHRadjBMI, 
waist-to-hip-ratio adjusted for BMI; LDL-C, low-density lipoprotein cholesterol; 
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for the influence of NAFLD. Despite observing a slight attenuation in 
the effect estimates, we observed significant independent associations 
between higher BMI (β = 0.252 s.d. units, s.e. = 0.048, PIVW = 2.7 × 10−7) 
and alcohol intake (β = 0.971 s.d. units, s.e. = 0.186, PIVW = 1.3 × 10−6) 
and risk of cirrhosis.

Interactions with alcohol, obesity and T2D
Environmental risk factors and comorbid metabolic disorders, such 
as alcohol consumption, obesity and T2D exacerbate the impact of 
known genetic risk factors on cirrhosis4,11. To determine whether similar 
interactions exist between environmental factors and newly identified 
risk variants, we examined the effects of 35 genetic variants (excluding 
HLA) on cirrhosis risk in combination with environmental factors in 
the UKB. We found that rs738408 in PNPLA3 interacted significantly 
with T2D (P = 7.9 × 10−6), BMI (P = 3.0 × 10−6) and weekly alcohol intake 
(P = 1.2 × 10−5) on the risk of cirrhosis (Supplementary Table 14). PNPLA3 
rs738408 was only weakly associated with T2D (OR: 1.03, P = 0.007), 
BMI (β = −0.04 kg m−2, P = 0.001) and not associated with weekly  
alcohol intake (β = −0.04 units per week, P = 0.160). We then examined 
the common missense variant p.Ile148Met in PNPLA3 (rs738409, r2 = 1 
with rs738408) and its interaction with the same environmental risk 
factors on a broader range of liver-related outcomes. We found that 
high alcohol intake (>14 units per week), obesity (BMI > 30 kg m−2) and 
T2D also amplified the effect of PNPLA3 p.Ile148Met on hepatocellular 
carcinoma (HCC) and all-cause liver disease (Fig. 4 and Supplementary 
Table 15). For instance, among obese individuals, homozygous carri-
ers of the G-allele had a sevenfold increased risk of HCC compared 
to noncarriers. Among nonobese individuals (BMI < 30 kg m−2), the 
corresponding risk was only 2.6-fold higher (P for interaction = 0.003; 
Fig. 4 and Supplementary Table 15).

Gene prioritization
To prioritize potential causal genes at the identified risk loci, we used 
the following six approaches: (1) identification of coding variants,  
(2) estimation of effects on gene expression using expression quantita-
tive trait locus (eQTL) data from two datasets (GTEx v.8 and deCODE12,13), 
(3) associations with quantified splicing using splicing quantitative 
trait locus (sQTL) data from whole blood (deCODE), (4) effects on 
plasma protein levels using protein quantitative trait locus (pQTL) data  
from deCODE14 and UKB15, (5) a similarity gene-based method (poly-
genic priority score (PoPS)) and (6) Open Targets Variant-to-Gene (V2G) 
algorithm. Of the 36 cirrhosis variants, we identified protein-altering 

variants in LD (r2 > 0.8) with the lead variant at 16 loci (Supplemen-
tary Table 16), including 3 splice variants in HSD17B13 (rs72613567, 
c.812+2dupT), MAMSTR (rs11666792, c.219+3G>A) and PYGB (rs2261790, 
c.1518+6T>C). Using gene-expression data, we found significant colo-
calization (posterior probability (PPa) >0.70) at six loci (Supplemen-
tary Tables 17 and 18), proposing 12 potentially causal genes, and a 
single gene at two loci (HSD17B13 and TOR1B). Only MBOAT7 and HKDC1 
showed evidence of colocalization in liver tissue. Additionally, we 
found six variants that associated with splicing QTLs (Supplementary 
Table 19) and two variants (in ADH1B and APOH) with significant cis 
associations with protein levels (Supplementary Table 20). Using the 
similarity-based approach, PoPS, we identified at least one gene at  
23 loci that had a score among the top 10% of the PoPS distribution 
(Supplementary Table 21). Using the Open Targets Genetics V2G score, 
all variants were successfully mapped to a nearby gene. By considering 
the number of lines of evidence supporting a given gene, we found  
that 18 of 36 loci had at least two lines of evidence and 9 loci had at  
least three lines of evidence (Supplementary Table 22).

Convergence between common and rare variant associations
We examined exome sequencing data in the UKB to assess convergence 
in disease risk between common and rare protein-truncating variants. 
We selected 18 genes based on gene-prioritization analyses that had 
at least two lines of evidence and then evaluated rare variants (allele 
frequency <0.1%) that were predicted to cause loss-of-function (pLoF) 
and/or missense variants (with a Combined Annotation Dependent 
Depletion (CADD) score of at least 20) for their association with ALT 
and cirrhosis. We found three genes (ADH1B, GPAM and TM6SF2) that 
were significantly associated with ALT (P < 6.9 × 10−4; Supplementary 
Table 23). Notably, rare pLoF variants in GPAM were associated with 
lower ALT levels (−0.29 s.d. units per allele, 95% CI: −0.40 to −0.16, 
P = 5.8 × 10−6) and numerically lower odds of cirrhosis, although the 
latter association did not reach statistical significance (OR: 0.36, 95% 
CI: 0.05–2.42, P = 0.296; Supplementary Table 23). In contrast, the 
missense variant p.Ile42Val (rs2792751) in GPAM had a positive effect 
on both ALT levels (0.006 s.d. units per allele, 95% CI: 0.005–0.007, 
P = 7.0 × 10−45) and cirrhosis (OR: 1.09, 95% CI: 1.06–1.12, P = 6.4 × 10−11). 
Similar to the missense variant p.Glu167Lys (rs58542926), rare coding 
variants in TM6SF2 were also associated with higher ALT levels (0.10 
s.d. units per allele, 95% CI: 0.07–0.13, P = 2.0 × 10−10) and increased 
risk of cirrhosis (OR: 2.07, 95% CI: 1.43–3.00, P = 1.0 × 10−4). The under
lying mechanism by which the common missense variant p.Ile148Met 
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(rs738409) in PNPLA3 leads to hepatic steatosis and progressive liver 
injury has been a topic of discussion. We observed that rare coding 
variants (pLoF + missense) and pLoF variants (excluding missense) 
in PNPLA3 were both nominally associated with increased cirrhosis  
risk (pLoF + missense—OR: 1.86; 95% CI: 1.19–2.90; P = 6.0 × 10−3; 
pLoF—OR: 2.97; 95% CI: 1.09–8.15; P = 0.034; Supplementary Table 23).  
We also found that rare coding variants in PNPLA3 associated nomi-
nally with liver enzymes (pLoF + missense: 0.04 s.d. units per allele,  
95% CI: 0.00–0.07, P = 0.034), but not when restricting to pLoF only 
(0.05 s.d. units per allele, 95% CI: −0.01 to 0.12, P = 0.121). This find-
ing is similar to the direction of effect observed for p.Ile148Met  
(OR: 1.58, 95% CI: 1.54–1.62, P = 3.1 × 10−260). After adjusting for 
p.Ile148Met, associations were slightly attenuated (pLoF + missense—
OR: 1.56; 95% CI: 1.04–2.33; P = 0.032; pLoF—OR: 2.01; 95% CI: 1.00–4.04; 
P = 0.051, respectively).

PRS and hepatobiliary outcomes
We created the following six distinct PRSs: a European-specific (PRSEUR), 
a cross-ancestry PRS (PRSCA), a PRS based on ALT (PRSALT) and three 
different weighted scores, each incorporating varying numbers of risk 
variants identified in this study. We then compared the predictive ability 
of each of these PRSs. We found that the PRS15-SNP explained the highest 

proportion of phenotypic variation (r2 = 1.7%; Supplementary Table 9), 
change in area under the curve (AUC) (+0.031, 95% CI: 0.023–0.039; 
Supplementary Table 24) and yielded an OR for cirrhosis of 1.42 per s.d. 
increase in PRS (Supplementary Table 9 and Fig. 5a). In comparison, 
the PRSALT accounted for 1.3% of cirrhosis phenotypic variance, had a 
change in AUC of 0.021 and an OR of 1.38 per s.d. increase in PRS (Fig. 5a). 
The difference in predictive ability between PRS15-SNP and PRSALT was 
statistically significant (change in AUC + 0.005, 95% CI: 0.003–0.017, 
P = 0.005). Next, we evaluated the reclassification of individuals after 
the addition of the PRS15-SNP to a baseline model containing age, sex 
and ten PCs. Adding PRS15-SNP resulted in a net percentage of individu-
als with cirrhosis correctly classified upward (event net reclassifica-
tion index (NRI)) of 8.4% (95% CI: 3.1–13.7), and of individuals without  
cirrhosis correctly classified downward (nonevent NRI) of 21.3% (95% 
CI: 20.1–22.7). These changes resulted in an overall continuous NRI  
of 29.7% (95% CI: 23.4–36.1). Following this, we investigated how the 
various PRSs associated with a broader range of hepatobiliary out-
comes. We found that the PRSEUR had the highest OR for HCC, for which a  
1 s.d. higher PRS conferred an OR of 1.67 (95% CI: 1.52–1.82), followed by 
liver-related death (OR: 1.56 (95% CI: 1.44–1.69)) and alcoholic cirrhosis 
(OR: 1.47 (95% CI: 1.39–1.57)). Across the range of outcomes, the PRS15-SNP 
tended to have slightly larger per s.d. effect sizes than PRSCA, PRSALT and 
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PRS5-SNP, but comparable to the PRSEUR. Notably, PRS5-SNP performed 
similarly to PRSALT and PRSCA, despite being based on only five SNPs. 
To test the generalizability of the PRS5-SNP, we investigated its associa-
tion with cirrhosis in a general population cohort from Copenhagen, 
Denmark (428 cases and 95,321 controls, all Danish ancestry), and in a 
multi-ancestry case–control study from Dallas, Texas (825 cases and 
3119 controls; 21% Hispanic, 46% Black and 31% White). The per s.d. ORs 
for cirrhosis in the two cohorts were 1.35 (95% CI: 1.24–1.48) and 2.35 
(95% CI: 2.10–2.63), respectively.

PRSs and disease progression
We evaluated the ability of PRS15-SNP to classify risk in a sample of 1,796 
individuals with cirrhosis from the UKB, of whom 91 developed HCC. 
We found an association between a higher PRS15-SNP and an increased 
risk of HCC after the onset of cirrhosis. Specifically, we found that 
individuals with cirrhosis and a high PRS15-SNP (top 20% of the PRS) 
had a 10-year HCC risk of 15.0% (95% CI: 9.7–22.0) compared with 5.8% 
(95% CI: 4.3–7.6, P for difference <0.001) for individuals in the bot-
tom 80% of the PRS15-SNP (Fig. 6a). A similar pattern was observed in 
Copenhagen Hospital Biobank (CHB), involving 3,253 individuals 
with cirrhosis, of whom 172 developed HCC. Individuals in the top 
20% of the PRS had an 11% (95% CI: 8.5–14.0) risk of developing HCC, 
compared to 5.3% (95% CI: 4.4–6.3, P for difference <0.001) for those 
in the bottom 80% (Fig. 6b). Correspondingly, the PRS associated 
with increased risk of progressing to cirrhosis in individuals with 
registry-defined NAFLD. We identified 4,449 individuals in the UKB 
with registry-defined NAFLD, of whom 193 progressed to cirrhosis dur-
ing follow-up. Individuals with a PRS15-SNP in the top 20% had a 10-year 
risk of 11.0% (95% CI: 7.1–16.0), whereas individuals in the bottom 
80% of the distribution had a 10-year risk of 8.6% (95% CI: 6.8–11.0,  
P for difference = 0.036; Fig. 6c). In CHB, among 860 individuals with 
NAFLD, 95 developed cirrhosis during follow-up. In MVP, of the 18,302 
individuals with NAFLD, 280 developed cirrhosis. Those in the top  
20% of the PRS15-SNP distribution had a 10-year cirrhosis risk of 13.0% 
(95% CI: 7.5–19.0) in CHB and a 5-year risk of 2.8% (95% CI: 2.3–3.5) 
in MVP, respectively (Fig. 6d). In contrast, those in the bottom 80% 
of PRS15-SNP had a 10-year risk of 9.9% (95% CI: 7.6–12.0, P for differ-
ence = 0.032) in CHB and 5-year risk of 1.5% (95% CI: 1.3–1.7, P for  
difference <0.001) in MVP, respectively.

Discussion
We report the largest GWAS meta-analysis to date on cirrhosis and its 
associated endophenotypes, ALT and GGT. Our study included over 
18,000 cirrhosis cases and more than 1 million individuals with endo-
phenotypic data sampled from four populations and identified 36 
risk variants for cirrhosis, of which 14 replicated in an independent 
cohort. We found that PRSs were linked to the progression of NAFLD 
to cirrhosis and of cirrhosis to HCC. In addition, we used molecular 
QTLs and gene-prioritization methods to identify genes for rare vari-
ant burden analyses. This enabled us to investigate the convergence of 
risk between common and rare genetic variants and identify potential 
targets for pharmacological intervention.

As expected for an end-stage disease, we found that the risk  
variants were mainly associated with cirrhosis through known risk 
factors. The majority of the variants were associated with hepatic 
lipid metabolism and fatty liver disease, with certain variants (in APOE 
and TRIB1) displaying significantly larger effects on NAFLD com-
pared with cirrhosis. Other variants, such as those in HSD17B13 and  
MAMSTR, were found to have larger effects on cirrhosis compared 
with NAFLD, indicating a more dominant role in the progression to 
clinically advanced stages of chronic liver disease. Variants near HKDC1 
were mainly associated with cirrhosis, indicating the involvement of 
potential profibrotic pathways that do not involve the accumulation 
of hepatic fat. Conversely, other variants in COBLL1 and SH2B3 were 
related to body fat distribution traits, indicating that an impaired ability 
to store adipose tissue in peripheral compartments may contribute to 
disease16–18. Additionally, lead variants at ADH1B and ALDH2 have been 
shown to cause adverse symptoms with alcohol intake, thus reducing 
the risk of alcohol-related diseases such as cirrhosis19. The variants  
at HFE and SERPINA1 cause hemochromatosis and α-1 antitrypsin  
deficiency, respectively, well-known risk factors for cirrhosis.

The discovery of naturally occurring loss-of-function variants 
associated with protection against liver disease has led to the identifica-
tion of new therapeutic targets6,9. We showed that rare loss-of-function 
variants in GPAM associate with lower plasma ALT levels. This find-
ing aligns with two recent reports on the relationship between rare 
loss-of-function variants and ALT levels9,20. GPAM encodes the mito-
chondrial isoform of glycerol-3-phosphate acyltransferase, an enzyme 
that catalyzes the first step of glycerolipid synthesis in the liver and 
adipose tissue. Genetic variation in GPAM has previously been associ-
ated with fatty liver disease through GWAS20,21 and with cirrhosis, albeit 
not at genome-wide significance21,22. These observations support the 
inhibition of GPAM as a potential treatment for cirrhosis and related 
liver diseases like steatosis and steatohepatitis20.

The potential use of PRSs for prognostication in individuals at 
risk of cirrhosis is a topic of major clinical interest. We evaluated the 
predictive ability of a range of differently constructed cirrhosis PRSs. 
The main finding of these analyses was that a PRS based on the 15 SNPs 
that associated with cirrhosis at GWAS significance in our study per-
formed as well as scores based on all 36 SNPs identified in our study, 
or scores based on more than 1,000,000 SNPs. Of note, a PRS based 
on the five SNPs with the strongest associations with cirrhosis had 
only slightly attenuated effects compared to the abovementioned 
PRSs. Taken together, our PRS analyses indicate that the genetic archi-
tecture of cirrhosis is dominated by few, large-effect variants. Such 
an oligogenic model is consistent with recent GWAS findings, which 
showed that a 9-variant PRS for chronic ALT elevation, a proxy for 
NAFLD, had effects similar to those observed for a 77-variant PRS23. 
Interestingly, the cross-ancestry PRS, which was derived from the larg-
est set of cirrhosis cases, performed worse than the European-specific 
genome-wide PRS in predicting cirrhosis. This contrasts with recent 
studies on other complex traits that have shown that incorporating a 
broader set of ancestries can improve prediction, even for European 
populations24–27. The difference in performance may reflect the diverse 
underlying causes of cirrhosis, where viral hepatitis is the leading cause 
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in East Asians, while alcohol and obesity are dominant in Europeans2. 
These differences are also reflected in the variants that are mainly 
driven by specific ancestries, such as the HLA locus association, which 
contributes to hepatitis persistence and chronicity in East Asians28.

Environmental risk factors, such as BMI, exacerbate the risk of 
liver disease conferred by known genetic risk factors11. In alignment 
with previous observations4,11, we found that the risk conferred by 
PNPLA3 rs738409 was significantly amplified by adiposity, alcohol 
intake and diabetes for a range of liver-related outcomes, including 
NAFLD, cirrhosis and HCC. These relationships are among the strong-
est gene–environment interactions seen in man29,30.

Our study has some limitations that should be considered. First, 
the cirrhosis phenotype was mainly based on registry-based Interna-
tional Classification of Diseases (ICD) codes, a definition that inevitably 
suffers from some degree of misclassification. That said, cirrhosis is  
a hard endpoint with well-defined diagnostic criteria. Supporting  
the validity of the endpoint, PNPLA3 rs738409 was associated with 
cirrhosis in each cohort, with effect sizes like those seen in histologi-
cally defined cirrhosis cohorts. Second, we included relatively few 
individuals of African American and Hispanic ancestry. Third, although 
we included liver tissue in our eQTL analyses, the majority of eQTLs that 
we report are based on datasets from nonhepatic tissues, some of which 
had manyfold larger sample sizes. This limits the ability to draw conclu-
sions on liver expression specificity of the reported loci. Nevertheless, 
we did not solely depend on eQTL signals as standalone evidence but 

reported potential effector genes when complementary evidence from 
other gene mapping strategies converged on the same gene.

In conclusion, we identified 36 risk variants for cirrhosis, including 
24 that have not been previously linked to this disease. These results 
provide an expanded catalog of genes to interrogate mechanistically 
in future studies. A better understanding of the genetic factors that 
underpin cirrhosis will improve our ability to predict and ultimately 
treat this deadly disease.
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Methods
Ethics approval
All human research was approved within each contributing study by 
the relevant institutional review board (IRB) and conducted according 
to the Declaration of Helsinki (CHB-CID/DBDS: National Committee on 
Health Research Ethics; deCODE: National Bioethics Committee; Inter-
mountain Healthcare: Intermountain Healthcare IRB; UKB: Northwest 
Multicenter Research Ethics Committee; Geisinger DiscovEHR: The 
GHS project has received ethical approval from the Geisinger Health 
System IRB under project 2006-0258; FinnGen: The Coordinating 
Ethics Committee of the Hospital District of Helsinki and Uusimaa; 
Estonian Biobank: ethical approval 1.1-12/624 from the Estonian Com-
mittee on Bioethics and Human Research, Estonian Ministry of Social 
Affairs; Biobank Japan: research ethics committees at the Institute of 
Medical Science, the University of Tokyo, the RIKEN Yokohama Institute 
and the 12 cooperating hospitals; Copenhagen General Population 
Study and Copenhagen City Heart Study: IRBs and Danish ethical com-
mittees; All of Us: National Institute of Health All of Us IRB; Dallas Liver 
Cohort: University of Texas Southwestern IRB; and MVP: VA Central 
IRB). All participants (except for CHB-CID) provided written informed 
consent. For CHB-CID, patients were informed about the opt-out pos-
sibility of having their biological specimens excluded from use in 
research in general. Since 2004, a national Register on Tissue Applica-
tion (Vævsanvendelsesregistret) lists all individuals who have chosen 
to opt-out and whose samples cannot be used for research purposes. 
Before initiating this study, individuals listed in the Register on Tissue 
Application were excluded.

Cohorts, association testing and meta-analysis
Cases were defined using hospital or registry records (ICD-9 or ICD-10). 
Controls were defined as individuals without a known history of cirrho-
sis. A full description of the cohorts and case and control definitions is 
provided in Supplementary Information and Supplementary Table 1. 
Details on genotyping methods, pre-imputation quality control and 
imputation methods are provided in Supplementary Table 1. Each study 
performed a GWAS of cirrhosis using logistic regression with at least 
age (or year of birth), sex and PCs used as covariates. Postregression 
quality control (QC) included the removal of variants with an imputa-
tion quality score <0.6, minor allele count <6 or absolute log(OR) or 
s.e. >10. We conducted two-fixed effect inverse-variance-weighted 
(IVW) meta-analyses using METAL31. The first involved individuals of 
European ancestry, including nine studies, totaling 15,225 cases and 
1,564,786 controls. Only variants that were present in at least three 
studies were retained. In the second meta-analysis, we included indi-
viduals from East Asian (Biobank Japan), African American and Hispanic 
ancestries (latter two from All of Us), totaling 18,265 cases and 1,782,047 
controls. Genomic inflation factors were calculated for each cohort and 
for the full meta-analysis. To assess any residual confounding due to 
population stratification, we calculated the LDSC intercept using LD 
scores calculated in the HapMap3 CEU population32. Genome-wide 
significance was set at P < 5 × 10−8.

Risk loci definition
To identify independent variants within each risk locus, LD clumping 
was performed using PLINK v1.9. We used a 1 Mb window (--clump-kb 
1000) and an LD threshold (--r2 0.1) to identify independently sig-
nificant SNPs. Using the independently significant SNPs, distinct 
genomic loci were defined by starting with the lowest P value variant, 
excluding other variants within ±1 Mb and iterating until no variants 
remained. The independently significant variant with the lowest  
P value that defined each genomic locus is termed the lead variant. 
Risk loci were defined as a ±1 Mb region around each lead variant.  
A risk locus was termed new if neither the lead variant nor any vari-
ant within 1 Mb had previously reached genome-wide significance 
for cirrhosis.

Endophenotype analyses
Both ALT and GGT levels are used clinically as biomarkers for liver 
injury. To increase statistical power for genomic discovery of cir-
rhosis, we used GWAS summary statistics for ALT and GGT as priors 
for association with cirrhosis. We first performed meta-analyses on 
both ALT and GGT summary data using previously published sum-
mary statistics33,34 and data from CHB including more than 1 million  
individuals. We then tested independent variants that reached 
genome-wide significance for association with ALT or GGT in both 
the European-only and cross-ancestry cirrhosis meta-analysis. We 
considered associations significant if their FDR was <0.05.

Validation
To validate our findings, we performed replication of cirrhosis vari-
ants identified via cirrhosis GWAS and/or endophenotype-informed 
analysis using summary statistics of 21,689 cirrhosis cases and 617,729 
disease-free controls from the MVP. Two variants (rs146650659 and 
rs113469203) were not available in the MVP, for which we selected 
suitable proxies (r2 ≥ 0.65). rs671 in ALDH2 was not amenable to valida-
tion, due to low frequency in non-East Asian populations. Cases were 
defined as in the primary GWAS analysis (Supplementary Table 1). A 
P < 1.4 × 10−3 (0.05/35 variants) and consistent direction of effect were 
considered successful replication.

PheWAS
To gain insight into the potential underlying mechanisms by which the 
new risk loci contribute to disease, we tested the association between 
the 36 risk loci and 41 predefined metabolic and hepatobiliary traits 
using data from deCODE, UKB, FinnGen, Intermountain Healthcare, 
CHB-CID/DBDS and publicly available summary statistics, where avail-
able. The 36 variants were taken forward from the three main analyses 
(that is, the European-specific analysis, cross-ancestry meta-analysis 
and endophenotype-driven approach). In instances where risk loci 
were represented in multiple analyses, we selected the most significant 
variant (that is, the lowest P value). Binary traits were analyzed using 
logistic regression, and quantitative traits were inverse-rank normal-
ized and analyzed using linear regression. The models were adjusted 
for age, sex and ten PCs. We considered associations significant if their 
FDR was <0.05.

Gene–environment interaction analyses
Environmental factors, such as alcohol consumption and BMI, are 
known risk factors for cirrhosis, and synergistic effects with genetic 
risk factors have previously been reported4,11. Here we systematically 
investigated for potential effect modification between risk loci and 
BMI, weekly alcohol intake and T2D in the UKB. BMI was measured at 
the baseline assessment visit and calculated as weight in kilograms 
divided by height in meters squared. Information on alcohol con-
sumption was retrieved from questionnaire-based data on alcohol 
use. Participants who consumed alcohol at least once or twice per 
week were asked to provide information on their average weekly and 
monthly alcohol consumption across various alcoholic beverages (red 
wine, white wine, champagne, fortified wine, spirits and beer/cider). 
Based on data collected from individuals who consumed alcohol 
regularly, we calculated the average weekly alcohol intake in units. 
Information on T2D was retrieved from either from self-reported his-
tory of T2D or unspecified diabetes or HbA1c levels >48 mmol mol−1 
measured at baseline. We examined a total of 35 variants (exclud-
ing the HLA variant) from the three main analyses for interaction 
with these factors. Potential interactions between the variants and 
environmental factors were evaluated using likelihood ratio tests, 
comparing the main-effects model (variant + environmental factor) 
with a model including an interaction term (variant × environmen-
tal factor). We set the significance threshold at P < 4.8 × 10−4 (0.05/ 
(35 variants × 3 traits)).

http://www.nature.com/naturegenetics
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MR
We conducted MR analyses on a set of biomarkers that had previ-
ously been identified as risk factors for cirrhosis, including BMI, lipids 
and alcohol intake35. To ensure that our analysis did not have overlap-
ping samples, we conducted a meta-analysis on all available cirrhosis 
cohorts of European ancestry except for the UKB sample set, as all 
the exposure traits were derived from the UKB. We excluded expo-
sure traits with fewer than ten instrumental variables (IVs) to avoid 
underpowered tests, resulting in 39 traits being tested. We evaluated 
instrument strength by calculating the F statistic36. To ensure a com-
parable LD structure between exposure and outcome datasets, only 
exposures derived from samples of European ancestry were taken 
forward. We selected independent variants with genome-wide signifi-
cance (P < 5 × 10−8) and an r2 < 0.001 to serve as IVs for our MR analyses 
using the clumping procedure in the TwoSampleMR software and LD 
estimates from the European samples from the 1000 Genomes Project. 
We used the following two different MR methods: IVW model as our 
primary model and the weighted median model as sensitivity analysis. 
MR–Egger intercept was used to test for pleiotropy. To test whether the 
results were driven by individual variants, we conducted leave-one-out 
analyses. Only associations that passed P < 1.2 × 10−3 (0.05/39 traits) in 
the primary analyses (IVW), had a P < 0.05 in our sensitivity analyses 
(weighted median) and showed no evidence of pleiotropy (MR–Egger 
intercept P ≥ 0.05) were considered significant. Finally, we explored 
whether the genetic effects of BMI and alcohol were mediated by the 
effect of NAFLD, by using the ivw_mvmr() function in the MVMR pack-
age. Genetic effects on NAFLD were obtained from a meta-analysis 
comprising 9,491 cases20.

Heritability
We used LDSC v.1.0.0 to estimate the SNP heritability of cirrhosis 
in Europeans, East Asians, African Americans and Hispanics using 
ancestry-matched precomputed LD scores obtained at https://gnomad.
broadinstitute.org/downloads/. We reformatted association statistics 
to LDSC format with the munge tool, which excluded variants that 
did not match with the LD panel, had strand ambiguity, MAF < 0.01, 
INFO < 0.9 and variants that resided in long-range LD regions and  
the major histocompatibility locus on chromosome 6. To convert 
to liability scale, we used population-specific prevalence estimates, 
ranging from 0.5% in Europeans to 1.7% in East Asians2.

Gene mapping
We used six complementary approaches to annotate lead variants to 
potentially causal genes. First, we investigated whether the lead variants 
or proxy variants (r2 > 0.8) were annotated as loss-of-function or mis-
sense variants using Variant Effect Predictor (VEP) v.95 (ref. 37). Second,  
we used molecular QTLs to investigate the relationship between risk 
loci and potential downstream effects on gene expression (eQTL), 
alternative splicing (sQTL) and protein levels (pQTL). We investigated 
whether lead or proxy variants overlapped with top cis-eQTLs from 
the following two resources: adipose (n = 750) and whole-blood eQTL 
(n = 17,846) data from deCODE13 and 54 tissues and cell lines from  
GTEx (v.8)12. Top cis-eQTLs were eQTLs with the strongest association 
with each gene within a 1 Mb window and a P < 1 × 10−7. We used colo-
calization analyses to detect shared causal variants between cirrhosis 
and gene expression using COLOC (v.3.2.1) R package38. We tested genes 
with significant cis-eQTL association by analyzing all variants that were 
located within a ±1-Mb window around the sentinel variant using eQTL 
and cirrhosis, ALT and GGT meta-analysis summary statistics. We set 
the prior probabilities to P1 = 1 × 10−4, P2 = 1 × 10−4 and P12 = 5 × 10−6, as 
suggested previously39. We report the posterior probability that the 
association with gene expression and cirrhosis risk is driven by a single 
causal variant. We consider a PPa ≥ 0.70 as supporting evidence for a 
causal role for the gene as a mediator of cirrhosis. Data on alternative 
RNA splicing were derived from whole-blood RNA-seq (n = 17,846) data 

available at deCODE20. The strongest association for each splice junc-
tion with a P < 1 × 10−8 was deemed top cis-sQTL. Data on protein levels 
were based on the following two datasets: (1) 4,907 proteins (n = 35,559) 
measured using the SomaScan v.4 assay available at deCODE14 and 
(2) 1,472 proteins (n = 47,151) measured using the Olink Explore 1536 
platform available at UKB15. Top cis-pQTLs were pQTLs that had the 
strongest association within a 1 Mb window. If the lead or proxy vari-
ants were in LD (r2 > 0.8) with either a top cis-eQTL, top cis-pQTL or top 
cis-sQTL, the two signals were considered overlapping. Third, we used 
the gene that was assigned the highest Variant-to-Gene (V2G) score 
provided by Open Targets Genetics (https://genetics.opentargets. 
org/). The V2G score is an ensemble score that combines evidence on 
variant–gene associations from multiple sources, including molecular 
cis-QTL data (for example, pQTL and eQTL), interaction-based datasets 
(for example, promoter capture Hi-C) and genomic distance. For details 
on specific datasets and corresponding weights, please see https:// 
genetics-docs.opentargets.org/our-approach/data-pipeline. Fourth, 
we used PoPS, a similarity-based gene-prioritization approach, which 
integrates GWAS summary statistics with gene-expression data, bio-
logical pathways and predicted protein–protein interaction data from 
more than 50,000 features40. We first computed gene-level association 
statistics and gene–gene correlations from our European-specific 
and cross-ancestry GWAS summary statistics using MAGMA41 and 
LD estimates from 1000 Genomes European Ancestry data. Then, we 
conducted an enrichment analysis for gene features outlined at https:// 
github.com/FinucaneLab/gene_features with MAGMA. Finally, we 
determined PoPS for each gene by fitting a joint model that considers 
the enrichment of all resulting features. Genes with a PoP score in the 
top 10% of the distribution were considered potential causal genes. 
We used the sum of the listed approaches and prioritized genes that 
had at least two lines of evidence. In the event of a tie-break, genes 
with coding variants in LD with the lead variant were given priority 
over V2G and/or PoPS.

Convergence between common and rare variant associations
While common variant associations enable the connection between 
a specific gene region and a disease, associations with rare coding 
variants can precisely identify causal genes and offer insights into the 
potential therapeutic effect and direction of targeting a gene or its 
product. To investigate the directional concordance between com-
mon and rare variants, we conducted rare variant analyses, studying 
the association between rare pLoF and missense variants in genes, 
supported by our gene-prioritization analyses, and ALT and cirrhosis, 
respectively. Details on calling and quality control have been described 
elsewhere42. We used SnpEff to annotate the variants and prioritized 
those with a minor allele frequency of <0.1%, which were predicted to 
cause loss-of-function, including stop-gain, frameshift, splice acceptor 
and splice donor variants and missense variants with a CADD score ≥20. 
We created the following two masks: pLoF only and pLoF + missense 
with CADD ≥20. To evaluate the associations between genotypes and 
outcomes, we used linear regression models for quantitative traits 
(ALT) and Firth-bias corrected logistic regression models for binary 
traits (cirrhosis) using REGENIE and individuals of European ancestry43. 
The models were adjusted for age, sex and ten PCs. We set the signifi-
cance threshold at P < 6.9 × 10−4 (0.05/(18 genes × 2 masks × 2 traits)).

PRS derivation
The following six PRS were generated to compare the predictive 
performance in detecting cirrhosis: a cross-ancestry cirrhosis PRS 
(n = 1,325,517 (1.1% cases)), a European-only PRS (n = 1,105,216 (1.1% 
cases)), an ALT PRS (n = 257,869) and three weighted scores based on 
differing numbers of risk variants. Variants selected from the weighted 
scores were the 36 variants identified in both the cirrhosis GWAS and/or 
endophenotype-informed analysis, the 15 variants identified through 
cirrhosis GWAS and 5 known high-effect variants (rs2642438 in MTARC1, 
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rs72613567 in HSD17B13, rs28929474 in SERPINA1, rs739846 in TM6SF2 
and rs738408 in PNPLA3). Polygenic weights were calculated using 
PRS-CSx44. This method uses ancestry-specific GWAS weights, paired 
with LD information from an ancestry-matched external reference 
panel to estimate the posterior effect size for each SNP. Reference pan-
els from the 1000 Genomes European, East Asian, Admixed American 
and African American samples were used. For the cross-ancestry PRS, 
ancestry-specific posterior effect sizes were meta-analyzed using the 
IVW method. For the genome-wide PRSs, we excluded the UKB dataset 
from the derivation datasets to ensure nonoverlapping samples. For 
the weighted scores, only effect estimates derived from meta-analysis 
excluding the UKB were used.

PRS evaluation
We evaluated the PRSs in the UKB. We first evaluated the proportion 
of variance explained (r2) by the six PRSs. We estimated the variance 
explained on the observed scale using Nagelkerke’s r2 as the differ-
ence in r2 between a full model (PRS + sex + age + ten PCs) and a null 
model (sex + age + ten PCs). Estimates were converted to the liability  
scale as per ref. 45, assuming a population prevalence of 0.5%2. We  
then compared ORs per s.d. increase in PRS for each of the six PRSs 
using logistic regression, adjusted for age, sex and ten PCs. Finally, 
we added each of the six PRSs and compared the change in AUC (and 
95% CI) to a baseline model comprising age, sex and the first ten PCs. 
The 95% CIs were computed using a stratified bootstrap with 1,000 
replicates. AUCs were computed using the R package pROC46. The 
best-performing PRS (that is, the highest proportion of variance 
explained and change in AUC) was taken forward in downstream  
analyses described below.

PRS and disease progression
We evaluated whether the PRS could aid in identifying individu-
als who are more likely to progress from one hepatic disease state 
to another. We used the following two models to evaluate disease 
progression: (1) from NAFLD to cirrhosis and (2) from cirrhosis to 
HCC. For each model, we estimated 10-year risks using Fine-Gray 
regression, which accounts for the competing risk of death from 
all causes47. Time zero corresponded to the first occurrence of the 
exposure, and individual follow-up time ended in case of the event 
of interest, death or end of follow-up. The earliest start of follow-up 
began after the time of enrollment to prevent immortal time bias. 
The PRS was evaluated in the UKB and validated in both CHB (NAFLD 
to cirrhosis and cirrhosis to HCC) and MVP (NAFLD to cirrhosis). To 
avoid overfitting, effects were derived from a meta-analysis that did 
not include the test dataset.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
GWAS meta-analysis summary statistics are available at the GWAS 
Catalog (https://www.ebi.ac.uk/gwas/) (GCST90319877 and 
GCST90319878). The cirrhosis PRS are available at the PGS Catalog 
(https://www.pgscatalog.org/; PGS004621). Data from the UKB sam-
ples are available through UKB (https://www.ukbiobank.ac.uk/). 
FinnGen GWAS summary statistics are publicly accessible following 
registration (https://www.finngen.fi/en/access_results). German/UK 
cirrhosis cohort can be accessed at http://gengastro.med.tu-dresden.
de/suppl/alc_cirrhosis/. Summary statistics from Biobank Japan are 
available at https://pheweb.jp/. Other individual summary statistics 
will be made available upon request to study PIs (AllOfUs: S.V., CHB-CID/
DBDS: J.G./S.S., deCODE and Intermountain Healthcare: G.S./H.H., 
Estonian Biobank: T.L.). The GTEx v.8 eQTL data used in this study are 
available in the GTEx Portal (https://gtexportal.org/home/datasets).

Code availability
The following software and packages were used for data analysis: PLINK 
2.0 (https://www.cog-genomics.org/plink/2.0/), METAL v.2011-03-
25 (http://csg.sph.umich.edu/abecasis/Metal/download/), MAGMA 
v.1.07 (https://ctg.cncr.nl/software/magma), EasyQC v.9.2 (https://
www.uni-regensburg.de/medizin/epidemiologie-praeventivmedizin/
genetische-epidemiologie/software/), LDSC v.1.0.1 (https://github.
com/bulik/ldsc), PoPS v.0.1 (https://github.com/FinucaneLab/pops/
tree/add-license-1), PRS-CS v.2021-06-04 (https://github.com/get-
ian107/PRScs/), REGENIE v.2.0.1 (https://rgcgithub.github.io/regenie/), 
TwoSampleMR v.0.5.6 (https://mrcieu.github.io/TwoSampleMR/), 
MVMR 0.4 (https://github.com/WSpiller/MVMR), pROC 1.18.4 (https://
cran.r-project.org/web/packages/pROC/index.html) and R v.4.1.2 
(https://www.r-project.org/).
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis The following software and packages were used for data analysis: PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/), METAL v.2011-03-25 
(http://csg.sph.umich.edu/abecasis/Metal/download/), MAGMA v.1.07 (https://ctg.cncr.nl/software/magma), EasyQC v.9.2 (https://www.uni-
regensburg.de/medizin/epidemiologie-praeventivmedizin/genetische-epidemiologie/software/), LD score regression v.1.0.1 (https://
github.com/bulik/ldsc), PoPS v.0.1 (https://github.com/FinucaneLab/pops/tree/add-license-1), PRS-CS v.2021-06-04 (https://github.com/
getian107/PRScs/), REGENIE v.2.0.1 (https://rgcgithub.github.io/regenie/), TwoSampleMR v.0.5.6 (https://mrcieu.github.io/TwoSampleMR/), 
MVMR 0.4 (https://github.com/WSpiller/MVMR), pROC 1.18.4 (https://cran.r-project.org/web/packages/pROC/index.html) and R v.4.1.2 
(https://www.r-project.org/).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

GWAS meta-analysis summary statistics are available at GWAS Catalogue (GCST90319877 
and GCST90319878). The cirrhosis PRS are available at PGS Catalog (PGS004621). Individual-level data sharing is subject to restrictions imposed by patient consent 
and local ethics review boards. The GTEx v.8 eQTL data used in this study are available in the GTEx Portal (https://gtexportal.org/home/datasets). 
 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We used biological sex throughout. 

Population characteristics Cohort characteristics (age and sex distribution) are provided in Supplementary Table 1 and each cohort has been described 
in more detail in Supplementary Information.

Recruitment  Recruitment information is provided in Supplementary Information. 

Ethics oversight All human research was approved within each contributing study by the relevant institutional review board and conducted 
according to the Declaration of Helsinki. CHB-CID/DBDS: National Committee on Health Research Ethics; deCODE: National 
Bioethics Committee; Intermountain Healthcare: Intermountain Healthcare Institutional Review Board; UKB: Northwest 
Multicenter Research Ethics Committee; Geisinger DiscovEHR: The GHS project has received ethical approval from the 
Geisinger Health System Institutional Review Board under project no. 2006-0258; FinnGen: The Coordinating Ethics 
Committee of the Hospital District of Helsinki and Uusimaa; Estonian Biobank: Ethical approval 1.1-12/624 from the Estonian 
Committee on Bioethics and Human Research, Estonian Ministry of Social Affairs; Biobank Japan: Research ethics committees 
at the Institute of Medical Science, the University of Tokyo, the RIKEN Yokohama Institute, and the 12 cooperating hospitals; 
Copenhagen General Population Study and Copenhagen City Heart Study: institutional review boards and Danish ethical 
committees; All of Us: National Institute of Health All of Us Institutional Review Board; and Dallas Liver Cohort: University of 
Texas Southwestern Institutional Review Board. MVP: VA Central Institutional Review Board (IRB). All participants (except for 
CHB-CID) provided written informed consent. For CHB-CID, patients were informed about the opt-out possibility of having 
their biological specimens excluded from use in research in general. Since 2004, a national Register on Tissue Application 
(Vævsanvendelsesregistret) lists all individuals who have chosen to opt out and whose samples cannot be used for research 
purposes. Before initiating this study, individuals listed in the Register on Tissue Application were excluded. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All available samples passing QC were used to maximize power. 

Data exclusions Within each contributing study, samples were excluded on the basis of well-established individual and variant quality control procedures to 
remove poor quality genotypes, SNPs and samples. Quality control filters are provided in Supplementary Table 1 and in under Methods. 

Replication We replicated significant variants once in the MVP cohort

Randomization Randomization is not relevant since this is a retrospective case-control study and there was no treatment to randomize.

Blinding Blinding was not relevant because it is a retrospective case-control study and there was no randomized allocation to be blinded to.  
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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