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"STOG1ASTICITY" *

L. Jackson Laslett

Lawrence Berkeley Laboratory
University of California

Berkeley, California

where y measures the fractional departure of energy
from the reference value, lTX measures the electrical
phase angle at which the particle traverses the cavity,
and K is proportional to the cavity voltage; and

Detailed examination of computed particle trajec
tories has revealed a complexity and disorder that is
of increasing interest to accelerator specialists. To
introduce this topic, I would like you to consider for
a moment the analysis of synchrotron oscillations for a
particle in a coasting beam, regarded as a problem in
one degree of freedom. A simple analysis replaces the
electric field of the RF-cavity system by a traveling
wave, having the speed of a synchronous reference parti
cle, and leads to a pair of differential equations of
the fonn

dy/dn = -K sin lTX, (la)

ing variables Y = Y - (K/2) SIn lTX, X = x, so that the
transformation asslunes the form

~+l ~ + A' [Yn - (K/2) sin lT~] }
(3a', b')

Yn+1 = Yn - (K/2) [sin lTXn + sin lT~+1] ,

with the result that the resulting phase diagrams will
necessarily have a desirable symmetry about both the
X- and Y-axes. With K/lT = 0.1 and A' = 0.1 we find
what appear to be conventional bucket diagrams with
buckets separated in Y by 2/A' for successive hannonic
modes, although we may wish to return to the question of
whether the bucket boundaries are as simple and definite
as appears on Fig. 1.

in which A' is proportional to the change of revolu
tion period with respect to particle energy. It will
be recognized that these equations can be derived from
a Hamiltonian function

Because this Hamiltonian function does not contain the
independent variable explicitly, it will constitute a
constant of the motion and possible trajectories in the
x,y phase space will be just the curves defined by H =

Constffilt, namely the familiar simple curves in phase
space that are characteristic of a physical (non-linear)
pendulum.

dx/dn = A'y,

H = (1/2)A'y2 - (K/lT) cos lTX.

(lb)

(2)
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Fig. 1. - X,Y phase plot for a coasting beam under the
influence of an R.F. cavity with KIlT = 0.1, A' = 0.1
as computed by Eqns. (3a' ,b'). X is plotted mod. 2.

If we note, however, that a localized cavity can
affect the energy of a particle only when the particle
encounters the cavity, it is natural to replace the
differential equations by difference equations. Thus,
measuring energy Yn at the nth entry to the cavity,
we write the transformation

Yn+l = Yn - Ksin lT~ }

xn+l = xn + A'Yn+l

(which can readily be shown to be area-preserving).
Although alternatively the motion in this case could
again be expressed by differential equations derivable
from a Hamiltoniffil function, the Hamiltonian now would
contain a periodic o-function of the independent varia
ble as a factor multiplying the term - (K/lT) cos lTX and
hence could not be taken as a constant of the motion.
(The differential equations, moreover, would be non
linear, so that Floquet theory could not be applied.)
The use of such a Hamiltonian formulation nonetheless
can be helpful in analytic work, but difference equa
tions of course are attractive for computational inves
tigations.

-2.1
-1.0 1.0

It is of interest to take a quick look at some com
putational results obtained through use of a transfonna
tion equivalent to (3a,b) but written in terms of work-

* Work supported by the U.S. Atomic Energy Commission.

We also find evidence of some "sub-harmonic" structure
(with higher order fixed points) that, if enlarged some
6DX, has the appearance shown in Fig. 2. 3
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10.2

RF Phase Plots
K/7T = 0.1

AI = 0.1

that is immediately apparent in the phase plot. Of
particular interest is the evident diffuse character of
phase trajectories generated by points lawlched close to
the first-order unstable fixed points situated at
X = ±l, since the bucket boundary in consequence no
longer appears clearly defined.
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In the first example (K/~ = 0.1), on the other hand,
where the bucket width is some two and one-half times
smaller in relation to the bucket separation, the pre
sence of structure in the separatrix can be revealed
computationally only with considerable care. 4 To do
this, one can extend from the unstable fixed points the
eigenvector directions of the transformation linearized
about these fixed points, and examine whether such
curves intersect smoothly. One finds in fact that they
do not quite do so, but generate loops (of a nature to
be illustrated later) that in this instance (K/rr = 0.1)
have a very small area that amounts to only about
1/(5 x lOll) of the area of the bucket itself.

Similar questions concerning the character of phase
trajectories and the possible erratic or stochastic be
havior of canonical mappings can arise in problems with
more than one degree of freedom. As an example, Henan
and Hiles S and subsequently Walker and Fordb studied a
model of an astronomical system, for which the Hamilton
ian function was taken to be

H = !(P12 +PZ2 +q12 +qZ2) + q12 qz - ~ qZ3 .

Fig. 3. - Phase plot similar to Fig. 1, but for opera
tion with K/~ = 0.8, showing the obvious development of
complex structure.

Fig. 4. - Phase plots, in the surface of section ql = 0,
resulting from the equations implied by the Hamiltonian
function (4) -- for increasing values of the energy.
[After Walker and Ford. 6]

The cubic terms appearing here as coupling terms become
increasingly significant for increasingly large values
of H -- which is itself a constant of the motion. With
the coupling terms present, however, and in the absence
of any simple constant of the motion other than H, a
given phase trajectory might be expected to wander
(ergodically) over virtually all of a three-dimensional
surface specified by H = Constant (and that will be a
closed surface for values of H below the dissociation
energy). If, on the other hand, some additional inte
gral of the motion were in fact also acting, the phase

points of a given trajectory then would be constrained
to lie on a two-dimensional surface, and graphs of the
intersection of such surfaces with some selected plane
or other surface (a "surface-of-section") would lead to
simple curves in this plane rather than to a scattering
of points. Computations of this nature indicated that
for sufficiently small values of energy (~.R" H~ l/lZ)
only curves that to computer accuracy were smooth (and
relatively simple) were formed by intersection with the
plane ql = a (and PI ~ 0). Examples in which the energy
of the particles was successively raised, however, re
sulted in the development of ragged island structures or
of apparent stochastic behavior over increasingly large
portions of this surface-of-section (Fig. 4).

1.0

K /-rr =0.8
I

A =0.1
PlotsPhaseRF

------=--_._ _------=-----"'-.e
:> :.::><::"::::-.-:. ~ .. -.~:. ~~..:~::><::.-~ .-~

.......
~- _._ _-------

26.0

- 6.0
- 1.0

If the cavity voltage is increased eight-fold (so
K/~ = 0.8), the bucket 8reas are expected to become
larger, and we indeed find this to be the case (Fig .. 3),
with an accompanying very marked increase of complexlty

Fig. 2. - Circa 60-fold vertical enlargement of central
portion of Fig. 1, near Y = 10.0, showing sub-harmonic
structure.
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It should be pointed out that some non-linear trans
formations -- say for a system with one degree of free
dom -- will not lead to the disappearance of some or all
of the invariant phase curves at substantial amplitudes.
Thus for transformations of the form

ydrul,

o
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Fig. S. - Phase diagram for the transformation (5a,b),
with fey) given by Eqn. (6a). The scattered points
result from computations initiated with Xo = Yo = 0.25,
but must remain within the separatrix defined by the
function ~ [Eqn. (6b)].

(6a)

and

xn+l = Yn; Yn+l = -~ + f(Yn)' (5a,b)

McMillan9 has shown that if fey) can be written as
~(y) + ~-l(y) (where ~-l denotes the function inverse to
~), then the curves y = ~(x) and x = ~(y) will consti
tute invariant curves. Such curves will pass through
the first-order fixed point(s) situated at the inter
section(s) of y = (l/Z)f(x) with the principal diagonal.
An enclosed area can thereby be formed from which phase
points cannot escape even if the behavior in portions of
the interior becomes highly stochastic. This is illus
trated by an example (Fig. 5) in which

1 1 k 2 ~fey) = -Z(3y-l) - --+"y +1\Z y+l

Additional tests (to be mentioned below) may be re
quired to determine the degree of disorder associated
with the movement of phase points in such stochastic
regions. We may first note, however, that the existence
of nested closed invariant curves in a plane -- as
suggested by the KAM theorem for a problem in one degree
of freedom -- prevents phase points from moving outward
or inward to regions of substantially different "ampli
tude" (in the absence of noise). With more than one
degree of freedom, however, stochastic layers may inter
sect, to form an intricate system of channels along
which a phase point can slowly diffuse and result in
instability. The possibility of such "Arnol'd diffu
sion" has been demonstrated by Arnol'd [Ref. 35 of our
Ref. lc; stated simply the example considered by Arnol'd
is comprised of a physical pendulum and a simple-harmonic
oscillator, with a time-dependent coupling (that also
depends on the phases, or angle variables, of these
oscillations)].

Such behavior appears concordant with the "KAM"
(Kolmogorov-Arnol'd-Moser) theory (see Refs. 58, 59, &
60 of our Ref. lc), which suggests that many of the in
variant curves or surfaces present in the absence of
the perturbation will persist, with only minor distor
tion, in the presence of a sufficiently small perturba
tion (see, however, Note 7). It is of interest, of
course, to determine or to estimate the circumstances
(~.g., perturbation strength) at which the KAM theory
becomes inapplicable and extended regions of erratic
(or stochastic) behavior develop. As was suggested by
our first examples, and has been ergognded more exten
sevely by Zaslavskij and Chirikov, , one means for
obtaining such estimates may be by determining the ratio
of resonance width [ow=(dw/dI)roI] to the distance (~w)

to the nearest neighboring resonance.

Such a situation also can develop when fey) is a step
wise linear function of y with discontinuities of
s~ope, as has been noted by Dr. Judd [see, for example,
FlgS. 13 and 14 (pp. Z7-Z8) of Ref. 10]. If fey) is
of the form

~ (x) = x-I + /?+i? . (6b) Fig. 6. - Invariant curves for the transformation (Sa,b)
with fey) = 2ky/(1+y2) and k = 2/3. [Figs. 6-10 after
McMillan. 9]

fey) = - (By2 + Dy)/(Ay2 + By + C), (7)

moreover, the entire phase plane will be covered by a
family of simple invariant curves -- see, for example,
the cases9 fey) = Zky/(1+y2), with the invariants
X2y2 + x2 + y2 - Zkxy = Constant, and fey) = Zky/(1-y2)
with the in~ariants X2y2_x2_y 2+Zkxy = Constant, illus- '
trated by FlgS. 6-8.
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2 A = 2 ± 13, dyjdx = A. (9)
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Fig. 9. - Plot of the extensions of the eigenvector
directions from the unstable fixed point at (1,1), for
the deVogelaere transformation expressed in McMillan's
variables [Eqns. (Sa,b) and (8), with T = 0]. The areas
of the lOOps marked L are all equal, by virtue of the
area-preserving character of the transformation and the
inherent symmetry about the principal diagonal.

A line se~nent extending downward from the fixed point
(1,1) with the slope 2 + /3, if subjected to repeated
applications of the transformation, generates the loops
shown in Fig. 9; similarly a line segment of slope
2 - /3, if extended by the inverse transformation, gen
erates the mirror-image curve (mirrored about the prin
cipal diagonal). Points such as A, B, C··· progress
toward the fixed point in smaller and smaller steps and,
since the transformation is area-preserving, the associ
ated loops clearly must become increasingly elongated
as they become increasingly narrow from repeated appli
cations of the forward transformation. The evolution
of such loops clearly will become quite intricate (Fig.
10) ,

Fig. 10. - A partial extension of the curves shown on
Fig. 9.

(8)

a
x--
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Fig. 7. - Invariant curves for the same transformation
as in Fig. 6, but with k = 1.36.

-}

Fig. 8. - Invariant curves for the transformation (Sa,b)
with fey) = 2ky/(1-y2) and k = 0.64.

It is of interest to examine the mechanism whereby ir
regular behavior can develop in the neighborhood of un
stable fixed points, taking as an illustration an exam
ple suggested by Progessor deVogelaere that [when gen
eralized and rewritten in variables leading to the form
(Sa,b) advocated by McMillan] employs

First-order fixed points appear at (0,0) and at (1,1).
For T = 0, this transformation, when linearized about
the unstable fixed foint at (1,1), can be represented

by the matrix [_~ ~J' with eigenvalues and eigenvector
slopes



-5-

but the loops apparently need not permeate the entire
"interior" -- portions of an inward loop can, in fact,
enter, on a later iteration, into the interioIlof an.
outward-lying loop (as indicated on Fig. 10). It 1S
clear, however, that the development of such a loop
system can readily give rise to an apparent stochastic
motion of phase points in portions of the phase diagram
- - most particularly near an unstable fixed point such
as that mentioned here.

[Evidently15 further analytic work in fact has now
established that the n-particle Toda lattice with per
iodic boundary conditions (or with fixed ends) is a
"completely integrable" system.]

It is of some interest to seek means for anticipating
whether stochastic behavior will occur in various por
tions of a phase diagram and to examine the character of
such stochastic behavior as does occur. What we here
have loosely termed stochastic behavior can be catalogued
with respect to a hierachy of properties (ergodicity,
mixing, "'), indicative of increasing disorder, that
are fundamentally significant for statistical mechan
ics. a,e Of particular interest to the accelerator de
signer, of course, is the determination of a threshold
beyond which stochastic behavior will set in and may
act to carry a phase point to unacceptably large ampli
tudes. As noted earlier, stochastic behaviorlappears
to be associated with overlapping resonances, c and this
concept has served as the basis for some analytic esti-

The existence of a firm separatrix, or of an exten
sive family of invariant curves generally, can be ex
tremely sensitive to the exa~t fo:m of the t:ansf?rma
tion. 12 A case of some phys1cal 1nterest ar1ses 1n
computational studies relating to the Toda Lattice. 13
This one-dimensional lattice consists of particles
interacting through exponential pair potentials and can
propagate certain non-linear wave forms ("solitons")
with£~t change of shape. One computational investiga
tion of stability for a three-particle lattice (with
periodic boundary conditions) has commenced with a
Hamiltonian function

H = l(p 2+p 2+P 2) +e - (QI-Q3) +e- (QrQl) +e- (Q3-Q2) (10)
2 1 2 3 .

By a canonical transformation of variables, in recog
nition of the invariance of this system to translation
-- so that II = PI + P2.+ P3. constitutes a constant.
of the motion -- the Ham1lton1an (10) becomes expressIble
as a function of two pair of conjugate variables in the
form

H = l(p 2 +P 2 )+ -!...-[e (2Q2+2,!3ql)+e (2Qr 2!3Ql)+e-4Q2] (11)
2 1 2 24 '

which is identical to the Henon-Heiles Hamiltonian
function (4) through terms of third order. It is of
interest to examine whether in the present case con
stants of the motion other than H act to restrict the
motion. Computationally it was found -- again using
the surface-of-section Ql = O(Pl > 0) -- that in this
case simple invariant curves apparently continued to
exist in the qzpz, plane, even for verylSarge values
of H. Stimulated by this result, Henon has directed
attention to an additional integral of the motion that
is valid in this case; the constants of the motion for
the three-particle lattice then can be written in a form
that we may express as16 (Ea,b)

f h .. 1" lc 17 I h b dmates 0 stoc astIc1ty lffiItS.' t as een note
by Rene ~eVogelaere and confirmed in subsequent compu
tations l that for a particular class of fixed-point
families -- say those with rotation of the form m/(4m+l)
-- there is a closely linear relationshiplbetween the
order of the resonance (4m+l) and ~nll - ~ Trace I
through many decades ("Trace" denoting the trace of the
tangential-mapping or differential matrix associated
with the 4m+l iterations required to map a given fixed
point onto itself). Such regularities, and others re
lating to the apparent size of the stable areas about
high-order fixed points (e.g., as estimated from the
intersection angle of eigenvectors), have been consider
ed u~eful indica~ors of. the ch~g8 ~B character of a
mapp1ng at certaIn ampl1tudes. "

A computational procedure of considerable interest
for recognizing stochasticity is that in which one
follows the evolution of the distance between two ini
tially very close points in phase space. In practice
it can prove desirable to reduce the separation from
time to time by a recorded factor whenever the separa
tion becomes excessive during the computations, or,
perhaps preferably, to evaluate the growth of an infin
itesimal vector through use of the cumulative tangential
mapping matrix. A high degree of stochasticity can be
ascribed to the behavior of the transformation if there
are such vectors whose length generally grows beyond the
first iteration by a factor greater than unity (while
others may similarly contract). (Ref. la, p. 55; for
examples, see Ref. 21.) An analogous procedure -- that
can be more attractive, although possibly of a less
direct basic significance -- is an investigation of the
growth of the eigenvalue(s) of the cumulative tangential
mapping. Such eigenvalues can change sign repeatedly
during the course of many iterations, and hence will be
seen to decrease from time to time, but an exponentially
increasing trend in eigenvalue magnitude is likely to be
associated with a similar type of increase for the len"
gths of the vectors mentioned previously. The nature 22
of eigenvalue growth h~3 been illustrated by Froeschle
for the transformation

x +1 = x cos a - (y -x 2)Sina}n n n n

y +1 = x sin a + (y -x 2) cos a .n n n n

The general characteristics of this transformation,
expressed in variables such that the transformation has
the symmetry of McMillan's form, is seen on Fig. 11.
On an expanded scale (X10), we see (Fig. lZ) the sudden
onset of erratic behavior as the starting values for the
transformation are successively increased (in steps
~x = 0.0025, for Yo = 0), and on a scale expanded by
a ~urther factor 100/6 we see (Fig. 13) the presence of
a great deal of additional structure within a portion
of this "stochastic" region. Associated with the tran
sition to the stochastic region there appears to be a
marked change in the maImer of growth of tJ! = log IAn I
(linear, vs. n, in the stochastic case -- ~ndicative
of an exponential trend for IAn I) or of the "Cesaro

1 n 1 . .
mean" W = - L: - tJ! (constancy In the stochast1c case,

n n m=l m m

monotonically decreasing otherwise -- Fig. 14).24 Such
methods indeed may prove useful in investigating compu
tationally the possible development of stochastic motion
in storage-ring devices. Extended computations of this
nature can present challenging problems with respect to
computer accuracy.25

(12a)

(12b)

- P e-(Qz-Ql) =
3

(12c)= Constant.

H = Constant

PI + P2 + P3 = Constant, and

P
I
P

2
P

3
- P

l
e-(Q3-QZ) - P2e -(QI-Q3)
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Fig. 11. - Apparantly-smooth phase curves and a scatter
ing of points resulting from iteration of the transfor
mation (lla,b), with cos a = 0.22 and coordinates X,Y
appropriate to expressing the transformation in the
form (5a,b).23 Five islands of stability (containing
stable fixed points of order 5) are seen surrounding
the area associated with the order-l fixed point at the
origin. The outermost smooth curve, shown as bounding
this inner area, resulted from the starting values
xo = 0.~350, Yo = a (Froschle notation), and the scatt
ered pOlnts result from xo = 0.5375, Yo = O. Scale
(as indicated by the coordinate axes): -1.0 to 1.0

Fig. 13. - Detailed mUltiple-island structure in the
immediate neighborhood of an order-65 stable fixed
point (shown here just below the center of the diagram)
of which mention has been made in the caption to Fig. 12.
Scales: 0.470 to 0.482 for X, 0.516 to 0.528 for Y.

10- 1 I , I I I I I I

-4
10 I I I ! I I I ! I '" I

10 2 103 104 105

Number af iterations

cos a=0.22
Xo = 0.5375

Matrix elements
became inaccurate

cas a =0.22
Xo= 0.5350
Continued downward

through 106 iterations

10-2

10- 3

t
;::,

Fig. 12. - Enlarged portion (lOX) of Fig. 11, showing
seven smooth pllase trajectories resulting fronl startillg
values xo = 0.5200, 0.5225, ... 0.5350 (and Yo = 0)
and a scattering of points resulting from xo = 0.5375,
Yo = O. Note the occurrence of open areas within the
region covered by the scattered points -- for example
the area surrounding an (unplotted) stable fixed point
of order 65 at X ~ 0.476, y ~ 0.521
Scale: 0.38 to 0.58

Fig. 14. - Plots of the "sliding mean", vn (Note 24),
vs. n, obtained from computations begun (i) with initial
conditions leading to the last smooth curve of Fig. 12
(xo = 0.5350) and (iiJ with initial conditions leading
to the scattered points on that Figure (xo = 0.5375),
of which only the results for the latter case indicate
a general exponential upward trend of IAnl.
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