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Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in 

either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were 

recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-

palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and 

treatment efficacy assessment with 2-hydroxypropyl-β-cyclodextrin (HPβCD) in NPC. Liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated 

to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in 

plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients 

from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 

patients, and CSF PPCS levels were significantly correlated with NPC neurological disease 

severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical 

(IT) HPβCD treatment. In an intravenous (IV) HPβCD trial, plasma PPCS in all patients was 

significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 

patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of 

IV HPβCD treatment.

Keywords
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INTRODUCTION

Niemann-Pick type C (NPC) disease is an autosomal recessive neurovisceral lysosomal 

storage disorder with an estimated minimal incidence of 1/120,000 live births (1). 

Approximately 95% of the NPC cases result from loss-of-function of NPC1 protein caused 

by genetic mutations (2), with the remainder involving deficiency of NPC2 protein (3). 

Impairment of either protein leads to the accumulation of unesterified cholesterol and 

glycosphingolipids in lysosome and late endosomes (1).

The heterogeneous NPC phenotype includes hepatosplenomegaly, cholestatic jaundice, 

developmental delay, gait ataxia, clumsiness, cataplexy, epilepsy, dystonia, supranuclear 

gaze palsy, dysarthria, dysphagia, cerebellar ataxia, psychiatric illnesses, or cognitive 

decline, with differing ages of onset and rates of disease progression (4). As a result, the 

diagnosis of NPC is challenging (5). Biomarker profiling and genetic tests are currently used 

as first-line diagnostic tests for NPC; the time-consuming filipin staining test is used to 

facilitate diagnosis in uncertain cases (6). Biomarkers currently used for NPC diagnosis 

include cholestane-3β,5α,6β-triol (7–20), 7-ketocholesterol (7, 8, 17), N-palmitoyl-O-

phosphocholineserine (PPCS, referred to as lysoSM-509 prior to structural identification) 

(21–26), lysosphingomyelin (27), and 3β,5α,6β-trihydroxycholanoyl-glycine (28, 29). 

Miglustat (N-butyl-deoxynojirimycin), which inhibits the synthesis of glucosylceramide, the 

building block of more complex glycosphingolipids, is approved outside the US for 

treatment of NPC but shows only limited efficacy in slowing the disease progression (30). 

Treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD) significantly slowed progression 

of neurological manifestations, and increased lifespan in NPC1 mouse and cat models (31–
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34). Intrathecal (IT) HPβCD treatment slowed neurodegenerative disease progression in 

NPC1 patients in Phase 1/2a trial, and is currently being studied in Phase 2b/3 trial and 

extension study (NCT# 02534844) (35–37). Clinical trials of intravenous (IV) delivery of 

HPβCD for treatment of visceral manifestations in NPC disease (NCT#s 03471143, 

03887533) are also in progress.

PPCS was originally misassigned as an isoform of lysosphingomyelin (21). We recently 

identified it as the most abundant species in a new class of lipid, N-acyl-O-

phosphocholineserines (38). After synthesizing a standard compound and a deuterated 

internal standard, we developed liquid chromatography-tandem mass spectrometry (LC-

MS/MS) methods for accurate and reliable quantification of PPCS. Here we applied PPCS to 

NPC diagnosis and assessment of treatment efficacy with HPβCD.

MATERIALS AND METHODS

Clinical studies

Human studies adhered to the principles of the Declaration of Helsinki, as well as to Title 

45, US Code of Federal Regulations, Part 46, Protection of Human Subjects. Informed 

consents were obtained from the participants and their guardians. The clinical protocols 

were approved by the Institutional Review Boards of NICHD/NIH, Rush University Medical 

Center, Universitätsklinikum Münster, Hospital de Clínicas de Porto Alegre, Centro 

Universitario Estácio de Ribeirão Preto, St. Louis Children’s Hospital, Boston Children’s 

Hospital, Asante Pediatric Hematology and Oncology – Medford, and Children’s Hospital of 

Orange County. All the clinical samples were de-identified, and the analysis of de-identified 

human samples was approved by the Human Studies Committee at Washington University.

Collection of plasma samples for diagnostic assay development

All plasma samples were collected in ethylenediamine tetraacetic acid dipotassium salt 

containing tubes. The NPC1 and NPC1 carrier plasma samples were collected from affacted 

and obligate heterozygote study participants, respectively, at NICHD/NIH, Rush University 

Medical Center, Universitätsklinikum Münster, and Centro Universitario Estácio de Ribeirão 

Preto. The longitudinal natural history study of NPC disease was conducted at the NIH. NIH 

also provided plasma samples from study participants with familial hypercholesterolemia 

(FH) and Batten resulting from mutations in CLN3. Hospital de Clínicas de Porto Alegre 

collected plasma samples from patients affected with mucopolysaccharidosis (MPS) type I, 

II, IIIA, IIIB, IIIC, IVA, VI, VII, GM1 gangliosidosis (GM1), GM2 gangliosidosis (GM2) 

including Tay-Sachs and Sandhoff, Batten resulting from mutations in CLN1 and CLN2 

genes, mucolipidosis (ML) type II/III, Fabry, Krabbe, and Gaucher diseases. Centro 

Universitario Estácio de Ribeirão Preto also provided plasma samples from individuals 

affected with acid-sphingomyelinase deficiency (ASMD), Wolman, Tay-Sachs, 

cerebrotendinous xanthomathosis (CTX), Fabry, and spastic paraplegia type 5 (SPG5). 

Universitätsklinikum Münster collected plasma samples from individuals affected with 

ASMD and cholesteryl ester storage disease (CESD), and ASMD carriers. Normal plasma 

samples were obtained from anonymized residual samples at St. Louis Children’s Hospital.
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Collection of plasma and CSF samples from monthly IT HPβCD treatment of NPC disease

The Phase 1/2a open-label, dose-escalation study of monthly intrathecal doses of 50–1200 

mg of HPβCD was performed at NIH and Rush University Medical Center, and the detailed 

protocol was described in a recent paper (35). Plasma samples were collected at pre-dose, 8, 

24, 30, 48, and 72 h post-dose after either saline or HPβCD infusion. CSF (1 mL) from 

treated NPC1 study participants was collected via lumbar puncture into polypropylene tubes 

with 20 mg of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). 

NPC1 CSF samples from untreated patients were also collected at Boston Children’s 

Hospital. Control CSF samples were obtained from pediatric patients with other clinical 

indications at St. Louis Children’s Hospital.

Collection of plasma samples from IV HPβCD treatment of NPC disease

Under FDA-approved individual patient investigational new drug applications, two female 

NPC1 patients (patients 1 and 2) and a male NPC1 patient started IV HPβCD at 21 months, 

10 years, and 13 years old, respectively. The doses for patients 1, 2, and 3 were 500, 2000, 

and 2000 mg/kg/week, respectively. Pre-dose plasma samples were collected from patient 1 

at Children’s Hospital of Orange County, and from patients 2 and 3 at Asante Pediatric 

Hematology and Oncology - Medford.

Animal studies

Cats were raised in the animal colony of the School of Veterinary Medicine at the University 

of Pennsylvania under NIH and US Department of Agriculture guidelines for the care and 

use of animals in research. Six groups of cats were evaluated, including 1) normal control 

cats; 2) untreated NPC1 cats; 3) NPC1 cats receiving intracisternal (IC) saline every 14 days 

beginning at 3 weeks of age; 4) NPC1 cats receiving 120 mg IC HPβCD every 14 days 

beginning at 3 weeks of age; 5) NPC1 cats receiving a combination of 1000 mg/kg 

subcutaneous (SC) HPβCD every 7 days and 120 mg IC HPβCD every 14 days beginning at 

3 weeks of age; 6) NPC1 cats receiving 120 mg IC HPβCD every 14 days beginning at 16 

weeks of age (34). The serum or plasma and CSF were collected at pre-dose. NPC1 cats 

were sacrificed when they were no longer able to maintain sternal recumbancy. The liver and 

and brain samples were collected from NPC1, heterozygous NPC1 and normal cats. 

Experimental procedures were approved by the Washington University and University of 

Pennsylvania Animal Studies Committees and were conducted in accordance with the US 

Department of Agriculture Animal Welfare Act and the Public Health Service Policy for the 

Humane Care and Use of Laboratory Animals.

LC-MS/MS methods and method validation

Detailed sample preparation, LC-MS/MS conditions, method validation are described in the 

Supplementary Information.

Analysis of human plasma and CSF samples

Samples consisted of calibration standards in duplicate, a blank, a blank with internal 

standard, quality control (QC) samples (low QC, medium QC and high QC), and unknown 

clinical samples were analyzed. The standard curve covered the expected unknown sample 
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concentration range, and samples that exceeded the highest standard were diluted and re-

assayed. In the dilution sample re-assay, a diluted QC in triplicate would be also included in 

the analytical run. The results of the QC samples provided the basis of accepting or rejecting 

the run according to FDA guidelines (39).

Analysis of cat plasma, serum, liver and brain samples

The analyzed samples consisted of calibration standards in duplicate, a blank, a blank with 

internal standard, and unknown study samples. The standard curve covered the expected 

unknown sample concentration range, and samples that exceeded the highest standard were 

diluted and re-assayed.

Statistics

For group comparisons, and the statistical significance of differences in mean values was 

determined by a two-tailed Student’s t test and one-way ANOVA test with Dunnett test as 

follow-up test. A p value of 0.05 or less was considered significant.

RESULTS

LC–MS/MS method development and validation

Detailed method development and validation are described in the Supplementary 

Information. The methods were validated for sensitivity, selectivity, accuracy, precision, 

linearity, carryover, recovery, matrix effect, and stabilities of PPCS in plasma, CSF, 

processed samples, and stock solutions, and commonly accepted criteria (39) were met 

(Supplementary Materials and Methods, and Table S1, Figure S1).

Blood diagnostic test for NPC based on PPCS

PPCS concentrations in plasma samples from 179 NPC1 subjects (0 – 55 years; mean age 9 

years), 130 controls (0 – 27 years; mean age 9 years) and 48 obligate heterozygotes (parents 

of NPC1 subjects) or known sibling carriers (4–66 years; mean age 44 years) were 

determined (Figure 1A). PPCS plasma concentrations were significantly elevated in the 

NPC1 subjects (mean 2492 ng/mL; range 254–18200 ng/mL; P < 0.001), compared to 

controls (mean 19.1 ng/ mL, range 1.3–542 ng/mL) and NPC1 heterozygotes (mean 125 ng/ 

mL, range 14.8–680 ng/mL), consistent with previous reports. PPCS was also significantly 

elevated in NPC1 heterozygotes, as compared with controls (Figure 1A). The receiver-

operator characteristic (ROC) analysis demonstrated that the area under the curve (AUC) 

was 0.9992 (Figure 1B). A cut-off value of 248 ng/mL yielded a sensitivity of 100% and 

specificity of 96.63% to discriminate NPC1 subjects from controls and NPC1 carriers.

To assess specificity of the assay, we examined samples from patient with other disorders, 

including Fabry, FH, Gaucher, Krabbe, CTX, GM1, GM2, SPG5, MPS I, II, IIIA, IIIB, IIIC, 

IVA, VI, VII, CLN1-, CLN2-, and CLN3-Batten, ML II/III, SYNGAP1, lysosomal acid 

lipase deficiency (LALD) including CESD and Wolman, ASMD, and ASMD carriers. Only 

ASMD subjects demonstrated PPCS levels above the cutoff for NPC1; PPCS levels in other 

disorders and ASMD carriers were below the cutoff (Figure 1C and 1D).
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The plasma PPCS levels were not significantly correlated with NPC neurological disease 

severity scores (r2 = 0.03338, p = 0.0962) (Figure 1E), but significantly correlated with NPC 

annual severity increment score that is the ratio of NPC neurological disease severity score 

to age (40) (r2 =0.04802, p = 0.0233) (Figure 1F). The change of PPCS in the plasma over 

time collected from the natural history study varied heterogeneously (Figure 1G). There was 

no significant difference in plasma PPCS levels between male and female study participants 

(Figure 1H).

Application of PPCS to assessment of treatment with HPβCD in NPC1 disease

Response of PPCS to HPβCD treatment in NPC1 study participants—The 

plasma samples collected from NPC1 study participants in Phase 1/2a trial of IT HPβCD at 

pre-dosed time point in each visit were used to evaluate the long-term effect of IT HPβCD 

on PPCS. The plasma PPCS levels during 72 hours in baseline visit (saline treatment) and in 

the first visit (IT 900 mg HPβCD) varied less than 12% and 15%, respectively (Figure 2A), 

suggesting that the short-term pre- and post-treatment variation of PPCS were less than 15%. 

Thus, the difference in pre-dosed PPCS between baseline visit and later visits larger than 

15% was considered as significant. PPCS was decreased, increased, and unchanged in 44% 

(Figure 2B), 17% (Figure 2C), 33% of subjects (Figure 2D), respectively. Only plasma 

samples were collected in an IV HPβCD trial, PPCS in 3 patients was significantly reduced, 

and in 1 patient was close to normal level (Figure 2E).

PPCS levels in NPC1 CSF are significantly elevated (Figure 3A) and significantly correlated 

with NPC neurological disease severity scores (r2 = 0.3416, p = 0.0043) (Figure 3B) but not 

annual severity increment scores (r2 = 0.08675, p = 0.1949) (Figure 3C). However, CSF 

PPCS levels were also highly correlated with plasma levels (r2 = 0.6708, p < 0.0001) (Figure 

3D), suggesting that CSF PPCS was largely derived from blood, and its ability to evaluate 

the change of PPCS in central nervous system is confounded. In the IT HPβCD trial, the 

pre-treatment CSF samples supplied with 2% CHAPS that prevented absorption loss of 

PPCS were collected from only 2 study participants. CSF PPCS did not change after 

HPβCD treatment in these 2 individuals (Figure 3E).

Response of PPCS to HPβCD treatment in NPC1 cat model—The cat plasma and 

serum PPCS values were very close (PPCSplasma = 0.9058*PPCSserum - 4.453, r2 = 0.9566, 

p < 0.0001; Figure 4A), suggesting that the plasma values can be used at time points at 

which serum samples were not collected, and vice versa. Compared to normal (Figure 4B) 

and heterozygous cats (Figure 4C), PPCS in NPC1 cat serum (Figure 4D) was significantly 

elevated at all the ages analyzed, including the asymptomatic 3 weeks time point. While the 

serum PPCS in normal and heterozygous cats showed no significant difference and did not 

change with the age (Figure 4B and 4C), PPCS levels in untreated and saline-treated NPC1 

cats rapidly increased between 3 and 6 – 10 weeks and reached the maximum at 15 – 25 

weeks. There is inconsistency between 15 – 30 weeks in which PPCS was reduced in 

majority of NPC1 cats, though increase in a few of NPC1 cats was also observed (Figure 4D 

and 4E). Whereas 3 out of 4 NPC1 cats treated with IC 120 mg/kg HPβCD beginning at 3 

weeks showed post-treatment increase of PPCS, PPCS in 1 cat was not changed over 192 

weeks (Figure 4F). Serum PPCS in NPC1 cats treated with IC 120 mg/kg HPβCD beginning 
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at 16 weeks was reduced after receiving the treatment (Figure 4G). The serum PPCS levels 

were not significantly increased in all 9 NPC1 cats treated with IC 120 mg/kg HPβCD and 

SC 1000 mg/kg HPβCD beginning at 3 weeks for at least 47 weeks, and increased 6-fold in 

only 1 cat at 130 weeks (Figure 4H).

PPCS in livers (p = 0.0002) and brains (p = 0.0001) of untreated NPC1 cats was 

significantly elevated compared to normal and heterozygous cats (Figure 5A and 5B). The 

serum PPCS values significantly correlated with liver values (r2 =0.465, p = 0.021; Figure 

5C), but not brain values (r2 =0.05618, p = 0.4858; Figure 5D). Of the cat CSF samples were 

not collected in the tubes with CHAPS, significant absorption loss of PPCS was found, and 

many of them showed undetectable PPCS. The cat CSF data were not used for further study. 

Treatments with saline and HPβCD did not significantly change PPCS in liver and brain 

(Figure 5A and 5B).

DISCUSSION

Currently biomarker profiling and genetic test are first line diagnostics for NPC disease (6). 

Among the biomarkers used, cholestane-3β,5α,6β-triol and 7-ketocholesterol are generated 

from nonenzymatic cholesterol oxidation due to oxidative stress in NPC cells (8, 41, 42), 

and 3β,5α,6β-trihydroxycholanoyl-glycine is a metabolite from cholestane-3β,5α,6β-triol 

(28). PPCS and lysosphingomyelin have a phosphocholine group, and their accumulation in 

NPC disease may be related to reduced acid sphingomyelinase in NPC disease (43). While 

plasma lysosphingomyelin was only moderately elevated in NPC disease, PPCS was 

dramatically elevated and more sensitive for identification of NPC1 patients (21–27). 

Profiling cholesterol oxidation products and phosphocholine metabolites such as PPCS 

provides complementary testing results for diagnosis of NPC1 disease. Previous diagnostic 

assays based on PPCS were developed without the standard curves prepared from authentic 

compound, and assay accuracy was impaired; thus, accurate reference ranges for control, 

heterozygotes, and NPC1 patients could not be obtained (21–26). Recently we identified the 

structure of PPCS, and synthesized the standard compound and its deuterated internal 

standard (38). In this study, we developed a reliable PPCS-based diagnostic assay for NPC 

using authentic compound, established reference ranges for diagnosis and for direct inter-

laboratory data comparison. Our assay can serve as a prototype test and is ready for 

dissemination to other clinical laboratories.

PPCS showed excellent performance for diagnosis of NPC1 disease: 100% sensitivity and 

96.6% specificity for discrimination of NPC1 affected individuals from controls and NPC1 

carriers with AUC of 0.9992. PPCS also showed high specificity in differentiation of NPC1 

disease from other diseases including Fabry, FH, Gaucher, Krabbe, CTX, GM1, GM2, 

SPG5, MPSI, MPSII, MPSIIIA, MPSIIIB, MPSIIIC, MPSIVA, MPSVI, MPSVII, CLN1-, 

CLN2- and CLN3-Batten, MLII/III, SYNGAP1, LALD (CESD and Wolman). In contrast to 

the current diagnostic standard cholestane-3β,5α,6β-triol, which was also elevated in other 

lysosomal lipidosis such as CTX and LALD (11), PPCS was not elevated in these disorders. 

PPCS was elevated in patients with ASMD, in which cholestane-3β,5α,6β-triol was also 

elevated and overlapped with NPC1 disease (14). Due to the overlap between NPC1 and 

ASMD in PPCS, additional tests such as acid sphingomyelinase assay and molecular test for 
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SMPD-1 are required for the final diagnosis. Although no samples from NPC2 patients have 

been assayed, PPCS may also have utility for diagnosis in NPC2 patients as well.

PPCS was elevated in plasma/serum, liver, and brain from the NPC cat model, and plasma 

and CSF from NPC1 patients, suggesting that it is a peripheral and central nervous system 

biomarker in NPC1 disease. The serum and liver PPCS levels in cat model were significantly 

correlated. The rapid increase of PPCS in NPC1 cat serum until 16 weeks of age may reflect 

disease progress in the peripheral organs including liver and blood cells during this period, 

even though the clinical signs had not yet appeared. Plasma PPCS levels in NPC1 patients 

were significantly correlated with NPC annual severity increment scores but not NPC 

neurological disease severity scores, which was in agreement with previous report (21), 

though the correlation with annual severity increment scores was not very strong. We have 

found that PPCS was generated in whole blood, plasma, red blood cells, and white blood 

cells when they were drying on newborn screening card (38). Interestingly, the annual 

severity increment score was also correlated with B cell lysosomal volume (40), suggesting 

that there is an association between the annual severity increment score and storage in the 

hematopoietic system. The NPC neurological disease severity score represents the NPC 

neurological disease progression, and thus is not associated with PPCS generated in 

peripheral blood. Despite being confounded by contribution of PPCS from blood, CSF 

PPCS levels showed significant correlation with NPC neurological disease severity scores, 

suggesting that it was associated with central nervous system pathology and might be useful 

to predict central nervous system progression. The lack of correlation between CSF PPCS 

and annual severity increment score may be explained by non-linear relationship of increase 

in the NPC neurological disease severity score and age (44).

The therapeutic efficacy of HPβCD in slowing progression of neurological signs and death 

has been demonstrated in NPC1 mice and cats (31–34). The phase 1/2a intrathecal HPβCD 

trial indicated acceptable safety profile, improved neuronal cholesterol homoeostasis, 

decreased neuronal damage, and decreased neurological progression in HPβCD-treated 

participants (35–37). Besides its efficacy in central nervous system, HPβCD has also been 

used to treat peripheral disease in NPC1. In the present study, we evaluated the response of 

PPCS to HPβCD treatment in NPC1 patients and cat model. IV HPβCD treatment in 3 

NPC1 patients significantly lowered the plasma PPCS levels. The responses of plasma PPCS 

in NPC1 patients were heterogeneous after IT administration of HPβCD that was excreted 

from central nervous system into blood, and the degrees of reduction in those responders 

were much smaller than IV treatment. Similar to NPC1 patients, only SC HPβCD treatment 

prevented elevation of serum PPCS in most NPC1 cats. The significant correlation between 

serum and liver PPCS levels suggests that the serum levels may be useful to monitor PPCS 

change in liver. There was no significant difference in liver PPCS between SC HPβCD 

treated and untreated NPC1 cats; however, this comparison was obscured by large within-

group variation in small number of treated animals and different age between 2 groups. 

Progressive elevation of serum PPCS in individual NPC1 cats before 16 weeks followed by a 

subsequent greater degree of variability suggested that using pre-treatment samples as their 

own historical controls may be most appropriate. PPCS in CSF of NPC1 patients and in 

brains of NPC cats did not decrease upon IT/IC HPβCD treatment, suggesting that the effect 

of HPβCD on metabolism of PPCS in central nervous system differs from that in peripheral 
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organs. There was no reduction of PPCS in central nervous system by IT HPβCD treatment, 

which redistributed lysosomal cholesterol and improved neuronal cholesterol homoeostasis, 

implying that the lysosomal accumulation of cholesterol may not be a prerequisite for 

elevation of PPCS in NPC disease.

In summary, we developed a plasma NPC diagnostic assay using authentic PPCS that 

allowed establishment of accurate reference ranges for controls, NPC1 carriers, and NPC1 

patients. This diagnostic marker showed high sensitivity and specificity. There was no 

overlap between NPC1 and a number of lysosomal storage diseases, except for ASMD. This 

assay is valuable for confirmation of the diagnosis of NPC1 disease. Significant elevation of 

PPCS in brains from NPC1 cat model and correlation of CSF PPCS in NPC1 patients with 

NPC neurological disease severity scores indicate that PPCS may play a role in central 

nervous system disease. The IT HPβCD treatment reduced lysosomal cholesterol 

accumulation in neuron but did not affect PPCS levels, suggesting that PPCS elevation in 

NPC1 disease was caused by pathophysiologic mechanisms other than lysosomal cholesterol 

accumulation. Further investigation into the precise role of PPCS in NPC1 disease is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AUC area under the curve
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CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

CSF cerebrospinal fluid

CTX cerebrotendineous xanthomathosis

%CV percent coefficient of variance
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FH familial hypercholesterolemia

GM1 GM1 gangliosidosis

GM2 GM2 gangliosidosis

HPβCD 2-hydroxypropyl-β-cyclodextrin

IC intracisternal

IT intrathecal

IV intravenous

LALD lysosomal acid lipase deficiency

LC-MS/MS liquid chromatography-tandem mass spectrometry

ML mucolipidosis

MPS mucopolysaccharidosis

NPC Niemann-Pick type C

PPCS N-palmitoyl-O-phosphocholineserine

QC quality control

ROC receiver-operator characteristic

SC subcutaneous

SPG5 spastic paraplegia type 5
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Figure 1. 
Plasma PPCS in patients affected with lysosomal storage diseases. (A) PPCS in plasma 

samples from control (n = 130), NPC1 heterozygote (n = 48), and NPC1 affected 

individuals. (n = 179). Data are presented as mean ± SEM. P < 0.0001 for heterozygotes 

versus controls and for NPC1 versus controls. (B) ROC curve demonstrates 0.9992 area 

under the curve for PPCS. A cut-off value of 248 ng/mL yields a sensitivity of 100% and 

specificity of 96.63% to discriminate NPC1 affected individuals from controls and NPC1 

heterozygotes. (C) PPCS in plasma samples from patients with Fabry (n = 12), FH (n = 4), 

Gaucher (n = 2), Krabbe (n = 2), CTX (n = 2), GM1 (n = 1), GM2 including Tay-Sachs 

(black, n = 3) and Sandhoff (red, n = 2), and SPG5 (n = 1) diseases. Data are presented as 

mean ± SEM. (D) PPCS in plasma samples from patients with MPS I (black, n = 2), II 
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(brown, n = 2), IIIA (orange, n = 2), IIIB (red, n = 2), IIIC (green, n = 2), IVA (pink, n = 2), 

VI (purple, n =2), VII (blue, n =2), Batten (CLN1, red, n = 1; CLN2, pink, n = 1; CNL3, 

black, n = 20), MLII/III (n = 2), SYNGAP1 (n = 1), CESD (n = 1), Wolman (n = 1), ASMD 

(n = 11) diseases, and ASMD carriers (n = 3). Data are presented as mean ± SEM. (E) 

Correlation of plasma PPCS levels with NPC neurological disease severity scores. (F) 

correlation of plasma PPCS levels with NPC annual severity increment scores. (G) PPCS in 

the plasma over time collected from the natural history study. (H) Comparison of plasma 

PPCS levels in male and female NPC1 patients.
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Figure 2. 
Response of plasma PPCS levels to HPβCD treatment in NPC1 study participants. (A) 

Variation of plasma PPCS during 72 hours in IT saline and 900 mg HPβCD treatments. (B) 

NPC1 study participants with reduced plasma PPCS in response to monthly IT HPβCD 

treatment. (C) NPC1 study participants with increased plasma PPCS in response to monthly 

IT HPβCD treatment. (D) NPC1 study participants with unchanged plasma PPCS in 

response to monthly IT HPβCD treatment. (E) Response of plasma PPCS to weekly IV 

HPβCD treatment.
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Figure 3. 
PPCS levels in human CSF. (A) PPCS in CSF samples from control (n = 40) and NPC1 

affected individuals. (n = 23). Data are presented as mean ± SEM. P < 0.0001 for NPC1 

versus controls. (B) Correlation of CSF PPCS levels with NPC neurological disease severity 

scores. (C) Correlation of CSF PPCS levels with NPC disease annual severity increment 

scores. (D) Correlation in PPCS levels between CSF and plasma. (E) Response of CSF 

PPCS to monthly IT HPβCD treatment.
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Figure 4. 
PPCS in cat serum. (A) Correlation in PPCS levels between cat plasma and serum. (B) 

Serum PPCS in normal cats. (C) Serum PPCS in NPC1 heterozygous cats. (D) Serum PPCS 

in untreated NPC1 cats. (E) Serum PPCS in NPC1 cats treated with saline every other week. 

(F) Serum PPCS in NPC1 cats treated with IC 120 mg/kg HPβCD every other week 

beginning at 3 weeks. (G) Serum PPCS in NPC1 cats treated with IC 120 mg/kg HPβCD 

every other week beginning at 16 weeks. (H) Serum PPCS in NPC1 cats treated with IC 120 

mg/kg HPβCD and SC 1000 mg/kg HPβCD every other week beginning at 3 weeks.
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Figure 5. 
PPCS in cat liver and brain tissues. (A) PPCS in liver of normal cats (n = 9, 23–59 weeks), 

heterozygous cats (n = 5, 24 – 253 weeks), NPC1 cats treated with IC 120 mg/kg HPβCD 

and SC 1000 mg/kg HPβCD every other week beginning at 3 weeks (n = 7, 65 – 182 

weeks), NPC1 cats treated with IC 120 mg/kg HPβCD every other week beginning at 3 

weeks (n = 3, 121 – 145 weeks), NPC1 cats treated with IC 120 mg/kg HPβCD every other 

week beginning at 16 weeks (n = 3, 42 – 51 weeks), NPC1 cats treated with IC saline every 

other week beginning at 3 weeks (n = 3, 21 – 26 weeks), and untreated NPC1 cats (n = 5, 20 

– 27 weeks). Data are presented as mean ± SEM. P = 0.0002 for untreated NPC1 cats versus 

normal cats. (B) PPCS in cat brains of normal cats (n = 10, 23 – 59 weeks), heterozygous 

cats (n = 5, 24 – 253 weeks), NPC1 cats treated with IC 120 mg/kg HPβCD and SC 1000 

mg/kg HPβCD every other week beginning at 3 weeks (n = 7, 65 – 182 weeks), NPC1 cats 

treated with IC 120 mg/kg HPβCD every other week beginning at 3 weeks (n = 3, 121 – 145 

weeks), NPC1 cats treated with IC 120 mg/kg HPβCD every other week beginning at 16 

weeks (n = 3, 42 – 51 weeks), NPC1 cats treated with IC saline every other week beginning 
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at 3 weeks (n = 3, 21 – 26 weeks), and untreated NPC1 cats (n = 6, 20 – 27 weeks). Data are 

presented as mean ± SEM. P = 0.0001 for untreated NPC1 cats versus normal cats. (C) 

Correlation in PPCS levels between serum and liver. (D) Correlation in PPCS levels between 

serum and brain.
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