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Abstract
Variational algorithms for strongly correlated chemical and materials systems are one of the most
promising applications of near-term quantum computers. We present an extension to the
variational quantum eigensolver that approximates the ground state of a system by solving a
generalized eigenvalue problem in a subspace spanned by a collection of parametrized quantum
states. This allows for the systematic improvement of a logical wavefunction ansatz without a
significant increase in circuit complexity. To minimize the circuit complexity of this approach, we
propose a strategy for efficiently measuring the Hamiltonian and overlap matrix elements between
states parametrized by circuits that commute with the total particle number operator. This strategy
doubles the size of the state preparation circuits but not their depth, while adding a small number
of additional two-qubit gates relative to standard variational quantum eigensolver. We also
propose a classical Monte Carlo scheme to estimate the uncertainty in the ground state energy
caused by a finite number of measurements of the matrix elements. We explain how this Monte
Carlo procedure can be extended to adaptively schedule the required measurements, reducing the
number of circuit executions necessary for a given accuracy. We apply these ideas to two model
strongly correlated systems, a square configuration of H4 and the π-system of hexatriene (C6H8).

1. Introduction

Large, error-corrected quantum computers are expected to provide powerful new tools for understanding
quantum many-body physics. For example, such devices will be able to efficiently simulate long-time
dynamics [1], and through phase estimation, measure the energy of a trial wavefunction while projecting it
into the eigenbasis of the Hamiltonian [2]. Prior to the availability of such devices, it is natural to ask how
today’s noisy, intermediate-scale quantum (NISQ) platforms may be used for similar ends. One appealing
strategy, the variational quantum eigensolver (VQE) [3, 4], uses a potentially noisy quantum computer as a
black box to prepare parametrized wavefunctions and measure their energy. By optimizing over the
wavefunction parameters in a classical outer loop, one obtains a variational upper bound on the true
ground state energy.

While it is believed that even a noisy, modestly-sized quantum computer can prepare and measure states
that are out of reach for a classical computer [5], it will still likely be difficult to take advantage of this fact
to surpass the capabilities of classical variational methods [6–9]. One serious challenge is that noise is
particularly damaging for quantum chemical calculations that demand a high degree of precision [8–10].
Recent works have presented a variety of approaches to overcoming this difficulty, including combining
error detection schemes with post selection [10–12], extrapolating to the zero-noise limit [13–15], and
using additional measurements and post-processing to construct better energy estimators [12, 16–18]. A
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complementary body of research has focused on developing new variational ansätze that use fewer gates and
thus offer less opportunity for errors to occur [19–21]. We shall present a new approach in this latter
direction that allows for a systematic increase in wavefunction complexity without a growing circuit depth.

The standard VQE approach uses a quantum computer to measure the expectation value of the
Hamiltonian for some parametrized wavefunction, |ψ (θ)〉, in conjunction with a classical coprocessor that
interprets the measurement outcomes and suggests new values for the θ parameters in order to minimize
the energy [4]. In our approach, we define instead a logical ansatz

|ψ(c, θ(1), . . . , θ(M))〉 =
M∑

i=1

ci|φi(θ
(i))〉, (1)

where each |φi(θ
(i))〉 is an independently parametrized wavefunction with a compact quantum circuit

description. For brevity, we shall sometimes omit the parameters and refer to these wavefunctions more
compactly as |ψ〉 and |φi〉. Rather than preparing the state |ψ〉 directly on our device and measuring its
energy, we use our quantum computer to prepare simpler pairwise superpositions of the states {|φi〉}. We
then measure the matrix elements of the Hamiltonian and overlap matrices,

Hij = 〈φi|Ĥ|φj〉,

Sij = 〈φi|φj〉.
(2)

This allows us to classically solve a generalized eigenvalue problem,

Hc = ESc, (3)

thereby finding the optimal c parameters and minimizing the energy in the subspace spanned by the set of
states {|φi〉}. The θ(i) values that parametrize each basis function |φi(θ

(i))〉 can then be optimized by a
classical outer loop to lower the energy further, solving a new generalized eigenvalue problem at each
step.

Our approach shares certain features with a variety of recent proposals for quantum algorithms that
involve solving generalized eigenvalue problems [16, 22–26]. However, our approach also differs from these
works in some key respects. Most importantly, we make no assumptions about the form of the component
wavefunctions |φi〉, other than that they have efficient quantum circuit implementations. In the context of
quantum algorithms, prior work has assumed that these wavefunctions are generated by excitations from a
fixed reference state [16], by real or imaginary time evolution [22, 24–26], or by the simultaneous rotation
of a set of orthogonal reference wavefunctions [23]. Two of these works in particular, references [25] and
[26], were released contemporaneously with our own and provide an interesting contrast to our approach.
Specifically, they require the same off-diagonal matrix element measurements used in this work but
construct the non-orthogonal basis function by real-time propagation of trial wavefunctions rather than the
variational approach we take here.

In the context of classical simulations, multi reference methods which make use of a superposition of
configurations have a long and storied history [27–36]. Most directly similar to this work are those which
demand each of the |φi〉 wavefunctions to be a Slater determinant (not necessarily in the same single
particle basis) [30]. This basic direction has been elaborated upon under a variety of names, including the
non-orthogonal configuration interation (NOCI) method [31, 32, 35], the non-orthogonal
multicomponent adaptive greedy iterative compression (NOMAGIC) algorithm [34], and the
non-orthogonal multi-Slater determinant (NOMSD) expansion approach [33, 36], among others. The
restriction to Slater determinants allows for the efficient classical evaluation of the required matrix
elements, while the relaxation of the requirement that the determinants be orthogonal to one another
allows for more flexible and accurate wavefunctions when compared to orthogonal CI expansions with the
same number of determinants.

The difference between these various approaches mainly lies in the way in which they obtain a set of
non-orthogonal determinants. For example, NOCI separately optimizes individual determinants by finding
a collection of different solutions to the Hartree–Fock equations before performing a single diagonalization
of the Hamiltonian matrix [31, 32, 35]. Other approaches more closely parallel the one we take here,
iteratively adding new states and variationally optimizing their parameters [30, 33, 36]. We do not
exhaustively review the classical literature here, but note that the variational approach has been found to be
prone to optimization challenges and that a number of the methods we cite arise out of attempts to
ameliorate this difficulty [33, 34, 36].

By taking the basis functions |φi〉 to be independently parametrized quantum circuits rather than single
Slater determinants, we obtain an extremely flexible form for our logical ansatz, |ψ〉 =

∑
ci|φi〉. For a wide
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variety of ansatz circuits, we shall show that the required matrix element measurements between any |φi〉
and |φj〉 pair can be implemented efficiently using a number of quantum gates that is equal to the sum of
the gates required to prepare |φi〉 and |φj〉, plus a small factor that scales linearly with the system size.
Notably, the circuit size required is independent of the number of wavefunctions in the logical ansatz,
making it possible to systematically add flexibility to |ψ〉 without increasing the required gate fidelity or
coherence times of the quantum hardware.

This flexibility, however, comes at the cost of demanding more matrix element measurements. To
ameliorate this cost we propose using a Monte Carlo technique to estimate the uncertainty in the ground
state energy and to adaptively allocate our measurements of the matrix elements. Essentially, this scheme
involves sampling from the distributions representing the uncertainty in the estimates of the Hamiltonian
and overlap matrices, and solving a small generalized eigenvalue problem for each sampled matrix pair. We
then characterize the resulting distribution of ground state energy values by a sample variance. We suggest a
heuristic that repeatedly determines which measurement to perform by calculating the sensitivity of this
sample variance to additional measurements of each of the matrix elements.

We apply these ideas to two model chemical systems, a square configuration of H4 and the π-system of
hexatriene (C6H8), both of which exhibit mixed strong correlation and dynamical correlation effects. In
terms of strong correlation, we shall focus on a pair of strongly entangled electrons. Specifically,
entanglement between a pair of electrons can lead to two exactly degenerate determinants for certain
geometries of these systems, with the rest of the electrons contributing to dynamical correlation. We present
two types of numerical experiments. In the first, we explore how well the ground state of these systems can
be represented by an NOVQE logical ansatz, varying both the complexity of the constituent basis functions
and the size of the subspace. In the second, we take a fixed set of basis wavefunctions and compare our
adaptive protocol for scheduling measurements with a simpler alternative.

2. Theory

2.1. Matrix element measurement
The off-diagonal matrix elements of the Hamiltonian, Hij = 〈φi|Ĥ|φj〉, do not correspond to physical
observables and therefore cannot be measured directly in the usual manner. Nevertheless, it is possible to
construct circuits that allow us to estimate them, for example, by using the Hadamard test [37]. In this
section we present a simple strategy for measuring these matrix elements. We combine ideas from recent
proposals for measuring off-diagonal matrix elements that appear in other contexts [24, 38] with a trick
inspired by the literature on the impossibility of black box protocols for adding controls to arbitrary
unitaries [40]. Our strategy offers several benefits over a naive application of the Hadamard test. Namely, it
does not require implementing controlled versions of the ansatz preparation circuits, and it enables the
simultaneous measurement of matrix elements of multiple commuting observables while also yielding
information about the overlap matrix elements, Sij = 〈φi|φj〉.

For simplicity, we will describe below the case where Ĥ is a sum of commuting operators, which can
easily be simultaneously measured. In the more general case, the usual Hamiltonian averaging approach of
grouping the terms into multiple sets that are each simultaneously measurable and measuring the sets
separately can be applied without modification [4, 8, 39, 41].

We begin by preparing the state

|+ij〉 :=
1√
2

(|φi〉|0〉+ |φj〉|1〉), (4)

where the second register is an ancilla qubit. This task can be accomplished by using controlled versions of
the unitaries Ûi and Ûj that prepare |φi〉 and |φj〉 from a fixed reference state. Given some quantum circuit
that implements the unitaries Ûi and Ûj, it is possible to construct circuits that implement the controlled
version of Ûi and Ûj, by replacing each gate in the original circuits with its controlled form. Even setting
aside the difficulty of compiling such a circuit on a physical device with limited connectivity, the cost of
implementing such a circuit on a near-term device (quantified by counting the number of two-qubit gates)
will be substantially increased. For example, it is known that the decomposition of the Toffoli gate (the
controlled–controlled-NOT gate) into a collection of single qubit and CNOT gates requires the use of six
CNOT gates [42]. Given the limited coherence times and two-qubit gate fidelities of near-term hardware,
we must ask if there are alternatives for implementing controlled versions of Ûi and Ûj.

An ideal protocol might allow us to implement a controlled version of an arbitrary Û using a single
execution of the original, unmodified circuit that implements Û. Unfortunately, a single use of oracle
(blackbox) access to a general Û is insufficient for implementing a controlled version of Û in the quantum
circuit model [40]. However, if Ûi and Ûj preserve fermionic (or bosonic) excitation number and act
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trivially on the vacuum state, then we can circumvent this no-go result. We now show how this can be
accomplished in the construction of a controlled unitary operator,

Ûi, Ûj → Ûi ⊗ |0〉|0〉+ Ûj ⊗ |1〉|1〉. (5)

We begin with a generic input state |ψ0〉|0〉+ |ψ1〉|1〉, subject to the restriction that |ψ0〉 and |ψ1〉 are
both states that are orthogonal to the state with zero particles, |vac〉.

(a) First, we adjoin an ancilla system register in the vacuum state to obtain

|ψ0〉 ⊗ |vac〉 ⊗ |0〉+ |ψ1〉 ⊗ |vac〉 ⊗ |1〉.

(b) Treating the final qubit as the control, we apply a controlled-SWAP operation between the two system
registers, resulting in

|ψ0〉 ⊗ |vac〉 ⊗ |0〉+ |vac〉 ⊗ |ψ1〉 ⊗ |1〉.

(c) Next, we execute the unmodified circuit for Ûi on the first system register, while doing the same with Ûj

on the second system register, yielding

Ûi|ψ0〉 ⊗ |vac〉 ⊗ |0〉+ |vac〉 ⊗ Ûj|ψ1〉 ⊗ |1〉.

(d) We follow this with a second controlled-SWAP operation to produce the state,

Ûi|ψ0〉 ⊗ |vac〉 ⊗ |0〉+ Ûj|ψ1〉 ⊗ |vac〉 ⊗ |1〉.

(e) Finally, we discard the now unentangled second system register to show completion of the action of the
controlled unitary gate and obtain the desired result,

Ûi|ψ0〉 ⊗ |0〉+ Ûj|ψ1〉 ⊗ |1〉.

For our purposes, we can take |ψ0〉 and |ψ1〉 to be the same fixed reference state, usually a Hartree–Fock
state |ψHF〉. Then |φi〉 = Ûi|ψHF〉 and |φj〉 = Ûj|ψHF〉 and we see that with the last step we have successfully
prepared the desired state, |+ij〉 := 1√

2
(|φi〉|0〉+ |φj〉|1〉). We then apply a Hadamard gate on the ancilla

qubit and perform a Ẑ measurement. It is easy to see that the expectation value of Ẑ for the ancilla qubit
will be 〈Ẑanc〉 = Re〈φi|φj〉. Furthermore, the post-measurement state of the system register is either

|φi〉+ |φj〉√
2 + 2 Re〈φi|φj〉

, (6)

if the ancilla qubit was found to be in the +1 eigenstate, or

|φi〉 − |φj〉√
2 − 2 Re〈φi|φj〉

, (7)

if the measurement outcome was −1. These outcomes occur with probabilities
1+Re〈φi |φj〉

2 and
1−Re〈φi|φj〉

2
respectively.

In both cases, we proceed to measure the Hamiltonian Ĥ on the system register. Depending on the result
of the ancilla qubit measurement, the resulting expectation values will be either

〈Ĥ〉(+1) =
〈Ĥ〉i + 〈Ĥ〉j + 2 Re〈φi|Ĥ|φj〉

2 + 2 Re〈φi|φj〉
, (8)

or

〈Ĥ〉(−1) =
〈Ĥ〉i + 〈Ĥ〉j − 2 Re〈φi|Ĥ|φj〉

2 − 2 Re〈φi|φj〉
. (9)

Now we consider the expectation value of the operator ĤẐanc. By multiplying each of the conditional
expectation values of Ĥ by the corresponding eigenvalue of Ẑanc and taking the appropriate weighted
average, we find that

〈ĤẐanc〉 = Re〈φi|Ĥ|φj〉. (10)

Furthermore, if Ĥ is a sum of Pauli operators, then the usual Hamiltonian averaging approach and upper
bounds on the variance of a VQE observable apply to equation (10) [41]. Therefore, by repeated
measurement we can estimate Re〈φi|Ĥ|φj〉 to a fixed precision ε using approximately the same number of
measurements that we would need to measure a diagonal matrix element to the same accuracy. A similar
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approach allows us to estimate Im〈φi|φj〉 and Im〈φi|Ĥ|φj〉 by starting with the state
1√
2
(|0〉|φi〉+ i|1〉|φj〉).

Consider an ansatz |θ〉 = U(θ)|ψ0〉 for N spin-orbitals, represented by N qubits after a Jordan-Wigner
transformation, such that the size and depth of the circuit for U is independent of θ; this is typical of VQE
ansätze, but the following can be easily generalized when it is not the case. Suppose also that we have a
protocol for measuring the Hamiltonian H on the N-qubit register. What are the additional resources
required to implement NOVQE? First, we require 2N qubits and at least one ancilla. The variational
unitaries Ui and Uj can be applied in parallel, doubling the size of the circuit but not the depth. The
measurement protocol for H can be applied without modification to the first register. For the two controlled
swaps, there is a space-time tradeoff. First, consider the case without geometric constraints. Each controlled
swap of the registers can be implemented using the single ancilla and N 3-qubit CSWAP gates in series on
pairs of the corresponding qubits from the two registers, adding 2NτCSWAP to the depth, where τCSWAP is the
effective depth of the CSWAP gate. Alternatively, we can use N ancillas and in �log2N� depth produce a
logical ancilla in the form of a GHZ state. Then the N CSWAPS can be done in parallel, adding only
2τCSWAP to the depth.

Suppose now that we are restricted, e.g., to some subgraph of a 2D square grid, and that U(θ) can be
implemented only using gates on linearly adjacent qubits. Then we can place the computational registers on
adjacent rows and the ancilla at the end of one. Now, in addition to the CSWAP gates, we must use N
2-qubit SWAP gates to move the ancilla through the line, so that the contribution to the depth is now
2N(τCSWAP + τ SWAP). Alternatively, we can use a whole row of ancillas between the two computational rows,
and in �N/2� τCNOT prepare the ancilla GHZ state as we did without geometric constraints, and again the
CSWAP gates can be done in parallel8.

2.2. Diagonalization with uncertainty
Given a collection of states {|φ1〉, |φ2〉, . . . , |φn〉}, we are interested in determining the minimum energy
state in the subspace that they span. To do this, we use our protocol described above to measure the matrix
elements of the Hamiltonian and overlap matrices (equation (2)), and solve the generalized eigenvalue
problem (equation (3)). However, because we perform only a finite number of measurements of each of
matrix element, we have some level of statistical uncertainty. In this section, we shall lay out a simple Monte
Carlo strategy to estimate the resulting uncertainty in the minimum eigenvalue of equation (3). We shall
aim to provide a self-contained presentation for convenience, but we note that this approach is related to a
long tradition of applying Monte Carlo methods to statistical problems, including the diagonalization of
noisy matrices [43–45].

We model the experimentally determined values of each matrix element using a normal distribution. In
practice, the experimental measurements of the matrix elements are individually described by draws from
Bernoulli random variables, but variational quantum algorithms typically work in the regime where the
average of such measurements are well-approximated by a normal distribution [4]. In the context of an
actual experiment, one could approximately determine the parameters of these distributions from the
experimental measurement record of the Hamiltonian and overlap matrix elements.

For the purposes of the numerical experiments in this work, we determine the variance of the
Hamiltonian matrix element measurements using the upper bounds described in references [4] and [41].
Similarly, we observe that our scheme for measuring the overlap matrix elements will have a variance that is
at most 1

m , where m is the number of measurements performed, and we use this upper bound as an
approximation to the true variance. We use these approximations both in our simulation of the
experimental measurement record and in our subsequent protocol to determine the uncertainty in the
ground state energy. Throughout this section, we use a notation which separates the intrinsic component of
the variance, which we denote by σ2, from the scaling with the number of measurements, m.

Experimentally, we only have access to estimates of 〈φi|Ĥ|φj〉 and 〈φi|φj〉 from our measurement record,

which we denote by h̃ij and s̃ij. Taken together with our estimates of the variances, σ̃2
Hij

and σ̃2
Sij

, we can
define the random variables

H̃′
ij = h̃ij +

σ̃Hij√mHij

N (0, 1), (11)

S̃′ij = s̃ij +
σ̃Sij√mSij

N (0, 1). (12)

8 Note that technically we should distinguish between different values for τCSWAP depending on geometric constraints on the 2-qubit
gates into which the CSWAP is decomposed, e.g., between when the control qubit is in the middle of the three on a line and when it is at
one of the ends.
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These distributions represent our uncertainty about the true value of the matrix elements given the limited
information provided by our experimental data.

To quantify the corresponding uncertainty in the ground state energy in the NOVQE subspace, we use a
Monte Carlo sampling procedure. We accomplish this by repeatedly drawing from the distributions H̃′

ij and

S̃′ij, and solving the resulting generalized eigenvalue problems. However, it is possible that the noise in our
matrix element measurements and subsequent sampling destroys the positive semi-definite character of the
overlap matrix. To deal with this, we follow the canonical orthogonalization procedure described in
reference [46], discarding the eigenvalues of the sampled overlap matrices that are less than some numerical
cutoff (and their associated eigenvectors). Each sampled pair of matrices yields a sample from the unknown
distribution over possible NOVQE ground state energies. We then quantify our uncertainty in our estimate
of this lowest eigenvalue by calculating the sample variance of this distribution of possible energies, σ2

MC.
It is important to note that this distribution is not Gaussian and that its mean is not an unbiased

estimate of the ground state energy in the NOVQE subspace [43]. This is true for a number of reasons, but
it can be seen, for example, by considering the fact that the usual second order correction to the energy is
quadratic in the off-diagonal matrix elements. Therefore, even unbiased and normally distributed noise in
the matrix elements leads to a bias in the estimated eigenvalues. Furthermore, the rate at which our estimate
of the mean and variance of the distribution over possible NOVQE ground state energies converges (with
respect to the number of Monte Carlo samples) will vary according to the underlying distribution. The
most meaningful consequences of this for our purposes are that convergence with respect to the number of
Monte Carlo samples should be checked before being relied upon and that one should be cautious in using
the standard error to generate error bars. As the number of measurements made increases and the amount
of uncertainty diminishes, these effects are naturally suppressed.

2.2.1. Experiment design heuristic
In the previous section, we proposed a Monte Carlo scheme for estimating the uncertainty in the NOVQE
ground state energy caused by a finite number of measurements of the individual matrix elements. By
repeatedly sampling from H̃′

ij and S̃′ij and solving the resulting generalized eigenvalue problems, we obtained
a distribution over NOVQE ground state energies with some mean μMC and standard deviation σMC. Here
we build on this proposal to determine the relative impact of performing additional measurements.
Ultimately, our goal is to create a reasonable heuristic for adaptively scheduling measurements to most
efficiently use a limited amount of device time.

We determine the impact of additional measurements of the matrix elements on the uncertainty in the
ground state energy by calculating the derivatives of the sample standard deviation, σMC, with respect to the
number of measurements performed, mHij and mSij . The resultant quantities, dσMC

dmHij
and dσMC

dmSij
, estimate how

much we expect the sample deviation to shrink if we perform additional measurements of Hij or Sij. Note
that we take these derivatives with respect to mHij and mSij only in the Monte Carlo sampling procedure of
equations (11) and (12), not in the original measurements on the device. Therefore, no additional quantum
resources are required. We use the tensor flow software package to perform the Monte Carlo sampling of H̃′

ij

and S̃′ij, to calculate of the ground state energies, and to estimate σMC [47]. This enables us to evaluate the

analytical expressions for each of dσMC
dmHij

and dσMC
dmSij

(for a fixed set of samples drawn from H̃′
ij and S̃′ij) without

explicitly deriving the equations.
To optimally allocate our experimental measurements, we begin by performing a small number of

measurements of each matrix element. We then estimate the derivatives dσMC
dmHij

and dσMC
dmSij

. Using these

estimates, we simply choose to perform additional measurements on the matrix element whose
corresponding derivative is the most negative. In practice, we perform these measurements in small batches
so that the time taken by the classical processing of the measurement results is small compared to the time
performing the measurements. By repeating this process for many steps, until we either achieve the desired
accuracy or exhaust a pre-defined measurement budget, we aim to approximately optimize allocation of
measurements between the different terms.

2.3. Implementation
The tools presented above are applicable for use with a variety of different ansätze, and are subject only to
the constraint that the circuits act on a common reference state and conserve fermionic excitation number,
in order to benefit from the efficient implementation of the matrix element measurements. For our
numerical experiments, we shall focus on a particular class of wavefunctions known as k-fold products of
unitary paired coupled cluster with generalized single and double excitations [20] (k-UpCCGSD). These
wavefunctions have the appealing properties that (1) the required circuit depth scales only linearly in the
size of the system, and (2) they can be systematically improved by increasing the refinement parameter k.

6
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We briefly review this ansatz below and then describe in more detail the implementation details of our
numerical experiments.

2.3.1. The k-UpCCGSD ansatz
The essential idea behind the k-UpCCGSD ansatz is to act on a reference state, Hartree–Fock in the case of
this paper, with a product of k elementary blocks. Each block is an independently parametrized
approximation to a unitary coupled cluster circuit generated by a sparse cluster operator containing only
single and paired double excitations [48, 49]. To this end, the wavefunction (before the Trotter
approximation involved in compiling the circuits) is defined as follows.

|ψ〉 =
k∏

x=1

(
eT̂(x)−T̂(x)†

)
|φ0〉, (13)

where each cluster operator

T̂ =
∑

ia

taa
ii â†aαâ†aβ âiβ âiα + ta

i (â†aαâiα + â†aβ âiβ) (14)

possesses an independent collection of variational parameters. (We omit the (x) superscript for simplicity
and use latin and greek letters for spatial and spin indices respectively.)

In contrast with the standard unitary coupled cluster single and doubles (UCCSD), k-UpCCGSD only
includes doubles excitations which collectively move a pair of electrons from one spatial orbital to another.
The resulting loss of flexibility is ameliorated by the use of generalized excitations that do not distinguish
between occupied and unoccupied orbitals [50, 51], and by the k-fold repetition of the elementary circuit
block. As a result, the number of free parameters in the ansatz scales as O(kN2). We make use of the
generalized swap networks of reference [52] to implement a single Trotter step approximation to the
k-UpCCGSD ansatz with the open source Cirq and OpenFermion-Cirq libraries [53, 55].

The circuits consist of the following elementary gates:

• FSIM2(w0,w1) = exp(iH) for H =
(
w0|10〉〈01|+ h.c.

)
+ w1|11〉〈11|,

• FSWAP = SWAP · CZ, and

• FSIM4(w) = exp(iH) for

H = w|0011〉〈1100|+ h.c.

Because each FSWAP immediately follows an FSIM2, we can compile them together to get an effective
duration τ 2. Let τ 4 be the effective duration of FSIM4. The overall depth then is kN(τ 2 + τ 4/2). There are(

N
2

)
pairs of FSIM2 and FSWAP gates, and

(
N/2

2

)
FSIM4 gates. This is simply an upper bound; the depth

may be compressed further by combining the compilation of each FSIM4 with the immediately following
2-qubit gates.

2.3.2. Computational details
The quantum chemical calculations of the full configuration interaction (FCI) ground states and
Hartree–Fock (HF) reference wavefunctions were performed using the open source packages Psi4 and
OpenFermion [54, 55]. We optimized the ground state energy in the NOVQE subspace by varying the
parameters of the most recently added ansatz wavefunction, diagonalizing the Hamiltonian and overlap
matrices at each step. Inspired by recent proposals for adaptive ansatz construction [21, 56, 57], each
k-UpCCGSD wavefunction was grown iteratively by adding a single UpCCGSD block at a time, as described
in more detail below. We performed this optimization using the Scipy implementation of the quasi-Newton
limited-memory BFGS (L-BFGS-B) method [58, 59], treating the ground state energy in the NOVQE
subspace as the objective function. We calculated the gradient at each step using a finite difference method
with a step size of δ = 10−6. Each circuit was optimized using up to 2000 gradient evaluations, terminating
early if the magnitude of all components of the gradient fell below 10−5.

In order to escape local minima, we repeatedly applied random kicks to the variational parameters. After
each 500 gradient evaluations we compared the current value of the objective function to the best observed
value and reset the parameters if appropriate. Subsequently, we added random values drawn from the a
normal distribution with zero mean and variance σ2 = 1 (after 500 steps), σ2 = 10−1 (after 1000 steps), or
σ2 = 10−2 (after 1500 steps). The best observed value of the energy across this whole procedure is the one
we ultimately report. We randomly initialized the parameters of the k = 1 circuits by drawing from a
normal distribution with mean 0 and variance σ2 = 10−6. Parameters for circuits with higher values of k
were initialized by taking the parameters from an optimized circuit with k − 1 UpCCGSD blocks and
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appending a new block with random variational parameters drawn from the same distribution,
N (0, 10−6).

3. Results

H4 is often used as a small test bed for single-reference coupled-cluster methods [60–64]. We shall focus on
the square (D4h) geometry here. The system exhibits two exactly degenerate determinants at the D4h

geometry, leading to a mix of strong and weak correlation effects. Another important class of chemical
systems to investigate is hydrocarbons. In this work, we shall study a simple hydrocarbon, hexatriene
(C6H8). The interesting aspect of this molecule is that the torsional PES of a double bond leads to a strong
correlation problem. At θ = 90◦, it exhibits two exactly degenerate determinants and therefore it is strongly
correlated. To form the active space, we include the entire set of π electrons in the system along with both Π
and Π∗ orbitals. The resulting active space is then (6e, 6o), and this also possesses a good mixture of weak
and strong correlation.

In the following subsections, we present the results of two types of experiments related to our proposed
NOVQE approach on these chemical systems and discuss the potential utility of our approach for more
general chemical problems. With the first class of experiments, we focus on understanding how effectively
the ground state can be represented by a linear combination of parametrized wavefunctions, optimized
using the gradient-based approach we described above. We vary both the complexity of the individual
ansatz wavefunctions by adjusting the number of circuit blocks (k) in the k-UpCCGSD ansatz and the
number of states (M) in the NOVQE subspace. For these calculations, we neglect the challenges posed by a
finite number of measurements and the impact of circuit noise. In our second set of numerical experiments,
we explore the extent to which our proposal for an adaptive measurement scheme is successful in reducing
the number of circuit repetitions required to resolve the NOVQE ground state energy to a fixed precision. In
both cases we compare the NOVQE energies with the numerically exact FCI energies.

3.1. NOVQE ground state energies
3.1.1. A hydrogen complex, H4

Figure 1 presents data on the application of NOVQE to the square geometry of H4 with fixed bond distance
RH–H = 1.23 Å in a minimal STO-3G basis set, an N = 8 qubit problem. We consider the performance of
the k-UpCCGSD ansatz for k = 1 and k = 2 with M = 1 up to M = 6 states in the NOVQE subspace,
noting that M = 1 is equivalent to the regular VQE procedure. For each value of k and M we perform five
independent calculations and consider the error in the median ground state energy found by the
optimization procedure as a proxy for the ansatz’s ability to describe the ground state. Note that figure 1
switches from a logarithmic scale to a linear one below 10−5, in order to include points that are zero to
numerical precision and to reflect the fact that our numerical optimization may behave inconsistently below
this threshold due to its convergence threshold.

Focusing first on understanding the behavior of the wavefunctions in the context of the standard VQE
approach (M = 1), we note that for k � 2 the k-UpCCGSD ansatz is essentially exact for this problem.
Looking more closely at the data for k = 2, M = 1 in figure 1, one can see that two of the five calculations
failed to find the global optimum (the pale orange points). In general, we found that the optimization of
this ansatz was challenging. We expect these challenges to become more severe with increasing system size,
and when the stochastic nature of the quantum measurements are taken into account.

In the case of k = 1 we observe that we can systematically improve the accuracy of the estimated ground
state energy by increasing the number of states included in the NOVQE subspace (M). Given M = 3
independent copies, even this relatively simple ansatz is able to represent that ground state almost exactly.
This supports our thesis that a collection of ansatz states which are individually not capable of targetting a
desired state may be fruitfully combined to yield a sufficiently powerful logical ansatz. However, the
measurements of the off-diagonal matrix elements for NOVQE require slightly more than twice the gate
count necessary for the measurements of individual ansatz states in the regular VQE formalism. For this
particular system, it may therefore be more effective to use a single k = 2 ansatz than multiple k = 1
circuits.

3.1.2. Hexatriene
Here we present our results for the ground state energy of two molecular configurations of hexatriene
(C6H8) in an STO-3G basis with an active space of 6 electrons in 6π orbitals (N = 12 qubits). Here, due to
the system’s increased complexity, we consider circuits with up to k = 5 UpCCGSD blocks and subspace
sizes as large as M = 10. In figure 2 we show the calculations for an equilibrium geometry (the trans isomer,
obtained by performing geometry optimization using density functional theory) and a configuration with a
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Figure 1. Difference between NOVQE energies and FCI energies for the ground state of H4 for a variety of k-UpCCGSD ansätze
and sizes of the NOVQE subspace (M). The NOVQE energy is optimized by varying the parameters of the most recently added
state to minimize the ground state energy in the subspace. For each value of M and k we plot five independent calculations as
separate points and show the median values as squares connected by lines. The scale of the plot switches from logarithmic to
linear below 10−5 in order to include points which are zero to numerical precision and to reflect the fact that our numerical
optimization may behave inconsistently below this threshold due to its convergence threshold. The dotted horizontal line
indicates 1 kcal mol−1 ≈ 1.59 millihartree, a commonly accepted value for ‘chemical accuracy’. As more states are added to the
NOVQE subspace, the error in the ground state energy declines substantially for the k = 1 version of k-UpCCGSD. For larger
values of k, a single state (equivalent to a regular VQE procedure) is sufficient to capture the ground state to a high precision.

Figure 2. Difference between NOVQE energies and FCI energies for the ground states of the equilibrium configuration of
trans-hexatriene and a 90◦ twisted configuration for a variety of k-UpCCGSD ansätze and sizes of the NOVQE subspace (M).
The NOVQE energy is optimized by varying the parameters of the most recently added state to minimize the ground state energy
in the subspace. For each value of M and k we plot five independent calculations as separate points and show the median values
as squares connected by lines. The dotted horizontal line indicates 1 kcal mol−1 ≈ 1.59 millihartree, a commonly accepted value
for ‘chemical accuracy’. The flexibility of the NOVQE wavefunction may be increased both by adding more states to the NOVQE
subspace (M), or more parametrized blocks to each individual circuit (k). In either case, the error is driven below the threshold
for chemical accuracy.

90◦ twist on the central carbon–carbon double bond respectively. We provide the geometries for these two
configurations in appendix A, tables 1 and 2.

Once again we notice that increasing the circuit complexity by taking larger values of k provides a
substantial benefit, driving the estimated ground state energy well below the threshold for chemical
accuracy without resorting to the multiple states of the NOVQE formalism. Likewise, as the number of
NOVQE states increases, the NOVQE ground state energy reaches chemical accuracy even with the most
limited ansatz. For hexatriene we see that multiple k = 1 states are able to achieve a performance on par
with a single k = 4 state. The NOVQE procedure for the k = 1 states requires almost a factor of four less
circuit depth and half as many quantum gates as performing a single VQE with the k = 4 state.
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Interestingly, for the k = 1 case in both configurations, and the k = 2 case in the twisted configuration,
figure 2 shows regimes where the error in the ground state energy decreases exponentially as a function of
M. We compare this with the observation in classical non-orthogonal electronic structure calculations,
where a small number of determinants are often sufficient to capture most of the wavefunction, but a long
tail of dynamic correlation can result in a slow convergence to the true ground state as determinants are
added to the variational space [30–36, 65]. The classical intractability of calculating matrix elements
between different coupled cluster wavefunctions means that relatively little work has been done on the
representational power of wavefunctions like those used in NOVQE. This is in contrast with another class of
quantum non-orthogonal methods which, by virtue of building their basis states by time-evolving a set of
reference wavefunctions, demonstrate exponential convergence by construction [25, 26]. In the future, it
would be interesting to determine whether the rapid convergence with respect to M we observe here gives
way to a regime of slow convergence, like that observed in classical non-orthogonal methods, when more
challenging systems are treated.

3.2. NOVQE matrix element measurements
In the previous subsection we presented data on the performance of NOVQE in the absence of noise during
the circuit execution and measurement process. Now we consider the effects of statistical noise during
measurement. Specifically, we determine how many circuit repetitions are necessary to evaluate the ground
state energy within a target precision, for a subspace defined by a fixed set of NOVQE states. For simplicity,
we do not combine this analysis with an investigation of the optimization procedure. Instead, we take the
optimized circuit parameters for a collection of M NOVQE states and compare the effectiveness of the
adaptive protocol we described in section 2.2.1 to a simpler alternative for determining the ground state
energy in the subspace spanned by the optimized states, which we shall explain below.

The simpler protocol, which we shall refer to as non-adaptive, consists of measuring each matrix
element of the Hamiltonian and overlap matrices the same number of times. For the adaptive protocol, we
repeatedly use the procedure described in section 2.2.1 to select a particular matrix element and perform
measurements in batches of ≈ 105 circuit repetitions. For the purpose of this comparison, we treat a
‘measurement’ of a particular Hamiltonian or overlap matrix element as a draw from a Gaussian random
variable whose mean is the true value of the matrix element and whose variance is set by the upper bound
described in reference [4], scaled by the number of measurements performed. Note that in a real
experiment, or a finer-grained simulation, the Hamiltonian has to be decomposed into groups of terms that
can be simultaneously measured [1]: one could apply an adaptive scheme like the one we propose to
schedule measurements between these groups as well. For both kinds of numerical experiments we calculate
a 2σ error bar using a bootstrapping sample size of 200 with the techniques of section 2.2.

3.2.1. A hydrogen complex, H4

In figure 3 we plot the actual trajectories of the estimates for the ground state energies, together with their
error bars for both the adaptive and non-adaptive approaches to measurement. We show two realizations of
this numerical experiment applied to an NOVQE simulation of H4 with M = 4 of the 1-UpCCGSD states.
In both cases, we see that the adaptive protocol converges more quickly towards the NOVQE ground state
energy than the non-adaptive one. We find that the data qualitatively supports the assumption that the
variance in the ground state energy estimate settles into an asymptotic regime where its behavior is well
described by the relationship

σ2(Nm) ≈ κ

(Nm)
, (15)

where (Nm) indicates the total number of measurements performed and κ is a constant, which we shall refer
to as the ‘intrinsic variance’. For these particular realizations, we find κ to be approximately 5.3 · 104 E2

h and
5.5 · 104 E2

h for the non-adaptive scheme in panels (A) and (B), and approximately 1.4 · 104 E2
h and

9.7 · 103 E2
h for the adaptive scheme. Using the same upper bounds to calculate the variance for a regular

VQE calculation performed on the same system would yield κ ≈ 28 E2
h.

For some fixed precision σ2(Nm), the relative increase (or decrease) in the number of measurements
between the two approaches can be determined by setting the ratio κ/Nm to be the same, i.e.,

N(1)
m /N(2)

m ≈ κ(1)/κ(2),

where 1 refers to non-adaptive and 2 to adaptive. Therefore, for these applications to H4, our scheme for
iterative measurement achieves a modest reduction in variance. When targeting a fixed accuracy this would
translate into a few-fold (≈ 3.7 for realization A and ≈ 5.7 for realization B) savings in the total number of
measurements. Carrying out the same comparison between our adaptive measurement scheme for NOVQE
and ordinary VQE, we see that, unfortunately, the overall measurement cost is still two orders of magnitude
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Figure 3. Comparison of the ability of the adaptive and non-adaptive schemes for scheduling measurements to resolve the
ground state energy of H4 in two different NOVQE subspaces of M = 4 optimized k = 1k-UpCCGSD states. The evolution of the
estimated ground state energies is plotted in solid lines together with 2σ error bars indicated by the shaded regions. The actual
energies of the ground states in the NOVQE subspaces are indicated with dashed green lines. Panels A and B show two different
typical realizations of the measurement record as the total number of measurements increases. In both cases, the adaptive
protocol converges significantly more quickly than the non-adaptive one. Note that the variance of the experimental
measurements are approximated using upper bounds and that the true numbers required for both the adaptive and non-adaptive
schemes are likely to be lower [4, 10].

Figure 4. Comparison of the ability of the adaptive and non-adaptive schemes for scheduling measurements to resolve the
ground state energy of trans-hexatriene in two different NOVQE subspaces of M = 8 optimized k = 1k-UpCCGSD states. The
evolution of the estimated ground state energies is plotted in solid lines together with 2σ error bars indicated by the shaded
regions. The actual energies of the ground states in the NOVQE subspaces are indicated with dashed green lines. Panels A and B
show two different typical realizations of the measurement record as the total number of measurements increases. In both cases,
the adaptive protocol converges significantly more quickly than the non-adaptive one. Note that the variance of the experimental
measurements are approximated using upper bounds and that the true numbers required for both the adaptive and non-adaptive
schemes are likely to be lower [4, 10].

(≈ 300–500) larger than that required for energy measurement in an ordinary VQE approach. In order for
NOVQE, or other forms of quantum non-orthogonal methods to be made practically useful, this increased
measurement time will have to be accounted for and minimized.

3.2.2. Hexatriene
As in our analysis of H4, we compare the proposed adaptive approach to distributing measurements
between the elements of the Hamiltonian and overlap matrices with a non-adaptive one. We do so by
choosing collections of optimized NOVQE states and applying both methods to determine the ground state
energy in the resulting subspaces. In this case we choose to use M = 8 states, each of which is generated by a
1-UpCCGSD circuit, and focus on the equilibrium configuration of trans-hexatriene. Examining the
two realizations of this experiment plotted in figure 4, we see immediately that the increased difficulty of
this problem compared to H4 is reflected in the much larger gaps between the FCI ground states and the
ground states in the NOVQE subspaces, as well in the larger numbers of measurements required for
convergence.
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Figure 4 shows the same substantial difference between the performances of the adaptive and
non-adaptive approaches that was observed for H4. In panel B, we see that the true ground state of the
subspace lies outside of the error bars for the non-adaptive scheme during small portions of the
measurement procedure. This is a manifestation of the phenomenon mentioned in section 2.2, where using
an insufficient number of Monte Carlo samples may result in misestimating the magnitude of the
uncertainty in the ground state energy. We note that the adaptive scheme moves quickly to a regime where
the uncertainty estimates are reliable even with a small number of samples. We once again observe that the
variance qualitatively converges with the expected long-time 1

N behavior of equation (15) for most of the
numerical experiment. Therefore, we can determine the intrinsic variance κ, defined in equation (15), for
each method and compare their statistical efficiencies.

For the non-adaptive scheme we observe κ ≈ 2.4 · 106 and κ ≈ 2.9 · 106 for panels A and B, while for
the adaptive scheme we see κ ≈ 3.7 · 105 and κ ≈ 6.5 · 105. The reference value for a regular VQE
calculation is κ ≈ 1.6 · 102, determined using the same bounds assumed throughout this comparison
[4, 41]. Comparing with the simpler H4 example, we see that the adaptive scheme for measuring the
NOVQE ground state energy of hexatriene results in a slightly larger gain when compared to the
non-adaptive scheme, but still falls short of the goal of reducing the number of measurements to an
experimentally plausible number. One promising avenue to further reducing this cost is the adaptation of
recently proposed strategies for measurement in the context of regular VQE to NOVQE [10]. These
strategies have been shown to reduce the number of circuit executions by orders of magnitude when
compared with the bounds used to derive the number of measurements in this work. Further study is
required in order to determine if one can alter the optimization process of the NOVQE states themselves or
their coefficients, in order to achieve an additional reduction in the measurement cost.

4. Discussion and outlook

We have introduced an extension to the variational quantum eigensolver that calls for the ground state
energy to be approximated by solving a generalized eigenvalue problem in a subspace that is spanned by a
linear combination of M parametrized quantum wavefunctions. The resulting logical wavefunction ansatz is
a linear combination of all M states in the subspace, but its properties can be determined by only pairwise
measurements of the Hamiltonian and overlap matrices. In particular, construction of all off-diagonal
matrix elements required for the generalized eigenvalue equation can be made using the unmodified state
preparation circuits for each parameterized basis wavefunction, together with O(N) additional two-qubit
gates, where N is the number of spin-orbitals. Therefore, it is possible to increase the flexibility of the ansatz
without requiring additional coherent quantum resources. By analogy with the non-orthogonal
configuration interaction method of classical quantum chemistry [31, 32, 35], we call our approach the
non-orthogonal variational quantum eigensolver, NOVQE.

Our proposal necessitates off-diagonal measurements of the Hamiltonian and overlap matrices. We
perform these using a modified Hadamard test. Naively, this would require us to implement controlled
versions of the quantum circuits for state preparation. To avoid this cost, we demanded that the state
preparation circuits all act on a common reference state and preserve fermionic excitation number. This
allowed us to avoid the need to add controls to the ansatz circuits, by instead performing controlled swap
operations between two copies of the system register, a cost that scales linearly and modestly with the
system size.

To determine the ground state energy in the subspace, our approach requires that we measure all M2

elements of the Hamiltonian and overlap matrices in the NOVQE subspace. We presented a statistical
strategy for estimating the uncertainty in the resultant ground state energy estimate for a given uncertainty
in the matrix elements. We also pointed out how the machinery that generates these estimates can be
leveraged in a Monte Carlo sampling process to determine which matrix element should be chosen for
additional measurements to optimally reduce the uncertainty. We proposed an iterative approach, in which
small batches of measurements are repeatedly performed according to this Monte Carlo prescription, to
minimize the overall number of circuit repetitions required by our NOVQE method.

We demonstrated an implementation of our approach using a collection of k-UpCCGSD wavefunctions
to approximate the ground state of two model strongly-correlated systems, a square geometry of H4 and the
π-space of hexatriene in two configurations. Growing the NOVQE subspace by adding and optimizing one
state at a time, we showed how a collection of ansätze which individually struggle to represent the ground
state can be fruitfully combined combined to form a more powerful logical ansatz. In our numerical
experiments we observed that the marginal utility of adding additional states to the NOVQE subspace
remained large, even as the size of the space increased. It is interesting to compare this with the commonly
noted behavior of classical non-orthogonal methods, which generate a collection of non-orthogonal Slater
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determinants and diagonalize in the resulting subspace [30–36]. These approaches eventually enter a regime
where convergence slows down significantly as states are added to the subspace, sometimes before the
desired accuracy is reached. This suggests that the there is a benefit in NOVQE’s ability to make use of
wavefunctions more sophisticated than the Slater determinants available to classical non-orthogonal
methods, allowing for a balance between the number of distinct wavefunctions and their flexibility.

To characterize our proposal for adaptively scheduling measurements to minimize the number of circuit
repetitions required by our approach, we focused on quantifying the number of measurements required to
approximate the ground state energy in a fixed NOVQE subspace. For the purposes of this investigation we
approximated the variance of the individual matrix element measurements using the bounds described in
references [4] and [41]. For both our square H4 and our equilibrium configuration of trans-hexatriene, we
optimized collections of NOVQE states and froze their parameters. We then applied our adaptive approach
for scheduling measurements and compared it to a simpler non-adaptive scheme, in which each matrix
element was measured the same number of times. We found that our adaptive approach used somewhat
fewer measurements than a simpler non-adaptive strategy, but still dramatically more than it would take to
measure the energy in the standard VQE formalism. It would be worthwhile to understand whether similar
challenges appear for other proposed quantum non-orthogonal methods [22–26].

We can imagine several routes towards ameliorating this difficulty and developing NOVQE further. First,
having states that are nearly linearly dependent in the NOVQE subspace can dramatically increase the cost
of measurement. Developing an optimization strategy for the individual states, or their coefficients, that
regularizes this behavior away would be useful. Related to this is the possibility of extending the tools for
measuring analytical gradients of parametrized quantum circuits to work with the NOVQE formalism.
Another avenue for future work would be the development of good initialization strategies for NOVQE,
potentially using reference states derived from a classical NOCI calculation. Finally, recent work has shown
that a measurement strategy based on factorizations of the two-electron integral tensor can dramatically
reduce the cost of the standard VQE approach, lowering the number of separately measured terms from
O(N4) to O(N) [10]. The resulting cost reduction is especially large when compared to the type of bounds
used throughout this paper [4, 41]. Adapting this approach for use with NOVQE is likely to offer a
significant improvement.

Beyond these modifications to the NOVQE approach outlined in this paper, it is also conceivable that
the tools we have presented might be usefully employed in other ways. For example, we have focused here
on the variational optimization of a logical ansatz that is a superposition of individual parametrized
wavefunctions. An alternative is to take inspiration from reference [22] and from the classical NOCI
method [31, 32, 66], and optimize the individual wavefunctions separately, solving the generalized
eigenvalue problem only once with the final collection of states. In this vein, there are several recent
proposals which form a non-orthogonal basis using a collection of time-evolved reference states [25, 26].
Another possible direction to pursue is the inclusion of one or more states in the NOVQE subspace that can
be classically optimized, only turning to the use of more general parametrized quantum circuits to prepare
small corrections to the classically tractable states. All of these ideas have the potential to benefit from the
tools we have developed for efficiently performing the required matrix element measurements.

In summary, this work has presented a promising new extension to the VQE formalism and highlighted
both its advantages and its drawbacks, some of which may be of general concern for developers of other
quantum non-orthogonal methods. We have also presented a strategy for compiling off-diagonal matrix
element measurements and promoted a general approach to Monte Carlo estimation of uncertainty. The
circuit simulations of the k-UpCCGSD ansatz presented here add to the analyses of references [20, 67, 68].
We believe that the ability of our NOVQE to trade off coherent quantum resources for additional
measurements may prove to be a useful tool in making use of NISQ-era quantum hardware for studying
challenging strongly correlated systems.

In the final stages of preparing this manuscript two works were posted which independently developed
approaches using the matrix elements between collections of quantum states for other applications. One
appears in the context of variational quantum algorithms for solving linear systems of equations [69], while
the other proposes a strategy for approximating the low energy subspace of a Hamiltonian in terms of
time-evolved trial wavefunctions [25].
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Table 1. The geometry of the equilibrium configuration of trans-hexatriene.

Atom X Y Z

C ( 0.598 7833, 0.296 9975, 0.000 0000)
H ( 0.652 0887, 1.382 2812, 0.000 0000)
C (−0.598 7843, −0.297 0141, 0.000 0000)
H (−0.652 0904, −1.382 2967, 0.000 0000)
C (−1.860 7210, 0.419 5548, 0.000 0000)
H (−1.801 0551, 1.503 6080, 0.000 0000)
C (−3.053 1867, −0.169 3136, 0.000 0000)
H (−3.968 5470, 0.405 3361, 0.000 0000)
H (−3.147 9810, −1.248 5605, 0.000 0000)
C ( 1.860 7264, −0.419 5599, 0.000 0000)
H ( 1.801 0777, −1.503 6141, 0.000 0000)
C ( 3.053 1816, 0.169 3296, 0.000 0000)
H ( 3.968 5551, −0.405 2992, 0.000 0000)
H ( 3.147 9561, 1.248 5793, 0.000 0000)

Table 2. The geometry of the 90◦ twisted configuration of hexatriene.

Atom X Y Z

C ( 0.598 7833, 0.296 9975, 0.000 0000)
H ( 1.371 6346, −0.068 3717, 0.670 7370)
C (−0.598 7843, −0.297 0141, 0.000 0000)
H (−1.371 6354, 0.068 3544, 0.670 7361)
C (−0.948 4080, −1.419 7297, −0.850 4282)
H (−0.172 1763, −1.780 3215, −1.518 3873)
C (−2.139 0983, −2.012 1775, −0.852 0831)
H (−2.355 4088, −2.846 8591, −1.503 7144)
H (−2.935 3514, −1.677 2360, −0.198 2062)
C ( 0.948 4189, 1.419 7134, −0.850 4230)
H ( 0.172 1980, 1.780 3171, −1.518 3881)
C ( 2.139 1167, 2.012 1462, −0.852 0613)
H ( 2.355 4502, 2.846 8291, −1.503 6834)
H ( 2.935 3585, 1.677 1903, −0.198 1764)

Appendix A. Hexatriene Geometries

The equilibrium geometry was obtained from the geometry optimization with ωB97X-D [70] and cc-pVTZ
[71] using a development version of Q-chem [72]. The 90◦ twisted configuration was obtained by rotating
the middle C–C double bond out-of-plane. All distances are given in angstroms.
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