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Energy-Efficient Node Deployment in

Heterogeneous Two-Tier Wireless Sensor

Networks with Limited Communication Range

Saeed Karimi-Bidhendi, Jun Guo, and Hamid Jafarkhani,

Abstract

We study a heterogeneous two-tier wireless sensor network in which N heterogeneous access points

(APs) collect sensing data from densely distributed sensors and then forward the data to M heterogeneous

fusion centers (FCs). This heterogeneous node deployment problem is modeled as an optimization

problem with the total power consumption of the network as its cost function. The necessary conditions

of the optimal AP and FC node deployment are explored in this paper. We provide a variation of Voronoi

Diagram as the optimal cell partition for this network and show that each AP should be placed between

its connected FC and the geometric center of its cell partition. In addition, we propose a heterogeneous

two-tier Lloyd algorithm to optimize the node deployment. Furthermore, we study the sensor deployment

when the communication range is limited for sensors and APs. Simulation results show that our proposed

algorithms outperform the existing clustering methods like Minimum Energy Routing, Agglomerative

Clustering, Divisive Clustering, Particle Swarm Optimization, Relay Node placement in Double-tiered

Wireless Sensor Networks, and Improved Relay Node Placement, on average.
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I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely used to gather data from the environ-

ment and transfer the sensed information through wireless channels to one or more fusion

centers. Based on the network architecture, WSNs can be classified as either hierarchical or non-

hierarchical WSNs. In hierarchical WSNs, sensors play different roles as they are often divided

into clusters and some of them are selected as cluster heads or relays. In non-hierarchical WSNs

every sensor has identical functionality and the connectivity of network is usually maintained by

multi-hop wireless communications. WSNs can also be divided into either homogeneous WSNs

[2]–[6], in which sensors share the same capacity, e.g., storage, computation power, antennas,

sensitivity etc., or heterogeneous WSNs where sensors have different capacities [7]–[10].

Energy consumption is a key bottleneck in WSNs due to limited energy resources of sensors,

and difficulty or even infeasibility of recharging the batteries of densely deployed sensors. The

energy consumption of a sensor node comes from three primary components: communication

energy, computation energy [11] and sensing energy. The experimental measurements show that,

in many applications, the computation energy is negligible compared to communication energy

[12], [13]. Furthermore, for passive sensors, such as light sensors and acceleration sensors,

the sensing energy is significantly small. Therefore, wireless communication dominates the

sensor energy consumption in practice. There are three primary methods to reduce the energy

consumption of radio communication in the literature: (i) topology control [14], [15], in which

unnecessary energy consumption is avoided by properly switching awake and asleep states, (ii)

energy-efficient routing protocols [6], [16], that are designed to find an optimal path to transfer

data, and (iii) power control protocols [17], [18], that save communication energy by adjusting

the transmitter power at each node while keeping reliable communications. Another widely used

method, Clustering [17], [19], attempts to balance the energy consumption among sensor nodes

by iteratively selecting cluster heads. Unfortunately, the above MAC protocols bring about a

massive number of message exchanges because the knowledge of geometry and/or energy is

required during the operation [19], [20]. Also, the node deployment is known and fixed in these

approaches while it plays an important role in energy consumption of the WSNs.

While WSNs provide a bridge between the physical and virtual information world, the col-

lected data is not useful if it cannot be transmitted from sensors to access points and eventually

to base stations. Connectivity, as a prominent necessity in WSNs, is widely studied under the
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binary communication model in [4] and [21]–[26]. In the binary communication model, each

node can only communicate to other nodes within a certain range due to the limited transmission

power. Note that connectivity is guaranteed when nodes are linked by wire lines; however, the

same is not true for WSNs due to the limited available power in wireless communication. Many

distributed sensor deployment algorithms, such as Lloyd Algorithm, do not take both power

consumption and connectivity into account; therefore, they usually converge to a sub-optimal

deployment in which nodes are divided into several disconnected components. For a one-tier

WSN, the design of optimal deployment algorithms that consider connectivity and coverage

is studied in [7]. While we consider a 2D deployment in this work, the case of 3D optimal

deployment has been studied in [27], [28], and the applicability of the evolutionary algorithms

to solve UAV deployment problems has been introduced in [29].

In this paper, we study the node deployment problem in heterogeneous two-tier WSNs con-

sisting of heterogeneous APs and heterogeneous FCs, with and without communication power

constraints. We consider the total wireless communication power consumption as the cost func-

tion. The optimal energy-efficient sensor deployment in homogeneous WSNs is studied in [3].

However, the homogeneous two-tier WSNs in [3] do not address various challenges that exist

in the heterogeneous two-tier WSNs, e.g., unlike regular Voronoi diagrams for homogeneous

WSNs, the optimal cells in heterogeneous WSNs may be non-convex, not star-shaped or even

disconnected, and the cell boundaries may not be hyperplanes. Another challenge in the hetero-

geneous two-tier networks is that unlike the homogeneous case [3], or heterogeneous one-tier

case [30], some nodes may not contribute to the energy saving. To the best of our knowledge, the

optimal node deployment for energy efficiency in heterogeneous WSNs is still an open problem.

Our main goal is to find the optimal AP and FC deployment to minimize the total communication

power consumption. By deriving the necessary conditions of the optimal deployments in such

heterogeneous two-tier WSNs, we design Lloyd-like algorithms to deploy nodes. In addition,

we update the designed deployment algorithms to consider the effects of limited communication

range. We also study the trade-off between AP and sensor power consumption.

The rest of this paper is organized as follows: In Section II, we introduce the system model and

problem formulation. In Section III, we study the optimal AP and FC deployment and provide

the corresponding necessary conditions. A numerical algorithm is proposed in Section IV to

minimize the energy consumption. An analysis of AP and sensor power trade-off is provided

in Section V. In Section VI, an algorithm is proposed to maximize the network coverage and
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minimize the power consumption, simultaneously. Section VII presents the experimental results

and Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Here, we study the power consumption of the heterogeneous two-tier WSNs consisting of

three types of nodes, i.e., homogeneous sensors, heterogeneous APs and heterogeneous FCs.

The power consumption models for homogeneous WSNs are discussed in details in [3]. The

main difference in this work is the heterogeneous characteristics of the APs and FCs. For the

sake of completeness, we describe the system model, as shown in Fig. 1, for heterogeneous

WSNs here in details. Given the target area Ω ⊂ R2 which is a convex polygon including

its interior, N APs and M FCs are deployed to gather data from densely deployed sensors.

Throughout this paper, we assume that N ≥ M . Given the sets of AP and FC indices, i.e.,

IA = {1, 2, ..., N} and IB = {1, 2, ...,M}, respectively, the index map T : IA −→ IB is defined

to be T (n) = m if and only if AP n is connected to FC m. If AP n has no associated FC,

we set T (n) = −1. Conversely, T−1(m) is defined to be the set of all AP indices n such that

T (n) = m, and |T−1(m)| denotes the cardinality of this set. The AP and FC deployments are

then defined by P = (p1, ..., pN) and Q = (q1, ..., qM), where pn, qm ∈ R2 denote the location

of AP n and FC m, respectively. Throughout this paper, we assume that each sensor only sends

data to one AP. For each n ∈ IA, AP n collects data from sensors in the region Rn ⊂ Ω;

therefore, for each AP deployment P , there exists an AP partition R = (R1, ...,RN) comprised

of disjoint subsets of R2 whose union is Ω. The density of sensors is denoted via a continuous

and differentiable function f : Ω −→ R+. The total amount of data gathered from the sensors

in region Rn in one time unit is g
∫

Rn
f(w)dw, where g is the bit-rate of the sensors. Due to the

homogeneity of sensors, g is a constant [3].

We focus on the power consumption of sensors and APs, since FCs usually have reliable

energy resources and their energy consumption is not the main concern. First, we discuss the

sensors’ power consumption. As shown in [3], because of the path-loss, the instant transmission

power is proportional to the square of the distance between the two nodes and a constant that

depends on the characteristics of the two nodes, i.e., a×‖pn−w‖2 for a sensor located at ω that

sends its data to AP n. According to [39], the parameter a is given as a = Pr−th(4π)2

GtGrλ2 , where Pr−th

is the minimum receiver power threshold, Gt and Gr are the transmitter and receiver antenna

gains, respectively, and λ is the carrier signal wavelength. For homogeneous WSNs, all nodes
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Fig. 1: System model.

in each tier have the same characteristics and therefore, the parameter a is the same and will

not affect the optimization. However, in a heterogeneous WSN, the heterogeneity of APs causes

nodes to have different antenna gains and SNR thresholds; therefore, the parameter a will be a

function of the node index. Hence, the sensors’ power consumption can be written as

PS(P,R) =
N∑
n=1

∫
Rn

an‖pn − w‖2f(w)dw. (1)

Similarly, for the AP’s power consumption, the instant transmission power between AP n and

FC T (n) can be written as b × ‖pn − qT (n)‖2 where the parameter b depends on the antenna

gain and SNR threshold of FC T (n) and antenna gain of AP n [39]. Hence, it is the same for

homogeneous WSNs and will not affect the optimization. However, in a heterogeneous WSN,

the heterogeneity of APs and FCs causes the parameter b to be a function of the node indices.

Therefore, the APs’ power consumption can be written as

PA (P,Q,R, T ) =
N∑
n=1

∫
Rn

bn,T (n)‖pn − qT (n)‖2f(w)dw. (2)

Our goal in this work is to minimize the power consumptions in (1) and (2). However, as will

be shown later, there is a trade-off between the two power consumptions. As such, one objective

is to minimize the AP transmission power in (2) given a constraint on the sensor transmission

power in (1). Mathematically, this results in the AP-Sensor power function defined as

A(s) , inf
(P,Q,R,T ):PS(P,R)≤s

PA (P,Q,R, T ) . (3)



6

Similarly, one can define the Sensor-AP power function to minimize the sensor power in (1)

given a constraint on the AP transmission power in (2) as follows:

S(a) , inf
(P,Q,R,T ):PA(P,Q,R,T )≤a

PS (P,R) . (4)

The two-tier power consumption is then defined as the Lagrangian function of (2) and (1):

P (P,Q,R, T ) = PS (P,R) + βPA (P,Q,R, T ) (5)

=
N∑
n=1

∫
Rn

(
an‖pn − w‖2 + βbn,T (n)‖pn − qT (n)‖2

)
f(w)dw.

Our main objective in this paper is to minimize the two-tier power consumption defined in (5)

over the AP deployment P , FC deployment Q, cell partition R and index map T and study the

behavior of the AP-Sensor power function.

III. OPTIMAL NODE DEPLOYMENT IN TWO-TIER WSNS

As it is shown in (5), the two-tier power consumption depends on four variables P , Q, R and

T . Therefore, our goal is to find the optimal AP and FC deployments, cell partitioning and index

map, denoted by P ∗ = (p∗1, ..., p
∗
N), Q∗ = (q∗1, ..., q

∗
M), R∗ = (R∗1, ..., R

∗
N) and T ∗, respectively,

that minimizes the two-tier power consumption. Note that not only the variables P , Q, R and

T are intertwined, i.e., the best value for each of them depends on the value of the other three

variables, but also this optimization problem is NP-hard. Our approach is to design an iterative

algorithm that optimizes the value of one variable while the other three variables are held fixed.

To this end, first we derive the necessary conditions for optimal deployment at each step.

Note that the index map only appears in the second term of (5); thus, for any given AP and

FC deployment P and Q, the optimal index map is given by:

T (n) = arg min
m

bn,m‖pn − qm‖2. (6)

Ties are broken in favor of the smaller index for a unique mapping. Eq. (6) implies that an

AP may not be connected to its closest FC due to heterogeneity of the APs and FCs, and to

minimize the two-tier power consumption, AP n should be connected to FC m that minimizes

the weighted distance bn,m‖pn − qm‖2.

Next, we study the properties of optimal cell partitioning. For each n ∈ IA, we define the

Voronoi cell Vn for AP and FC deployments P and Q, and index map T as:
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Vn(P,Q, T ) , {w : an‖pn − w‖2 + βbn,T (n)‖pn − qT (n)‖2

≤ ak‖pk − w‖2 + βbk,T (k)‖pk − qT (k)‖2,∀k 6= n}. (7)

Ties are broken in favor of the smaller index to ensure that each Voronoi cell Vn is a Borel set.

When it is clear from the context, we write Vn instead of Vn(P,Q, T ). The collection

V(P,Q, T ) , (V1, V2, ..., VN) (8)

is referred to as the generalized Voronoi diagram. Note that unlike the regular Voronoi diagrams,

the Voronoi cells defined in (7) may be non-convex, not star-shaped or even disconnected. The

following proposition establishes that the generalized Voronoi diagram in (8) provides the optimal

cell partitions, i.e., R∗(P,Q, T ) = V(P,Q, T ) for a given P,Q, T .

Proposition 1: For any partition of the target area Ω such as U , and any AP and FC node

deployments such as P and Q and each index map T we have:

P (P,Q, U, T ) ≥ P (P,Q,V(P,Q, T ), T ) . (9)

The proof is provided in Appendix A.

Next, we aim to derive the necessary condition for optimal locations of APs and FCs. For

this purpose, first we need to show that each FC contributes to the total power consumption in

an optimal node deployment, i.e., adding an additional FC results in a strictly lower optimal

two-tier power consumption regardless of its weights bn,M+1 as long as M < N holds.

Lemma 1: Let (P ∗, Q∗,R∗, T ∗) be the optimal node deployment for N APs and M FCs. Given

an additional FC with parameters bn,M+1 for every n ∈ IA, the optimal AP and FC deployments,

index map and cell partitioning are denoted via P ′ = (p′1, p
′
2, ..., p

′
N), Q′ =

(
q′1, q

′
2, ..., q

′
M+1

)
, T ′

and R′, respectively. Assuming M < N , we have:

P (P ′, Q′,R′, T ′) < P (P ∗, Q∗,R∗, T ∗) . (10)

The proof is provided in Appendix B.

Let v∗n(P,Q, T ) =
∫
R∗n
f(w)dw be the Lebesgue measure (volume) of the region R∗n, and

c∗n(P,Q, T ) =
∫
R∗n

wf(w)dw∫
R∗n

f(w)dw
be the geometric centroid of the region R∗n. When there is no ambi-

guity, we write v∗n(P,Q, T ) and c∗n(P,Q, T ) as v∗n and c∗n, respectively. Lemma 1 immediately

leads to the following corollary.

Corollary 1. Let (P ∗, Q∗,R∗, T ∗) be the optimal node deployment for N APs and M FCs. If

M ≤ N , then for each m ∈ IB,
∑

n:T ∗(n)=m v
∗
n > 0.
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The proof is provided in Appendix C.

Lemma 1 and Corollary 1 are technical results that we need to prove the following propo-

sition that provides the necessary conditions for the optimal AP and FC deployments in the

heterogeneous two-tier WSNs.

Proposition 2: The necessary conditions for optimal deployments in the heterogeneous two-tier

WSNs with power consumption defined in (5) are:

p∗n =
anc
∗
n + βbn,T ∗(n)q

∗
T ∗(n)

an + βbn,T ∗(n)

, q∗m =

∑
n:T ∗(n)=m bn,mp

∗
nv
∗
n∑

n:T ∗(n)=m bn,mv
∗
n

. (11)

The proof is provided in Appendix D.

Corollary 1 implies that the denominator of the second equation in (11) is positive; thus, q∗m
is well-defined. According to (11), the optimal location of FC m is the linear combination of

the locations of its connected APs, and the optimal location of AP n is on the segment c∗nq∗T ∗(n).

While Lemma 1 indicates that each FC contributes to the power consumption, the same result

may not hold for some APs. To show that under certain settings, an AP may not be useful, i.e.,

no sensor sends data to it, we use the sensor network in the following lemma as an example.

Lemma 2: Consider two APs and one FC within the target region Ω = [0, 1] with parameters

b1,1 = κ× a1, b2,1 = κ× a2 where κ is a positive constant, and a uniform density function. The

necessary and sufficient condition for both APs to be useful is√
4β′ + 1

β′ + 1
− 1 ≤

√
a1

a2

≤ 1√
4β′+1
β′+1

− 1
, (12)

where β′ = β × κ. If the above condition holds, both APs are useful and the optimal two-tier

power consumption is given by:

P =
(4β′ + 1)

12 (β′ + 1)
×
( √

a1a2√
a1 +

√
a2

)2

. (13)

Otherwise, all sensors send their data to the stronger AP and we have:

P =
min (a1, a2)

12
. (14)

The proof is provided in Appendix E.

In the next section, we use the properties derived in Propositions 1 and 2 and in (6), and

design a Lloyd-like algorithm to find the optimal node deployment.
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IV. NODE DEPLOYMENT ALGORITHM

First, we quickly review the conventional Lloyd algorithm. Lloyd Algorithm iterates between

two steps: In the first step, the node deployment is optimized while the partitioning is fixed

and in the second step, the partitioning is optimized while the node deployment is fixed.

Although the conventional Lloyd Algorithm can be used to solve one-tier quantizers or one-

tier node deployment problems as shown in [7], it cannot be applied to two-tier WSNs where

two kinds of nodes are deployed. Inspired by the properties explored in Section III, we propose

a heterogeneous two-tier Lloyd (HTTL) algorithm to solve the optimal deployment problem

in heterogeneous two-tier WSNs and minimize the two-tier power consumption defined in (5).

Starting with a random initialization for node deployment (P,Q,R, T ) in the target area Ω, our

algorithm iterates between four steps: (i) Update the index map T according to (6); (ii) Obtain

the cell partitioning according to (7) and update the value of volumes vn and centroids cn; (iii)

For each m ∈ IB, if T−1(m) is not empty, update the location of FC m according to (11);

otherwise, randomly select an index m′ ∈ IB according to the distribution P (m′) =
|T−1(m′)|

N
,

and move FC m to a random location within
⋃
n:T (n)=m′ Rn; (iv) Update the location of APs

according to (11). The algorithm continues until the stop criterion, Pold−Pnew

Pold
≥ ε is satisfied (Pold

and Pnew are the average powers in the previous and current iterations, respectively.).

Proposition 3: HTTL Algorithm is an iterative improvement algorithm, i.e., the Lagrangian

function in (5) is non-increasing and the algorithm converges.

The proof is provided in Appendix F.

V. AP-SENSOR POWER FUNCTION

Note that the Lagrangian two-tier power consumption defined in (5) is the unconstrained

version of the constrained optimization problems defined in (3) and (4). Since the AP-Sensor

power function and the Sensor-AP power function are dual of each other, in this section, we only

study the properties of the AP-Sensor power function A(s). An AP-Sensor power pair (s, a) is

achievable if and only if there is a node deployment (P,Q,R, T ) such that PA (P,Q,R, T ) =

a while PS (P,R) ≤ s. Moreover, a deployment (P,Q,R, T ) is a feasible solution for the

power pair (s, a) if and only if PA (P,Q,R, T ) = a while PS (P,R) ≤ s. By definition, it is

evident that every point above the curve A(s) is also achievable. In what follows, we analyze

the properties of the AP-Sensor power function. Without loss of generality, we assume that

a1 ≤ a2 ≤ . . . ≤ aN holds. A K−level one-tier quantizer is a tuple (X,R), i.e. the location
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of points X = (x1, · · · , xK) and the partitioning R = (R1, · · · , RK) of the target region, such

that xi is the quantization point for all ω ∈ Ri and K is the number of sub-regions. Let DK

be the minimum distortion of a heterogeneous K−level one-tier quantizer in the space Ω with

parameters a1, . . . , aK , i.e., we have:

DK = min
X,R

K∑
i=1

∫
Ri

ai‖xi − w‖2f(w)dw, (15)

where the minimum is over all node deployments X = (x1, . . . , xK) and partitioning R =

(R1, . . . , RK) of Ω.

Lemma 3: Let N and M be the number of APs and FCs where N > M . Then, the AP-Sensor

power function A(s) is a non-increasing function with the domain [DN ,+∞) such that A(s) > 0

for s ∈ [DN , DM) and A(s) = 0 for s ∈ [DM ,+∞).

The proof is provided in Appendix G.

Lemma 3 characterizes the non-increasing property of A(s) in addition to defining its domain

based on the properties of a regular quantizer. For a fixed partitioning R = (R1, . . . , RN), let

H(R) =
∑N

i=1

∫
Ri
ai‖ci − w‖2f(w)dw where ci is the centroid of the region Ri, i.e., H(R) is

the minimum one-tier power consumption with parameters a1, . . . , aN for a fixed partitioning

R. For the special case of M = 1, the following lemma derives a closed-form solution for the

AP-Sensor power function for any fixed partitioning of Ω.

Lemma 4: For Q = (q), P = (p1, . . . , pN), and fixed R, define A(s,R) to be:

A(s,R) , inf
(P,Q,T ):PS(P,R)≤s

PA (P,Q,R, T ) . (16)

We have:

(i) The domain of A(s,R) is {(s,R)
∣∣s ≥ H(R)}.

(ii) If bi,1 = κai for κ ∈ R+ and each i ∈ IA, when (s,R) ∈ {(s,R)
∣∣H(R) ≤ s ≤ J (R)},

we have:

A (s,R) = κ
[√
J (R)−H(R)−

√
s−H(R)

]2

, (17)

and A (s,R) = 0 for s ≥ J (R) where J (R) is defined as:

J (R) =
N∑
n=1

∫
Rn

an

∣∣∣∣∣∣∣∣∑N
i=1 aivici∑N
i=1 aivi

− w
∣∣∣∣∣∣∣∣2f(w)dw, (18)

where vi and ci are volume and centroid of the region Ri, respectively.

The proof is provided in Appendix H.
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In Section VII, we experimentally plot the AP-Sensor power function defined in (3) and

verify the above properties. We conclude this section by deriving a closed-form formula for the

AP-Sensor power function for the same setting used in Lemma 2.

Lemma 5: Consider two APs and one FC within the target region Ω = [0, 1] with parameters

b1,1 = κ× a1, b2,1 = κ× a2, and a uniform density function. If (12) holds, we have:

A(s) = κ

[
1

2

( √
a1a2√

a1 +
√
a2

)
−

√
s− 1

12

( √
a1a2√

a1 +
√
a2

)2
]2

, (19)

for 1
12

( √
a1a2√

a1+
√
a2

)2

≤ s < min(a1,a2)
12

and A(s) = 0 for s ≥ min(a1,a2)
12

. If (12) does not hold, we

have A(s) = 0 for any s.

The proof is provided in Appendix I.

Lemma 5 shows that A(s) is not continuous at s∗ = min(a1,a2)
12

for this example. In addition,

A(s) is convex in the intervals [0, s∗) and [s∗,+∞).

VI. LIMITED COMMUNICATION RANGE

Note that when sensors or APs have limited transmission power, not all APs can communicate

with FCs. Similarly, only sensors within the sensing range of APs in the set
{
n
∣∣T (n) 6= −1

}
can

transmit their collected information to fusion centers. We consider a common power constraint

σ2 for homogeneous densely deployed sensors, and power constraints σ2
n, n ∈ IA for the

heterogeneous APs. In other words, to maintain the connectivity of the network, a sensor at

position w can forward its collected data to AP n, and AP n can in turn sends the data to FC

m if and only if:

an‖pn − w‖2 ≤ σ2 , bn,m‖pn − qm‖2 ≤ σ2
n, (20)

or equivalently:

‖pn − w‖ ≤
σ
√
an

, ‖pn − qm‖ ≤
σn√
bn,m

. (21)

Hence, we use the coverage defined by:

C(P, T ) =

∫
⋃
n:T (n)6=−1 B

(
pn,

σ√
an

)
∩Ω

f(w)dw (22)

as a performance measure along with the two-tier power consumption in (5) when communication

range is limited, where B(c, r) = {ω|‖ω − c‖ ≤ r} is a disk centered at c with radius r. Note

that HTTL Algorithm described in Section IV can converge to a deployment in which (21) may

not hold. Our main goal in this section is to find a proper deployment that not only minimizes
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the two-tier power consumption P(P,Q,R, T ) in (5), but also maximizes the total coverage

C(P, T ) in (22). In what follows, we describe our approach in details.

Starting with an initial deployment (P,Q,R, T ), if
{
m
∣∣∣m ∈ IB, qm ∈ B(pn, σn√

bn,m

)}
6= ∅,

then the index map T is updated as

T (n) = arg min

m:qm∈B
(
pn,

σn√
bn,m

) bn,m‖pn − qm‖2, (23)

otherwise, we set T (n) = −1, indicating that AP n has no associated FC. Note that although

some sensors in the region Rn, n ∈ IA, may not be able to transmit their data to AP n due to

their limited transmission power, we still partition the target region using the generalized Voronoi

diagram in (7) and (8) since it minimizes the two-tier power consumption given a fixed node

deployment and index map. But instead of using all N APs for generalized Voronoi partitioning,

we only use APs in the set
{
n
∣∣T (n) 6= −1

}
.

(a) (b) (c) (d)

Fig. 2: Optimal AP and FC movement. (a) Desired region for AP. (b) Optimal positioning of AP. (c) Desired

region for FC. (d) Optimal positioning of FC.

For each AP in the set
{
n
∣∣T (n) = −1

}
, we randomly move AP inside the target region.

Similarly, for each FC in the set
{
m
∣∣∣T−1(m) = ∅

}
, we randomly relocate the FC inside Ω.

For those APs that have an associated FC, Proposition 2 indicates that their current locations

should be updated according to (11), as we did in Step (iv) of the HTTL algorithm; however, as

it is illustrated in Fig. 2a, the optimal location p′n =
ancn+βbn,T (n)qT (n)

an+βbn,T (n)
for AP n may lie outside

the communication range of its corresponding FC, that we refer to as the desired region for

AP n. In that case, AP n is moved to the closest point to p′n within its desired region, denoted

by p̂n, as it is shown in Fig. 2b. Similarly, (11) implies that FC m should be relocated to the

position q′m =
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

, as we did in Step (iii) of the HTTL algorithm; however, as it
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is illustrated in Fig. 2c, q′m may lie outside the region, that we refer to as the desired region for

FC m, in which all its associated APs can communicate. In that case, we move FC m to the

closest point to q′m within its desired region, denoted by q̂m, as it is shown in Fig. 2d. Note that

in order to find q̂m, we only need to consider a finite number of points. The entire process to

optimize the power for a limited communication range is summarized in Algorithm 1. Similar to

HTTL Algorithm, each AP lies on the segment connecting its corresponding FC to the centroid

of its region once the Limited-HTTL algorithm converges. The following proposition shows that

Limited-HTTL Algorithm is an iterative improvement algorithm and converges.

Proposition 4: Limited-HTTL Algorithm is an iterative improvement algorithm, i.e., the La-

grangian function in (5) is non-increasing and the algorithm converges.

The proof is provided in Appendix J.

Algorithm 1 Limited-HTTL Algorithm

Input: Weights {an}n∈IA and {bn,m}n∈IA,m∈IB , β ∈ R+, powers σ2 and σ2
n, n ∈ IA and ε ∈ R+.

Output: Optimal node deployment (P ∗, Q∗,R∗, T ∗).

1: Randomly initialize the node deployment (P,Q,R, T ).

2: do

3: Compute the two-tier power consumption Pold = P(P,Q,R, T ).

4: Update the index map T according to (23).

5: Use APs in the set
{
n
∣∣T (n) 6= −1

}
for generalized Voronoi partitioning of Ω.

6: Calculate the volumes {vn} and centroids {cn} for each n ∈
{
n
∣∣T (n) 6= −1

}
.

7: For each m ∈ IB:

– if T−1(m) 6= ∅:

• move FC m to the nearest point to q′m =
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

inside its desired region.

– else:

• randomly select an index m′ ∈ IB according to the distribution P (m′) =
|T−1(m′)|

N
.

• move FC m to a random location within the region
⋃
n:T (n)=m′ Rn.

8: ∀n ∈ IA, move AP n to the nearest point to p′n =
ancn+βbn,T (n)qT (n)

an+βbn,T (n)
inside its desired region.

9: Update the two-tier power consumption Pnew = P(P,Q,R, T ).

10: While Pold−Pnew

Pold
≥ ε

11: Return: The node deployment (P,Q,R, T ).
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VII. EXPERIMENTS

Simulations are carried out for both synthetic and real-world datasets. For the synthetic

data, we provide the experimental results in two heterogeneous two-tier WSNs: (i) WSN1: A

heterogeneous WSN including 1 FC and 20 APs; (ii) WSN2: A heterogeneous WSN including

4 FCs and 20 APs. We consider the same target domain Ω as in [3], [8], i.e., Ω = [0, 10]2.

Simulations are performed for two different sensor density functions, i.e., a uniform distribution

f(ω) = 1∫
Ω dw

= 0.01, and a mixture of Gaussian distribution:

f(ω) =
1

2
×N

3

3

,
1.5 0

0 1.5

+
1

4
×N

6

7

,
2 0

0 2

+
1

4
×N

7.5

2.5

,
1 0

0 1

 . (24)

To evaluate the performance, 10 initial AP and FC deployments on Ω are generated randomly,

i.e, every node location is generated with uniform distribution on Ω. In order to make a fair

comparison to prior work, similar to the experimental setting in [3], [8], the maximum number

of iterations is set to 100, FCs and APs are denoted, respectively, by black and red circles. Other

parameters are provided in Table I. According to the parameters in Table I, we divide APs into

two groups: strong APs (n ∈ {1, . . . , 10}) and weak APs (n ∈ {11, . . . , 20}). Similarly, FCs are

divided into strong FCs (m ∈ {1, 2}) and weak FCs (m ∈ {3, 4}).

TABLE I: Simulation Parameters

WSN1 WSN2

a1:10 a11:20 b1:4,1 b5:20,1 a1:10 a11:20 b1:4,1:2 b1:4,3:4 b5:20,1:2 b5:20,3:4

1 2 1 2 1 2 1 2 2 4

Like the experiments in [3], we compare the weighted power of our proposed algorithm with

Minimum Energy Routing (MER) [31], Agglomerative Clustering (AC) [32], Divisive Clustering

(DC) [32] algorithms, and Particle Swarm Optimization (PSO) [33]. PSO is a population-

based stochastic algorithm for non-linear optimization. AC and DC are bottom-up and top-down

clustering algorithms, respectively. MER is a combination of Multiplicatively weighted Voronoi

Partition [34] and Bellman-Ford algorithms [35, Section 2.3.4]. More details about MER, AC,

and DC can be found in [3]. When the communication range is limited, we further compare

our method with two other algorithms, i.e., Improved Relay Node Placement (IRNP) [36], and

Relay Node placement in Double tiered Wireless Sensor Network (RNDWSN) [37]. IRNP and

RNDWSN are node placement algorithms designed to maximize the network coverage. Note
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that if a small portion of sensors are covered by a particular node placement, since not many

sensors will transfer data to fusion centers, the resulting power consumption will be small too.

Therefore, our primary goal in node deployment with limited transmission power is to maximize

the network coverage and minimize the power consumption, simultaneously.
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Fig. 3: Weighted power versus iteration for different algorithms (β = 0.25). (a) WSN1/Uniform pdf, (b)

WSN2/Uniform pdf, (c) WSN1/Mixture of Gaussian pdf, (d) WSN2/Mixture of Gaussian pdf.
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Fig. 4: Power consumption of different two-tier WSNs/sensor density functions. (a) WSN1/Uniform pdf, (b)

WSN2/Uniform pdf, (c) WSN1/Mixture of Gaussian pdf, (d) WSN2/Mixture of Gaussian pdf.

The weighted power consumption over the iterations of MER, AC, DC, PSO and HTTL

algorithms in WSN1 and WSN2 for β = 0.25 are shown in Figs. 3a and 3b for uniform sensor

density function, and in Figs. 3c and 3d for the Gaussian mixture given in (24). Weighted

power consumption of MER, AC, DC, PSO and HTTL algorithms in WSN1 and WSN2 are

illustrated in Figs. 4a and 4b for uniform sensor density function, and in Figs. 4c and 4d for

the Gaussian mixture given in (24). Obviously, our proposed algorithm, HTTL, outperforms

the other four algorithms in both WSN1 and WSN2. For instance, HTTL Algorithm yields the

power consumption of 2.351 for WSN2, β = 0.25 and uniform distribution, which is lower than

the values 4.371, 3.113, 3.253 and 4.063 obtained from MER, AC, DC and PSO algorithms,

respectively. Similarly, for the case of WSN2 and mixture of Gaussian, HTTL Algorithm yields
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the power consumption of 0.058 which is lower than the values 15.484, 0.074, 7.677 and 2.301

obtained from MER, AC, DC and PSO algorithms, respectively. Unlike other methods, HTTL

Algorithm exploits the trade-off between Sensor and AP power consumptions; hence, the energy

consumption gap between HTTL and other algorithms increases as the AP energy consumption

becomes more important (β increases). For β = 0.25, the final node deployment for WSN2 and

the mixture of Gaussian sensor density function given in (24) is shown in Fig. 5 where APs,

FCs and centroid of regions are denoted via red squares, black circles and crosses, respectively.

(a) (b) (c) (d) (e)

Fig. 5: Node deployment for different algorithms with β = 0.25 in WSN2 and the mixture of Gaussian sensor

density function. (a) MER (b) AC (c) DC (d) PSO (e) HTTL.

(a) (b) (c) (d)

Fig. 6: AP-Sensor power trade-off for HTTL Algorithm (a) WSN1/Uniform pdf, (b) WSN2/Uniform pdf, (c)

WSN1/Mixture of Gaussian pdf, (d) WSN2/Mixture of Gaussian pdf.

Note that the two-tier power consumption defined in (5) represents a trade-off between the

Sensor power PS and AP power PA, and this trade-off is illustrated as the AP-Sensor power

functions for WSN1 and WSN2 in Figs. 6a and 6b for uniform distribution, and in Figs. 6c

and 6d for the mixture of Gaussian sensor density function, respectively. For small values of β,

sensor power contributes to the two-tier power consumption more than AP power; hence, the

optimal deployment tends to minimize PS , while PA tends to be minimized in an optimal node

placement for large values of β. Intuitively, moving APs towards the FCs, usually, will increase
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the average distance between sensors and APs, resulting in the increase of the sensor power. On

the other hand, moving APs toward geometric centroids of their corresponding regions, usually,

will increase their distances to the FCs, which leads to an increase in the AP power. This is

shown in Fig. 6 where the AP-Sensor power function A(s) decreases as s increases. Lemma 3

indicates that A(s) is non-zero on the intervals [D20, D1) and [D20, D4) for WSN1 and WSN2,

respectively. Simulations show that AP-sensor power function is a piece-wise continuous convex

function, as we demonstrated earlier for the setting in Lemma 5.

TABLE II: Power Constraint Parameters
Parameters σ2 σ2

1:4 σ2
5:10 σ2

11:20

Values 4 25 16 9

Next, we consider a transmission power constraint on sensors and APs. The value of parameters

σ2 and σ2
n, n ∈ IA in (20) are provided in Table II. According to Table II, strong APs (n ∈

{1, . . . , 10}) also tend to have more available power than weak APs (n ∈ {11, . . . , 20}).

The two-tier power consumption and coverage of different algorithms for β = 0.25 and uni-

form sensor density function are summarized in Table III. IRNP Algorithm yields the maximum

coverage in WSN1; however, the 1.78% improvement in the coverage over our proposed Limited-

HTTL Algorithm comes at the cost of 38% increase in power consumption. Our algorithm also

outperforms RNDWSN Algorithm in terms of both power and coverage. Similarly, although

IRNP Algorithm results in less than 1% improvement in coverage compare to Limited-HTTL

Algorithm in WSN2, it consumes more than twice power used by our proposed algorithm.

Limited-HTTL Algorithm also outperforms the other algorithms in terms of both coverage and

power consumption in WSN2.

(a) (b) (c) (d) (e) (f)

Fig. 7: Node deployment for different algorithms with β = 0.25 and the mixture of Gaussian sensor density

function in WSN2. (a) MER (b) AC (c) DC (d) RNDWSN (e) IRNP (f) Limited-HTTL.
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TABLE III: Coverage and power comparison for uniform sensor density function.

MER AC DC RNDWSN IRNP Limited-HTTL

WSN1 Power 1.1287 2.1812 1.3972 4.0105 4.4258 3.2151

Coverage 33.90% 53.01% 40.31% 74.13% 80.04% 78.26%

WSN2 Power 0.8843 2.3309 2.6340 3.9463 4.7733 2.1305

Coverage 38.55% 82.26% 91.79% 81.48% 95.09% 94.66%

TABLE IV: Coverage and power comparison for the Gaussian mixture sensor density function.

MER AC DC RNDWSN IRNP Limited-HTTL

WSN1 Power 1.6810 2.3428 1.5385 4.9187 4.4630 2.2659

Coverage 43.24% 75.72% 63.04% 92.45% 92.12% 91.68%

WSN2 Power 1.5285 1.6436 1.6676 4.0627 3.5923 1.1565

Coverage 46.43% 98.64% 97.13% 95.34% 99.32% 98.11%

The two-tier power consumption and coverage of different methods for β = 0.25 and Gaussian

mixture sensor density function given in (24) are summarized in Table IV. RNDWSN and IRNP

algorithms result in less than 1% improvement in coverage compare to Limited-HTTL Algorithm

in WSN1; however, their power consumption is about twice that of our proposed algorithm.

Similar results for AC and IRNP algorithms in WSN2 show that about 1% increase in the

coverage obtained by Limited-HTTL Algorithm leads to 42% and 210% increase in power con-

sumption, respectively. Finally, our proposed algorithm outperforms DC and RNDWSN methods

in terms of both coverage and power consumption in WSN2. Note that when communication

range is limited, MER Algorithm usually yields poor performance since many APs fall outside

the communication range of their corresponding FC, and they cannot transfer their collected data

from sensors to fusion centers. Fig. 7 shows the optimal node deployment and covered area for

different algorithms in WSN2 with β = 0.25 and mixture of Gaussian sensor density function.

To evaluate the performance of our method in real world applications, we conduct experiments

on the daily weather data of the Colorado state, i.e. precipitation, relative humidity, temperature

etc. Sensory data is obtained with the same rate from 286 locations that form a 13×22 grid across

Colorado. We consider a heterogeneous WSN with 40 APs and 8 FCs. The power constraints

and other parameter values are provided in Table V [39].

Table VI summarizes the two-tier power consumption and coverage of different methods. Our
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TABLE V: Simulation Parameters

Parameters
(
pWatt/m2

)
Power Constraints (milliWatt)

a1:20 a21:40 b1:8,1:4 b1:8,5:8 b9:40,1:4 b9:40,5:8 σ2 σ2
1:8 σ2

9:20 σ2
21:40

1 2 1 2 2 4 6.4 19.6 14.4 10.0

TABLE VI: Coverage and power (Watt) comparison for the climate data.

MER AC DC RNDWSN IRNP Limited-HTTL

Power 0.7052 1.0169 0.8846 1.1978 1.3788 0.9151

Coverage 60.14% 82.17% 78.32% 76.57% 89.51% 96.15%

method outperforms AC, RNDWSN and IRNP algorithms in terms of both total coverage and

power consumption. While providing lower power, MER Algorithm yields poor performance

since many sensory locations fall outside the communication range of their nearby APs. Finally,

DC Algorithm yields 3% improvement in power consumption although it provides a significantly

lower coverage value compared with our algorithm.

VIII. CONCLUSION

A heterogeneous two-tier network which collects data from a large-scale wireless sensor to

heterogeneous fusion centers through heterogeneous access points is discussed. We studied the

minimum power that ensures reliable communication on such two-tier networks and modeled

it as an optimization problem. Different from the homogeneous two-tier networks, a novel

Voronoi Diagram is proposed to provide the best cell partition for the heterogeneous network.

The necessary conditions of optimal node deployment imply that every access point should

be placed between its connected fusion center and the geometric center of its cell partition.

By defining an appropriate power consumption measure, we proposed a heterogeneous two-

tier Lloyd Algorithm (HTTL) to minimize the power consumption. Simulation results show

that HTTL Algorithm greatly saves the weighted power or energy in a heterogeneous two-tier

network. When communication range is limited, our novel Limited-HTTL Algorithm ensures

that all APs are active. Simulation results show that our algorithms provide superior results, in

terms of both power consumption and network coverage.
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APPENDIX A

Proof of Proposition 1: For U = (S1, S2, ..., SN), the left-hand side of (9) can be written as:

P(P,Q,U, T ) =
N∑
n=1

∫
Sn

(an‖pn − w‖2 + βbn,T (n)‖pn − qT (n)‖2)f(w)dw

≥
N∑
n=1

∫
Sn

min
j

(aj‖pj − w‖2 + βbj,T (j)‖pj − qT (j)‖2)f(w)dw =

∫
Ω

min
j

(aj‖pj − w‖2+

βbj,T (j)‖pj − qT (j)‖2)f(w)dw =
N∑
n=1

∫
Vn

min
j

(aj‖pj − w‖2 + βbj,T (j)‖pj − qT (j)‖2)f(w)dw

=
N∑
n=1

∫
Vn

(an‖pn − w‖2 + βbn,T (n)‖pn − qT (n)‖2)f(w)dw = P(P,Q,V, T ).

Hence, the generalized Voronoi diagram is the optimal partition for any deployment (P,Q, T ).�

APPENDIX B

Proof of Lemma 1: Given N APs and M FCs (M < N), first we demonstrate that there

exists an optimal node deployment such as
(
P̂ , Q̂, R̂, T̂

)
in which each FC has at most one

connected AP at the same location, i.e., for each m ∈ IB, the cardinality of the set {n|T̂ (n) =

m, p̂n = q̂m} is less than or equal to 1. For this purpose, we consider an optimal node deployment

(P ∗, Q∗,R∗, T ∗) and assume that there exist at least two distinct indices n1, n2 ∈ IA and an

index m ∈ IB such that T ∗(n1) = T ∗(n2) = m, and p∗n1
= p∗n2

= q∗m. We have:

Pn1 =

∫
R∗n1

(an1‖p∗n1
−w‖2 + βbn1,m‖p∗n1

− q∗m‖2)f(w)dw =

∫
R∗n1

an1‖p∗n1
−w‖2f(w)dw, (25)

Pn2 =

∫
R∗n2

(an2‖p∗n2
−w‖2 + βbn2,m‖p∗n2

− q∗m‖2)f(w)dw =

∫
R∗n2

an2‖p∗n2
−w‖2f(w)dw. (26)

Without loss of generality, we can assume that an1 ≤ an2 . Hence, we have:

Pn1 + Pn2 =

∫
R∗n1

an1‖p∗n1
− w‖2f(w)dw +

∫
R∗n2

an2‖p∗n2
− w‖2f(w)dw

≥
∫
R∗n1

an1‖p∗n1
−w‖2f(w)dw+

∫
R∗n2

an1‖p∗n1
−w‖2f(w)dw =

∫
R∗n1

⋃
R∗n2

an1‖p∗n1
−w‖2f(w)dw,

which implies that if we update the cell partition for AP n1 to be R∗n1

⋃
R∗n2

, and place the AP

n2 to an arbitrary location different from q∗m with a corresponding zero volume cell partition,

the resulting power consumption will not increase, and the obtained node deployment is also

optimal. Note that in this newly obtained optimal power consumption, AP n2 is not in the same
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location as FC m anymore. This procedure is continued until we reach an optimal deployment,

denoted via
(
P̂ , Q̂, R̂, T̂

)
, in which each FC has at most one connected AP upon it.

Since M < N and each FC has at most one AP upon it, there exists an index k ∈ IA such

that p̂k 6= q̂T̂ (k). In order to show that the optimal two-tier power consumption with N APs and

M+1 FCs is less than that of N APs and M FCs, it is sufficient to construct a node deployment

with N APs and M + 1 FCs such as (P ′′, Q′′,R′′, T ′′) that achieves lower power consumption

than P
(
P̂ , Q̂, R̂, T̂

)
. For each n ∈ IA, let v̂n =

∫
R̂n
f(w)dw denote the volume of the region

R̂n. We consider two cases: (i) If v̂k > 0, then we set P ′′ = P̂ , Q′′ =
(
q̂1, q̂2, ..., q̂M , q

′′
M+1 = p̂k

)
,

R′′ = R̂ and T ′′(n) = T̂ (n) for n 6= k and T ′′(k) = M + 1. Note that∫
R̂k

(
ak‖p̂k − w‖2 + βbk,T̂ (k)‖p̂k − q̂T̂ (k)‖

2
)
f(w)dw

>

∫
R̂k

(
ak‖p̂k − w‖2

)
f(w)dw =

∫
R̂k

(
ak‖p̂k − w‖2 + βbk,M+1‖p̂k − q′′M+1‖2

)
f(w)dw (27)

implies that in the deployment (P ′′, Q′′,R′′, T ′′), the contribution of the AP k to the total power

consumption has decreased. Since the contribution of other APs to the power consumption has not

changed, we have P (P ′′, Q′′,R′′, T ′′) < P
(
P̂ , Q̂, R̂, T̂

)
and the proof is complete. (ii) If v̂k = 0,

then AP k does not contribute to the optimal power consumption P
(
P̂ , Q̂, R̂, T̂

)
, and it can be

placed anywhere within the target region Ω. Since the set {p̂1, ..., p̂N , q̂1, ..., q̂M} has zero measure,

there exists a point x ∈ Ω and a threshold δ ∈ R+ such that B (x, δ) = {w ∈ Ω|‖x− w‖ ≤ δ}

does not include any point from the set {p̂1, ..., p̂N , q̂1, ..., q̂M}. Since f(.) is positive, continuous

and differentiable over Ω, for each 0 < ε < δ the region B(x, ε) =
{
w ∈ Ω

∣∣‖w − x‖ ≤ ε
}

has

positive volume, i.e.,
∫
B(x,ε)

f(w)dw > 0. Given 0 < ε < δ, assume that:

B(x, ε) ⊂ R̂n, (28)

for some n ∈ IA; therefore, the contribution of the region B(x, ε) to the total power consumption

P
(
P̂ , Q̂, R̂, T̂

)
is equal to:∫

B(x,ε)

(
an‖p̂n − w‖2 + βbn,T̂ (n)‖p̂n − q̂T̂ (n)‖

2
)
f(w)dw. (29)

As ε −→ 0, (29) can be approximated as:

∆n ×
∫
B(x,ε)

f(w)dw, (30)
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where ∆n =
(
an‖p̂n − x‖2 + βbn,T̂ (n)‖p̂n − q̂T̂ (n)‖2

)
. If we set p′′k = q′′M+1 = x and R′′k = B(x, ε)

and T ′′(k) = M + 1, then the contribution of the region B(x, ε) to the total power consumption

P (P ′′, Q′′,R′′, T ′′) is equal to:∫
B(x,ε)

(
ak‖p′′k − w‖2 + βbk,M+1‖p′′k − q′′M+1‖2

)
f(w)dw = ak

∫
B(x,ε)

(
‖x− w‖2

)
f(w)dw. (31)

The below equation for the ratio of power consumption in (30) and (31)

lim
ε−→0

ak
∫
B(x,ε)

(‖x− w‖2) f(w)dw

∆n ×
∫
B(x,ε)

f(w)dw
= 0 (32)

implies that there exists an ε∗ ∈ (0, δ) such that the contribution of the region B(x, ε∗) to the

total power in P (P ′′, Q′′,R′′, T ′′) will be less than that of P
(
P̂ , Q̂, R̂, T̂

)
. Hence, we set P ′′ =

(p′′1, p
′′
2, ..., p

′′
N) where p′′i = p̂i for i 6= k, and p′′k = x. Also, we set Q′′ =

(
q̂1, q̂2, ..., q̂M , q

′′
M+1 = x

)
.

The partitioning R′′ = (R′′1, ..., R
′′
N) is defined as R′′i = R̂i for i 6= k and i 6= n, R′′k = B(x, ε∗) and

R′′n = R̂n−B(x, ε∗). Finally, we set T ′′(i) = T̂ (i) for i 6= k and T ′′(k) = M + 1. As mentioned

earlier, the two-tier power consumption P (P ′′, Q′′,R′′, T ′′) is less than P
(
P̂ , Q̂, R̂, T̂

)
. Note

that if the region B(x, ε) is a subset of more than one region, (28) to (30) and (32) can be

modified accordingly and a similar argument shows that the resulting power consumption will

be improved in the new deployment, and the proof is complete. �

APPENDIX C

Proof of Corollary 1: Assume that there exists an index m ∈ IB in the optimal node deployment

(P ∗, Q∗,R∗, T ∗) such that
⋃
n:T ∗(n)=mR

∗
n has zero volume. Consider the node deployment

(P ′, Q′,R′, T ′) where P ′ = P ∗, Q′ =
(
q∗1, ..., q

∗
m−1, q

∗
m+1, ..., q

∗
M

)
, R′ = R∗ and T ′(i) = T ∗(i)

for indices i ∈ IA such that T ∗(i) 6= m. Note that for indices i ∈ IA such that T ∗(i) = m,

we can define T ′(i) arbitrarily because the corresponding regions R′i have zero volume. Since⋃
n:T ∗(n)=mR

∗
n has zero volume, we have P (P ′, Q′,R′, T ′) = P (P ∗, Q∗,R∗, T ∗) which is in

contradiction with Lemma 1 since the optimal node deployment (P ∗, Q∗,R∗, T ∗) for N APs

and M FCs has not improved the node deployment (P ′, Q′,R′, T ′) for N APs and M − 1 FCs

in terms of power consumption. �

APPENDIX D

Proof of Proposition 2: First, we study the shape of the Voronoi regions in (7). Let B(c, r) =

{ω|‖ω − c‖ ≤ r} be a disk centered at c with radius r in two-dimensional space. In particular,
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B(c, r) = ∅ when r ≤ 0. Let HS(A,B) = {ω|Aω +B ≤ 0} be a half space, where A ∈ R2 is

a vector and B ∈ R is a constant. For i, j ∈ IA, we define

Vij(P,Q, T ) , {ω|ai‖pi−w‖2 +βbi,T (i)‖pi−qT (i)‖2 ≤ aj‖pj−w‖2 +βbj,T (j)‖pj−qT (j)‖2} (33)

to be the pairwise Voronoi region of AP i where only AP i and j are considered. Then, AP i’s

Voronoi region can be represented as Vi(P,Q) =
[⋂

j 6=i Vij(P,Q)
]⋂

Ω. By expanding (33) and

straightforward algebraic calculations, the pairwise Voronoi region Vij is derived as:

Vij = Ω ∩



HS (Aij, Bij) , ai = aj

B (cij, rij) , ai > aj, Lij ≥ 0

∅ , ai > aj, Lij < 0

Bc (cij, rij) , ai < aj, Lij ≥ 0

R2 , ai < aj, Lij < 0

, (34)

where Aij = ajpj−aipi, Bij =
(ai‖pi‖2−aj‖pj‖2+βbi,T (i)‖pi−qT (i)‖2−βbj,T (j)‖pj−qT (j)‖2)

2
, cij =

aipi−ajpj
ai−aj ,

Lij =
aiaj‖pi−pj‖2

(ai−aj)2 − β × bi,T (i)‖pi−qT (i)‖2−bj,T (j)‖pj−qT (j)‖2

(ai−aj) , rij =
√

max (Lij, 0), and Bc(cij, rij) is

the complementary of B(cij, rij). Note that for two distinct indices such as i, j ∈ IA, if ai > aj

and Lij < 0, then two regions Ω ∩ B(cij, rij) and ∅ differ only in the point cij . Similarly, for

ai < aj and Lij < 0, two regions Ω∩Bc(cij, rij) and Ω differ only in the point cij . If we define:

V k =

[ ⋂
i:ak>ai

B(cki, rki)

]⋂[ ⋂
i:ak=ai

HS(Aki, Bki)

]⋂[ ⋂
i:ak<ai

Bc(cki, rki)

]⋂
Ω, (35)

then two regions V k and Vk differ only in finite number of points. As a result, integrals over both

V k and Vk have the same value since the density function f is continuous and differentiable, and

removing finite number of points from the integral region does not change the integral value.

Note that if Vk is empty, the Proposition 1 in [7] holds since the integral over an empty region

is zero. If Vk is not empty, the same arguments as in Appendix A of [7] can be replicated since

V k in (35) is similar to (31) in [7].

Using parallel axis theorem [38], the two-tier power consumption can be written as:

P (P,Q,V, T ) =
N∑
n=1

∫
Vn

(
an‖pn−w‖2 + βbn,T (n)‖pn−qT (n)‖2

)
f(w)dw (36)

=
N∑
n=1

(∫
Vn

an‖cn−w‖2f(w)dw + an‖pn−cn‖2vn + βbn,T (n)‖pn−qT (n)‖2vn

)
.
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Using Proposition 1 in [7], since the optimal deployment (P ∗, Q∗) satisfies zero gradient, we

take the partial derivatives of (36) as follows:

∂P
∂p∗n

= 2
[
an(p∗n − c∗n) + βbn,T ∗(n)(p

∗
n − q∗T ∗(n))

]
v∗n = 0,

∂P
∂q∗m

= 2
∑

n:T ∗(n)=m

βbn,m(q∗m − p∗n)v∗n = 0. (37)

By solving (37), we have the following necessary conditions:

p∗n =
anc
∗
n + βbn,T ∗(n)q

∗
T ∗(n)

an + βbn,T ∗(n)

, q∗m =

∑
n:T ∗(n)=m bn,mp

∗
nv
∗
n∑

n:T ∗(n)=m bn,mv
∗
n

, (38)

and the proof is complete. �

APPENDIX E

Proof of Lemma 2: Using Lemma 3 in [8], it can be easily shown that the optimal quantization

regions are two closed intervals. Without loss of generality, let R = {R1, R2}, where R1 = [0, r]

and R2 = [r, 1] be the optimal partitioning. Thus, we have c1 = r
2

and c2 = 1+r
2

. Using (11), we

have:

p1 =
a1c1 + βb1,1q

a1 + βb1,1

=
r + 2β′q

2 (1 + β′)
, p2 =

a2c2 + βb2,1q

a2 + βb2,1

=
1 + r + 2β′q

2 (1 + β′)
, (39)

where β′ = β × κ. Therefore, the two-tier power in the regions R1 and R2 are given by:

P1 = a1

∫ r

0

[(
r + 2β′q

2 (1 + β′)
− w

)2

+ β′
(r − 2q)2

4 (1 + β′)2

]
dw, (40)

P2 = a2

∫ 1

r

[(
1 + r + 2β′q

2 (1 + β′)
− w

)2

+ β′
(1 + r − 2q)2

4 (1 + β′)2

]
dw,

and P(r, q) = P1 + P2 is the total two-tier power consumption. Simplifying (40) yields:

P1 =
a1r

4 (1 + β′)2 ×

(
β′ (r − 2q)2 +

1

3
×
[

(r + 2β′q)
2

+ (r + 2β′q) (2β′(q − r)− r) + (2β′(q − r)− r)2

])
,

P2 =
a2(1− r)
4 (1 + β′)2 ×

(
β′ (1 + r − 2q)2 +

1

3
×
[

((1− r) + 2β′(q − r))2

+ ((1− r) + 2β′(q − r)) ((r − 1) + 2β′(q − 1)) + ((r − 1) + 2β′(q − 1))
2

])
. (41)
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Since both P1(r, q) and P2(r, q) are continuous and differentiable functions of r and q, the

minimum occurs either at zero gradients, given by:

∂P
∂q

= 0 ,
∂P
∂r

= 0. (42)

or at the boundaries, i.e., q, r ∈ {0, 1}. First, we focus on the zero gradient equations. Simplifying

(42) yields the following:

q =
a1r

2 + a2(1− r2)

2 (a1r + a2(1− r))
, (43)

3 (4β′ + 1) (a1 − a2) r2 + 12β′ (a1 − a2) q2 − 24β′ (a1 − a2) qr + 3a2(2r − 1) = 0. (44)

If a1 = a2, then the unique solution to (43) and (44) is q = r = 1
2
; otherwise, by substituting

(43) in (44) we have the following fourth order polynomial equation:

(a1−a2)3 (β′+1) r4 + 4a2 (a1−a2)2 (β′+1) r3 +
[

(4β′+5) a2
2 (a1−a2)− (2β′+1) a2×

(a1−a2)2 ]r2 + 2a2
2 [a2 − (2β′+1) (a1−a2)] r + a2

2 [β′ (a1−a2)− a2] = 0. (45)

Solving (45) and substituting the roots into (43) gives the following pairs of solutions to (42):

r1 =
1

1 +
√

a1

a2

, q1 =
1

1 +
√

a1

a2

,

r2 =
1

1−
√

a1

a2

, q2 =
1

1−
√

a1

a2

,

r3 =
1−

√
β′

β′+1

√
a1

a2

1− a1

a2

, q3 =

1−
(√

β′
β′+1

+
√
β′+1
β′

2

)√
a1

a2

1− a1

a2

,

r4 =
1 +

√
β′

β′+1

√
a1

a2

1− a1

a2

, q4 =

1 +

(√
β′
β′+1

+
√
β′+1
β′

2

)√
a1

a2

1− a1

a2

, (46)

which in turn, leads to the four possible power consumption values P(ri, qi) for i ∈ {1, 2, 3, 4}.

By comparing all four feasible powers, it can be shown via straightforward algebraic calculations

that P(r1, q1) is always the minimum among the four candidate solutions. Therefore, the optimal

FC location and partitioning are given by q1 and R = {R1 = [0, r1], R2 = [r1, 1]}, respectively.

Using (39), the optimal AP locations can be calculated accordingly. Now, we consider the

boundary case of q, r ∈ {0, 1}. Note that r ∈ {0, 1} means that one of the regions is empty,

i.e., the whole target region Ω = [0, 1] sends its data to the stronger AP. As a result, we can
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achieve the optimal power consumption of min(a1,a2)
12

by placing the stronger AP and the FC at

the centroid of Ω. The weaker AP will be used only if:

P(r1, q1) <
a1

12
, P(r1, q1) <

a2

12
. (47)

Solving (47) yields the necessary and sufficient condition given in (12). Therefore, if the condition

in (12) holds, both APs are useful and the optimal power consumption is given by P(r1, q1)

as it is given in (13); otherwise, using only the stronger AP yields a lower power consumption

value given in (14) and the proof is complete. �

APPENDIX F

Proof of Proposition 3: In what follows, we demonstrate that none of the four steps in the

HTTL algorithm will increase the two-tier power consumption. Given P , Q and R, updating

the index map T according to (6) minimizes the total power consumption, i.e., the two-tier

power consumption will not increase by the first step. Moreover, given P , Q and T , Proposition

1 indicates that updating R according to (7) and (8) provides the best partitioning; thus, the

second step of the HTTL algorithm will not increase the power consumption either. We need

the following equality, which can be derived from simple algebra, to continue the proof.∑
n:T (n)=m

bn,mvn‖pn − qm‖2 =
∑

n:T (n)=m

bn,mvn(‖pn − q′m‖2 + ‖qm − q′m‖2), (48)

where q′m =
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

. Now, the contribution of FC m to the total power consumption

can then be rewritten as:∑
n:T (n)=m

∫
Rn

(
an‖pn − w‖2 + βbn,m‖pn − qm‖2

)
f(w)dw =

∑
n:T (n)=m

∫
Rn

an‖pn − w‖2f(w)dw

+ β

 ∑
n:T (n)=m

bn,mvn

 ‖qm − q′m‖2 + β

 ∑
n:T (n)=m

bn,mvn‖pn − q′m‖2

 . (49)

Now, given P , R and T , the first and third terms in the right hand side of (49) are constant and

moving qm toward q′m will not increase the power consumption in (49). Therefore, the third step

of the HTTL algorithm will not increase the total two-tier power consumption as well. We use

the following equality to simplify the calculation:

an‖pn−w‖2+βbn,m‖pn−qm‖2 =(an+βbn,m)

∣∣∣∣∣∣∣∣pn− (anw+βbn,mqm)

an+βbn,m

∣∣∣∣∣∣∣∣2+ βanbn,m
an+βbn,m

‖w−qm‖2. (50)
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Using (50), for each index n ∈ IA and the corresponding index m = T (n), we can rewrite the

contribution of AP n to the total power consumption as:∫
Rn

(an‖pn−w‖2+βbn,m‖pn−qm‖2)f(w)dw
(a)
=

∫
Rn

[
(an+βbn,m)

∣∣∣∣∣∣∣∣pn− (anw+βbn,mqm)

an+βbn,m

∣∣∣∣∣∣∣∣2
+

βanbn,m
an+βbn,m

×‖w−qm‖2

]
f(w)dw

(b)
=

∫
Rn

[
a2
n

an+βbn,m
×
∣∣∣∣∣∣∣∣(an+βbn,m)pn−βbn,mqm

an
−w
∣∣∣∣∣∣∣∣2

+
βanbn,m
an+βbn,m

‖w−qm‖2

]
f(w)dw

(c)
=

∫
Rn

[
a2
n

an+βbn,m
×
(∣∣∣∣∣∣∣∣(an+βbn,m)pn−βbn,mqm

an
−cn

∣∣∣∣∣∣∣∣2
+‖cn−w‖2

)
+

βanbn,m
an+βbn,m

‖w−qm‖2

]
f(w)dw

(d)
=

∫
Rn

[
a2
n

an+βbn,m
‖cn−w‖2+(an+βbn,m)×∣∣∣∣∣∣∣∣pn− ancn+βbn,mqm

an+βbn,m

∣∣∣∣∣∣∣∣2+
βanbn,m
an+βbn,m

‖w−qm‖2

]
f(w)dw

(e)
=

a2
n

an+βbn,m

∫
Rn

‖cn−w‖2f(w)dw

+(an+βbn,m)‖pn−p′n‖2vn+
βanbn,m
an+βbn,m

∫
Rn

‖w−qm‖2f(w)dw, (51)

where p′n = ancn+βbn,mqm
an+βbn,m

. Note that Equality (a) in (51) comes from (50), and Equality (c)

follows from the parallel axis theorem. Now, given Q, R and T , the first and third terms

in the right hand side of Equality (e) in (51) are constants and moving pn toward p′n will

not increase the second term in (51). Hence, the fourth step of the HTTL algorithm will not

increase the total power consumption either. So, the HTTL algorithm generates a sequence of

positive non-increasing power consumption values and thus, it converges. Note that if power

consumption remains the same after an iteration of the algorithm, it means that none of the four

steps has decreased the power consumption and the algorithm has already reached an optimal

deployment. �

APPENDIX G

Proof of Lemma 3: Note that PS(P,R) defined in (1) is the distortion of a one-tier quan-

tizer with parameters a1, . . . , aN , node positioning P = (p1, . . . , pN) and partitioning R =

(R1, . . . , RN); thus, the minimum value that PS(P,R) can achieve is DN given in (15), i.e.,

PS ∈ [DN ,+∞) which is the domain of the function A(s).

Let F(s) be the set of all feasible solutions for the power pair (s, A(s)). We can rewrite (3)

as:

A(s) = inf
(P,Q,R,T )∈F(s)

PA (P,Q,R, T ) . (52)

It is self-evident that for two values of s1 and s2 such that DN ≤ s1 < s2, we have F(s1) ⊆

F(s2), which implies that A (s1) ≥ A (s2), i.e., A(s) is a non-increasing function.
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Without loss of generality, we assume that a1 ≤ a2 ≤ . . . ≤ aN . If s ∈ [DM ,+∞), then

A(s) = 0 since if X∗ = (x∗1, . . . , x
∗
M) and R∗ = (R∗1, . . . , R

∗
M) is the optimal deployment that

achieves DM in (15), then the deployment (P,Q,R, T ) where P = (x∗1, . . . , x
∗
M , x

∗
1, x
∗
1, . . . , x

∗
1),

Q = (x∗1, . . . , x
∗
M), R = (R∗1, ..., R

∗
M ,∅,∅, . . . ,∅) and T ∗(i) = i for each i ∈ IB and T ∗(i) = 1

for each i ∈ IA − IB is a feasible solution for which PS(P,R) = DM ≤ s and A(s) = 0. If

s ∈ [DN , DM), then the inequality PS(P,R) ≤ s implies that PS(P,R) < DM , i.e., optimal

APs should have at least M + 1 different positions; therefore, the optimal AP power cannot be

zero and the proof is complete. �

APPENDIX H

Proof of Lemma 4: Note that the pair (s,R) belongs to the domain of A (s,R) if and only

if there exists a node positioning P such that PS(P,R) ≤ s. Since we have PS(P,R) ≥ H(R)

for any fixed partitioning R, the domain of the function A (s,R) is
{

(s,R)
∣∣s ≥ H(R)

}
.

First, we show that J (R) is the minimum value of the quantity
∑N

n=1

∫
Rn
an‖x−w‖2f(w)dw

for a fixed R. Using parallel axis theorem, we have:
N∑
n=1

∫
Rn

an‖x− w‖2f(w)dw =
N∑
n=1

an‖x− cn‖2vn +
N∑
n=1

∫
Rn

an‖cn − w‖2f(w)dw, (53)

where cn is the centroid of the region Rn. Taking the derivative of (53) yields:

∂

∂x

N∑
n=1

∫
Rn

an‖x− w‖2f(w)dw =
N∑
n=1

2an(x− cn)vn = 0, (54)

i.e., x∗ =
∑N
n=1 anvncn∑N
n=1 anvn

where vn is the volume of Rn. Substituting x∗ into (53) yields:

J (R) = min
x

N∑
n=1

∫
Rn

an‖x− w‖2f(w)dw. (55)

If s ∈ [J (R),+∞) then A(s,R) = 0 because for the deployment P = (p1, . . . , pN) =

(x∗, . . . , x∗) and Q = (q) = (x∗), we have PS(P,R) = J (R) ≤ s and PA (P,Q,R, T ) = 0.

Now, we determine the value of A(s,R) for s ∈ [H(R),J (R)). We have:

PA(P,Q,R, T ) =
N∑
n=1

∫
Rn

bn,1‖pn − q‖2f(w)dw =
N∑
n=1

bn,1‖pn − q‖2vn = κ

N∑
n=1

an‖pn − q‖2vn

= κ
N∑
n=1

‖pn
√
anvn − q

√
anvn‖2 = κ× ‖p̃− q̃‖2, (56)
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where p̃ =
(
p1
√
a1v1, . . . , pN

√
aNvN

)
and q̃ =

(
q
√
a1v1, . . . , q

√
aNvN

)
. Similarly, we can

rewrite the Sensor-power function as:

PS(P,R) =
N∑
n=1

∫
Rn

an‖pn − w‖2f(w)dw =
N∑
n=1

an‖pn − cn‖2vn +H(R)

=
N∑
n=1

‖pn
√
anvn − cn

√
anvn‖2 +H(R) = ‖p̃− c̃‖2 +H(R),

(57)

where c̃ =
(
c1
√
a1v1, . . . , cN

√
aNvN

)
. Note that H(R) is a constant since R is fixed. Therefore,

we have:

A(s,R) = inf
(p̃,q̃):‖p̃−c̃‖2≤(s−H(R))

κ× ‖p̃− q̃‖2. (58)

Note that for any fixed value of q̃, (58) implies that we want to minimize the distance from the

point p̃ to q̃ while it remains within a radius of
√
s−H(R) of the point c̃. By using a simple

geometric reasoning, it can be shown that p̃ lies on the segment connecting c̃ to q̃, i.e., there

exists a coefficient λ ≥ 0 for which we have:

p̃ =
q̃ + λc̃

1 + λ
, (59)

i.e., for any q̃, the constraint in (58) is equivalent to:

λ : (1 + λ)2 ≥ ‖q̃− c̃‖2

s−H(R)
. (60)

Therefore, (58) can be rewritten as:

A(s,R) = inf
Q

inf
λ:(1+λ)2≥ ‖q̃−c̃‖2

s−H(R)

κ×
∣∣∣∣∣∣∣∣ q̃ + λc̃

1 + λ
− q̃

∣∣∣∣∣∣∣∣2 = inf
λ:(1+λ)2≥

∑N
n=1 an‖q−cn‖

2vn

s−H(R)

inf
q
G(q, λ), (61)

where:

G(q, λ) = κ×
N∑
n=1

an

∣∣∣∣∣∣∣∣q + λcn
1 + λ

− q
∣∣∣∣∣∣∣∣2vn = κ×

(
λ

1 + λ

)2 N∑
n=1

an‖cn − q‖2vn. (62)

Taking the derivative of G(q) w.r.t. the FC location q yields:

∂G(q, λ)

∂q
= κ×

(
λ

1 + λ

)2 N∑
n=1

2anvn (q − cn) = 0, (63)

i.e., q∗ =
∑N
n=1 anvncn∑N
n=1 anvn

. By substituting q∗ into (61), we have:

A(s,R) = inf

λ:λ≥
√∑N

n=1 an‖q
∗−cn‖2vn

s−H(R)
−1

G(q∗, λ). (64)
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Since G(q∗, λ) depends on λ through the coefficient
(

λ
1+λ

)2 that increases with λ, the infimum

in (64) occurs for:

λ∗ =

√∑N
n=1 an‖q∗ − cn‖2vn

s−H(R)
− 1 =

√
J (R)−H(R)

s−H(R)
− 1, (65)

where the second equality follows from the parallel axis theorem. Substituting λ∗ into (64) yields

the formula in (17) for A(s,R) and the proof is complete. �

APPENDIX I

Proof of Lemma 5: Note that the constrained optimization in (3) is equivalent to the uncon-

strained optimization in (5). As we showed earlier in Appendix E, if the condition in (12) holds,

the optimal partitioning is two closed intervals [0, r∗] and [r∗, 1] where the FC is located at

r∗ = q∗ = 1

1+
√
a1
a2

, in which case we have:

J (R)−H(R) =
2∑

n=1

an‖q∗ − cn‖2vn =
1

4
×
[
a1q
∗3 + a2 (1− q∗)3] , (66)

s−H(R) = s−
∫ q∗

0

a1

∣∣∣∣∣∣q∗
2
− w

∣∣∣∣∣∣2f(w)dw −
∫ 1

q∗
a2

∣∣∣∣∣∣1 + q∗

2
− w

∣∣∣∣∣∣2f(w)dw

= s− 1

12

[
a1q
∗3 + a2 (1− q∗)3] . (67)

Substituting (66) and (67) into (17) yields (19) for 1
12

( √
a1a2√

a1+
√
a2

)2

≤ s ≤ 1
3

( √
a1a2√

a1+
√
a2

)2

.

However, if the condition in (12) does not hold, the optimal partitioning is when the region corre-

sponding to the weaker AP is empty, and both FC q and the stronger AP are located at the centroid

of the target space; hence, A(s) = 0 and PS (P,R) = min(a1,a2)
12

. Since min(a1,a2)
12

≤ 1
3

( √
a1a2√

a1+
√
a2

)2

with equality if and only if a1 = a2, (19) is only valid for 1
12

( √
a1a2√

a1+
√
a2

)2

≤ s < min(a1,a2)
12

, and

A(s) = 0 for s ≥ min(a1,a2)
12

. �

APPENDIX J

Proof of Proposition 4: In what follows, we prove that none of the four steps in the Limited-

HTTL algorthim will increase the two-tier power consumption. Note that APs in the set {n
∣∣T (n) =

−1} are neither used for target region partitioning, nor they contribute to the total power

consumption; hence, given P , Q and R, updating the index map T according to (23) will

not increase the power consumption. Furthermore, partitioning the target region according to the



31

generalized Voronoi diagram is the best partitioning according to Proposition 1, and the two-tier

power consumption will not be increased by the second stage of Limited-HTTL Algorithm.

Next, for a given P , R and T , (49) indicates that decreasing the distance between qm and

q′m =
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

will decrease the two-tier power consumption. Note that moving FC m

to q̂m will not increase the power consumption since ‖q̂m− q′m‖ ≤ ‖qm− q′m‖, and q̂m is still in

the communication range of APs associated to FC m. Finally, (51) implies that decreasing the

distance between pn and p′n = ancn+βbn,mqm
an+βbn,m

will decrease the two-tier power consumption. Note

that moving AP n to p̂n will not increase the power consumption since ‖p̂n− p′n‖ ≤ ‖pn− p′n‖,

and p̂n is still in the communication range of the FC qT (n). Since none of the above four stages

will increase the power consumption, Limited-HTTL Algorithm generates a sequence of positive

non-increasing power consumption values and thus, it converges. �
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