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RESEARCH ARTICLE Open Access

Expression of a bacterial 3-
dehydroshikimate dehydratase (QsuB)
reduces lignin and improves biomass
saccharification efficiency in switchgrass
(Panicum virgatum L.)
Zhangying Hao1,2, Sasha Yogiswara1,2, Tong Wei1,2,3,4, Veronica Teixeira Benites1,2, Anagh Sinha1,2, George Wang1,5,
Edward E. K. Baidoo1,5, Pamela C. Ronald1,2,3, Henrik V. Scheller1,2,6, Dominique Loqué1,2 and Aymerick Eudes1,2*

Abstract

Background: Lignin deposited in plant cell walls negatively affects biomass conversion into advanced bioproducts.
There is therefore a strong interest in developing bioenergy crops with reduced lignin content or altered lignin
structures. Another desired trait for bioenergy crops is the ability to accumulate novel bioproducts, which would
enhance the development of economically sustainable biorefineries. As previously demonstrated in the model plant
Arabidopsis, expression of a 3-dehydroshikimate dehydratase in plants offers the potential for decreasing lignin
content and overproducing a value-added metabolic coproduct (i.e., protocatechuate) suitable for biological
upgrading.

Results: The 3-dehydroshikimate dehydratase QsuB from Corynebacterium glutamicum was expressed in the
bioenergy crop switchgrass (Panicum virgatum L.) using the stem-specific promoter of an O-methyltransferase gene
(pShOMT) from sugarcane. The activity of pShOMT was validated in switchgrass after observation in-situ of beta-
glucuronidase (GUS) activity in stem nodes of plants carrying a pShOMT::GUS fusion construct. Under controlled
growth conditions, engineered switchgrass lines containing a pShOMT::QsuB construct showed reductions of lignin
content, improvements of biomass saccharification efficiency, and accumulated higher amount of protocatechuate
compared to control plants. Attempts to generate transgenic switchgrass lines carrying the QsuB gene under the
control of the constitutive promoter pZmUbi-1 were unsuccessful, suggesting possible toxicity issues associated
with ectopic QsuB expression during the plant regeneration process.
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(Continued from previous page)

Conclusion: This study validates the transfer of the QsuB engineering approach from a model plant to switchgrass.
We have demonstrated altered expression of two important traits: lignin content and accumulation of a co-product.
We found that the choice of promoter to drive QsuB expression should be carefully considered when deploying
this strategy to other bioenergy crops. Field-testing of engineered QsuB switchgrass are in progress to assess the
performance of the introduced traits and agronomic performances of the transgenic plants.

Keywords: Switchgrass, Lignin, Shikimate, Protocatechuate, Saccharification, Bioenergy

Background
The development of biorefineries to reduce our depend-
ence on nonrenewable fossil fuel resources requires pro-
duction of dedicated bioenergy crops that can be grown
with few inputs on marginal lands. Other desired traits
for bioenergy crops include high biomass yields, stress
resilience, reduced recalcitrance to conversion into bio-
fuels and bioproducts, and the accumulation of valuable
co-products [1, 2]. Switchgrass has long been recognized
as an ideal crop for bioenergy purposes considering its
pest and disease resistance, high biomass yields, growth
performance on poor soils due to relatively low require-
ments for added fertilizers, carbon sequestration capacity
via its extensive root system, drought tolerance, and effi-
cient water use [3]. As a consequence, significant efforts
have been implemented for the improvement of switch-
grass via breeding and genetic transformation [4, 5].
Lignin is a major polymer in plant biomass that nega-

tively impacts the conversion of cell wall polysaccharides
into advanced bioproducts, and several engineering ap-
proaches have been established to modify lignin content
and its monomeric composition [6, 7]. For example, the
heterologous expression of a bacterial 3-dehydroshikimate
dehydratase (QsuB) targeted to plastids resulted in strong

lignin reductions (up to 50%) in Arabidopsis [8]. One ex-
planation for this observation is the possible reduction of
the cytosolic shikimate pool needed for the synthesis of p-
coumaroyl-shikimate catalyzed by hydroxycinnamoyl
CoA: shikimate hydroxycinnamoyl transferase (HCT) dur-
ing lignin biosynthesis (Fig. 1).
In switchgrass, several HCT gene candidates have been

proposed to have a role in lignin biosynthesis based on
the HCT activity measured with the corresponding re-
combinant enzymes and their expression profile in ligni-
fying cell suspension cultures [9, 10]. In fact, more than
90% reduction in transcript levels of either PvHCT1 or
PvHCT2 had no effect on lignin content, but simultan-
eous downregulation of both genes resulted in slight de-
creases of lignin content (5–8%) based on the yield of
lignin monomers released after thioacidolysis [11]. These
results not only indicate a role for HCT in lignin biosyn-
thesis in switchgrass, with PvHCT1 and PvHCT2 being
redundant, but also suggest the involvement of add-
itional HCTs with similar functions.
In this work, we report on the expression of QsuB in

switchgrass using the promoter of a sugarcane O-
methyltransferase gene (pShOMT) [12]. Several switch-
grass QsuB transformation events show reduction of

Fig. 1 Schematic diagram of lignin biosynthesis and the conversion of 3-dehydroshikimate into protocatchuate (PCA) catalyzed by plastid-
targeted QsuB. Grey and blue circles indicate a phenylalanine transporter and a putative shikimate transporter, respectively. Dashed arrows
represent multiple enzymatic steps. E4P: Erythrose 4-phosphate; HCT: hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase; PEP:
Phosphoenolpyruvate; PHE: Phenylalanine
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lignin content and decreased cell wall recalcitrance. A
significant increase in the content of protocatechuate ac-
cumulated in biomass was also observed.

Results
Molecular characterization of the pShOMT::QsuB
switchgrass lines
A total of eight independent transformation events were re-
generated after Agrobacterium-mediated transformation of
switchgrass using a DNA construct that contains the
plastid-targeted QsuB coding sequence fused downstream
of the pShOMT promoter. The QsuB transgene was de-
tected by PCR using gDNA from each transformant
(Fig. 2a), and QsuB expression was validated by qPCR per-
formed on cDNA synthesized from RNAs obtained from
the first internode of each line at the E2 stage (Fig. 2b). A
DNA construct consisting of pShOMT fused upstream of
the GUS reporter gene was also transferred to switchgrass.
Analysis of internodes and nodes from switchgrass plants
harboring the pShOMT::GUS construct at the E4 stage sug-
gested that pShOMT is mainly active in the nodes, whereas
little activity was observed in the internodes (Figure S1).
Under controlled growth conditions, all transgenic lines did
not show any particular phenotype nor growth defect and
were visually indistinguishable from each other or com-
pared to non-transformed wild-type plants.

Protocatechuate content in pShOMT::QsuB switchgrass
Protocatechuate (PCA), the product of QsuB activity,
was extracted from the total aboveground biomass of

switchgrass plants at the E5 stage and quantified. Com-
pared to control plants carrying the pShOMT::GUS con-
struct, PCA was significantly increased by ~ 2–3-fold in
four independent pShOMT::QsuB lines, reaching up to
380 μg/g dry weight (Fig. 3). This data shows that ex-
pression of plastid-targeted QsuB in transgenic switch-
grass enabled the conversion of endogenous 3-
dehydroshikimate into PCA.

Lignin content and biomass saccharification efficiency in
pShOMT::QsuB switchgrass
Total lignin content in the biomass from the pShOMT::
QsuB switchgrass lines was measured using the Klason
method. Compared to control lines containing the
pShOMT::GUS construct, several pShOMT::QsuB lines
showed significant reductions of lignin content ranging
from 12 to 21% (Fig. 4a). Inspection of stem sections
treated with phloroglucinol-HCl for the staining of lig-
nin did not reveal any differences between the different
pShOMT::QsuB lines and the control pShOMT::GUS
lines (data not shown). However, on leaf blade sections,
reductions in the intensity of the typical red staining
were observed in the case of the pShOMT::QsuB lines
compared to controls, especially in thick fibers located
in the abaxial zone (Fig. 4b).
The recalcitrance towards enzymatic degradation of

the biomass of the engineered switchgrass was evaluated
by measuring the amount of sugars released from cell
wall residues after pretreatment with hot water followed
by a 72-h hydrolysis using a commercial cellulase

Fig. 2 Molecular characterization of eight independent switchgrass lines containing the pShOMT::QsuB construct. a Detection of the QsuB gene
by PCR. ‘A4’ is a gDNA sample from wild-type switchgrass and ‘Plasmid’ is the pShOMT::QsuB construct used for plant transformation. b Detection
of QsuB transcripts by RT-qPCR. QsuB expression levels relative to that of PvUBQ6 are shown. cDNA obtained from a line containing the
pShOMT::GUS construct were used as negative control. Values are means ±SD of two biological replicates (n = 2)
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cocktail (CTec2). As shown in Fig. 5, higher amount of
reducing sugars was obtained for several pShOMT::QsuB
lines compared to the pShOMT::GUS control lines, with
significant increases ranging between 21 and 30%.

Discussion
Here, we describe the successful expression of the bac-
terial 3-dehydroshikimate dehydratase QsuB gene under
the control of pShOMT in switchgrass. We show that
the resulting plants display 12–21% reduction in lignin,
a 2–3-fold increase in the bioaccumulation of PCA and
a 5–30% increase in saccharification efficiency.
pShOMT was previously shown to be preferentially ac-

tive in stem vascular tissues in sugarcane, rice, maize,
and sorghum [12], making it a good promoter candidate
to express QsuB specifically in lignifying tissues within
vascular bundles. Similar to previous observations made
in sugarcane, we were able to detect GUS activity in
stem nodes from switchgrass lines carrying a pShOMT::
GUS construct. Nevertheless, an apparent reduction of
lignin content observed in some discrete regions of leaf
blades (i.e., fibers on the adaxial zone) from plants carry-
ing the pShOMT::QsuB construct indicate that pShOMT
is also active in leaf cells with secondary wall accumula-
tion (Fig. 4b). In addition to pShOMT, attempts to gen-
erate transgenic switchgrass lines with constructs
containing QsuB under the control of the constitutive
promoter of the maize ubiquitin1 gene (pZmUbi-1) was
unsuccessful, whereas only a single event was obtained

Fig. 3 Protocatechuate (PCA) content measured in the biomass of
switchgrass pShOMT::QsuB transgenic lines. Values are means ±SE of
three biological replicates (n = 3). Asterisks indicate significant
differences from a line containing the pShOMT::GUS construct using
the unpaired Student’s t-test (*P < 0.05)

Fig. 4 a Klason lignin content measured in cell wall residues (CWR) obtained from biomass of switchgrass lines containing the pShOMT::QsuB
construct. A line containing the pShOMT::GUS construct was used as control and analyzed thrice since measurements were carried out in three
separate batches. Values are means ±SE of four biological replicates (n = 4). Asterisks indicate significant differences from the line containing the
pShOMT::GUS construct using the unpaired Student’s t-test (*P < 0.05). b Representative pictures of leaf blade cross-sections stained with
phloroglucinol-HCl from lines containing either the pShOMT::GUS or the pShOMT::QsuB construct. Note the reduction of the staining specifically in
thick fibers located in the leaf abaxial zone for the pShOMT::QsuB line (red arrows). Scale: black bar = 200 μm
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with a pZmCesa10::QsuB construct containing the pro-
moter of the maize cellulose synthase gene CESA10 in-
volved in secondary cell wall formation [13] (Figures S2,
S3). This is possibly the result of toxicity occurring dur-
ing the plant regeneration process when using these two
pZmUbi-1::QsuB and pZmCesa10::QsuB constructs.
Considering that QsuB diverts lignin biosynthesis, using
the promoter of a lignin biosynthetic gene to drive QsuB
expression may be more suited spatial-temporally during
plant development. Interestingly, the single pZmCesa10::
QsuB line showed a reduction of total lignin content as
well as reduced phloroglucinol staining in leaf fibers
(Figure S2E, F). Obtaining more switchgrass transgenic
events with the pZmCesa10::QsuB construct will be es-
sential to validate the effectiveness of pZmCesa10 in
driving QsuB expression to reduce lignin content.
The exact mechanism by which QsuB expression re-

duces lignin in switchgrass is still unresolved; in particular,
whether the cytosolic pools of shikimate —required for
HCT activity— and p-coumaroyl-shikimate are reduced
remain to be demonstrated. Similarly, it would be interest-
ing to determine the lignin monomeric composition in
the different QsuB switchgrass lines, especially the relative
amount of p-hydroxyphenyl (H) units, which is known to
be higher in Arabidopsis QsuB plants and typically in-
creases in HCT down-regulated dicot species [8, 14–20].
Furthermore, the recent discovery in several plant species
—including switchgrass— of genes encoding putative 3-

hydroxylases (C3H) that convert p-coumarate to caffeate,
as well as genetic evidence of their role in lignin formation
in Brachypodium distachyon, question the exclusive role
of HCT and the involvement of p-coumarate esters during
lignin biosynthesis in monocots [21].
The overproduction of PCA in switchgrass lines ex-

pressing QsuB probably results from a partial conversion
of the endogenous pool of 3-dehydroshikimate catalyzed
by QsuB activity. Notably, increases in PCA titers (2–3-
fold compared to control switchgrass) are smaller than
those previously reported in Arabidopsis and tobacco
plants containing the QsuB gene under the control of
the promoter of the Arabidopsis cinnamate 4-
hydroxylase gene (pAtC4H), which were at least two or-
ders of magnitude higher compared to controls plants
[8, 22]. In connection with these observations, it has
been demonstrated in vitro that PCA acts as a competi-
tive inhibitor of at least one HCT isoform from switch-
grass (i.e., PvHCT2) [23]. Therefore, it would be
informative to attempt to identify putative p-coumaroyl-
protocatechuate conjugates in metabolite extracts from
pShOMT::QsuB switchgrass to determine if such HCT
promiscuous activity —and possibly HCT inhibition—
also occurs in vivo. Finally, it is promising to observe
that the QsuB engineering strategy has the potential to
enhance PCA titers in switchgrass biomass because sev-
eral techno-economic analyses demonstrated the bene-
fits of producing co-products in planta to render
bioenergy crops economically sustainable [1, 24, 25]. In
fact, several studies have already reported on the use of
PCA as carbon source or pathway intermediate for the
biological synthesis of diverse valuable products such as
beta-ketoadipic acid, muconolactone, muconic acid, 2-
pyrone-4,6-dicarboxylic acid, bisabolene, and methyl ke-
tones [22, 26–30].

Conclusion
The QsuB engineering approach has been established in
switchgrass. This work highlights the fact that selecting
an adequate promoter to drive QsuB expression should
be an important parameter for successful engineering of
other crops with this gene via tissue culture-dependent
transformation methods. Considering that pShOMT ac-
tivity is induced in the leaf and root by key regulators of
biotic and abiotic stress responses such as salicylic acid,
jasmonic acid and methyl jasmonate [12], it will be es-
sential to field test our engineered pShOMT::QsuB
switchgrass to assess its agronomic performance and re-
silience to environmental stress.

Methods
Vector construction and plant transformation
The promoters pShOMT [12], pZmCesa10 (2.6 kb lo-
cated upstream the start codon of the maize CESA10

Fig. 5 Saccharification of cell wall residues (CWR) obtained from
biomass of switchgrass lines containing the pShOMT::QsuB construct.
A line containing the pShOMT::GUS construct was used as control.
Amounts of sugars released from CWR after a hot water
pretreatment and 72 h of enzymatic digestion with cellulase are
shown. Values are means ±SE of four biological replicates (n = 4).
Asterisks indicate significant differences from the control using the
unpaired Student’s t-test (*P < 0.05)
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gene - GenBank: AY372244.1), and pZmUbi-1 [31] were
synthesized with the following flanking restriction sites:
5′-AscI / 3′-AvrII for pShOMT and 5′-HindIII / 3′-
AvrII for pZmCesa10 and pZmUbi-1 (Genscript, Piscat-
away, NJ). Promoter sequences were released by enzyme
digest and ligated into the binary vector pA6-GW [32]
pre-digested with either AscI/AvrII or HindII/AvrII to
generate respectively the pA6-pShOMT-GW,
pZmCesa10-GW, and pA6-pZmUbi-1-GW binary vec-
tors. The entry vector pDONR221-schl::QsuB containing
the gene encoding the 3-dehydroshikimate dehydratase
QsuB from Corynebacterium glutamicum preceded with
the nucleotide sequence of a chloroplast transit peptide
[8] was LR recombined with the pA6-pShOMT-GW,
pA6-pZmCesa10-GW, and pA6-pZmUbi-1-GW vectors
using the Gateway cloning technology (Thermo Fisher
Scientific, Waltham, MA) to generate the constructs
pA6-pShOMT-schl::QsuB, pA6-pZmCesa10-GW-schl::
QsuB, and pA6-pZmUbi-1-GW-schl::QsuB, respectively.
A nucleotide sequence encoding the beta-glucuronidase
gene (GUS) from E. coli was amplified from pCAM-
BIA1301 using primers flanked with attB1 (5′) and attB2
(3′) Gateway recombination sites, and inserted into the
pA6-pShOMT-GW and pA6-pZmCesa10-GW vectors by
Gateway cloning to generate the constructs pA6-
pShOMT::GUS and pA6-pZmCesa10::GUS, respectively.
Cloning primers are listed in Table S1. The binary vec-
tors were transformed into Agrobacterium tumefaciens
strain AGL1 for switchgrass (Panicum virgatum L.,)
transformation which was performed at the University of
Missouri’s Plant Transformation Core Facility as previ-
ously described [33], where embryogenic calli used for
transformation were induced from mature seeds of
switchgrass cultivar Alamo-A4 (Hancock Farm & Seed
Company, Dade City, FL). Hygromycin B (Life Tech-
nologies, Foster City, CA) was added to the selection
medium at 50 mg/L.

Plant growth conditions
Four transgenic switchgrass plants for each event were
transferred to 2-gal pots containing Pro-Mix soil and
grown in a room at 22 °C and 60% humidity using a light
intensity of 250 μmol/m2/s and 16 h of light per day.

PCR genotyping
Genomic DNA was extracted from leaf tissue obtained
from one of the clones from each event using the Plant
DNeasy plant mini kit (Qiagen, Carlsbad, CA). PCR
primers specific to the QsuB gene were used to detect
the transgene, and primers specific to the switchgrass
PvUBQ6 gene (GenBank: FE609298.1) were used to as-
sess the quality of the gDNA. All the primers used in
this study are listed in Table S1.

RT-qPCR
Total RNAs were extracted from the first internode col-
lected from plants at the E2 stage [34] using the TRIzol
reagent (Thermo Fisher Scientific, Waltham, MA) and
cDNA synthesis was conducted using the high-capacity
cDNA reverse transcription kit (Applied BioSystems,
Foster City, CA) as previously described [35]. RT-qPCR
was performed as described previously using 40 cycles
consisting of 5 s at 95 °C for denaturation and 15 s at
60 °C for annealing and amplification [35]. The relative
quantification of QsuB transcripts was calculated using
the 2-ΔCT method and normalized to the reference gene
PvUBQ6 (GenBank: FE609298.1). The results are the
average from two biological replicates which were each
analyzed in technical replicates. RT-qPCR primers are
listed in Table S1.

Lignin assays
The Wiesner histochemical test using phloroglucinol-
HCl, a reagent that reacts with coniferaldehyde groups
in lignin, was performed on transverse sections of stems
and leaf blades from plants at the E2 stage as previously
described [36, 37]. For Klason lignin measurements,
whole switchgrass plants were cut at the E5 stage (no
visible flag leaf) 3 cm from the bottom, and biomass was
dried in an oven at 50 °C for 7 days. Dried biomass was
grinded with a Model 4 Wiley Mill equipped with a 1-
mm mesh (Thomas Scientific, Swedesboro, NJ). Grinded
biomass was extracted as previously described [8] and
Klason lignin was measured using the standard NREL
biomass protocol [38].

Saccharification assays
Grinded and extracted biomass obtained from plants at
the E5 stage was ball-milled to a fine powder using a
Mixer Mill MM 400 (Retsch Inc., Newtown, PA) and
stainless-steel balls. For saccharification assays, four bio-
logical replicates of 10 mg of fine biomass powder from
each line was pretreated with liquid hot water followed
by a 72-h enzymatic hydrolysis using 1% w/w Cellic
CTec2 enzyme mixture (Novozymes, Denmark) as previ-
ously described [35]. Hydrolysates were used for meas-
urement of reducing sugars using the 3,5-dinitrosalicylic
acid (DNS) assay [39].

Protocatechuate measurements
Whole switchgrass plants were cut 3 cm from the
bottom at the E5 stage (no visible flag leaf), and bio-
mass was dried in an oven at 50 °C for 7 days. Dried
biomass was grinded with a Model 4 Wiley Mill
equipped with a 1-mm mesh (Thomas Scientific, Swe-
desboro, NJ). An aliquot of the grinded biomass was
ball-milled to a fine powder using a Mixer Mill MM
400 (Retsch Inc., Newtown, PA) and stainless-steel
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balls. Metabolites were extracted from 200 mg of
dried ball-milled biomass using 80% (v/v) methanol:
water followed by an acid hydrolysis step as previ-
ously described [8]. Protocatechuate was detected in
metabolite extracts using high-performance liquid
chromatography (HPLC), electrospray ionization (ESI),
and time-of-flight (TOF) mass spectrometry (MS) as
previously described [40]. Quantification was per-
formed using a six-point calibration curve from pro-
tocatechuate solutions prepared with an authentic
standard (Sigma-Aldrich, St. Louis, MO).

Histochemical GUS assays
Stem and leaf sections were obtained manually from
plants at the E4 stage using a razor blade. GUS assays
were conducted on plant sections using 2 mM 5-bromo-
4-chloro-3-indolyl-β-D-glucuronide (Sigma-Aldrich, St.
Louis, MO) as substrate for 48 h at 37 °C as previously
described [41]. After incubation, sections were dehy-
drated in 95% (v/v) ethanol prior to observation of the
GUS staining in 70% (v/v) ethanol.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12870-021-02842-9.

Additional file 1: Figure S1. Representative pictures showing GUS
activities in various tiller sections of switchgrass lines harboring the
pShOMT::GUS construct. GUS expression is specifically observed in stem
nodes. Scale: White bars = 2mm, black bar = 400 μ m. N: node; IN:
internode, IS: internode transverse section.

Additional file 2: Figure S2. Characterization of a switchgrass line
harboring the pZmCesa10::QsuB construct. (A) Representative pictures
showing GUS activities in various tiller sections of switchgrass lines
harboring the pZmCesa10::GUS construct. GUS expression is mostly
observed in internodes, especially in developing vascular bundles (red
arrows). Scale: White bars = 2mm, black bar = 400 μ m. N: node; IN:
internode, IS: internode transverse section. (B) Detection of the QsuB
gene by PCR in line pZmCesa10::QsuB-5. (C) Detection of QsuB transcripts
by RT-qPCR. QsuB expression levels relative to that of PvUBQ6 are shown.
Values are means ±SD of two biological replicates (n = 2). (D) Protoca-
techuate (PCA) content measured in the biomass of the switchgrass line
pZmCesa10::QsuB-5. A line containing the pZmCesa10::GUS construct was
used as control. Values are means ±SE of three biological replicates (n =
3). Asterisks indicate a significant difference from the control using the
unpaired Student’s t-test (*P < 0.001). (E) Klason lignin content measured
in cell wall residues (CWR) obtained from the biomass of the switchgrass
line pZmCesa10::QsuB-5. A line containing the pZmCesa10::GUS construct
was used as control. Values are means ±SE of four biological replicates
(n = 4). Asterisks indicate a significant difference from the control using
the unpaired Student’s t-test (*P < 0.05). (F) Representative pictures of
stem and leaf blade cross-sections stained with phloroglucinol-HCl from
line pZmCesa10::QsuB-5 and a line containing the pZmCesa10::GUS con-
struct. Note in the leaves the reduction of the staining specifically in thick
fibers located in both the adaxial and abaxial zones for the line pZmCe-
sa10::QsuB-5 (red arrows).

Additional file 3: Table S1. Oligonucleotides used in the study.

Additional file 4: Figure S3. Full length unprocessed images of PCR
gels used for Figs. 2a and S2B. Note that the seven transformants
obtained with the pZmUbi-1::QsuB construct were all false positives and
did not contain the QsuB gene (see purple rectangle on the PCR gel).

Abbreviations
CWR: Cell wall residue; GUS: Beta-glucuronidase; HCT: hydroxycinnamoyl-
CoA: shikimate hydroxycinnamoyl transferase; HPLC-ESI-TOF-MS: High-
performance liquid chromatography electrospray ionization and time-of-
flight mass spectrometry; PCA: Protocatechuate; RT-qPCR: Real-time
quantitative reverse transcription PCR
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