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ABSTRACT
Although more massive flight muscles along with larger wings, higher wingbeat
frequencies and greater stroke amplitudes enhance force and power production in
flapping flight, the extent to which these parameters may be correlated with other
morphological features relevant to flight physiology and biomechanics remains
unclear. Intraspecifically, we hypothesized that greater vertical load-lifting capacity
would correlate with higher wingbeat frequencies and relatively more massive flight
muscles, along with relatively bigger hearts, lungs, and stomachs to enhance
metabolic capacity and energy supply, but also with smaller body size given the
overall negative allometric dependence of maximum flight performance in volant
taxa. To explore intraspecific correlates of flight performance, we assembled a large
dataset that included 13 morphological and kinematic variables for a non-migratory
passerine, the Eurasian tree sparrow (Passer montanus). We found that heavier flight
muscles and larger wings, heavier stomachs and shorter bills were the most
important correlates of maximum load-lifting capacity. Surprisingly, wingbeat
frequency, wing stroke amplitude and masses of the heart, lungs and digestive organs
(except for the stomach) were non-significant predictor variables relative to lifting
capacity. The best-fit structural equation model (SEM) indicated that load-lifting
capacity was positively correlated with flight muscle mass, wing area and stomach
mass, but was negatively correlated with bill length. Characterization of individual
variability in flight performance in a free-ranging passerine indicates the subtlety
of interaction effects among morphological features, some of which differ from those
that have been identified interspecifically for maximum flight performance in birds.

Subjects Animal Behavior, Ecology, Zoology
Keywords Eurasian tree sparrow, Flight performance, Kinematics, Maximum load-lifting capacity

INTRODUCTION
Birds exhibit a broad diversity of flight-related morphological and physiological
characteristics (Hedenström, 2002; Lee et al., 2014; Puttick, Thomas & Benton, 2014;
Altshuler et al., 2015; Butler, 2016), many of which reflect multiple trade-offs in flight
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performance (Goslow, Dial & Jenkins, 1990; Ellington, 1991; Chai & Dudley, 1999; Lind,
2001; Lind & Jakobsson, 2001; Altshuler et al., 2015). For example, larger species typically
possess bigger wings and higher pectoral muscle mass, whereas wingbeat frequency
declines with increasing body mass (Groom et al., 2018); higher wingbeat frequencies and
greater stroke amplitudes nonetheless yield increased force and power production (Chai &
Dudley, 1995; Hedenström, 2002; Altshuler et al., 2015). Wing morphological and
kinematic features along with flight-related muscle, are thus key variables influencing flight
performance.

Avian flight is an energy-demanding activity requiring powerful respiratory and
cardiovascular systems to support the intense metabolism of the associated skeletal
muscles (Hedenström, 2002; Lee et al., 2014; Altshuler et al., 2015; Butler, 2016; Nespolo
et al., 2018). As major metabolic engines, heart and lung capacities underpin both burst
power and endurance flight performance (Bishop & Butler, 1995;Wright, Gregory & Witt,
2014). Moreover, larger nutritional organs and increases in the quantity of digestive
enzymes and nutrient transporters are essential to meet the high-energy demands of flight
(Karasov & McWilliams, 2005). For example, many birds exhibited a reduction in the
pectoralis primary mass as a consequence of lowered nutritional supplies in
post-migratory periods (Dietz et al., 2007; Piersma & Dietz, 2007). Therefore, respiratory,
cardiovascular and nutritional systems represent important features for sustaining
powered flight.

Other morphological factors contributing to an increase in body mass could be
considered as hindering features that reduce available power for flight (Ellington, 1991;
Dial, 2003). For example, a toothless beak in extant birds is believed to increase flight
efficiency by reducing overall body mass (Louchart & Viriot, 2011). However, relationships
among diverse morphological features relative to flight capability in free-living birds have
not been well investigated.

Maximum load-lifting capacity (as imposed via asymptotic loading; Buchwald &
Dudley, 2010), is an informative means of evaluating burst capacity in volant taxa
(Altshuler, Dudley & McGuire, 2004; Altshuler et al., 2010; Sun et al., 2016). To date,
interspecific comparisons have evaluated morphological and functional correlates of the
maximum load-lifting capacity of free-living birds (Hedenström, 2002; Lee et al., 2014;
Altshuler et al., 2015; Butler, 2016; Groom et al., 2018; Nespolo et al., 2018); however, much
less information is available about intraspecific determinants of maximum loading-lifting
capacity. Intraspecifically, we hypothesize that maximum load-lifting capacity will be
positively influenced by key morphological and kinematic features relevant to force and
power production (e.g., relatives size of flight muscles and the wings, wingbeat frequency
and stroke amplitude), as well as by metabolically relevant features (including hearts, lungs
and digestive organs relevant to sustained flight).

To evaluate these hypotheses, we assembled a large dataset with a total of 13 variables of
morphological, internal anatomical, and biomechanical variables for a non-migrant
passerine, namely the Eurasian tree sparrow (Passer montanus). We first determined
statistically the most important variables contributing to maximum load-lifting capacity
(total lifted load, i.e., the sum of body mass and the maximum supplemental load), as
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determined by asymptotic load-lifting experiments. We further assessed the relative
contribution of each variable to maximum load-lifting capacity, then identified the most
critical factors influencing intraspecific variation using multiple-variable interactions and
structural equation model (SEM) in this transient feature of flight performance.

MATERIALS AND METHODS
Bird collection
Totals of 33 male and 39 female adult Eurasian tree sparrows were captured
opportunistically using mist nets during the late winter of 2017 (i.e., 13 March to 1 April)
at five different lowland sites (Dongyangshi: N37.9667�, E114.602�; Yuhuaqu: N38.021�,
E114.526�; Changanqu: N38.058�, E114.547�; Xiangzigou: N38.309�, E114.001�; Mayu:
N38.322�, E113.962�; site elevational range from 80 m to 203 m) around Shijiazhuang City,
Hebei Province, People′s Republic of China. Within 30 min post-capture, body mass to
within 0.01 g was measured for each bird using a portable digital balance.

Load-lifting assay
Birds were placed individually (within 3 h of capture) in a rectangular flight chamber
(45 cm × 45 cm × 150 cm) made from transparent acrylic sheet, as used in previous
experiments (Sun et al., 2016). Each bird was evaluated for asymptotic load-lifting capacity
using an assay described in detail elsewhere (Sun et al., 2016). Briefly, a thread with
different plastic beads (each approximately 1.0 g in mass) and positioned at fixed linear
intervals was attached to the left tarsometatarsus of the sparrow. When released from the
bottom of the chamber, birds typically flew vertically towards the top, asymptotically
lifting more and more beads until a maximum load was attained. Two cameras were used
in this experiment; one high-speed video camera (JVC GCP100BAC; operated at
50 frames−1; see Supplemental Material) positioned laterally at a distance of 80 cm to the
chamber was used to film the beads remaining on the chamber floor during maximum
load-lifting flight and thus by subtraction to determine the total extra weight lifted by the
bird. The other synchronized camera (JVC GCP100BAC, operated at 250 frames−1;
see Supplemental Material), was positioned laterally near the top of the chamber
(Sun et al., 2016) and was used to obtain wingbeat frequency and stroke amplitude.

Multiple ascending flights were recorded for each bird (mean of 4.7 flights), and the
maximum weight lifted within the series was assumed to indicate the limit to load-lifting
flight performance. Wingbeat frequency was determined from the number of frames
required to complete an integral number of wingbeats for a composite sequence containing
multiple flapping cycles, but starting and finishing at the same vertical position of the
wings. Wing stroke amplitude was calculated as the angle between extreme wing tip
positions (i.e., the point of the outermost primary feather relative to the longitudinal body
axis) at extremes of the nominally vertical wing stroke, as filmed by the top lateral camera
(Sun et al., 2016). A mean value for stroke amplitude was calculated from three to five
separate measurements within each bout of maximum load within the final 0.5 s of peak
lifting.
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Morphological, anatomical and kinematic parameters
To identify potential influences total lifted load, we determined for each individual bird a
total of 13 variables of morphological (sex, body mass, bill length, total wing area, aspect
ratio), internal anatomical (the masses of flight muscle, heart, lung, liver, stomach and
gut length) and biomechanical relevance (wingbeat frequency and amplitude). Following
load-lifting experiments, each bird was immediately euthanized with phenobarbitone
(7.5 ml g−1 body mass), and its bill length was measured to the nearest 0.1 mm using
Vernier calipers. The right wing was photographed for measurements of wing area and
wing length R (analyzed using ImageJ, National Institutes of Health, Bethesda, MD, USA);
total wing area S is given by twice the area of the right wing. The aspect ratio is given
by (2R)2/S. The pectoralis major, pectoralis minor and the whole heart, lung, liver
(all following blotting to remove blood), along with the fresh gut and stomach (food
residue was removed by washing with water), were then excised and weighed using a
digital balance sensitive to 0.1 mg (with gut length measured to +1 mm). All protocols
were approved by the Ethics and Animal Welfare Committee (No. 2013-6) and by the
Institutional Animal Care and Use Committee (HEBTU2013-7) of Hebei Normal
University, China and were carried out under the auspices of scientific collecting permits
issued by the Department of Wildlife Conservation (Forestry Bureau) of Hebei Province,
China.

Statistical analyses
We calculated means and standard deviations for gross morphological (body mass, bill
length, total wing area, aspect ratio), internal anatomical (the masses of flight muscle,
heart, lung, liver, stomach, and gut length) and kinematic variables (wingbeat frequency
and wing stroke amplitude). We determined Pearson correlations between maximum
load-lifting flight performance (i.e., total lifted load) and all other variables, including sex
as a discrete covariate. We then implemented a generalized linear model using the glm
function in Program R v. 3.4.2 (Pinheiro et al., 2015) to model relationships between
dependent factors (i.e., total lifted load) and all independent variables, with sex as a discrete
covariate. All continuous variables were scaled (i.e., centralized and standardized;
Schielzeth, 2010) before such modeling to reduce multicollinearity. Multiparameter
models were discarded if a nested model (i.e., collinearity among factors) containing a
subset of the same parameters had a better Akaike’s Information Criterion (AIC) score.
To account for model selection uncertainty, model-averaged estimates of variable
coefficients were computed using the “best model set,” defined as the set of models for
which delta AIC was less than six (Burnham & Anderson, 2002). All possible models were
averaged to identify the most important variables, using the importance score in the
MuMIn package (Kamil, 2013) of R v.3.4.2. We ranked all variables selected by the
average model and then considered those variables with a higher relative importance score
(i.e., >0.7) as determinant variables for total lifted load. We further assessed whether there
were level-two interaction effects on maximum load-lifting flight performance and then
selected those most important variables underlying variance in total lifted load by
identifying those with relative importance scores >0.7. Finally, we constructed a SEM in
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the lavaan package (Rosseel, 2012) of Program R v.3.4.2, including all combinations of
those important variables as identified by AIC scores and selected the best model with a
chi-square test, the root mean square error of approximation (RMSEA), the standard root
mean square residual (SRMR), and the comparative fit index (CFI). We assumed a
well-fitted model to have a p-value >0.05 for the chi-square test, a RMSEA and SRMR test
with values less than 0.1 and a CFI close to 1 (i.e., >0.9). The relationships between
measured variables and total lifted load were represented by regression coefficients; all path
coefficients used standardized estimates.

RESULTS
Total lifted load was positively correlated with diverse traits, including body mass, wing
area, the masses of flight muscle, heart, lung, liver, stomach and length of gut (Table 1).
Among all measured variables, variation in total lifted load was best explained by
variability in bill length, stomach mass, gut length, wing area and flight muscle mass
(Table 2). However, sex and other morphological (body mass, aspect ratio), internal
anatomical (masses of heart, lung, and liver), and kinematic features (wingbeat frequency
and wing stroke amplitude) did not significantly predict variation in maximum load-lifting
capacity (Table 2). Specifically, heavier flight muscles, a greater stomach mass, larger
wings and a longer gut but also shorter bills were strongly correlated with total lifted load.
Among these five variables, flight muscle mass, bill length, wing area and stomach mass
were the four most important factors predicting total lifted load when all level-two
interactions were considered (Table 3).

Table 1 Measured variables for morphology, internal anatomy, kinematics, and load-lifting
performance for Eurasian tree sparrows (Passer montanus) as averaged for the two sexes, and
their correlations with total lifted load (Lifted mass + body mass).

Category of variable Variable Mean SD Correlation with
total lifted load

r r 2

Morphology Body mass (g) 19.216 1.194 0.539*** 0.291

Bill length (mm) 8.558 0.497 −0.051 0.003

Wing area (cm2) 80.678 6.581 0.362** 0.131

Aspect ratio 2.229 0.211 −0.094 0.009

Internal anatomy Flight muscle mass (g) 2.450 0.250 0.669*** 0.448

Heart mass (g) 0.187 0.026 0.376** 0.141

Lung mass (g) 0.097 0.017 0.258* 0.067

Liver mass (g) 0.345 0.061 0.264* 0.07

Stomach mass (g) 0.323 0.075 0.325** 0.106

Gut length (mm) 136.395 7.297 0.262* 0.069

Kinematics Wingbeat frequency (Hz) 5.154 0.486 0.171 0.029

Wing stroke amplitude (�) 151.389 3.704 0.079 0.006

Load-lifting performance Maximum load (g) 26.027 4.592

Total lifted load (g) 45.243 5.124

Note:
Asterisk represents significant correlation between each variable and total lifted load. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Wang et al. (2019), PeerJ, DOI 10.7717/peerj.8048 5/12

http://dx.doi.org/10.7717/peerj.8048
https://peerj.com/


Table 2 Model-averaged statistical results in the best model set (delta AIC < 6) correlating total lifted
load by Eurasian tree sparrows (Passer montanus) with morphological, physiological, and kinematic
parameters.

Response variable Estimate Adjusted SE 95% CI Relative importance

(Intercept) 0.006 0.095 −0.180, 0.191

Bill length −0.259 0.090 −0.436, −0.083 1.00

Flight muscle mass 0.579 0.130 0.324, 0.834 1.00

Stomach mass 0.252 0.100 −0.057, 0.447 1.00

Wing area 0.262 0.133 0.001, 0.523 0.96

Gut length 0.148 0.086 −0.021, 0.317 0.70

Heart mass −0.136 0.108 −0.349, 0.076 0.48

Wingbeat frequency 0.105 0.088 −0.067, 0.277 0.46

Aspect ratio 0.146 0.140 −0.129, 0.421 0.43

Body mass 0.131 0.117 −0.099, 0.361 0.42

Lung mass −0.083 0.102 −0.283, 0.117 0.33

Wing stroke amplitude 0.053 0.087 −0.117, 0.223 0.28

Sex −0.050 0.217 −0.476, 0.376 0.25

Liver mass 0.026 0.102 −0.173, 0.225 0.25

Note:
Variables with relative importance score >0.7 are shown in bold type and were included in further analysis.

Table 3 Model-averaged statistical results in the best model set (delta AIC < 6) correlating total lifted
load of Eurasian tree sparrows (Passer montanus) with all selected variables (see Table 2), and with
their level-two interactions.

Variable Estimate Adjusted SE 95% CI Relative importance

(Intercept) −0.011 0.086 −0.18, 0.158

Bill length −0.262 0.088 −0.434, −0.089 1.00

Flight muscle mass 0.611 0.098 0.419, 0.803 1.00

Stomach mass 0.223 0.085 0.056, 0.389 1.00

Wing area 0.180 0.089 0.006, 0.354 1.00

Gut length 0.113 0.091 −0.066, 0.291 0.69

Bill length × Flight muscle mass 0.142 0.095 −0.045, 0.329 0.57

Flight muscle mass× Stomach mass −0.109 0.103 −0.311, 0.092 0.38

Bill length × Stomach mass 0.061 0.090 −0.115, 0.238 0.26

Flight muscle mass × Wing area −0.040 0.085 −0.207, 0.127 0.21

Stomach mass × Wing area −0.035 0.087 −0.206, 0.137 0.20

Bill length × Wing area −0.015 0.127 −0.263, 0.234 0.20

Flight muscle mass × Gut length 0.065 0.097 −0.126, 0.255 0.17

Bill length × Gut length 0.057 0.090 −0.12, 0.233 0.15

Gut length × Stomach mass −0.034 0.102 −0.233, 0.166 0.13

Gut length × Wing area 0.011 0.103 −0.192, 0.214 0.10

Note:
Variables with relative importance score >0.7 are shown in bold type and were included in further analysis.
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The best SEM consisting of the four most important variables, including flight muscle
mass, bill length, wing area and stomach mass, was well-fitted (χ2 = 3.21, df = 2, p = 0.201;
RMSEA = 0.092, SRMR = 0.071, CFI = 0.983; see Fig. 1). Total lifted load was positively
correlated with sizes of the flight muscles and wings, and with stomach mass, but was
negatively correlated with bill length (Table S1; Fig. 1). We also found masses of the
flight muscle to be positively correlated with both bill length and stomach mass (Table S2;
Fig. 1).

DISCUSSION
Many external morphological and internal anatomical measurements are positively
correlated with maximum load-lifting performance in Eurasian tree sparrows (Table 1),
but the strongest correlates are a greater flight muscle mass, larger wings, heavier stomach
and a shorter bill (Table 3), all of which are independent of sex. Interspecifically for birds,
wingbeat frequency and wing stroke amplitude are key flight kinematic variables for
production of aerodynamic power output, along with larger wings (Chai & Dudley, 1999;
Hedenström, 2002; Altshuler et al., 2015). By contrast, we here determined that wingbeat
frequency and wing stroke amplitude were not strong intraspecific determinants of
maximum load-lifting capacity. Variation among individuals in both wing stroke
amplitude and wingbeat frequency during maximum load-lifting was small (i.e., less than
3% and 10%, respectively; see Table 1). These results are similar to previous findings in
Eurasian tree sparrows showing that wing stroke amplitude during maximum load-lifting
did not vary across elevational gradients (Sun et al., 2016). Wingbeat frequency did not
affect the maximum load-lifting capacity for the lowland populations studied here but did
increase in intraspecific comparisons of populations across an altitudinal gradient
(Sun et al., 2016). Wingbeat frequency is thus a potential determinant of maximum

Bill length

Stomach mass

Flight muscle 
mass

Wing area

Total lifted 
load

0.092

0.202

0.336 **

0.253 *

-0.045

0.127

N = 72
Χ 2 = 3.210
P = 0.201

RMSEA = 0.092
SRMR = 0.071
CFI = 0.983

P < 0.05

P > 0.05

Figure 1 The relationships among morphological parameters and their effects on total lifted load for
Eurasian tree sparrows (Passer montanus) in the best-fit structural equation model (SEM). Total lifted
load was positively correlated with wing area, flight muscle mass, and stomach mass, and negatively
correlated with bill length. Root mean square error of approximation (RMSEA); standard root mean
square residual (SRMR); comparative fit index (CFI). �p < 0.05; ��p < 0.01 and ���p < 0.001.

Full-size DOI: 10.7717/peerj.8048/fig-1
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load-lifting capacity that can vary interspecifically among birds, and that may covary with
other morphological traits such as body mass and wing area, but that is relatively invariant
within individual populations of these free-living passerines during maximum load-
lifting flight. Other flight kinematic parameters, such as downstroke: upstroke ratio, wing
angle of attack, and stroke plane angle, may also vary among individuals in maximum
load-lifting and warrant further investigation.

In volant taxa, flight muscle mass is an important feature contributing to maximum
force production (Plateau, 1865; Marden, 1987). Similarly, maximum load-lifting ability
(and likely power production as well) in Eurasian tree sparrows is positively influenced by
more massive locomotor muscles, but also by wing area (Fig. 1; Table 3; Lind & Jakobsson,
2001). In general, sustained power production by flight muscle can be constrained by
interactions between oxygen supply, substrate availability and muscle demand from other
physiological systems, e.g., the digestive organs or respiratory and circulatory systems
(Suarez et al., 1997; Nespolo et al., 2018). However, flight performance during maximum
load-lifting by sparrows showed only weak correlations with the sizes of the heart, lung, gut
and liver, but did show a positive correlation with stomach mass (see Table 3; Fig. 1).
In short-duration flights, oxygen and energy supply may not limit such performance,
which may be largely anaerobic in character (Altimiras et al., 2017). Alternatively,
aerodynamic force production by the wings can directly constrain whole-animal vertical
load-lifting (Chai, Harrykissoon & Dudley, 1996), as opposed to limits on power
production by the flight muscle. Eurasian tree sparrows are non-migratory and also are a
human commensal species (Del Hoyo et al., 2017) and as such are much less engaged in
substantial lipid loading or digestive tract reduction (as characterizes many long-distance
migrants; e.g., Piersma & Gill, 1998). Larger digestive organs may thus indirectly correlate
with better burst flight performance in non-migratory avian species. Shorter bills were
correlated with higher maximum load-lifting capacity in Eurasian tree sparrows when
effects of variable flight muscle mass were incorporated (Table 3; Fig. 1), which may reflect
unmeasured features of foraging behavior on flight ability, such as differential foraging
strategies associated with bill size and matched by changes in flight performance. Bill size
also influences heat transfer capacity in some birds (Ryeland, Weston & Symonds, 2017;
Tattersall, Arnaout & Symonds, 2017) and can limit the suitability of prey items and thus
foraging styles (Cruz et al., 2001), so that multiple aspects of bill size may be under
selection.

Lift production from the wings of Eurasian tree sparrows may increase with aspect ratio,
as in hummingbirds (Kruyt et al., 2014), but a detailed aerodynamic analysis of sparrow
takeoff relative to wing design is not available. Although the Eurasian tree sparrow is
typically thought of as a sexually monomorphic species, females did have shorter wings
and a reduced wing area relative to males (Monus et al., 2011; Sun et al., 2016, 2017).
However, sex was not a determinant of maximum load-lifting capacity, indicating that
female sparrows have comparable flight performance relative to males in spite of their
smaller wings. How natural selection has enabled females to achieve similar lifting ability is
intriguing and warrants further investigation.
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CONCLUSIONS
Maximum load-lifting flight performance of individual Eurasian tree sparrows was
correlated with multiple morphological factors, including flight muscle mass, wing and bill
lengths, wing area and stomach, but was unrelated to sex, various internal anatomical
features, and measured wingbeat kinematics. Hypothesized effects of the sizes of flight
muscles and wings on maximum load-lifting capacity were confirmed. Kinematic features
(wingbeat frequency and wing stroke amplitude) showed no such intraspecific effects,
whereas a larger bill and a smaller stomach compromised flight performance. Overall, the
characterization of individual variability in flight performance in a free-living passerine
indicates subtlety of interactions among multiple morphological features, some of which
differ from those that have been identified interspecifically among birds. Eurasian tree
sparrows are also social flockers and selection on escape performance from the ground
may depend in part on group response to a perceived threat. The extent to which vertical
accelerations are used in this behavior, and the extent to which other aspects of
maneuverability (e.g., rotational ability) are important remain to be investigated. As a
human commensal and hyperabundant bird species across the Eurasian continent, such
effects are readily amenable to future study under field conditions.
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