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Abstract: We argue that if black hole entropy arises from a finite number of underlying

quantum states, then any particular such state can be identified from infinity. The finite

density of states implies a discrete energy spectrum, and, in general, such spectra are

non-degenerate except as determined by symmetries. Therefore, knowledge of the precise

energy, and of other commuting conserved charges, determines the quantum state. In

a gravitating theory, all conserved charges including the energy are given by boundary

terms that can be measured at infinity. Thus, within any theory of quantum gravity, no

information can be lost in black holes with a finite number of states. However, identifying

the state of a black hole from infinity requires measurements with Planck scale precision.

Hence observers with insufficient resolution will experience information loss.
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1. Introduction

There are two central questions concerning the quantum physics of black holes. First, why

do classical black holes apparently have a finite entropy equal to a quarter of the horizon

area? Second, does information escape from an evaporating black hole, and if so, how?

One might suppose that the answers to these two questions would require separate inputs

from new physics. However, here we argue that any quantum mechanical theory of gravity

that explains the finite entropy of black holes as the coarse grained description of a large

number of microstates must also permit measurement of these states at infinity.

The basic argument is simple. If a black hole represents a finite number of states,

N ∼ eSBH , then the energy spectrum of the black hole must be discrete. In general

such discrete spectra are quantum-mechanically non-degenerate, except as determined by

symmetries of the system. Knowledge of the precise energy, along with the other commuting

conserved charges, thus determines the quantum state. But since, in generic gravitating

theories, charges (such as the energy) are given by boundary terms, this leads to the

remarkable conclusion that complete knowledge of the black hole state is contained in the

asymptotic region1.

Below we elaborate upon this observation, and argue that the relevant asymptotic

measurements will always involve either very short distances that vanish as ~ → 0 or

very long time scales that diverge in this limit. Either way, a conventional local, classical

observer cannot measure the internal state of a black hole, although the information is

present in the asymptotic region, and can be measured by observers with more sensitive

instruments. We also explore why “internal observables” containing information inacces-

sible to the asymptotic observer do not exist, despite their apparent presence in effective

field theory.

1For some (singular) extremal black holes, this conclusion is also implied by, but not dependent on,

the recent observation that these spacetimes admit a classical moduli space of non-singular, horizon-free

supergravity microstates which respond to most probes as if they are singular black holes [1, 2, 3, 4].
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2. Information recovery

Uncharged black holes in asymptotically flat space do not come to equilibrium with their

radiation and eventually evaporate completely. Thus, in order to discuss information re-

covery from black holes it is helpful to begin by placing black holes “in a box” so that an

equilibrium configuration of a black hole microstate accompanied by a bath of radiation

can exist. The covariant method of achieving this is to consider black holes in a universe

with a negative cosmological constant.

An infrared cutoff, such as the one produced by the curvature arising from a negative

cosmological constant, removes the obvious continuum in the spectrum of fields associated

with translational symmetry. Thus, also assuming that black holes have a finite number of

microstates, the entire gravitating system has a finite number of states below any energy E.

Due to the rapid growth of the Bekenstein-Hawking entropy, one expects that at sufficiently

high energies the entropy of such systems is dominated by black holes. The typical state

then involves a very heavy black hole in equilibrium with a small amount of radiation.

We will argue that complete information concerning the microstates of such black

holes is available in the asymptotic region of spacetime. The central point is that, in a

generic gravitating system, the energy is determined at infinity. As with the familiar ADM

energy in asymptotically flat spacetimes, bulk contributions to the energy vanish due to

the gravitational constraints. Thus, the energy is given entirely by a surface term.

We begin by discussing black holes in energy eigenstates. In quantum mechanics,

a discrete spectrum is generically non-degenerate, except as determined by symmetries.

Thus, a precise measurement of the energy (and other conserved charges) of a black hole

spacetime is sufficient to identify any particular energy eigenstate.

However, such a measurement will require precision that grows exponentially in 1/~.

To see this, we temporarily ignore any additional conserved charges. Let us now suppose

that a measuring device with an energy resolution ∆E interacts with a gravitating system

of total energy E and entropy S(E). By the usual statistical mechanical understanding of

entropy, this means that the number of states between E and E + ∆E is ∼ eS . Since our

system has a non-degenerate spectrum, the energy level spacing between E and E + ∆E

must be

δE ∼ ∆E e−S . (2.1)

In the black hole dominated regime, the density of states is given by

dN

dE
≈
deSBH

dE
= eSBH

dSBH

dE
, (2.2)

where SBH , the black hole entropy, grows as some power of the energy E. A measuring

device with an energy resolution ∆E will interact with

N(E)∆E ≈ eSBH × ∆E
dSBH

dE
(2.3)

states. The associated entropy,

ln(N(E)∆E) = SBH + ln(∆E) + ln

(

dSBH

dE

)

, (2.4)
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is same as the entropy of the black hole up to logarithmic corrections. Thus the coarse-

grained entropy measured by a device with resolution ∆E will equal the black hole entropy

to leading order.

Choosing ∆E to be any power law in E provides a coarse-graining which gives rise to

the large entropy associated with the black hole. Nevertheless, measuring the energy of the

state with a much greater precision δE ∼ exp(−SBH) would determine either a single state,

or a small number of degenerate states which can be identified through measurements of

other conserved charges. However, the Heisenberg uncertainty principle dictates that any

such measurement must extend over an enormous length of time:

δt ∼
1

δE
∼ exp(SBH). (2.5)

In the classical limit, ~ → 0 or ℓp → 0, this timescale diverges exponentially because

SBH =
A

4 ℓ2p
+ corrections . (2.6)

The timescale (2.5) is comparable to the system’s Heisenberg recurrence time, over which a

generic state in the interval ∆E develops a matrix element of order one with any other such

state2. It is also the timescale over which large thermal fluctuations may occur, perhaps

replacing the black hole by a ball of expanding hot gas. While the the gas will re-collapse

to form another black hole on a (relatively) short timescale, in the meantime it is plausible

that the details of the black hole’s internal state are clearly visible from infinity. Thus, in

retrospect it is perhaps not surprising that an experiment lasting a time δt ∼ exp(SBH)

can identify the internal state of a black hole3.

We can now consider the possibility of additional conserved charges that commute

with the energy. Charges associated with gauge symmetries (e.g., angular momentum,

electromagnetic charges etc.) can clearly be measured at infinity in the usual ways. While

any charges that are not coupled to long range gauge fields could result in degeneracies that

cannot be disentangled, such degeneracies will be small because representations of typical

symmetry groups do not grow exponentially quickly4. The dominance of the energy can

also be seen from the fact that, in black hole thermodynamics, fixing both the mass M and

taking the angular momentum to vanish leads to the same entropy (to leading order) as

specifying only the mass M and leaving the angular momentum unconstrained. Thus the

overwhelming majority of the information is available at infinity in the energy spectrum.

So far we have discussed black holes in energy eigenstates. We now turn to general

superpositions

|ψ〉 =
∑

n

an|En〉 . (2.7)

2The importance of recurrence times in discussions of gravitational entropy has been highlighted in, e.g.,

[5, 6, 7, 8, 9, 10]. The Heisenberg time is discussed in [10].
3It has been shown that the states of certain (singular) black holes can be detected by asymptotic

measurements made over such exponentially long timescales [4].
4In fact, such charges can sometimes be measured from infinity. Examples include the asymptotic

detection of black hole “hair” arising from underlying discrete symmetries (e.g. [11]), supersymmetry [4]

and integrability [12].
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As is always the case for quantum systems, one cannot experimentally determine the values

of all the coefficients an given only a single black hole on which to perform measurements.

Thus, to demonstrate whether the information is available at infinity, we should ask whether

one can measure the an to arbitrary accuracy given a large number of black holes prepared

identically in the state |ψ〉. The frequency with which measurement of the energy gives the

result En yields the magnitudes |an|
2. What remains is to obtain phase information. As

usual, phase information can be associated to measurement of an operator B which does

not commute with the energy, i.e., time-dependent operators. Examples of such observables

are boundary values of fields at asymptotic infinity.

For simplicity, let us choose the state |ψ〉 to be a superposition of only two energy

eigenstates |ψ〉 = a1|E1〉 + a2|E2〉. If we now repeatedly measure the value of B we obtain

its eigenvalues Bn with some frequency. Consider two such eigenvalues B1 and B2 and the

associated eigenstates

|B1〉 =
∑

n

b1,n|En〉 ,

|B2〉 =
∑

n

b2,n|En〉 . (2.8)

The coefficients bm,n are determined by the underlying theory; we take to be known quanti-

ties. The relative frequencies of measurement of B1 and B2 are determined by the overlaps

|〈B1|ψ〉|
2 = |a1 b1,1 + a2 b1,2|

2

|〈B2|ψ〉|
2 = |a1 b2,1 + a2 b2,2|

2. (2.9)

The ratio of these two frequencies depends on both the magnitudes and the phases of a1 and

a2. The phase dependence arises because [B,H] 6= 0 and therefore the bi,j are generically

non-zero. Since the bi,j are known, and the magnitudes |ai| were already determined by

measurements of the energy, the relative frequency of B1 and B2 allows us to ascertain

the relative phase of a1 and a2. For a more general superposition |ψ〉, repeating similar

measurements fully determines the ray in Hilbert space. In this sense, full information

about the microstate is available outside the black hole5.

The chief difficulty in extending the above reasoning to asymptotically flat spacetime is

that the translational symmetry results in continuous spectra. We will nevertheless assume

that it is possible to interpret the entropy of a black hole in asymptotically flat space in

terms of a finite number of microstates, perhaps by explicitly considering a black hole in

a box, or by otherwise restricting attention to the local region surrounding the black hole.

In this region we can consider both the black hole and the thermal atmosphere that it

generates as it evaporates. Within this framework, there should be an approximate notion

of energy and we should again expect it to have a discrete, non-degenerate spectrum. Given

5The picture of information recovery offered here differs significantly from the idea explored in [5, 13, 8,

9, 10] that a summation over multiple classical saddle points with the same asymptotic boundary conditions

might allow for information recovery. Indeed, [8, 9, 10] showed in explicit examples that this mechanism

was insufficient. Rather, our perspective is consistent with [3], where information is lost simply by the

erasure of quantum mechanical detail in semiclassical measurements.
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this discreteness, measurements analogous to those described above will identify the black

hole microstates.

3. The absence of an unobservable interior

We have argued that, in any quantum mechanical theory of gravity in which black holes

have a finite number of internal states, one expects all information about the state to

be available near infinity. This conclusion can be stated in terms of the commutator of

operators: because the spectrum of the Hamiltonian is non-degenerate, all observables

which commute with the Hamiltonian are in fact functions of the Hamiltonian itself.

There may appear to be a tension between this observation and the fact that, in

classical general relativity, there are independent observables localized inside the black hole.

Because the interior is causally separated from infinity, such observables commute with all

asymptotic quantities. However, in our picture this is an artifact of the strict classical limit.

Recall that the classical description of black holes in the ~ → 0 limit replaces very long time-

scales of order e1/~ by infinity. Thus probe measurements of the sort necessary to resolve the

states of a black hole are unavailable in the classical limit. As such, the usual picture of the

black hole with a causally disconnected interior is the correct effective classical description.

Even when ~ 6= 0 this remains the effective description for semiclassical observers lacking

the measurement precision necessary to resolve the microstates.

Similarly, one can readily imagine that for some class of operators {O}, the com-

mutators with Hamiltonian H simply vanish rapidly in the classical limit, leading to an

approximate notion of a causally separated region. However, in our picture none of these

commutators vanishes exactly for ~ 6= 0. How might this be explained in semiclassical

terms? Consider local quantum field theory on a fixed black hole spacetime. In this con-

text, there are observables L that are localized inside the black hole. To promote these

operators to observables in quantum gravity one must make them diffeomorphism invari-

ant. Procedures to achieve this, such as integrating L suitably over spacetime, generally

lead to non-local operators which, when evaluated on particular spacetimes, receive con-

tributions only from a small region [14]. In the classical limit this region will be contained

inside the horizon. However, at finite ~ there is always some spread, which plausibly leads

to non-vanishing commutators with operators near infinity. This may be related to rare

large fluctuations of the black hole to a thermal-gas like state which are expected over the

recurrence time (2.5) and which cause the horizon to be ill-defined when ~ 6= 0.

4. Discussion

We have argued that if black hole entropy arises from a finite number of underlying quantum

states, then, in any quantum mechanical theory of gravity, the information needed to

identify a particular microstate is available at infinity. We used the fact that, in a generic

gravitating theory, the energy is given by a surface term at infinity. While new physics is

needed to explain why a given black holes is associated with a finite number of states, no
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further new physics is required to make information about black hole states available at

infinity.

Although the information is available in our sense, there may be practical or even in-

principle limitations to recovery of the information by a physical apparatus. For example,

in asymptotically flat space, one must also deal with the fact that black holes represent

broad resonances as opposed to sharp energy eigenstates [15]. Even for stable black holes

it is clear that, in order to separate black hole microstates, a measurement apparatus will

itself require a large number of internal states6. In order to minimize back-reaction of such

a system, one would need to either dilute it in space, or move it far away. Either way, the

interactions of the apparatus with the black hole would be weakened, making the practical

task of state identification more difficult.
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