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Abstract 
 

Elucidating the Effects of Proteome Regulation Under Caloric Restriction 
 

by 
 

Hector H Palacios 
 

Doctor of Philosophy in Metabolic Biology  

University of California, Berkeley  

Professor Marc K. Hellerstein, Chair 

 
Cellular energy homeostasis contributes to normal cell growth, functioning as a 
biological checkpoint of life. There have been numerous genes and metabolic 
pathways known to regulate the energy status of the cell, and how they contribute to 
cellular maintenance is of great interest; Caloric Restriction (CR) takes advantage of 
these metabolic pathways, retarding the aging process by slowing down the metabolic 
rate. However, despite the many studies on cellular energy homeostasis, much work 
still needs to be done. 
 
Many of the applications of CR in various organisms have established life-extending 
benefits by regulating age-related diseases through convergent mechanisms. In fact, a 
number of signaling pathways, as well as master regulator proteins, act through these 
mechanisms to interact and regulate protein expressions. CR, as well as other lifespan 
extending interventions such as rapamycin treatment and inhibition of insulin growth 
factors, are subject to translational regulation. Increased caloric intake and obesity 
related comorbidities, in turn, can also work through these pathways to induce 
translation and cause disease, indicating the role of protein synthesis in health and 
disease is of great importance. 
  
Stable isotope-labeling proteomics are a powerful strategy that enable the assessment 
of proteome-wide dynamic fluxes in energy regulating biological interventions such as 
CR and mimetics. Using mass spectrometric (MS) strategies has afforded scientists a 
never before seen understanding of how proteome dynamics stand at the center of 
phenotype, physiologic adaptation, and disease pathogenesis. Through this approach, 
researches have been able to measure protein synthesis and turnover rates, both for 
targeted proteins an unbiased screening.  
 
In this dissertation, I present a thorough review of our current understanding of 
metabolic pathways in the context of lifespan extension interventions like CR. I also 
discuss the underlying principles for measuring protein dynamics, focusing on 
metabolic labeling with 2H2O (heavy water) combined with tandem MS analysis of 
mass isotopomer abundances. Next, I demonstrate its application in four separate 
studies. First, I use 2H2O labeling in CR mice in a time-course to identify whether the 
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protein turnover rate slowdown occurs immediately, gradually, or within a discreate 
time period. Next, I explore separately whether two potential CR mimetics, exercise 
and metformin administration, are able to slow down the fractional synthesis rate of 
proteins in a manner comparable to CR.  Finally, I discuss a potential CR modulator in 
Nitric Oxide, a short-lived bioactive molecule known to be induced under CR 
conditions and reduced during aging and disease. Overall, the work reported in this 
dissertation demonstrates how global proteome dynamics require NO for proper 
regulation, CR mimetics influence the proteome in similar mode, aerobic exercise has 
very different effects and CR effects on proteome fluxes are activated within a narrow 
and discrete time period.
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1. INTRODUCTION 
 

Regulation of energy homeostasis contributes to balanced cell growth, a key aspect of 
metabolic biology. In chapter one, I review how a decrease in caloric intake without 
malnutrition, henceforth understood and referred to as CR, leads to altered metabolic 
pathways that increase lifespan and improve health. I also discuss various lifespan 
extending interventions that interact with CR, and how they deregulate proteome 
balance by suppressing its synthesis rates.  
 
Dramatic energy changes require coping mechanisms in order to manage metabolism 
for optimal substrate control. During chronic CR, the metabolic flexibility of the cell 
allows for the deactivation of nutrient sensors and the activation of energy status 
sensors 1. CR acts on numerous signaling pathways to regulate growth, oxidative stress 
response, damage repair, inflammation, autophagy, and significantly proteostasis 2,3, 
leading to the slowdown of the aging process 4–6. These pathways then have the 
capacity to exert an analogous and combinatorial regulatory effect on aging by 
modulating protein synthesis 5,7 through effectors of suppression 7,8 and maintenance 
9,10. In here, I will discuss the various aspects of cell metabolism regulated under CR 
and its mimetics. We will first discuss the major pathways regulated under these 
interventions. We then discuss the intersecting role of these pathways to protein 
regulation. Along the way, we consider the major role of global protein regulation to 
human health and disease.  

 
2. CELL METABOLISM UNDER CR 

 
2.1. CR: The fountain of youth 

 
The ancient Greek historian Herodotus talked of a society that lived during the first 
millennium BC in what is now modern-day Somalia. These people were said to be 
very special, as most lived to be one hundred and twenty years old and beyond. In 
their land there was also a unique fountain, which they claimed, provided them their 
exceptional longevity. The water had uncommon properties that gave it the texture of 
oil on the skin and the scent of violets. Their diet was also quite peculiar - they ate 
roasted meat and drank only milk 11. In these writings, Herodotus fascinatingly 
conceptualizes not only the idea of the fountain of youth but perhaps one of the first 
links between diet, nutrition and longevity.  
 
Over a century ago, Rous published one of the first scientific observations on the 
health benefits of CR through his experimentations on the impact of underfeeding 
laboratory animals on transplanted and induced tumors 12,13. Almost a decade later, a 
group led by Osborne et. al. described one of the first evidence of lifespan extension in 
a murine model. They reported that although female rats were fed a uniform 
experimental diet, those experiencing stunting lived much longer - up to 40 months of 
age 14. Interest in growth rates and longevity soon followed 5. However, it was not 
until 1935 that McCay et al. linked extended lifespan with CR by showing that 40% 
food restriction in rats throughout their life doubled their lifespan 15. Since then, many 
reports on the effects of CR on longevity have been reported 16. For example, Fischer 
344 rats under 60% CR initiated at 6 months of age were reported to have a markedly 
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increased in lifespan 17. Another report using a murine model demonstrated the effects 
of CR starting in middle age (12- to 13-month-old mice) and concluding that the 
restricted diet group had 20% increased maximum lifespan 18.  
 
While murine models demonstrated early and powerful evidence on the effects of CR 
and longevity, many other experimental models have been put to the test 5. A 
successful approach to lifespan studies has been the use of short-lived organisms like 
Saccharomyces cerevisiae (commonly referred to as yeast). In this system, lifespan 
can be extended by limiting glucose or by reducing the activity of the glucose-sensing 
cyclic-AMP-dependent kinase (PKA) 19,20. In genetic studies, it has been shown that 
ageing in yeast is regulated by SIR2, with its overexpression extending lifespan and its 
deletion shortening it 21. Aging yeast cultured under CR conditions (0.2% glucose) 
lived significantly longer than yeast undergoing chronological aging under non-CR 
(2% glucose) 22.  
 
Another short-lived model is Caenorhabditis (C.) elegans, with which various 
strategies have been approached to induce CR effects. In general, bacterial food 
deprivation has been used as a means of inducing CR, and transient CR has been 
shown to confer long-term benefits including stress resistance and increased longevity 
23. The addition of resveratrol to the medium has also been show to extend life-span 24, 
and even gradients of bacterial concentrations have been explored 25. Indeed, the 
capacity to vary the nutrient regimes of CR in this model have been shown to result in 
increased longevity to various degrees. An effect believed to be mediated through 
nutrient-sensing systems 24–26.  
 
First reported in 1971, the quantitative effects of CR on Drosophila melanogaster have 
been demonstrated, with adult flies maintained on an ad-libitum but diluted diet living 
longer than the controls 27. This is an interesting approach as flies are usually kept on 
an agar-based media that can be manipulated to combine different nutrients like yeast, 
sugar or molasses, cornmeal, and other carbohydrates 28–30. Interestingly, Staats et. al. 
31 used a diet based on sucrose, corn meal, and yeast supplemented with resveratrol to 
study longevity and concluded that the resveratrol did not affect lifespan nor other 
longevity-associated markers. It should be noted that CR associated longevity in flies 
has been connected with changes in the ratio of consumed protein relative to 
carbohydrates 30 as well as genes that modulate stress resistance 32–34. Genetic studies 
on flies have shown that longevity increases as a result of the over-expression of genes 
involved in stress response such as the chaperone hsp70 35,36 and insulin-modulating 
gene tequila 37. 
 
Rodents are another shorter-lived species that is most commonly used as a model 
organism in human disease research 38 and one of the most widely used mammalian 
research models overall. The use of mice as the prototypical organisms to study human 
biology is further based on the genetic and physiological similarities between the 
species 39. The mouse genome is only about 14% smaller than the human genome 
(~2.5 Gigabasepair [Gbp] compared with 2.8 Gbp) 40 and encodes a similar number of 
genes (~30,000 compared with ~25,000 in humans) 36,40.  
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The beneficial effects of CR on lifespan and age-related diseases have also been 
reported for longer-lived species, including rhesus monkeys (Macaca mulatta) at the 
Wisconsin National Primate Research Center (WNPRC) 41,42. In this study, a moderate 
CR regimen (30%) slowly introduced to adults (7-14 years of age) lowered the 
incidence of aging-related deaths. They observed improved outcome in three major 
age-related conditions: neoplasia, cardiovascular disease (CVD), and glucoregulatory 
impairment. Many of the benefits observed came from decreases in blood insulin and 
glucose, which decreased the development of insulin resistance and diabetes. They 
also saw improved outcome from risk factors for atherosclerosis, lower T3 levels and 
metabolic rate, decreased oxidative damage and inflammatory markers (TNFα, IL-6, 
C-reactive peptide). The rhesus monkeys also have delayed senescence of the immune 
system, decreased loss of gray matter (suggested as a marker for brain atrophy), and 
decreased cancer rates 41,42.  
 
In a conflicting study at the National Institute on Aging (NIA), young and older rhesus 
monkeys under a CR regimen were reported to not have improved survival outcomes 
43. This was in stark contrast with the study at the WNPRC, which had previously 
reported an improved survival under CR (30%) initiated in adult rhesus monkeys (7–
14 years) 41–43. The NIA study performed CR (25%) and showed beneficial health 
effects but not survival. Possible explanations suggested are from the differences in the 
studies, where the composition of the diets utilized was significantly different (Table 
1-1). Other possibilities are that at the NIA, the controls were not fed ad libitum. The 
animals also had greater genetic diversity by mixing groups from India and China and 
some of their monkeys had also previously been used in military research. At the NIA, 
the monkeys were also kept in small cages and the females (both the control and CR) 
died before the males 43.  
 
Grey mouse lemurs (Microcebus murinus) are lemurid primates reported to live up to 
15 years. In a study by Pifferi et.al. 44, they exposed mouse lemurs to CR (30%) and 
observed a 50% increase in lifespan (median survival from 6.4 to 9.6 years). This was 
also accompanied by reduced age-associated diseases and improved brain white matter 
but significantly not grey matter.  
 
The CR effects on lifespan in humans has been somewhat inconclusive, as 
experiments in longer-living organisms like humans and other primates are more 
difficult to conduct. Nevertheless, some positive outcomes have been glanced in 
different studies. For example, the Vallejo study 45,46 tested the effects of CR without 
malnutrition in nonobese humans by an alternate day feeding approach in 120 men. 
Half of the participants in the control group were ad libitum, while the other half 
underwent CR (~35%) by receiving an average of 1500 kcal per day for 3 years. 
Redman, in a follow up review, observed that while the initial report was short, post 
hoc analyses on hospital admissions rates revealed a decrease of approximately 50% 
on the CR group 45. 
 
One of the larger trial efforts was the Phase 1 Comprehensive Assessment of the 
Long-Term Effects of Reducing Intake of Energy (CALERIE) studies, sponsored by 
the US National Institutes of Health (NIH). The randomized, controlled trial tested the 
effects of 2 years of CR on metabolism in more than 200 healthy, non-obese adults 47–
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49. In a clinical report by Redman et.al. 45,50, they used 53 non-obese human subjects 
(34 CR and 19 control) to test the effects of endocrine mediators and energy 
expenditure (EE) on a CR diet over 2 years. They showed that under CR (15%), 
subjects had a weight loss of 8.7 kg compared to controls who gained 1.8 kg. 
Furthermore, the CR group had an EE (measuring during sleep or over 24 hours) of 
approximately 80–120 kcal/day. This was reported to be lower than expected on the 
basis of weight loss, indicating sustained metabolic adaptation over the course of the 
trial 50. 
 
Of note, there has been great interest in understanding centenarian populations. A 
well-documented group in this category is found in the Japanese island of Okinawa. 
Centenarians represent a rare phenotype, appearing in ~10 to 20 per 100,000 persons 
in most industrialized nations. However, in Okinawa centenarians appear as high as 
~40 to 50 per 100,000 persons in Okinawa 51. The Okinawans have a unique identity, 
dialect, social organization and religion, as well as dietary habits 51,52, whose 
nutritional cues are considered as a mild and consistent CR (~10%–15%) 53,54. 
 
While CR has many positive effects that lead to similarly positive outcomes, it is 
important to mention some of the negative effects described. Of note is the increased 
hunger and temperament effects like aggression, lethargy and anxiety observed in the 
rhesus monkeys 43. In various organisms there is also suggested diminished libido and 
fecundity though this has been contested 55. CR has also been shown to exhibit adverse 
effects on certain organs and systems, including immunosuppression 56. However, a 
study on the effect of CR (2 years duration) on mood, quality of life, and sexual 
function in healthy nonobese adults observed that those under CR had significantly 
improved mood, reduced tension, and improved general health and sexual drive as 
well as improved sleep 57.  
 
Many efforts have been made to tease out the modulatory effects of CR on health and 
lifespan. This has proved an immense challenge, however, since experimental models 
have not always been appropriate and contradictory outcomes have been reported. 

 
Table 1-1. Summary of differences in diet between the NIA and WNPRC non-
human primate CR studies. 

 
2.2. The role of CR on aging 

 
Understanding how the rate of aging can be manipulated makes establishing a 
connection between CR and lifespan extension of great interest. Studies on CR have 
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yielded results of increased maximal lifespan by up to 50% 44. This brings to question 
how we can slow down human aging through CR by modulating the underlying 
molecular mechanisms in order to develop therapeutic interventions (eg. drugs and 
nutrients) to mimic CR.  
 
There are many theories on how aging and age-related diseases come to be (Table 1-
2) 58. Indeed, the complex process of biological aging, as an intrinsic feature of living 
beings, is the result of genetic and, to an extent, environmental factors and time. 
However, it is the cellular aspects (free radicals, apoptosis & proteostasis, and 
telomeric) that have gained increased attention in the field of aging research in recent 
years. The free radical theory of aging is a hypothesis that postulates the accumulation 
of oxidative damage as a cause for aging and disease 59,60. Denham Harman conceived 
the first iteration of the free radical theory of aging in 1956 61, basing the theory on the 
presupposition that lifespan is dependent on metabolic rate 61,62. However, his 
hypothesis has since fallen out of favor 62,63. Nevertheless, oxidative stress has been 
shown to be associated with aging and age-related diseases, including cancer 62,64,65, 
neurodegeneration 62,66,67, CVD 62,68,69, and diabetes 62,70. In this regard, it is known 
that during aging the body undergoes a decline in mitochondrial function associated 
with the production and accumulation of reactive oxygen species (ROS). This, in turn, 
has been suggested to be in part responsible for the decline in cellular performance 71. 
During mitochondrial oxidative phosphorylation (OXPHOS), ROS are produced. 
These are particularly associated with damage to DNA, lipids and proteins 13.  
 
Various investigations have reported reductions in steady-state oxidative damage to 
proteins, lipids, and DNA in animals under CR conditions 72. In a study using 
mitochondria from liver tissue of male Brown Norway rats under CR, assessment of 
hydrogen peroxide measurement concluded that CR resulted in a decrease in the 
production rate of ROS. Furthermore, this decrease was attributed to a reduction in 
protonmotive force in mitochondria from the CR animals 73,74. Another study was set 
to determine the effects of CR (30% reduction from free intake) on mitochondrial ROS 
production, UCP2, and the nitric oxide (NO)-cGMP pathway in the cardiovascular 
tissues of type II diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. The 
authors determined that mitochondrial ROS production and UCP2 expression 
significantly decreased in the heart and aorta of the CR group, further demonstrating 
that CR significantly improved the NO-cGMP pathway via normalizing ROS 
generation in OLETF rats 75. 

 
Detractors of the free radical theory of aging have claimed that this theory has 
limitations as it often remains uncertain if these are a cause or consequence of the 
aging process and do not explain the possibility of inherent failure from biological 
process as the source of the damage observed 76. Another consideration is that many 
genetic interventions (such as the tissue specific removal of antioxidants) leading to 
overall enhanced oxidative damage have a moderate to negligible effect on lifespan 77. 
In this regard, a study on the effects of CR on mitochondrial function, showed that CR 
(55% of control food intake) on male Brown-Norway rats yielded no significant 
changes in ROS production 73.  
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Recently, it was suggested that ROS signaling played an important role in cell 
senescence and organismal aging 78,79. In this regard, cellular senescence was first 
explained in 1961 by Hayflick and Moorhead as a way to define the phenomenon of 
limited proliferation capacity in cultured human fibroblasts 80,81. It was observed that 
cellular senescence came from an acute loss of replicative competence through the 
reticence of the proliferative capacity of cells 82. In addition, this was restricted to just 
proliferation-competent cells 81. More recently, this phenomenon has been better 
understood as replicative senescence, and believed to be caused by telomere erosion 82. 
Considering that telomeres are specialized DNA-protein structures composed of 
several kilobases (kb) of simple repeats (TTAGGG)n located at the ends of 
chromosomes 83,84, the length of telomeres has been suggested as an accurate predictor 
of the replicative ability of cells and the reduction in the number of repetitions is 
believed to cause cell senescence 82. The limited replicative capacity in both mitotic 
and postmitotic cells, may therefore be a manifestation of aging at the cellular level 
85,86.  
 
As an irreversible form of long-term cell-cycle arrest, cellular senescence is caused by 
excessive intracellular or extracellular stress that can lead to cellular damage 83. 
Senescence can also be triggered under various conditions: oxidative stress, telomere 
damage/shortening, DNA damage, mitochondrial dysfunction, chromatin disruption, 
and inflammation 87,88. These can then lead to the permanent growth arrest of the cell 
through the activation of specific signaling pathways that lead to senescence 
regulation.  
 
Tumor-suppressor pathways are of particular interest as activators of autophagy and 
senescence regulation 89,90, epigenetic dysregulation, and oncogene activation 83,91–93. 
Of these, the p53-p21 and p16INK4a–retinoblastoma (pRB) are the two essential 
pathways responsible for the replicative arrest during senescence 82. Interestingly, both 
p53 and p16INK4a are the most commonly mutated genes in cancer. A study using The 
Cancer Genome Atlas (TCGA) Pan-Cancer database (a landmark cancer genomics 
program sponsored by the NIH), determined that the most frequently mutated gene in 
the Pan-Cancer cohort was p53 (42% of samples), further showing the mutations 
predominate in serous ovarian (95%) and serous endometrial carcinomas (89%) 94. In 
addition, p16INK4a has been observed in 25–70% of all human cancers 95,96, and its 
upregulation has been detected in early stage cancer cells, and thus is associated with 
better prognosis 95.  
 
A main inducer of senescence is cellular damage. Because of this, it has been 
suggested that CR might prevent senescence by precluding the damage from 
occurring. For example, CR has been shown to upregulate antioxidant defense 
mechanisms through the increase of sirtuins, induction of transcription factors like 
FoxO1 82 or enhanced immune response 97. In this regard, a study on short term dietary 
restriction in middle-aged mice showed decreased abundance of senescent cells in 
hepatocytes and enterocytes. Associating a decrease in cumulative oxidative stress 
markers through γH2AX (DNA damage) and PCNA (replication), with senescence-
associated βgalactosidase (SA β–gal) as an improvement in telomere maintenance 
without increased telomerase activity 98. In regard to immune response, a study of cell 
immunity on rhesus primates set out to test the impact of CR on T cell senescence. It 
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demonstrated that CR effected a marked improvement in the maintenance and/or 
production of naive T cells and the consequent preservation of T cell receptor 
repertoire diversity 99. CR can also protect cellular deterioration by decreasing 
oxidative stress and inflammation, or repairing/eliminating already present damage, 
for example by increasing autophagy 100–102 and regulating cell death 103.  
 
Apoptotic cell death is a protective mechanism to remove cells with DNA damage or 
diseased cells that might interfere with normal functioning, or eliminate cells at the 
end of their functional lifespan 104.  Apart from the ability to induce autophagy, CR 
and CR mimetics such as resveratrol, are capable of modulating the expression of pro- 
and anti-apoptotic factors 105. This is significant, as the role of apoptosis is critical for 
organ and tissue morphogenesis, development, and even senescence 106. Apoptosis is a 
conserved homeostatic programmed process for cell death that also participates in the 
etiology of several human diseases including cancer, neurodegenerative, and 
autoimmune disorders 107 and possibly even aging.  
 
Functionally, one of the earliest molecular markers of apoptosis is the externalization 
of cell membrane phosphatidylserine. When phosphatidylserine is exposed, it can 
function as a signal to nearby macrophages to engulf the dying cell. The earliest 
noticeable changes of apoptosis are the shrinkage of the cell and karyopyknosis 
(shortening of the nucleus and chromatin). What follows is an orchestrated 
fragmentation of the nucleus and chromatin called karyorrhexis, followed by cell 
membrane blebbing, and ultimately leading to the budding of the cell into a series of 
membrane-bound structures called apoptotic bodies 108. Macrophages then engage 
through phagocytosis, where the apoptotic bodies are further broken down in 
phagolysosomes for recycling.  
 
The apoptotic process is not known to induce the immune response because no cellular 
materials are released into the interstitial space, and the engulfing cells do not release 
inflammatory cytokines 109. This is of significance for the disease process and in 
particular cancer. Studies have revealed that cancerous cells inhibit cytochrome C- 
mediated apoptosis by supplying sufficient glutathione to keep cytochrome C in a 
reduced and inactive state 110. The production of NADPH has also been linked to 
enhanced cancer cell survival and indeed the suppression of apoptosis; NADPH is 
required for the synthesis of glutathione, which protects cells from redox stress, thus 
promoting resistance to apoptosis 111,112. Aging is further associated with an inhibited 
apoptotic response 108. For example, in human adipose mesenchymal stem cells, aging 
was shown to decrease the expression of apoptotic genes while increasing the 
expression of senescence-related genes 113. In mice, bone marrow mesenchymal stem 
cells had decreased expression of both cell cycle and apoptotic genes during aging 114.  
 
The effects of CR on apoptosis have also been explored with mixed results. In one 
study of CR (40% reduction) in 6-month-oldmale Fischer 344 rats, cytoplasmic 
histone-associated DNA fragment analysis showed no changes in DNA fragmentation 
levels (indicative of apoptosis) in tissues like kidney 115. Interestingly, another study 
on kidney function using younger (12-) or older (24-month-old) rats revealed protein 
expression levels of a pro-apoptotic Bax protein increased in the older rats, while an 
anti-apoptotic protein, Bcl-2, was reduced in the aged rat kidney. Furthermore, 
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cytosolic cytochrome C level was significantly increased in the aged kidney. However, 
these age-related changes were reversed by CR 116.  
 
Countless studies have attempted to explain the concept of aging, aligning their efforts 
with any number of theories in an effort to understand what is behind this process that 
culminates in death. The many levels explored, from cellular to systemic, are a 
commendable effort that can allow us to glance deeper into human mortality. CR has 
been used to help in this task, providing insights into how lifespan extension 
modulates the aging process.  
 

 
Table 1-2. Summary of the various theories of aging and their description. 

 
3. METABOLIC PATHWAYS OF CR 

 
While the mechanisms accounting for the decline in cellular function remain 
enigmatic, pathways that stand out during aging are metabolic in nature 117–119 and 
involved in cell maintenance through catabolic and anabolic processes 120. 
Fundamental metabolic pathways (Figure 1) such as glycolysis, fatty acid oxidation, 
amino acid oxidation, lipogenesis, and ketogenesis are also altered in aging 119, so 
elucidating the resulting deregulation is at the core of understanding lifespan extension 
and CR. In here, I will address two reciprocally regulated key enzyme complexes that 
have received attention in control of aging and CR: 1) the nutrient and hormone 
sensing mammalian target of rapamycin (mTOR) complex 1 (C1) and 2) the AMP-
dependent/activated protein kinase (AMPK).   
 

3.1. Energy signaling under CR 
 
CR is an intervention that alters the energy status of the cell and is sensed by the 
energy regulating AMPK 121. As a heterotrimeric kinase with one catalytic subunit (α) 
and two regulatory subunits (β & γ), this protein responds to energy usage, inhibiting 
various cellular responses that require energy expenditure while promoting catabolic 
processes to generate ATP 122. In order to answer to the energy availability of the cell, 
AMPK monitors changes in the ratios of AMP:ATP and ADP:ATP which then bind to 
the γ subunit. This leads to the phosphorylation of the α subunit on an activating loop 
at Thr172 by upstream kinases like LKB1 122,123. On the other hand, the β subunit 
contains an evolutionary conserved carbohydrate binding domain, which allows 
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AMPK to interact with glycogen particles 124. The resulting activation of AMPK 
works to restore energy balance by inhibiting anabolic processes 125.  
 
While the main upstream kinase in most cell types on the AMPK signaling pathway is 
the LKB1/STRAD/MO25 complex, its constitutive activation is inhibited by 
phosphatases under basal conditions 126. In Drosophila, the expression of LKB1 and 
the AMPK substrate acetyl CoA carboxylase (ACC-1) are conserved 127, and 
overexpressing LKB1 has been shown to extend lifespan 128. In this regard, a recent 
study showed that overexpression of AMPK in muscle and abdominal fat body 
extended lifespan, and that supplementation of adenosine could modulate the 
beneficial effects of CR 129.  
 
The activation of AMPK affects many metabolic pathways conducive to catabolism to 
restore ATP levels by promoting glycolysis and fatty acid oxidation, as well as by 
increasing mitochondrial content and the use of mitochondrial substrates as an energy 
source 125,126. The ability of AMPK to reprogram metabolism has therefore been a 
focus of interest as a therapeutic avenue for the treatment of several metabolic diseases 
130. In this regard, a recent study used siRNA to deplete AMPK in a renal fibrosis 
model of chronic kidney disease, which is characterized by reduced glomerular 
filtration rate that mainly affects the aging population. Using high glucose to induced 
senescence and epithelial-mesenchymal transition (EMT) in human primary proximal 
tubular cells (PTCs), the authors observed markers of cellular senescence and 
inactivation of AMPK signaling markers associated with EMT, which were alleviated 
upon induction with CR mimetics like resveratrol and metformin 131.  
 
Under low energy conditions, starvation hormones like Fgf21 132 are upregulated in 
response to CR in tissues like liver and secreted into plasma 133. Through a signaling 
cascade, this leads to a rapid phosphorylation of downstream pathway components, 
including the MAPK cascade 134 and leading to the activation of AMPK 135 . This has 
been of great interest, as Fgf21 is also a direct target gene of the peroxisome 
proliferator-activated receptor-α (PPARα) 136,137, a regulator for CR-induced lipolysis. 
Exploring its neuroprotective effects in ApoE knockout mice under CR, Rühlmann 
et.al. 138 observed that Fgf21 played an important role in adaptation to metabolic states 
by improving cognitive performance through Morris water maze test and higher 
synaptic plasticity by immunohistochemical analysis of PSD95-positive (synapse 
associated) neurons. 

 
3.2. Nutrient signaling under CR 

 
AMPK is highly regulated by upstream signals, making it a master regulator of energy 
homeostasis in the cell 122, and a coordinator of growth and metabolism in eukaryotes 
in both specialized tissues and at the whole body level 130. In this regard, AMPK 
interplays with the serine/threonine kinase AKT (or protein kinase B or 
PKB)/phosphoinositide 3-kinase (PI3K)/mTOR signaling pathway through the 
inhibition of the kinase activity of mTOR. This regulation is a well-studied link 
between CR and lifespan extension 54, as mTOR acts as an autophagy repressor in 
opposition to the pro-autophagic effects of CR 9,139,140.  
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The activity of mTOR can be regulated through the constitutive activation of PI3K 
signaling components through the PI3K-PKB/AKT pathway - a highly conserved and 
tightly controlled multistep process 141. Activated cell membrane receptors directly 
stimulate class 1A PI3Ks bound via their regulatory subunit or adapter molecules such 
as the insulin receptor substrate (IRS) proteins 141. When insulin binds to its receptor, 
it initiates a sequence of phosphorylation events that lead to activation of the catalytic 
activity of PI3K, a lipid kinase that coordinates the intake and utilization of glucose, 
and mTOR, a kinase downstream of PI3K that stimulates transcription and translation 
142. These can also directly stimulate levels of glucose uptake and general metabolism 
through increased expression and localization of the glucose transporter GLUT1 to the 
plasma membrane and through increasing the activity of hexokinase (HK), 
phosphofructokinase-1 (PFK-1), and phosphofructokinase-2 (PFK-2) 143–146. PI3K is 
also known to phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP2) to 
phosphatidylinositol 3,4,5- triphosphate (PIP3), which then activates AKT 147. In this 
regard, AKT plays numerous important biological roles within the cell and within the 
context of CR it was previously shown that PI3K and AKT transcripts were 
significantly down-regulated in human skeletal muscle under CR 148.  
 
Indeed, the PI3K/mTOR signaling pathway plays key roles in regulating many cellular 
processes like cellular metabolism, cel cycle progression, proliferation, growth, 
autophagy, and significantly protein synthesis 149–151. Activation of PI3K recruits AKT 
via its pleckstrin homology domain 149. Upon activation, AKT involves the 
phosphorylation of the tuberous sclerosis complex (TSC) 2 subunit, an essential 
controller of mTORC1. Inhibition of TSC2 then leads to the accumulation of GTP-
bound RAS homologue enriched in brain (Rheb), whose activity is inhibited by the 
heterodimer complex of TSC1 and TSC2 152. Indeed, TSC1/2 is a mediator of 
mTORC1 through many upstream signals from growth factors, such as insulin and 
insulin growth factor (IGF-1), which stimulate the PI3K and RAS pathways. The 
effector kinases of these pathways, including AKT, extracellular-signal-regulated 
kinase 1/2 (ERK1/2), and ribosomal protein S6 kinase β-1 (S6K1), directly 
phosphorylate and inactivate the TSC1/TSC2 complex, leading to the activation of 
mTORC1 152. Indeed, the activation of mTORC1 signaling via downstream targets 
including p70S6K and eukaryotic translation initiation factor 4E-binding protein 1 
(4E-BP1) 153 are fundamental in protein translation events.  
 
The activation of AKT regulates cell growth through its effects on the TSC1/TSC2 
complex and mTOR signaling 154. AKT also contributes to cell proliferation via 
phosphorylation of the cyclin-dependent kinase (CDK) inhibitors p21 and p27, and is a 
major mediator of cell survival through direct inhibition of pro-apoptotic proteins like 
Bad or inhibition of pro-apoptotic signals generated by transcription factors like 
FoxO1 155. In this regard, evidence has shown CR to be a powerful autophagy inducer 
in various metabolic tissues like liver 156. In rat skeletal muscle, CR (40%) decreased 
the content of phosphorylated mTOR, S6K1, pS6K1, FoxO3a, and ubiquitinated 
proteins 157. Similar results were also observed in senile mice, where mTOR and S6K1 
protein activation and mTOR and S6K1 mRNA were significantly lower in the CR 
group 158. In the brain, the activity of mTOR and its upstream brain-derived 
neurotrophic factor (BDNF)/PI3K/AKT signaling was decreased with aging and CR 
ameliorated the observed age-related cognitive deficits 159. 
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3.3. Regulators of energy and nutrients 
 
AMPK and mTOR signaling pathways (Figure 2) participate in nutrient-sensing in 
order to control cell activity. Their complex regulatory dynamic has unique responses 
to macromolecules that coordinate cell behavior. Importantly, crosstalk between these 
key pathways is essential for cellular response to nutrients. Therefore, understanding 
how CR is involved in their modulation can be hypothesis generating in the context of 
benefits in cell metabolism, energy homeostasis and aging 44.  
 
Considering AMPK as a key energy sensor, it has the ability to transcriptionally 
reprogram the cell and metabolically adapt to external cues 126. Genetic evidence has 
suggested that AMPK is required for many of the adaptations triggered by CR, 
including lifespan extension. Similarly, AMPK activation impacts on mitochondrial 
metabolism and on the activity of the FoxO, sirtuins and mTOR signaling pathways, 
all linked with CR 126,160. Since CR triggers activation of AMPK, this event then 
promotes the TSC complex (through phosphorylation) to impose its inhibition on 
mTOR- unc-51-like autophagy activating kinase 1 (ULK1) signaling through Rheb, 
leading to facilitated autophagy and autophagy flux 161. 
 
The role of AMPK as a primary sensor has been of great interest. It has been shown 
that it can control insulin sensitivity upon CR in skeletal muscle through regulating 
phosphorylation of the mTOR−S6K1−IRS-1 signaling pathway and activation of the 
nicotinamide phosphoribosyltransferase (Nampt)-SIRT1 axis in transgenic mice 162. 
Another group demonstrated that after 11 months of CR, there was activation of the 
AMPK-SIRT1-peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α) axis in C57Bl/6J mice 163. Furthermore, by targeting AMPK in dopamine 
neurons in a Parkinson’s disease mouse model, Bayless et.al. 164 demonstrated a novel 
way in which CR maintains neuronal activity through CR-induced increases in plasma 
ghrelin. This is of particular interest since aging is associated with attenuated ghrelin 
signaling 165. 
 
In the context of disease, inducing mTORC1 activity has been shown to be 
constitutively activated in some forms of malignant cancers, such as primary acute 
myeloid leukemia (AML) cells 166, therefore representing a major target for drug 
development in these malignancies. Many mTOR kinase inhibitors fully suppress 
protein synthesis and induce apoptosis 167,168. For example, the mTORC1 pathway is 
rapamycin-sensitive and controls protein translation through the phosphorylation of 
4E-BP1 in many experimental models 149.  
 
The story of mTOR could be said to begin in 1964, when a Canadian expedition set 
sail to a remote volcanic island in the South Pacific Ocean. This island, located in the 
Polynesian Triangle, was called Rapa Nui (also known as Easter Island or Isla de 
Pascua). The expedition had the aim of collecting soil samples with the goal of 
identifying novel antimicrobial agents. In bacteria isolated from one of these samples, 
scientists discovered a compound with notable antifungal, immunosuppressive, and 
antitumor properties 169,170.  
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Further analysis of this compound, named rapamycin after its site of discovery 
(clinically known as sirolimus), revealed it as a bacterial macrolidic metabolite whose 
mode of action involved the formation of a gain-of-function complex with the 
peptidyl-prolylisomerase 12 kDa FK506-binding protein (FKBP12) 171 to inhibit signal 
transduction pathways required for cell growth and proliferation 170,172.  
 
Initially, the interest on rapamycin was for its antifungal properties, so it was not until 
the 1990s that its immunosuppressive and antiproliferative properties in mammalian 
cells were discovered 170. In fact, the first mTOR inhibitor in clinical use was 
rapamycin, which was used as an immunosuppressant drug given after transplant 
surgeries. Known also as sirolimus, this macrolide was approved in the United States 
in 1999 for prophylaxis of rejection in renal transplantation patients 173.  
 
Temsirolimus, a rapamycin derivative, was subsequently developed and approved for 
the treatment of renal cell carcinoma (RCC) 174. Similarly, Everolimus was developed 
as an oral mTOR inhibitor used in the treatment of neuroendocrine tumors 175 and also 
approved for use in post-menopausal women with breast cancer 88,176. These agents, 
called “rapalogues”, exert their effect mainly as allosteric inhibitors of mTORC1. 
However, since they only inhibit the mTORC1 complex, their use has been associated 
with negative feedback regulatory mechanisms and other mechanisms of resistance, 
causing paradoxical activation of AKT and proliferative effects via other downstream 
targets 177.  
 
As an amino acid sensor, mTOR has been suggested as a mediator of CR 178. The high 
activity of mTORC1 is involved in translation dysregulation during aging 179 and 
deletion of S6K homologue SCH9 in yeast or depletion of TOR (let-363) 180 or 
RAPTOR (mTORC1 protein member; daf-15) by RNA interference (RNAi) in C. 
elegans 181,182 extends life span in both models. It is therefore possible that rapalogues 
mimic the effects of CR on healthy life extension. However, the extent of the 
mechanistic overlap between both interventions remains incompletely understood. A 
study by Choi et.al. 183 on yeast compared the impact of CR and rapamycin on cellular 
metabolic status and showed how both regimens maintained intracellular ATP and 
enhanced mitochondrial capacity through the chronological aging process of this 
model. and showed enhanced mitochondrial capacity. However, while CR severely 
reduced the level of energy storage molecules including glycogen and lipid droplets, 
rapamycin did not elucidate such as response. Furthermore, rapamycin boosted the 
production of enzymes responsible for the breakdown of glycogen and lipid droplets, 
leading the authors to suggest their mechanism of action, at least in part, is by 
regulating distinctive pathways 183. 

 
4. REGULATION OF TRANSLATION DURING CR 
 
The cost of protein synthesis is a central part of cell metabolism, being also intimately 
linked with the rate of cell division 184. Protein turnover is one of the main metabolic 
processes by which functional proteins are preserved and damaged proteins are 
removed. The maintenance of proteostasis could therefore be a marker of cellular 
status and function by which the cell guides regulatory processes for maintenance. 
Hence, when considering that the translational control is a regulated process, any 
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signal or intervention able to affect global changes in the translational capacity of the 
cell is of great interest. Therefore, understanding how CR improves health and extends 
lifespan by modulating protein turnover rates could in fact provide important insights 
in the development of interventional and preventative strategies against age-related 
diseases.  
 

4.1. Cellular capacity for translation during CR 
 

Energy-driven signaling systems are integral for the capacity of the cell to maintain 
homeostasis. This reveals the question of how easy it is for translation rates to change, a 
query that comes with many layers of intricacy. For example, flux pathways such as 
phosphorylation, s-nitrosylation and ubiquitination are capable of modifying the 
assembly of proteins to a degree 185–187. Fasting and starvation can also lead to a 
slowdown in protein synthesis rates and activation of autophagy 188. In fact, numerous 
regulators of CR are involved in protein synthesis, putting translation at the center of cell 
function due to its high economic cost for cellular resources to maintain normal cellular 
physiology 7,189.  
 
In terms of energy expenditure, protein biosynthesis demands a very large portion of the 
available resources during cellular proliferation. Indeed, translation by ribosomes has 
been estimated to cost the cell approximately half of the available energy in rapidly 
growing bacteria, and around a third of the available energy in dividing mammalian cell 
190,191. The significant energy budget associated with protein synthesis makes it a key 
step for regulating diverse cellular functions. Being so intimately linked to energy and 
nutrition, protein synthesis is therefore a primary target of CR research 192.  It could then 
be considered that while the mechanisms involved in delay of aging remain poorly 
understood, it is possible that translation is a key aspect altered under CR through a 
modulation in the rates of protein synthesis and even cell proliferation. For example, CR 
in rodent models greatly reduces global protein replacement rates in liver and muscle 
7,193 and cell proliferation rates in keratinocytes, liver cells, T-lymphocytes, prostate 
epithelial cells and mammary epithelial cells (MECs) 194,195.  
 
Some ways by which the cellular capacity for translation is assessed involve the 
polysome association of mRNAs as a reflection of active translation 196–198. Polysome 
profiling was developed to infer the translational status of a specific mRNA species or to 
analyze a subset of mRNAs actively translated in a cell 198. In this respect, an analysis of 
protein translation through polysome‐associated mRNAs could yield interesting 
inferences into the role of CR in proteostasis. Experiments in mice have revealed that 
<1% of transcripts in mouse livers are differentially abundant in polysomes under CR. 
However, when taking into account time of feeding in the context of circadian rhythms, 
a large differential of up to 10% was detected between the control and CR. The study 
suggested that CR strongly reprograms translation as a reflection of feeding patterns 
through lipid metabolism by modulating long‐chain acetyl‐coenzyme A (Acyl‐CoA) 199. 
Looking at adaptive changes in gene expression through transcriptome and translatome 
analysis of C. elegans under CR revealed an increase in transcription of muscle 
regulatory and structural genes while 3′ UTR editing and intron retention increase under 
CR and was correlated with diminished translation 200. 
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4.2. The role of global protein synthesis rates in CR metabolism 
 

The nature of every living system is to fight against entropy to maintain life. In a highly 
regulated contrivance, the conservation of order through the synthesis and breakdown of 
proteins is a favorable tool for survival. However, it often comes at the cost of energy 
expenditure regardless of energy status, repair mechanism errors and its byproducts or 
even the unintended activation of signaling systems that respond to sudden alterations in 
the cellular environment. Indeed, it is generally accepted through observations that 
abrupt alterations to the cellular homeostasis can be detrimental to survival. However, 
we can usually expect that a proper response is often strong enough to maintain cellular 
homeostasis. For example, when a natural (eg. immune response) or xenobiotic (eg. 
drugs such as metformin) intervention elicits a positive response, it is capable of 
offsetting the cellular regulatory mechanisms and steer the cell to alter its translational 
capacity. 
 
In respect to translation, this is a fundamental biosynthetic reaction whose regulation 
determines cell fate temporally and spatially. Since protein synthesis and cell growth are 
tightly coupled, the dysregulation of translation is a common mechanism underlying 
pathologies from unrestrained growth in cellular transformation to tumor development 
201. Indeed, re-tuning of the aberrant translation status by translation inhibitors is an 
attractive strategy for tumor treatment 202,203. It has been suggested that the translation 
capacity of the cell can change during CR and increased protein synthesis has even been 
proposed as a mechanism of lifespan extension during CR 204,205. However, observations 
on protein turnover rates have yielded conflicting data. For example, an early study 
measuring in vivo protein synthesis in CR mice showed no significant changes during 
acute feeding. Nevertheless, they observed a decrease in liver mitochondrial protein 
synthesis under CR 193.  
 
As addressed earlier in this chapter, there is a critical role for the AKT/PI3K/mTOR 
signaling pathway in regulating diverse cellular functions and has even been suggested 
as an important therapeutic target for the treatment of human disease through regulation 
of cancer cell growth, survival, motility, and metabolism 206. Generally, phosphorylation 
of 4E-BP1 and p70S6K by mTOR are essential for protein synthesis and hypertrophy in 
muscle 207. AKT can promote protein synthesis by inhibiting glycogen synthase kinase 3 
beta (GSK3β), impeding its inhibitory action on protein synthesis 208. Another 
consideration is that protein synthesis requires sufficient and appropriate amino acid 
availability, and amino acid deprivation induces the phosphorylation of eukaryotic 
initiation factor 2 alpha (eIF2α), thereby impeding translation initiation 209. A significant 
study on CR in humans using muscle biopsies from the deltoid and vastus lateralis 
showed that during severe energy deficit, pSer9-GSK3β levels were reduced, turning the 
skeletal muscle towards anabolic effects. Other observed effects were associated with 
the changes in lean mass and serum insulin, testosterone, and cortisol concentrations. 
Metabolically, the Akt/mTor/p70S6K pathway and total eIF2α were unchanged. 
Interestingly, total 4E-BP1 and Thr37/464E-BP1 were higher 210. 

 
Another aspect of CR is that it can directly and indirectly activates sirtuins (SIRTs), 
which are nicotine adenine dinucleotide (NAD+)-dependent lysine deacetylases 
(KDACs) and play central roles during aging and autophagy 205. It is possible that 
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SIRT1 and AMPK may engage in a positive feedforward loop to amplify the response 
to CR, opposing the frequency by which AKT/PI3K/mTOR signaling contributes to 
protein synthesis.  
 
Due to various cellular events, such as cell growth, exacting a high protein synthesis 
demand, there is an increased effort in understanding how biological systems adjust 
their global protein translational capacity according to resource bioavailability. It has 
been considered that the protein translational capacity is determined by mRNA 
expression and the efficacy of ribosomes. The tight coordination between protein 
translation processes with mRNA transcription is therefore assumed to ensure efficient 
cell growth and upkeep. Efforts to monitor protein synthesis rates at the global level 
have mainly relied on pulsed metabolic labeling followed by two-dimensional gel 
electrophoresis, or more recently by MS 211–213, where pulse labeling with stable 
isotopes has been used to measure protein turnover rates. Nevertheless, these methods 
have not been effective in directly providing information about translation rates 213.  
 
While relative changes in synthesis rates for the same protein are attainable 214, absolute 
rates are more difficult to evaluate. Additionally, the precision of pulsed metabolic 
labeling is limited by requirement for nutrient shifts, a fundamental effect of CR. Using 
expression profiling to determining global mRNA levels (e.g. high-density microarrays 
or RNA-seq) have not reported significant regulation events to be present at the level of 
translation 192. For example, a report using RNA-seq in cerebral cortex from rats 
subjected to CR did not observe global changes in gene expression but more specific 
towards neuroprotection 215. This pattern was also observed in a multi-tissue single-cell 
transcriptomic atlas for aging, where CR was observed to ameliorate aging-related 
accumulation of pro-inflammatory cells in various tissues 216. 

 
5. MIMETICS OF CR  

 
CR has proven to be the most robust intervention to impart and maintain health in a 
large array of experimental models. However, application of CR to complex organisms 
like primates and humans has been both impractical and inconclusive. Therefore, 
identifying better interventions that elucidate the advantageous mechanisms and effects 
as CR can be key to develop treatment strategies to extend health and lifespan in 
humans.  
 
Compounds, or even interventions, that provide the physiological benefit of CR without 
restricting calories is of great interest. Taking advantage of this beneficial effects 
through pharmaceutical compounds could be a fundamental for the reduction of age-
related diseases that permeate the world at large. The most widely studied compounds 
believed to be mimetics of CR are rapamycin, resveratrol and metformin. In addition, 
attention has been given to the exercise as a paradigm of CR as it can invoke similar 
physiological signatures involving pathways associated with stress responses and 
mitochondrial homeostasis 217–219.  
 
Resveratrol, a component of red wine, has been an interesting target of aging research. 
Considered as an antioxidant, resveratrol is known to involve the sirtuin system 220. 
Sirtuins are highly conserved enzymes whose activity involves the NAD+ dependent 
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deacetylase and/or mono ADP ribosyltransferase. A long line of evidence has linked 
sirtuins in the aging process, and data has inferred very positive results in its effective 
attenuation of several diseases. Nevertheless, the efforts to study sirtuin activators has 
been contentious 221. 
 
Rapamycin has been explored in the context of fractional synthesis rates. Mean hepatic 
proteome replacement rates were modestly but significantly reduced after rapamycin 
treatment 7. In fact, the overall observation of rapamycin effects on proteome regulation 
have been, while consistent, not very dramatic. Another study on 10 weeks of 14 ppm 
rapamycin treatment reported just a ~13% reduction in hepatic protein replacement rates 
in mice 189. This has left metformin and exercise as potential CR mimetics in the context 
of proteome dynamics we will discuss here.  

 
5.1. Metformin as a CR mimetic 

 
Metformin is a biguanide drug used for over 45 years to treat type 2 diabetes. In 
humans, Metformin has been demonstrated to enhance insulin sensitivity and suppress 
gluconeogenesis, preventing the deleterious effects of this devastating disease. 
Surprisingly, the molecular mechanisms that underlie its function remain to be 
understood. In this regard, it has been theorized that Metformin acts as a CR mimetic, as 
both conditions are known to regulate many shared pathways 222.  
 
Metformin function as a glucose sensitizer is thought to come from the inhibition of 
hepatic gluconeogenesis, possibly through a decrease in cytosolic ATP:ADP ratios 223. 
Another aspect of metformin comes from its anti-cancer properties 224, where it has been 
observed to attenuate tumor growth through the activation of SIRT1 and AMPK while 
inhibiting AKT and mTOR 225,226. perhaps through its interaction with the electron 
transport chain (ETC) complex I 223,227,228. In this regard, it is suspected that Metformin 
decreases oxygen consumption and mitochondrial membrane potential in hepatocytes, 
where it singularly affects the respiratory chain complex I 223. 
 
One-carbon (1C) metabolism comprises a series of interlinking metabolic pathways that 
include the methionine and folate cycles that are central to cellular function, providing 
1C units (methyl groups) for the synthesis of DNA, polyamines, amino acids, creatine, 
and phospholipids 229. The relationship between energy and 1C metabolism is extremely 
sensitive to food intake. Metformin activity has provided a link to overlapping factors 
where organismal bioenergetics remodel 1C metabolism. Indeed, Metformin not only 
inhibits mitochondrial complex 1, but modulates the metabolic response to nutrient 
intake through folate metabolism which could represent direct effects on some of the 
hallmarks of tissue aging 230. By increasing the contribution of 1C DNA 
methyltransferases from folate stores, Metformin is suspected to induce AMPK-sensed 
energetic responses capable of reprogramming the DNA methylation machinery 231. 
 
Due to their role in regulating cellular energy levels, AMPK and mTORC1 stand out as 
key regulators of metabolism that are respectively activated and inhibited in acute 
response to cellular energy depletion. Metformin has been shown to robustly inhibit 
mTORC1 in mouse liver tissue and primary hepatocytes, preventing hepatocyte protein 
synthesis in a manner that is largely dependent on its ability to suppress mTORC1 
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signaling 232. A recent study of Fragile X syndrome (FXS) linked metformin treatment 
to decrease de novo protein synthesis rates in FMRP-deficient human neurons. This has 
been of great interest, as the loss of FMRP has been shown to lead to elevated protein 
synthesis and is thought to be a major cause of the synaptic plasticity and behavioral 
deficits in FXS. It is suspected that the increase in protein synthesis results in part from 
abnormal activation of key protein translation pathways downstream of ERK1/2 and 
mTOR signaling 233. Another potential pathway for the effect of metformin comes 
through the v-ATPase-Ragulator lysosomal pathway 222 which could coordinate 
mTORC1 and AMPK, two hubs governing metabolic programs. An experiment in C. 
elegans demonstrated that both v-ATPase-mediated TORC1 inhibition and v-ATPase-
AXIN/LKB1-mediated AMPK activation contribute to the lifespan extension effect of 
metformin 234.  

 
5.2. Exercise as a CR mimetic 

 
Physical activity increases health span and life expectancy in human epidemiological 
correlations 235. In this regard, exercise and CR result in an overlapping phenotypic 
outcome in terms of mitochondrial function and oxidative metabolism, reduction of 
ROS, DNA stability and even autophagy. Even though exercise and CR affect energy 
intake (at least in some individuals) and expenditure in a diametrically opposite manner, 
the shared regulation of a number of phenotypic changes in skeletal muscle and 
potentially other tissues could underlie the similar health benefits of both interventions. 
Importantly however, are the effects on muscle and cardiovascular function as well as 
body weight and energy metabolism observed after exercise and CR 4,236. 
 
Because of its central role in the oxidation of fuels, skeletal muscle mitochondria is an 
important aspect of aerobic exercise (EX), a condition of increased whole body energy 
flux characterized by general cellular fitness and healthy aging 237–242. It was first 
demonstrated more than 4 decades ago that EX training promotes skeletal muscle 
mitochondrial biogenesis and enhances the capacity for glucose and fatty acid oxidation 
243. EX training is frequently prescribed for the treatment of chronic diseases including 
type 2 diabetes, insulin resistance, sarcopenia, CVD, and cancer 244,245.  A wealth of data 
demonstrate that EX increases mitochondrial mass, mitochondrial DNA (mtDNA) 
content, OXPHOS enzyme activity, and maximal ATP production 246–248.  These 
adaptations contribute to an increase in basal metabolic rate and an increase in calorie 
consumption 249, and skeletal muscle plays a major role as an energy-consuming tissue 
in animals and undergoes significant structural and metabolic adaptations in response to 
altered contractile activity and nutrient availability 1.  
 
Dietary CR, in contrast to EX, causes a reduction in basal metabolic rate and body 
temperature 250, and delays the onset of many age-related diseases, including type 2 
diabetes, hypertension, CVD, and cancer 244,251. Importantly, as reported earlier, CR 
extends mean and maximal lifespan in diverse species, including yeast 252, worms 253, 
flies 254, murine animals 255, and nonhuman primates 256–258, consistent with increases in 
cellular fitness.  It has been proposed that CR retards the rate of aging in part by 
reducing steady-state levels of mitochondrial oxidative stress and oxidative damage to 
mtDNA 259,260.   
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Although both CR and exercise have similar beneficial effects on general health, it is not 
known though whether similar mechanisms promote these effects.  It is well accepted 
that EX training promotes muscle mitochondrial biogenesis 239,243,261–266.  Despite the 
reduced basal metabolic rate, it has been proposed that CR also induces mitochondrial 
biogenesis.  Nisoli et al. reported that 30% CR for 3 months increased mitochondrial 
biogenesis in mice, as evidenced by increased mtDNA, increased cytochrome c (Cytc) 
protein, increased cytochrome oxidase subunit IV (COX-IV) protein, and increased 
mRNA expression of key mitochondrial markers 267.  Soon after, it was reported that CR 
induced the proliferation of mitochondria with reduced membrane potential and mtROS 
production rate 268, increased oxidative capacity 237 and increased expression of key 
mitochondrial markers 269. In humans, Civitarese showed that 6 months of 25% CR 
resulted in a ~35% increase in muscle mtDNA content 270. 
 
Multiple investigators, however, have reported data in opposition to the hypothesis that 
CR results in increased mitochondrial biogenesis.  Hancock et al. reported that 30% CR 
in rats had no effect on the expression of key respiratory chain protein complexes 
associated with mitochondrial biogenesis, the expression levels of 6 key mitochondrial 
markers, the coordinately regulated GLUT4 transporter, or CS activity in the brain, 
muscle, liver and heart 271.  Similarly, Sreekumar et. al found that reduced calorie intake 
in rats had no impact on muscle mitochondrial ATP production or CS activity 272.   
 
Recently, lifelong CR in mice was shown to prevent the age-related loss of oxidative 
capacity without increasing mitochondrial abundance 273.  Taken together, these results 
argue that total mitochondrial content and oxidative capacity are unaffected by CR in 
multiple tissues, contrary to other reports supporting CR-induced mitochondrial 
biogenesis.  Indeed, these conflicting results may be in part due to the reliance on 
surrogate markers like mRNA, and static protein concentrations. Mitochondrial 
biogenesis and degradation are inherently kinetic processes and mRNA and protein 
concentration may not be accurate metrics.   

 
6. OTHER POTENTIAL CR MODULATORS 

 
As the world’s elderly population surges at an accelerated pace, it presents several 
public health challenges. In this regard, CR has been linked to lifespan extension and 
preserved cellular homeostasis. Recently, a meta-omics renaissance has changed the 
way the mechanisms of aging and disease are studied. An interesting link between 
nutrition and human health is the host-microbiome interaction. It has been observed 
that dietary regimens have incredible implications to the health of an organism, and 
these effects are reflective of the gut microbiome to a great degree. This has brought to 
the forefront great interest into understanding how the microbiome changes through 
dietary interventions like CR and how the remodeling of the microbiome guides the 
host.  

 
6.1. Host-Microbiome Interactions during CR 

 
From the efforts of the meta-omics renaissance, we have learned a paradigm in which 
the essential role of microbial communities to human health can be modulated through 
nutrition. Furthermore, the elucidation of host-microbiome processes through meta-
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omics studies depend heavily on the identification of novel biomolecules and requires 
our ability to assign them specific functions in terms of enzymes and small molecules. 
 
In light of these requirements, great interest has been placed on MS methods as a 
means of expanding the understanding of how CR leads to lifespan extension through 
the regulation of the gut microbiome. The identification of bacteria through reliable 
genomic technologies in conjunction with novel MS methods to detect changes in 
polymers like metabolites has several advantages over classical experimental methods. 

 
The use of 16S rRNA gene sequences to study bacterial phylogeny and taxonomy has 
been by far the most common housekeeping genetic marker and a mainstay of 
sequence-based bacterial analysis for decades 274,275. This approach has been of 
particular important in the identification of bacteria with unusual phenotypic profiles, 
rare bacteria, slow-growing bacteria, and uncultivable bacteria among others 276. Not 
only has it provided insights into etiologies of infectious disease, but it also helps 
clinicians in choosing antibiotics and in determining the duration of treatment and 
infection control procedures. Indeed, rapid and reliable identification of bacterial 
pathogens directly from patient samples is required for optimizing antimicrobial 
therapy 277. 
 
Although sequencing of the 16S rRNA gene is a common approach, species 
identification and discrimination is not always achievable for bacteria as their 16S 
rRNA genes have sometimes high sequence homology 277. Unlike 16S rRNA 
sequencing, shotgun metagenomic sequencing is capable of reading the whole 
genomic DNA in a sample. This approach has been used to reveal the functional 
potential of a microbial population, being successfully applied to investigate microbial 
diversity, adaptation, evolution, and function 278. On the other hand, 
metatranscriptomes (total RNA-based) has been shown to represent a more clear 
picture of microbial composition divergence 279. In this regard, metatranscriptomics 
seem to avoid potential biases caused by mRNA enrichment and allow simultaneous 
use of rRNA for generation of compositional profiles 279,280. Therefore, combining 
metatranscriptomic and metagenomic methods can potentially allow for a better link 
between the microbiome with host phenotypes 279.  

 
The mammalian gastrointestinal tract harbors a complex community of over 100 
trillion microbial cells that can influence host physiology, nutrition, metabolism, and 
immune function. Indeed, these microorganisms are suspected to be responsible for a 
number of functions within an organism through byproducts such as fermentation of 
macronutrients and have been reported to contribute to variation in the health of an 
organism 279. The intestinal microbiota can influence the whole-body metabolism by 
affecting energy balance 281–283. However, the microbial signals that guide the 
mechanisms and functional alterations causing the observed phenotypic and 
morphological changes that regulate energy homeostasis during CR, remain poorly 
understood 284.  
 
Profiling of the microbiota composition in the cecum and feces by 16S rRNA gene 
sequencing from mice under CR (30% reduction) revealed a significant increase in 
Lactobacillaceae and Erysipelotichaceae and a decrease in other Firmicutes families, 
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as well as increased Bacteroidaceae and Verrucomicrobiaceae, the latter represented 
by Akkermansia muciniphila 284. This was in line with previous studies that showed 
that CR had a unique gut microbiota dominated by potentially beneficial bacteria such as 
Lactobacillus spp in mice 285 and Fisher 344 rats 286. In addition, metagenomics analysis 
identified decrease system modality of DNA metabolism in feces upon CR, while an 
increase of the Arabinose Sensor and Transport after was observed in both secum and 
feces. Another system of interest shared in both samples and decreased upon CR was 
the Cell Wall and Capsule, a system that includes the biosynthesis of 
lipopolysaccharide (LPS), known to be positively correlated with host BW and insulin 
resistance 284,287.  
 
The dysbiosis of gut microbiota has been proven to be associated with several 
intestinal diseases, such as inflammatory bowel disease and colorectal cancer, as well 
as some systematic diseases such as diabetes and neurological diseases 288. Further 
studies on using 16S rRNA gene sequencing on CR models have been done to explore 
such pathologies. In this regard, mucositis can be induced by immunosuppressants 
during chemotherapy such as Cyclophosphamide (CTX) and is seen in up to 50% of 
cancer patients 289. This in turn is believed to cause at disruption of the gut microbiota 
that can lead to severe intestinal complications. A recent study observed the effects of 
CR on CTX-induced mucositis. CR mice showed significantly less mucositis in 
response to CTX, including lower intestinal permeability, less bacterial translocation, 
higher number of epithelial stem cells, and less epithelium damage 290.  
 
Indeed, experimental animal models of CR have been demonstrated to induce changes 
of the intestinal microbiota composition, regardless of fat content and/or exercise 286. 
Metabolomic studies on dietary compounds and phytochemicals that may modulate 
bacterial abundance within the gut have suggested dietary interactions with 
microbiome composition are able to alter host metabolism 291.Another approach to 
understand the role of CR in health is metabolomics - the measurement of hundreds of 
small molecule metabolites, their precursors, derivatives, and degradation products 292. 
In human plasma samples of male subjects under CR, metabolomic analysis revealed 
distinct metabolomic signature associated with acute CR characterized by a shift in 
energy usage from carbohydrate to fat utilization with increased lipolysis and β-fatty 
acid oxidation 292. Further metabolomic (metabonomic) approaches on the effects of 
CR have yielded interesting results. For example, studies in dogs and monkeys 
revealed that CR was associated with changes in urinary bacterial metabolites, 
suggesting a potential connection among the gut microbiota, CR and aging 285,293,294. 

 
Metaproteomic profile studies on rat gut microbiota after CR revealed an induction of 
changes, such as a reduction of the Firmicutes/Bacteroidetes ratio and an expansion of 
lactobacilli. Furthermore, expression changes of the microbial enzymes responsible for 
short-chain fatty acid biosynthesis were observed by which CR boosted 
propionogenesis and limited butyrogenesis and acetogenesis 295. 

 
7. CONCLUSION 
 
Metabolic regulation, an emerging hallmark of aging, is a clear focus of research today 
with the goal of developing treatments targeted not only to extend health but increase 
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lifespan. It has been shown that during aging, there are multifarious alterations to 
metabolic pathways, from mutational heterogeneity causing cancer, to protein 
dysregulation. From well-understood nutrient-sensing proteins, such as AMPK and 
mTOR, to insufficiently understood processes, such as maintenance of proteostasis, 
aging’s impact on the metabolic landscape is wide-ranging and still poorly understood. 
Working to understand the variety of metabolic variations in the context of aging will 
pave the way for a more comprehensive understanding of the different iterations of 
age-related diseases and enable the development of therapies with to improve quality 
of life. 
 
A fuller understanding of interventions with implications in lifespan extension will 
allow for more nuanced treatments targeting specific alterations. Some of these steps 
are already being taken, particularly in the realm of CR, the most robust intervention to 
extend health and lifespan in numerous animal models. Current efforts focus on 
understanding how CR creates an array of metabolic adaptations. Such efforts are 
spurred by the discovery of increased anti-aging activity upon maintenance of proteins 
and increased expression of immunoprotective genes among others. In addition, new 
perspectives on how CR modulates health and lifespan extension hold promise for 
novel therapies through CR mimetics. By targeting the deleterious effects of aging, it is 
hoped that CR, through its intrinsic metabolic alterations, can open new avenues in 
therapeutics. As our understanding of aging’s metabolic landscape expands, however, 
an increasing number of targets arise, and with the aim to effectively understand how 
each contributes to improvements in quality of life, it is necessary to reach for all 
possible experimental tools. Perhaps one of the most fruitful - yet rather underutilized - 
approaches is to investigate the natural protein flux dynamics as a way to understand 
how the cell “thinks.” Previously, researchers have lacked efficient assays to measure 
protein dynamics, but the meta-omics era has provided viable options for deciphering 
molecular identities in complex samples. Several interventions mentioned in here, such 
as metformin administration and exercise, have been integral to our understanding of 
metabolic alterations under CR. Cellular energy adaptation is a particularly persuasive 
example of the power of CR, as it has linked various lifespan extension interventions, 
such as rapamycin administration, with CR regulated pathways. In order to continue 
understanding how age-related diseases can be prevented, investigation into CR, its 
targets and mimetics must continue to be pursued.  
 
This chapter serves to underscore the importance of researching CR’s metabolic 
alterations. However, I recognize that the current state of knowledge is vastly 
incomplete – though an enzyme may be implicated with the response of CR, such as 
AMPK, simply increasing its activity can produce a number of negative physiological 
effects, specially under disease conditions 296,297. As the field continues to develop, our 
understanding of CR’s metabolic implications is expanding beyond the simplistic, 
singular cause-and-effect relationships and yes-or-no effects as exemplified by the 
opposing effects of CR in the lifespan of rhesus monkeys observed between the NIA 
and WNPRC studies discussed earlier. Though a broad approach to answering a 
scientific query is necessary, a more in-depth understanding will become necessary to 
effectively create preventative outcomes to diseases.  
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8. FIGURES 
 

Figure 1. CR effector pathway linked to increased health and lifespan.  
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Figure 2. Mammalian energy-sensing pathways implicated in CR. A complex 
crosstalk exists between the energy-sensing pathways in mammals. The complexes of 
mTORC1 and AMPK are regulated by CR. AMPK is activated at low ATP levels 
while mTORC1 is inhibited under low energy conditions.  
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CHAPTER TWO: In Vivo Proteome-Wide Measurement of Protein Kinetics Using 
Metabolic Labeling 
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1. INTRODUCTION 
 

As discussed in Chapter One, CR has many levels of complexity and as such requires 
new investigative approaches. Numerous regulators of CR are involved in protein 
synthesis. In fact, protein translation is at the center of cell function and its high energy 
demand is a primary focus within the scope of CR. This brings to attention the need for 
understanding how translational control, as a regulated process, can be altered under 
lower caloric intake that shifts the translational capacity or transcripts selected by the 
cell. However, our capacity to measure dynamic changes in complex samples had been 
very limited in part due to a lack of experimental methods that can allow the 
measurement of molecular fluxes at a large scale. Here we explore proteome dynamics 
by MS as an observability method by which global protein fluxes can be measured 
through stable isotope labeling in conjunction with proteomics.  
 

2. PROTEOME DYNAMICS 
 

In 1961, Dintzis published his seminal paper on the assembly of peptide chains during 
translation of mRNA. He showed that protein synthesis happens sequentially from N- 
terminus to C‐ terminus 298. Since then, great efforts have been placed to study protein 
synthesis. The dogma of gene expression as a master regulator of protein translation 
has resulted in the general view that transcript levels represent a metric of protein 
synthesis. This view has allowed mRNA levels to be widely accepted for decades as a 
direct marker of protein synthesis. However, recent quantitative and genome-wide 
analyses revealed a larger contribution of translational regulation to the final output of 
proteins in cells than previously thought 192,299–301. Indeed, although the biochemical 
fundamentals of protein synthesis have been well studied in great detail in vitro, 
monitoring protein synthesis in vivo has been a demanding task. Thus, diverse 
approaches have to be developed in order to explore the translational status of cells.  
 
Most biomolecules are composed of hydrogen, carbon, nitrogen, oxygen, and sulphur. 
It is known that the natural isotopes of these elements occur with different 
probabilities 302–304, and in some experiments the relative abundances of an element’s 
isotopes can be manipulated by using a technique known as stable isotopic labeling 305. 
The relative abundances of isotopes determine a molecule’s isotopic distribution, 
which can be measured experimentally using a MS. The elemental composition of the 
measured element can then be compared and identifying within a library of known 
compounds sharing the unique signature of the underlying molecule. The isotopic 
distribution allows for the prediction of masses and abundances of the isotopes for a 
given formula (Figure 1). In this example, an amino acid like alanine, under natural 
abundance, will have an isotopic distribution at an exact center of mass m/z of ~72.1 
which can be visualized through a fine-grained (high-resolution) isotopic distribution 
based on a polynomial-based algorithm. The mass intensity under natural abundance 
of alanine can be distributed as 96.1% M0, 3.64% M1, and 0.25% M2. However, when 
the charge state of a molecule changes through positive charges as the number of 
added hydrogen ions (eg. 2H: 2) increases, it changes the elemental composition of the 
molecule. In the case of alanine, the isotopic distribution at the exact center of mass 
m/z in the 2+ charge state shifts to ~36.6. Considering the measured precursor pool 
enrichment as 10% (p = 0.1) influences the charge distribution where 86.5 % M0, 
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1.29% M1, 0.06 % M2, and 0.003% M3. More complex molecules like di- or 
polypeptides will have a different isotopic distribution. In the case of alanyl-
tryptophan, the isotopic distribution of the exact center of mass m/z is ~258.3 under 
natural abundance. But when the charge from 2H is considered for this di-peptide, the 
isotopic distribution centers around the mass m/z of ~129.7. 

3. EXPERIMENTAL APPROACH 
 

In order to deal with biological complexity, the aim has been to change the way 
information is viewed towards a systems approach. To aid in this, high-throughput and 
quantitative exploration can be done through MS. Using proteomics, the presence 
and/or concentration of a large number of individual proteins in a sample can be 
measured. Looking at dynamics can then reveal the synthesis and breakdown rate of 
molecules and in essence elucidate the molecular fluxes through pathways. Therefore, 
merging these two concepts towards dynamic proteomics fits the criteria of elucidating 
biological complexity. Through this approach, protein dynamics can be explored 
through the measurement of the kinetics of many hundreds to thousands of peptides 
within a complex sample.  
 
The combining of non-radioactive stable isotope labeling with the brilliance of tandem 
MS can create a powerful approach to understand protein fluxes (Figure 2). In this 
example, a stable isotopically enriched precursor like heavy water (2H2O, D2O, or 
deuterated water) is administered to an organism like a mouse. Maintaining the 
concentration of 2H2O at ~5% of the total body water will then allow for the deuterium 
to incorporate into every biological process which requires hydrogen during its 
synthesis. After a labeling period, the tissues and samples must be collected. Within the 
sample of interests, proteins can then be processed and amended through cleanup 
methods like in-gel separation. Afterwards, they can then be trypsin digested. Running 
the thousands of peptides generated on an LC/MS/MS can then allow for its 
identification, telling the investigator the identity of the protein from which the peptide 
came from.  
 
Looking at the pattern of labeling (Figure 3) can then tell its functional information 
such as the synthesis and breakdown rates. Under non-labeling conditions (p=0%), 
each biomolecule has a natural abundance isotope pattern with a signature. When 
introducing labeling (eg. p=25%), such as deuterium, into the system it creates a 
perturbation pattern that we can then interpret through informatics by mass isotope 
distribution analysis. The concept of mass isotopomer distribution has been applied for 
the measurement of biosynthesis and turnover of polymers 306 through increases in 
abundances of isotopic isomers under experimental conditions. This results in the 
enrichment of specific isotopologues in the metabolic product in contrast to its natural 
abundance. The deconvolution of the mass intensities from the isotopomer enrichment 
is essential to understanding its distribution 307. This can be achieved by comparison of 
statistical distributions predicted from binomial or even multinomial expansion to the 
pattern of excess isotopomer frequencies observed in the measured polymer.  

 
4. CONCLUSION 
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Quantification of mass isotopomer distributions in peptides is a powerful tool to 
estimate fractional synthesis rates of individual proteins through a labeling period. 
Unlike traditional proteome techniques which are static in nature, this approach 
provides information regarding their active synthesis and breakdown during the 
labeling period, in essence turning the information into biological fluxes of living 
systems. Advantages of this approach include the fact that changes in isotopomer 
abundances are not really sensitive to changes in protein yield or recovery during 
collection and preparation. As such, these methods provide an internalized system for 
measurements irrespective of differences in protein abundances between samples.  

. 
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5. FIGURES 

 
Figure 1. Molecular Isotopic Distribution. Elemental composition of molecular 
amino acids under natural abundance or with 2H incorporation is shown here through a 
polynomial based method. (A) Alanine is shown at two different charge states and its 
isotopic distribution mass (Da) is represented at its expected center of mass m/z. (B) 
Tryptophan is shown at two different charge states and its isotopic distribution mass 
(Da) is represented at its expected center of mass m/z. (C) Alanyl-tryptophan is shown 
at two different charge states and its isotopic distribution mass (Da) is represented at its 
expected center of mass m/z. 
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Figure 2. Experimental approach for measurement of in vivo protein dynamics 
across the global proteome.  
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Figure 3. Stable isotope label incorporation in polymers at different p with 
resulting isotopomer relative abundances. p = the measured precursor pool 
enrichment expressed as percent.  
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CHAPTER THREE: Time-Course of Proteome Turnover Rate During Calorie 
Restriction in Mice Reveals a Discrete Transition Period and no Correlation with Gene 
Expression 
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1. INTRODUCTION 
 
CR is one of the most robust interventions to maintain health and extend lifespan in 
murine models. Considering that the mouse is a warm-blooded mammal with many 
similarities to humans, including the genome level (discussed in Chapter One), murine 
models are widely popular experimental models. However, there are several 
considerations that need to be taken into account when interpreting experimental results 
during CR, and variabilities in a number of factors can change their interpretation. The 
role of gender, strain, and even level of CR can influence the outcome. An elegant study 
by Mitchell et.al. proved this point by comparing the role of strain and sex on the 
lifespan of mice on varying degrees of CR. They compared male and female C57Bl/6J 
and DBA/2J mice under either a 20% or 40% CR intervention starting at 6 months of 
age and for the remainder of their lives. They reported that in C57Bl/6J mice, 20% CR 
significantly improved survival, with a mean lifespan extension of 40.6% (the longest 
lifespan extension at 190 weeks of age). in females and 24.4% in males 308.   
 
Another factor that can become confounding in age-related research is the age of the 
experimental animals. In mice, the juvenile period spans from 0.5 to 4 weeks of age, 
followed by puberty until they are ~10 weeks old. Adulthood is then considered 
between ~10 to 64 weeks followed by a reproductive period of senescence 309. Age is 
also closely related with occurrence and development of disease, and timing of CR in 
mice has been shown to impact phenotype 310. Typically, mice used in studies are ~6-8 
weeks old which is considered within the age of puberty 309. In CR studies, there has 
been broader discretion for the timing of CR. In this regard, a seminal work on lifespan 
extension showed that among groups of mice in different levers of CR and starting at ~4 
weeks of age, the degree of CR was directly related to the reduction in body weight and 
the increase in average and maximal life spans. However, when CR was started at ~52 
weeks, the lifespan was also extended, although to a lesser, suggesting a primary role 
for CR during the developmental period 311,312.  
 
The length of intervention is another variable that changes considerably between studies 
when trying to elucidate the CR response. For example, a study using male 21-week-old 
C57Bl/6J mice placed them on a low CR (12%) for 10 week 313. Another experiment 
subjected mice to CR starting at 14 weeks, though the time they remained on the diet 
varied from about 6.5-23 months 314. Therefore, defining not just what entails a short-
term CR intervention and how it can be distinguished from longer-termed CR duration 
but its effects in the organism is important 315. In this regard, it has been suggested that 
the benefits of CR occur rapidly upon initiation, and the experimental literature usually 
classifies these as “short-term” studies. On the other hand, “long-term” studies are 
traditionally those that span the lifespan of the animal model 316. However, short-term 
interventions of CR in mice are difficult to define because of the lax use of this term. In 
addition, extrapolation to human interventions will surely be more relevant with 
interventions that are not life-long.  
 
In a study of CR in mice, Mahoney et.al. restricted C57Bl/6J’s for 3 weeks, choosing 
that length of time because it reduced body weight by approximately 15–20% 317. 
However, Robertson et.al. modeled weight changes and suggested that a ~25% decrease 
could happen after a week of CR 316. Even shorter CR interventions in murine models 
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have been done with positive results, such as 2 weeks of CR (30%) in C57Bl/6J 
improving survival and kidney function following renal ischemia reperfusion injury 318. 
 
Longer interventions have also been describes as short-term, such as 4 weeks of CR 
being sufficient to ameliorate age-related alterations in DNA methylome 319. Indeed, the 
length of 4 weeks has also been suggested to improve non-homologous end joining 
(NHEJ) efficiency under CR (40%) 320. Another study looking at the metabolic effects 
of CR in Ins2-/- mice, used either 8 or 10 weeks of CR and classified this experiment as 
short-term 321. Boldrin et.al. further defined CR length of intervention as short (2.5 
month) longer term (8.5 and 18.5 months) 322. Furthermore, short-term CR has also been 
described for experiments where mice underwent CR from 3 until 15 months of age 
323,324, expanding the range in which the literature defines short-term CR from ~3 weeks 
up to 12 months of intervention. Last for these considerations are the graded effect of 
CR over time. The most common metrics observed are phenotypic and behavioral such 
as body weights, insulin and glucose tolerance tests, body composition, and 
performance tests which can be measured throughout the course of the experiment with 
minimal invasion 99,217,308.  Body temperature, for example, was shown to have a 
gradual decline 325. 
 
The manner in which CR has been implemented in longevity experiments is variable, 
with numerous variables changing between studies. From age and strain to time of 
feeding and composition of the diet. Since implementation of feeding paradigms over 
the lifetime is logistically difficult, finding a commonality like a biomarker is essential 
to the implementation of CR in different experimental models. A consistency within all 
parameters could be the model in which alterations in protein synthesis and proteostasis 
functions to establish health and lifespan extension. As discussed in Chapter One, 
numerous models of lifespan extension indeed are characterized by reduced signal or 
expression of protein synthesis machinery. Accordingly, the goal here was to test the 
hypothesis that reduced fractional synthesis rates of proteins across the global proteome 
is a biomarker of lifespan extension in mice that is induced over a discrete and narrow 
timeframe between days 25 and 32 of CR and no correlation with changes in mRNA 
levels. 
 

2. RESULTS 
 
Here, we elaborate on our prior observation 7,194,326 that CR leads to a marked slowdown 
of proteome replacement rates in the liver with the goal of understanding the time-
course of reduction in proteome-wide protein synthesis rates during CR. After an 
acclimatation period and starting at 6±1 weeks of age, mice were single caged and 
underwent CR (30% less food intake than control/week) for 0 (no CR), 9, 14, 20, 25, 27, 
28, 29, 30, 31, 32, 40, 42, 73, or 170 days. 2H2O labeling was for the 4-5 days before 
SAC (Figure 3-1A). To determine whether the global slowing of protein turnover 
develops gradually or discretely at a specific timepoint during CR, we combined 
metabolic labeling by 2H2O of hepatic proteins with tandem mass spectrometric analysis 
of mass isotopomer abundances in peptides in C57Bl/6J mice (n=120) under CR at 
serial timepoints. 
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The most commonly measured parameter for CR is a reduction in body weight. Mice 
were weighed at regular intervals throughout the experimental timeframe (Figure 3-1B) 
and a significant reduction in body weight (p<0.05) was observed within a week of the 
start of the experiments. Plasma glucose levels (mg/dL) (Figure 3-1C) under fasting for 
4-6 hours in both Con and CR were then assessed over time. The data show a relatively 
rapid effect of CR on glucose sensitivity, one of the markers of CR on health span.  
 
For in vivo stable isotope labeling in conjunction with mass spectrometry, analysis was 
done at each time-point in our time-course to determine the time evolution of proteome-
wide reduction in protein synthesis rates. The stable isotope tracer used in this 
experiment was heavy water (2H2O). 2H2O was given IP to immediately raise the body 
water to ~5% enrichment and then as 8% 2H2O in the drinking water to maintain the 
~5% 2H2O enrichment body water enrichment during the labeling period 7,194,326. 
Because the hydrogens or protons in solvent water are used in almost all biological 
reactions and processes, including entry into C-H bonds during intermediary 
metabolism and synthesis of non-essential amino acids and transamination of essential 
amino acids 305,326, this allows 2H to be incorporated covalently into newly synthesized 
polymers such as polypeptides. Because stable peptides and proteins once formed do 
not exchange hydrogen in covalent C-H bonds with solvent water 305, this labeling 
approach tags only proteins that were newly synthesized during the period of label 
exposure.  
 
Through this approach, we measured in vivo hepatic proteome-wide dynamics of 
individual proteins by quantifying the rate of incorporation of deuterium from heavy 
water into proteins, as previously described 326. After the period of labeling (4-5 days), 
liver samples were collected, and the complex peptide pool recovered after trypsin 
hydrolysis of the mixture of unlabeled and labeled proteins was run by LC-MS/MS 
analysis. Peptide identification was carried out by protein informatics and isotope 
incorporation was analyzed by mass isotope distribution analysis (MIDA) to calculate 
flux rates of each peptide that passed analytic criteria 305,306,326. Peptides were rolled up 
into their parent protein and the mean value was used to calculate replacement rate of 
the parent protein 7,194. The hepatic proteomic analyses (Figure 3-2) were conducted in 
C57Bl/6J male mice with the onset of CR (30%) intervention starting at 6 or 7 weeks of 
age. The number of identified proteins with measurable kinetic values varied among 
experiments from 96 proteins in the lowest set to 269 in the highest (Figure 3-2). The 
protein turnover rates under CR were compared to their matched Ad lib control and each 
protein was considered as upregulated when fractional synthesis rates [FSR] was higher 
in CR or downregulated when FSR is lower in CR (Figure 3-2). Only proteins for 
which kinetic values were measurable in both CR and AL groups were used in 
comparisons. 
 
There were generally modest or no apparent changes in the number of proteins with a 
slower turnover rate under CR between days 0 and 25 of intervention (Figure 3-3A 
through 3-3B). Strikingly, however, what followed was a dramatic slow-down in the 
rate of protein synthesis in the CR group that reached 75- 85 % of proteins measured by 
days 30 to 32 (Figure 3-3A through 3-3B). The slow-down became evident though it 
was somewhat variable in the daily measurements that we carried out between days 25 
and 30. This slow-down was then maintained through the measured timepoints between 
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days 40 to 170, with between ~75-85% of the proteins slowed down at all timepoints 
(Figure 3-3A through 3-3B). When a cut-off value of greater than 10% higher or lower 
FSR was used, the transition between days 25 and 32 became even more striking 
(Figure 3-2). Before day 25, fewer than 20% of measured proteins achieved this cut-off 
of 10% higher FSR than in controls, but by days 30 – 32, about 60% of proteins 
measured achieved this 10% higher FSR cut-off value. 
 
We used a sequence enrichment analysis approach using genome-wide expression 
profiles 327 to look for significant changes in proteome dynamics between days 25 and 
30. We were able to identify sets of genes that are enriched in four main datasets 
(Hallmark, gene ontologies v7, KEGG, and Reactome). This approach allowed us to 
consider not only gene ontologies but the changes in gene expression of all genes 
belonging to the dataset. We observed that at 25 days of CR, 104 out of the 210 datasets 
showed “upregulation”, or higher replacement rates, for the gene set collections found 
in the databases used. Of this, 10 gene sets were significantly enriched at an FDR < 0.25 
(Figure 3-4A) in which proteolysis, apoptosis and cytokines stood out as potential 
proteostasis modulators. In comparison, an almost identical fraction of 106 out of 210 
data sets were higher in the Con group and none were significant by any stringent 
statistical analysis. At day 30 of CR, only 19 out of the 210 data sets used for analysis 
were upregulated in the CR group and none were statistically significant by sequence 
enrichment analysis whereas 191 out of 210 data sets used for analysis were 
downregulated under CR and of these 6 were significantly enriched at nominal (p<0.05) 
value (Figure 3-4B), in which OXPHOS processes stood out. Ranked list correlation 
profiles of FSR values at day 25 (Figure 3-4A) revealed an equal distribution of up and 
downregulated data sets that shifted to almost an all-downregulation of ontologies at 
day 30 (Figure 3-4B). Looking at the “leading-edge” allowed us to determine which 
subsets of genes contributed the most to the enrichment signal of a given gene set’s 
leading edge (core enriched). Our analysis of genes enriched within the datasets 
revealed various proteins involved in proper protein folding (HSP90AB1, HSP90B1, 
HSPA9, and PDIA3) to be significantly regulated at day 25 (Figure 3-4A). The leading 
edge analysis of genes enriched at day 30 (Figure 3-4B) showed increased expression 
of the enzyme serine hydroxymethyltransferase (SHMT1) which has a key role in one-
carbon metabolism and control of cell proliferation 328. A notable shift, however, was a 
decrease of HSP90B1 as previously observed 329. 
 
To obtain a comprehensive view of gene expression during CR in the final time point 
that showed a lack of observable inhibition of global protein FSR, we performed RNA-
seq on hepatic RNA after 25 days of CR (Figure 3-5A). The experiment yielded 15,082 
genes after filtering out low-quality reads. Gene Sequence Enrichment Analysis was 
then used to analyze leading edge genes within gene overlaps. The two biggest overlaps 
observed (Figure 3-5A) were between OXPHOS signal with mitochondria complex I 
biogenesis, and translation signals with NMD signals. Further data characterization was 
performed using gene enrichment scores to define some of the major biological themes 
(Figure 3-5A) within an enrichment map including clusters of either up- or 
downregulated groups. Of note was that no downregulated genes were observed in any 
particular biological theme. Nevertheless, a number of gene clusters for eukaryotic 
translation and respiratory electron transport were observed.  
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A similar approach was done for gene expression during CR in the initial time-point 
with a high level of inhibition of protein FSR. We performed RNA-seq on hepatic RNA 
after 30 days of CR (Figure 3-6A through 3-6C). The experiment yielded 15,239 genes 
after filtering out low-quality reads. Gene Sequence Enrichment Analysis was then used 
to analyze leading edge genes within gene overlaps. The two biggest overlaps observed 
(Figure 3-6B) were consistent with what we observed at day 25 between OXPHOS 
signal with TCA Cycle signal, and translation signals (and 43S cap formation) with Slit 
and Robos signals. Of note is that slits are highly conserved glycoproteins that are 
secreted to regulate several processes like neuronal axon guidance, cell proliferation, 
cell migration, and vascularization, via binding to Robo receptors 330. Further data 
characterization was performed using gene enrichment scores to define some of the 
major biological themes (Figure 3-6C) within an enrichment map including clusters of 
either up- or downregulated groups. Of note was that, unlike day 25 where no 
downregulated genes were observed, we saw four clusters decreased of which two 
(interferon alpha and interferon beta signaling) play a fundamental role in immunity. In 
addition, a large cluster of genes for translation initiation and TCA cycle were observed.  
 
In order to understand if there were uniquely regulated genes between days 25 and 30 of 
CR, we sorted the genes by those with a log2(FC) ≥ 0.1 between control and CR. Using 
that cutoff, we then compared overlapping genes in both timepoints and represented 
them by Venn diagram (Figure 3-7A through 7-3B). Considering the genes not 
overlapping at day 30, we then analyzed them through systems-level datasets 331. The 
metascape gene analysis revealed several pathways uniquely upregulated at day 30 
(Figure 3-7A) of which the AMPK signaling pathway stood out (this is discussed in 
Chapter 5, where we test the effects of metformin). Uniquely downregulated gene 
analysis (Figure 3-7B) further confirmed a decrease of protective gene signals.  
 
It is well understood that long-term CR leads to lifespan extension and preserved 
cellular homeostasis. Indeed, many studies on CR have focused on its life-long effects 
through lifespan studies. However, an important question on the effects of CR is 
whether this intervention generates its functional benefits at the onset of restriction, 
through a progressive accumulation of metabolic alterations, or even across a discrete 
time period along the length of interventions. At the beginning of CR, the organism can 
be considered, in general, under a newly imposed semi-fasting state 332. What follows 
can be contemplated as an integrated series of metabolic adaptations where the 
organism begins to respond to the newly established energy economy. However, the 
point in which we can distinguish the biologic onset of objectively measurable 
biochemical or molecular changes is not known – as most studies vary in onset of 
experiment and length (from months to life-long in murine models, as discussed earlier).  
 
An important broad observation is that most studies applying CR in mice have required 
month-long interventions to see a biological response when looking beyond the body 
weight and related changes that happen very early on. This observation may have 
important implications into how CR is studied. In this regard, one of the most conserved 
molecular phenotype in disease states is the signature of protein synthesis 333. In our 
hands, CR in rodents results in dramatic reductions in global protein synthesis rates. But 
these observations had previously been made mainly in mice under CR for months or 
near-lifetime exposure to CR (e. g. 14 months 7).  
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If CR is able to remodel the metabolic profile of an organism earlier, then there may be 
no need to maintain animal under CR for such long periods of time unless the question 
is age-related. Similarly, if the effects of CR are gradual and progressive, then we need 
to delineate the time over which the changes are sufficient to be measurable or robust 
enough to be significant. However, if there is a discrete timepoint at which CR becomes 
functional, we can take advantage of that knowledge to explore the actual pathways 
being altered and apply that knowledge in the development of therapeutic interventions. 
In these series of CR experiments where strain, sex, age, and diet were kept consistent, 
we have tried to tackle the difficult question of how and when CR begins to induce it 
characteristic long-term biochemical and molecular changes.  
 
Our data reveal a surprisingly narrow and reproducible period over which CR slows 
down the turnover rate of hepatic proteins. This phenotype became evident within a 
discrete time-period between days 25 and 32 of intervention. These changes are then 
maintained long after the initial observation of hepatic protein replacement rate slow-
down. The question of what the signals and metabolic events are that induce this 
striking transition between days 25 to 32 of CR opens new avenues for research. 
 
As discussed previously, there is an implicit and rarely tested dogma in which gene 
expression is taken to be the key regulator of protein translation and therefore a reliable 
indirect marker of protein synthesis rates. To test this assumption and understand if the 
FSR values observed under CR are regulated at the transcriptional level we compared 
our identified protein turnover rates with their gene expression (Figure 3-8A through 
3-8B). The FSR values and gene expression results were compared by their log2(FC) 
between control and CR. At day 25 of CR (Figure 3-8A), we observed an almost even 
split between gene expression and protein FSRs going the same direction (i.e. 46.8%in 
which both data types were either increased or decreased by CR). Binomial distribution 
analysis (2-tailed p: 0.38) showed no significance or a direct correlation between 
changes in gene expression and protein FSR. Interestingly, at day 30 of CR (Figure 3-
8B) a larger difference in expression of the two types of data was observed, where 65% 
of genes and their corresponding FSRs had divergent directional changes in expression 
effects induced by CR. To further explore the hypothesis that translation regulation is 
not gene dependent, we tested the protein levels of the P70 S6 kinase (p70S6K) (Figure 
3-8C). The phosphorylation of this kinase is activated by a signaling pathway that 
includes mTOR, and is required for cell growth and G1 cell cycle progression 334. We 
saw hints of decreased synthesis rate of this kinase at day 25, however at day 30 we saw 
a more dramatic inhibition of its activity. Gene expression showed no difference 
between day 25 and 30.  
 
As a way to explore our observations of differential gene expression related to 
immunity between day 25 (Figure 3-4A; higher gene expression for cytokines under 
CR) and day 30 (Figure 3-6C; lower expression of interferon clusters under CR) we 
then focused on cytokine expression at the protein level (Figure 3-9A). We performed a   
profiled array of cytokines through an immunoassay. Of note was that while at day 25 
there was an overall increase in cytokines under CR (Figure 3-9B), this was the 
opposite at day 30 of CR which matched our gene expression analysis. In this instance, 
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gene expression matches protein content and paralleled the CR effects on protein fluxes 
of changing during a discrete time period. 

 
3. CONCLUSIONS 
 
An important question that is often hard to answer is how long it takes for a particular 
intervention to incuse a complex phenotypic response. Having a critical or potentially 
causal biochemical marker of the broad phenotype can be a great help in this effort, as 
we show here using the striking slowing of proteome-wide protein turnover rates during 
CR. If a discrete time-period of induction is identified, a second important question may 
then become possible to explore: the underlying signals and molecular mechanisms by 
which this transition occurs. The data presented here show a functional way in which 
we may be able to understand both when and how CR exposure can induce beneficial 
effects.  
 
Through proteome dynamics, we were able to make powerful inferences into the period 
over which CR induces an important functional change. A priori, the possible outcomes 
could be a rapid or immediate reduction on induction of CR in the liver proteome (e.g., 
days), a gradual reduction over time, or a sudden onset of reductions in either a 
predictable or unpredictable manner. Here, we demonstrate that during the early stages 
of CR (between days 9 and 25) there are no significant changes in the FSR of proteins 
between control and CR. However, over a discrete time period we observed a dramatic 
shift to slower protein turnover rates (starting on days 27-32). This signature remained 
or became more marked during the later points (days 43-170). This demonstrates for 
the first time that ~30 days is enough to elucidate proteome wide remodeling of hepatic 
proteins and that the period immediately leading up to day 25 -32 may be particularly 
informative for exploring the signals underlying this long-term adaptation.  

 
As discussed earlier, the concept that gene expression is a reasonably accurate metric 
and driver of protein synthesis and expression is implicitly accepted by many 
investigators who use mRNA expression as a surrogate marker 335,336. In order to 
understand if the sudden shift in protein turnover rates was due to transcriptional or 
message level control, RNA-Seq was performed at days 25 and 30. Of significance was 
that while CR increased the half-lives of most of the hepatic proteins between days 25 
and 30, this did not occur at the transcriptional level where only a fraction of the genes 
had a log2(FC)>0.1. When matching the gene expression with their corresponding 
protein FSR, the discrepancy was even more pronounced, with most genes having 
almost no distinguishable expression changes when compared to their protein FSRs. At 
day 25 n equal proportion of genes had variations in expression that were in the same 
direction as their cognate protein FSR. However, at day 30 there was a wide divergence 
between direction of gene expression and protein FSR variations.  
 
While little or no direct correlation between gene expression and their protein FSR 
could be seen, it is clear there is a unique role for gene expression in the biology of CR. 
Our gene expression changes were analyzed through a stringent statistical analysis 
through GSEA and Metascape, in which we were able to observe transcriptome drivers. 
Of note were that in both the transitional CR timepoints (day 25 and day 30), 
translational gene clusters were highly upregulated, together with energy generating 



40  

genes. Interestingly, further interrogation of the data set revealed several pathways 
uniquely upregulated at day 30 of which AMPK signaling stood out. Our data illustrates 
here the potential for a flux proteomics approach in providing insight for a complex 
physiologic adaptation model such as CR and one of the first indications shown to date 
that the effects of CR may not come uniquely or primarily from transcriptional level 
modulation. 
 
Although it is clear that mRNA levels were not the primary drivers for protein FSR 
changes, they can still play a fundamental role in the adaptations of CR. For two 
observations of significant changes in the gene expression data – an increase in immune 
response genes at day 25 and a reduction at day 30 in cytokine genes – measurements of 
protein concentrations paralleled the changes in mRNA levels.  
 
Taken together, these data show that the proteome-wide slowing of protein fluxes which 
is characteristic of long-term CR as well as other lifespan extending interventions 7 
occurs over a strikingly discrete time-period after induction of CR in mice. Moreover, 
the changes in protein fluxes are not paralleled by changes at the mRNA level. These 
findings open the possibility of identifying key cellular and organismal signals that 
underlie this important phenotypic adaptation, by exploring changes before and during a 
discrete transitional time-period. 

 
4. METHODS 
 
Mice, animal husbandry, diets, feeding regimens and duration of heavy water 
(2H2O) labeling. All mice were maintained were maintained under temperature- and 
light-controlled conditions (12h:12h light-dark cycle, lights on at 0700h and off at 
1900h). 
 
CR Model. For the in vivo study, 6-7-week-old male C57Bl/6J mice (Jackson 
laboratory, Bar Harbor, ME) were used. All mice were housed individually. Mice were 
randomly assigned to one of the following two groups: ad libitum-fed (AL) or CR.  
Mice in the AL group were provided unrestricted access to the NIH41 diet (Diet# 58YP, 
TestDiet, St. Louis, MO). Due to excessive powdering of the NIH41 diet, which 
prohibited the accurate measurement of food intake in the AL group, mice in the CR 
group were provided with enough NIH41-fortified diet (Diet# 5TPD, TestDiet, St. 
Louis, MO) to achieve a 30% reduction in body weight relative to the AL group mean 
by weekly adjustments. Mice in the CR group were then provided with enough NIH41-
fortified diet to maintain a body weight that was ~75% of the AL group mean for the 
duration of the study. Therefore, the CR mice in this study were effectively on a 30% 
CR diet. CR mice were provided with food daily at 1200hr. All mice in this study were 
kept on their diets for a total of 9 to 170 days. The body weight of each mouse was 
measured at least three times per week and all mice were labeled with heavy water 4-5 
days before SAC. The in vivo hepatic proteomics approach presented here for the CR 
model were based on a previous publication from our group 326.  
 
Heavy water labeling protocol. To measure rates of in vivo protein replacement, mice 
were labeled with an intraperitoneal injection of 100% 2H2O at the times specified in 
Figure 3-1A 4-5 days prior to the end of each study. Mice were then provided free 
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access to 8% heavy water as drinking water for the remainder of the studies, as 
previously described 194. 
 
Blood, plasma and tissue collection. Upon completion of each study, mice were 
anesthetized under 3% isoflurane and blood was collected via cardiac puncture, 
followed by cervical dislocation and tissue collection. Following centrifugation of 
blood, plasma was collected and stored at -80°C.  Upon dissection, the liver was cut into 
several small pieces (~20-100mg), which were flash frozen in liquid nitrogen.  
 
Measurement of 2H2O enrichment in body water. Enrichment of 2H2O in body water 
(blood) was measured via chemical conversion to tetrabromoethane as previously 
described 326. Body water 2H2O enrichment values (p) were used to calculate the 
fractional synthetic rate (f) of peptides as detailed in a subsequent section. 
 
Preparation of liver samples for LC-MS/MS proteomic analysis. Frozen livers from 
AL and CR mice labeled with heavy water were prepared and treated as previously 
described 326. Frozen livers from AL and CR mice labeled with heavy water were 
homogenized in ~500ul lysis buffer (10mM Tris-base, 150mM NaCl, 1% NP-40, 0.1% 
SDS, 0.5% sodium deoxycholate, 1mM dithiothreitol (DTT), 1mM 
phenylmethylsulfonyl fluoride (PMSF), 7.5ug/mL leupeptin, 1.0ug/mL pepstatin, 
2.0ug/mL aprotinin and 1 Phosphatase Inhibitor Cocktail (Roche Applied Science, 
Indianapolis, IN) per 10mL buffer, pH ~7.5) using a stainless steel bead and a 
TissueLyserII (Retsch, Newtown, PA) set at 30hz for 1min.  Tissue homogenates were 
sonicated in a sonication water bath for 1min and then centrifuged at 10,000 rcf at 4°C 
for 10min followed by supernatant collection. Protein concentrations were determined 
by bicinchoninic acid (BCA) assay (Pierce, Rockford, IL). 100-250ug aliquots of 
protein from these homogenates were uniformly reduced via incubation in 4.8mM 
tris(2-carboxyethyl)phosphine (TCEP) and SDS-PAGE sample loading buffer for 10min 
at 70°C. The reduced samples were then alkylated via incubation in 14.3mM 
iodoacetamide for 1hr in the dark at room temperature. Tryptic peptides from all protein 
homogenates were prepared as previously described 326. 
 
LC-MS/MS analysis. Trypsin-digested peptides were analyzed on either an Agilent 
6520 or 6550 Q-TOF (quadrupole time-of-flight) mass spectrometer with 1260 Chip 
Cube nano ESI source (Agilent Technologies, Santa Clara, CA). Peptides were 
separated chromatographically using a Polaris HR chip (Agilent #G4240-62030) 
consisting of a 360nL enrichment column and a 0.075 x 150 mm analytical column, 
each packed with Polaris C18-A stationary phase with 3 µm particle size. Mobile 
phases were (A) 5% v/v acetonitrile and 0.1% formic acid in deionized water and (B) 
95% acetonitrile and 0.1% formic acid in deionized water. Peptides were eluted at a 
flow rate of 350 nL/min during an 18 min nano LC gradient (2% B at 0 min, 5% B at 
0.5 min, 30% B at 10 min, 50% B at 13 min, 90% B at 13.1-18 min, 2% B at 18.1 min; 
Stop time: 32 min). Each sample was analyzed twice, once for protein/peptide 
identification in data-dependent MS/MS mode. Acquisition parameters were: MS/MS 
acquisition rate = 6 Hz MS and 4 Hz MS/MS with up to 12 precursors per cycle, MS 
acquisition rate = 0.9 Hz (6520 QTOF) or 0.6 Hz (6550 QTOF), ionization mode = 
positive electrospray; capillary voltage = 1980 V; drying gas flow = 9 L/min (6520 
QTOF) or 11 L/min (6550 QTOF); drying gas temperature = 290 °C; fragmentor = 360 
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V; skimmer = 45 V; maximum precursor per cycle = 12; scan range = 100-1700 m/z 
(MS), 50-1700 m/z (MS/MS); isolation width (MS/MS) = medium (~4 m/z); collision 
energy (V) = -4.8+3.6 (precursor m/z/100); active exclusion enabled (exclude after 1 
spectrum, release after 0.12 min); charge state preference = 2, 3, >3 only, sorted by 
abundance; TIC target = 25,000; reference mass = 922.009798 m/z (6520 QTOF) or 
1221.990637 m/z (6550 QTOF). Acquired MS/MS spectra were extracted and searched 
using Spectrum Mill Proteomics Workbench software (version B.04.00 released Feb 
2012, Agilent Technologies, Santa Clara, CA) and a UniProtKB/Swiss-Prot mouse 
protein database (16,612 proteins, UniProt.org, release 2013_05). Data files were 
extracted with the following parameters: fixed modification = carbamidomethylation of 
cysteine, scans with same precursor mass merged by spectral similarity within 
tolerances (retention time +/- 10 sec, mass +/-1.4 m/z), precursor charge maximum z = 
6, precursor minimum MS1 S/n = 10, and 12C precursor m/z assigned during 
extraction. Extracted files were searched with parameters: enzyme = trypsin, species = 
Mus musculus, fixed modification = carbamidomethylation of cysteine, variable 
modifications = oxidized methionine + pyroglutamic acid + hydroxylation of proline, 
maximum number of missed cleavages = 2, minimum matched peak intensity = 30%, 
precursor mass tolerance = 10 ppm, product mass tolerance = 30 ppm, minimum 
number of detected peaks = 4, maximum precursor charge = 3. Search results were 
validated at the peptide and protein levels with a global false discovery rate of 1%.  
Proteins with scores greater than 11.0 were reported, and a list of peptides with scores 
greater than 6 and scored peak intensities greater than 50% was exported from 
Spectrum Mill and condensed to a non-redundant peptide formula database using 
Microsoft Excel. This database, containing peptide elemental composition, mass, and 
retention time was used to extract MS spectra (M0-M3) from corresponding MS-only 
acquisition files with the Find-by-Formula algorithm in Mass Hunter Qualitative 
Analysis software (version B.05.00, Agilent Technologies, Santa Clara, CA). MS 
spectra were extracted with parameters: extracted ion chromatogram integration by 
Agile integrator; peak height > 10,000 counts; include spectra with average scans > 
12% of peak height; no MS peak spectrum background; unbiased isotope model; 
isotope peak spacing tolerance = 0.0025 m/z plus 12.0 ppm; mass and retention time 
matches required; mass match tolerance = +/- 12 ppm; retention time match tolerance =  
+/- 0.8 min; charge states z = +2 to +4; chromatogram extraction = +/- 12 ppm 
(symmetric); EIC extraction limit around expected retention time = +/- 0.6 min.  
 
Proteome dynamics (fluxs) calculations. Data from individual biological samples 
were filtered to exclude protein measurements with fewer than two peptide spectra 
measurements per protein. Details of fractional replacement calculations were described 
previously 326. Briefly, in-house software was developed to calculate the peptide 
elemental composition and curve fit parameters for predicting isotope enrichments of 
peptides in newly synthesized proteins based on precursor body water enrichment (p) 
and the number (n) of amino acid C-H positions per peptide actively incorporating H 
and 2H from body water. Incorporation of 2H into tryptic peptides decreases the relative 
proportion of M0 within the overall isotope envelope spanning M0–M3. Fractional 
synthesis was calculated as the ratio of excess %M0 (EM0) for each peptide to the 
maximal absolute EM0 possible at the measured body water enrichment. Data handling 
was performed using Microsoft Excel templates, with input of precursor body water 
enrichment for each subject, to yield FSR data at the protein level. Data from individual 
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biological samples were filtered to exclude protein measurements with fewer than two 
peptide spectra measurements per protein. FSR data at individual time points (weeks) 
are reported as a cumulative value (percentage of protein newly synthesized over the 
entirety of the labeling period).  
 
RNA-Sequencing. Total RNA was isolated from mouse livers using RNeasy Micro Kit 
from Qiagen (Hilden, Germany). RNA Quantity was determined using a Qubit (TM) 
fluorometric assay and quality was determined using Eukaryote Total RNA Pico 
(Agilent Bioanalyzer 2100). The library preparation and sequencing were done on a 
single lane (Illumina HiSeq4000) at 100bp pair-end (PE) reads and performed at the 
Vincent J. Coates Genomics Sequencing Laboratory at University of California (UC), 
Berkeley. The raw sequencing files were processed with CASAVA 1.8.2 (Illumina) to 
generate fastq files. We first obtained read quality reports by using the FastQC tool 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which gave us overall 
high-quality scores. The fastq files were then uploaded onto the Galaxy project portal 
(https://usegalaxy.org/) 337. The reads were then mapped to the mouse reference genome 
(mm10) using the Burrows-Wheeler Aligner (BWA) module. Differential gene 
expression of RNA-seq was determined using DESeq2 338. 

 
Western Blots. p70 S6 kinase antibody (#9202) was obtained through Cell Signal. 
Mouse livers were lysed in CST lysis buffer containing 20 mM Tris pH 7.5, 150 mM 
NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM pyrophosphate, 50 mM 
NaF, 5 mM β-glycero-phosphate, 1 mM Na3VO4, 50 nM calyculin A (EMD Millipore), 
and protease inhibitors (Roche). Lysate was incubated on a rotator at 4°C for 30 min, 
and insoluble residue was subsequently removed with a centrifugation at 14,000 rpm for 
10 min. Protein samples were normalized to a single concentration between 1 and 2 
mg/mL. Proteins were separated by SDS/PAGE and transferred to nitrocellulose 
membranes with the iBlot system (Invitrogen). Blots were blocked with 5% BSA in 
Tris-buffered saline containing Tween 20 (TBST) solution for 1 h at RT and then 
washed with TBST. The blots were probed overnight at 4°C with primary antibodies 
diluted in 5% BSA in TBST according to manufacturer’s instructions. Following 
washes with TBST, the blots were incubated in the dark for 1 h at RT with secondary 
antibodies (Rockland). Blots were visualized using a ChemiDoc MP (Bio-Rad 
Laboratories, Inc.). 

 
Cytokine array. Proteome profiler mouse XL Cytokine Array ARY028 (R&D 
Systems) was used to detect change in level of cytokines in liver lysates. All reagents, 
kits and chemicals, unless otherwise stated, were used according to the manufacturers’ 
instructions. Other chemicals unless specified were purchased from Sigma-Aldrich. 
 
Statistical analyses. Data were analyzed using GraphPad Prism software (version 9.0) 
(La Jolla, CA, USA), InfernoRDN (https://omics.pnl.gov/software/infernordn) windows 
application (version 1.1), Gene set enrichment analysis, GSEA software, and Molecular 
Signature Database (MSigDB) 327 (http://www.broad.mit.edu/gsea/), and Real Statistics 
Resource Pack (http://www.real-statistics.com/free-download/real-statistics-resource-
pack/) in Excel (version 16). 
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5. FIGURES 

Figure 3-1. Experimental Data. (A) Schematic of experimental timepoints. Male 
C57Bl/6J mice starting at 6±1 weeks of age underwent CR (30% less than 
control/week) between 1 to 170 days. Mice were labeled with 2H2O by IP 4-5 days 
before sacrification (SAC) and body water enrichment was maintained with 8% 2H2O 
in drinking water. (B) Animal parameters were used to establish physiological effects 
under CR. Male C57Bl/6J mice (n=120) of similar age (6±1 weeks) were single-caged 
and split into ad-lib and CR. Mice were weighed at regular intervals throughout the 
experimental period. (C) Plasma levels of glucose from mice fasted for 4-6 hours for 
both Con and CR. Data are mean ± SEM, (n = 3-5 for all experiments). ∗P < 0.05 vs 
control.
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Figure 3-2. Time-course of reduction in proteome-wide protein fractional 
synthesis rates (FSR) during long-term CR. Data represent multiple experiments on 
which C57Bl/6J male mice underwent CR for different lengths of time with heavy 
water labeling for the 4-5 days prior to each time point. Livers were collected and the 
proteome was analyzed by LC-MS/MS and the FSR (turnover rates) were calculated by 
MIDA, as described in Methods. Heatmaps represent the z-score of the FSR between 
control and CR for each timepoint: each group was averaged and sorted from highest to 
smallest value and graphed as a double-gradient heatmap. The dot graph shows the 
log2(FC) of CR vs control FSR. Dots represent individual proteins identified by LC-
MS. Tables show the binomial distribution significance between upregulated (higher 
FSR) or downregulated (lower FSR) proteins in CR vs control and also show the 
number and percent of proteins that reached a cut-off value of 10% higher or lower 
FSR than in controls. Vertical dotted line shows the dividing line separating faster (left) 
and slower (right) FSRs. 
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Day 09 Count % # above cutoff %
Up 75 38.3 35 17.9
Down 121 61.7 56 28.6
Total 196
P-value 0.0004
**C.V. = 0.126

Day 14 Count % # above cutoff %
Up 118 43.9 46 17.1
Down 151 56.1 63 23.4
Total 269
P-value 0.0190
**C.V. = 0.1076

Day 20 Count % # above cutoff %

Up 73 37.4 31 15.9
Down 122 62.6 44 22.6
Total 195
P-value 0.0002
**C.V. = 0.2089

Day 25 Count % # above cutoff %
Up 90 47.6 42 22.2 
Down 99 52.4 32 16.9
Total 189
P-value 0.23
**C.V. = 0.2378

Day 27 Count % # above cutoff %
Up 49 29.9 12 7.3
Down 115 70.1 55 33.5
Total 164
P-value 6.0E-08
**C.V. = 0.1340

Day 28 Count % # above cutoff %
Up 33 34.0 10 10.3
Down 64 66.0 30 30.9
Total 97
P-value 0.0005
**C.V. = 0.1655

Day 29 Count % # above cutoff %
Up 55 35.7 20 13.0
Down 99 64.3 71 46.1
Total 154
P-value 0.00013
**C.V. = 0.1183

Day 30 Count % # above cutoff %
Up 44 25.7 19 12.3
Down 127 74.3 93 60.4
Total 171
P-value 2.7E-11
**C.V. = 0.1436

Day 31 Count % # above cutoff %
Up 31 15.4 14 7.0
Down 170 84.6 131 65.2
Total 201
P-value 0E+00
**C.V. = 0.1607

Day 32 Count % # above cutoff %
Up 23 24.0 13 13.5
Down 73 76.0 44 45.8
Total 96
P-value 4.7E-08
**C.V. = 0.1850

Day 40 Count % # above cutoff %
Up 11 7.7 7 4.9
Down 132 92.3 113 79.0
Total 143
P-value 0E+00
**C.V. = 0.1287

Day 42 Count % # above cutoff %
Up 43 18.4 14 6.0
Down 191 81.6 122 52.1
Total 234
P-value 0E+00
**C.V. = 0.1255

Day 73 Count % # above cutoff %
Up 16 14.7 7 6.4
Down 93 85.3 62 56.9
Total 109
P-value 1.8E-15
**C.V. = 0.0915

Day 170 Count % # above cutoff %
Up 41 22.7 17 9.4
Down 140 77.3 96 53.0 
Total 181
P-value 1.1E-14
**C.V. = 0.0832

Day 09 Count % # above cutoff %
Up 77 46.4 13 7.8
Down 89 53.6 15 9.0
Total 166
P-value 0.803
**C.V. = 0.129
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Figure 3-3. Identifying the timeframe of protein turnover rates by binomial 
distribution test. (A) Proteins in each timepoint and under CR were compared to their 
control and sorted by the percentage of proteins whose turnover was either higher 
(faster replacement rate) or lower (slower replacement rate). (B) Proteins in each 
timepoint are sorted by Coefficient of Variation (CV = SD/mean). CV was determined 
for the Control group and the average was used as a ‘cutoff’ to determine variations 
within the control group to represent the percentage of proteins with more than one CV 
above or below controls. Yellow line represents the period (days 25 – 30) where a 
significant shift in replacement rate is observed.
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Figure 3-4. Sequence Enrichment Analysis of Protein FSR values at days 25 and 
30 of CR. This data represents the sequence enrichment analysis of gene expression 
profiling. (A) Data from day 25 of CR. 104 out of 210 datasets tested were enriched in 
the CR group and are represented as a fraction of the total number of genes included in 
each dataset. Of these, 10 datasets were significantly enriched at a FDR < 0.25 and 106 
out of 210 datasets were upregulated in the Con group. However, no data sets were 
significantly enriched. A ranked gene list correlation profile for FSR expressions 
showed the distribution of FSR values and assigned as positive (CR group) and 
negative (Con group) for the correlation. Heatmap shows a representation of leading-
edge between gene sets (top) present as an overlap within gene sets that can suggest 
phenotype driving genes. (B) Data from day 30 of CR showed that 19 out of 210 
datasets were enriched in the CR group. However, no datasets were significant. 191 out 
of 210 data sets were upregulated in the control group. 6 out of 210 datasets were 
significantly enriched nominal p <0.05. A ranked gene list correlation profile for FSR 
expressions showed the distribution of FSR values between positive (CR group) and 
negative (Con group) correlation. Heatmap shows the leading-edge between gene sets 
(top) that could be gene drivers. 
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Figure 3-5. Gene Regulation based on mRNA levels at day 25 of CR. RNA-Seq 
from mouse livers. (A) Over 15,000 genes were identified by RNA-Seq and sorted from 
increased to decreased expression as log2(Fold Change) between the control and CR. 
(B) Leading edge analysis among gene sets. Color intensity is used to show the overlap 
between subsets, the darker the color, the greater the overlap between the subsets. 
Specifically, the intensity of the cells for ‘translation signal’ with ‘NMD signal’ and 
‘OXPHOS signal’ with ‘Complex I biogenesis’ were correlated the strongest. (C) Gene 
enrichment scores defining the major biological themes were annotated in Cytoscape 
enrichment mapper. Clusters of similar pathways are represented where each node 
signifies one specific dataset. The yellow circles represent the annotation with related 
pathways. generate an Enrichment map including clusters of similar pathways. 
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Figure 3-6. Gene Regulation based on mRNA levels at day 30 of CR. RNA-Seq 
from mouse livers. (A) Over 15,000 genes were identified by RNA-Seq and sorted from 
increased to decreased expression as log2(Fold Change) between the control and CR. 
(B) Leading edge analysis among gene sets. Color intensity is used to show the overlap 
between subsets, the darker the color, the greater the overlap between the subsets. 
Specifically, the intensity of the cells for ‘translation signal’ and ‘43S signal’ with 
‘Slit&Robos signal’ and ‘OXPHOS signal’ with ‘TCA Cycle signal’ were correlated 
the strongest. (C) Gene enrichment scores defining the major biological themes were 
annotated in Cytoscape enrichment mapper. Clusters of similar pathways are 
represented where each node signifies one specific dataset. The yellow circles represent 
the annotation with related pathways. generate an Enrichment map including clusters of 
similar pathways. 
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 Figure 3-7. Gene Expression Changes. (A) Venn Diagram and gene ontology of genes 
uniquely upregulated at day 30. The cutoff was considered within the change in their 
log2(FC) ≥ 0.1 between control and CR for both day 25 and 30. Genes that did not 
overlap at day 30 were then analyzed by MetaScape to generate functional annotation. 
(B) Venn Diagram and gene ontology of genes uniquely downregulated at day 30. The 
cutoff was considered within the change in their log2(FC) ≥ 0.1 between control and CR 
for both day 25 and 30. Genes that did not overlap at day 30 were then analyzed by 
MetaScape to generate functional annotation.   

Genes Uniquely Upregulated at day 30A. 

Genes Uniquely Downregulated at day 30B. 
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Figure 3-8. Protein FSR and Gene Expression Compared. Protein FSRs and Gene 
expression comparison for day 25 (A) and day 30 (B). Only proteins also identified in 
the genomic dataset were included in the comparison and shown in this figure. Graphic 
lines in black were sorted from highest to lowest fold change for FSR or gene 
expression. Graphs in color were sorted from highest to lowest fold-change for FSR as a 
way to compare gene expression to protein FSR. Table represents the number of genes 
and protein FSRs with either the same or different direction for expression pattern. Table 
shows statistics as determined by binomial distribution 2-TAILED P values. Vertical 
dotted line shows the dividing line separating faster (left) and slower (right) values 
compared to controls. (C) Liver protein expression analysis of pP70S6 Kinase as a 
marker of active protein translation and compared to gene expression of p70S6 Kinase 
as the fold change to the age-matched control.
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Figure 3-9. Cytokine Array Expression. (A) Protein lysates from mouse livers 
between Con and CR for days 25 and 30 were extracted for immunoblot analysis for a 
cytokine array. Each protein was quantified by densitometry (pixel intensity on 
ImageJ). The average of the densitometry analysis was then compared between the CR 
and Control groups and represented as the Log2(FC). (B) Representative comparison of 
the cytokine array for proteins with a log2(FC) >0.1. Table represents the number of 
genes and protein FSRs with either the same or different expression pattern. Two-way 
ANOVA for column factor expressed as: P < 0.05
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CHAPTER FOUR: Different Effects of CR and Exercise on Skeletal Muscle 
Mitochondrial Biogenesis and Global Protein Synthesis Rates 
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1. INTRODUCTION 
 
Aging is an timepoint in life when protein damage 339 and metabolic imbalances that 
lead to loss of muscle mass and strength often occur 340, yet little is known about how to 
prevent these deleterious effects. CR is a lifespan extension intervention considered to 
be the most effecting rejuvenating treatment known so far 341. In addition, as discussed 
in chapter one, exercise has been suggested to be a CR mimetic.  
 
Both CR and EX have been shown to lead to physiological changes such as lower body 
weight, and to protect against the age-related diseases 342–344, although different effects 
on extension of maximal life-span in rodents has been reported 345.  It is widely 
accepted that EX leads to mitochondrial biogenesis 346–348. Mitochondrial biogenesis 
due to EX has been quantified and shown to increase in multiple studies 346–348, and 
importantly, is consistent with increased metabolic rate associated with EX. In contrast, 
long-term 40% CR results in changes in metabolism that achieve a stable body 
composition at lower body mass and lower energy expenditure 349. CR has been 
reported to increase mitochondrial biogenesis rates 204,350,351 but this observation is more 
controversial in light of the lower basal metabolism, total energy expenditure and 
calorie availability.  In addition, given that EX increases lean muscle mass and 
metabolic rate while CR reduces total body mass and metabolic rate, it seems surprising 
that skeletal muscle mitochondrial biogenesis has been reported to occur in both 
interventions.  

 
Directly comparing the synthesis rates and abundances of cytoplasmic and 
mitochondrial proteins across the muscle proteome in mice could be of great benefit in 
understanding the biology behind both EX and CR. This can be achieved through in 
vivo 2H2O (heavy water) labeling, LC-MS/MS analysis and label-free quantitative 
proteomics. An effective approach is through forced treadmill exercise training as a 
model of EX that is well-established model to increase mitochondrial biogenesis. 
Through this approach, it is possible to explore which interventions lead to significantly 
increased turnover rates (decreased the half-lives) or decreased turnover rates (increased 
the half-lives) of major muscle protein families such of contractile fiber, cytoskeletal, 
glycolytic, mitochondrial and sarcoplasmic reticulum proteins. Possible observations 
could be also derived through the changes in cellular and mitochondrial protein 
abundances compared with sedentary (SED) control mice, where the hypothesis of 
increased mitochondrial absolute protein synthesis rates through EX can be studied.  
 
The American College of Sports Medicine (ACSM) defines EX as any activity that uses 
large muscle groups, can be maintained continuously and is rhythmic in nature 352,353. 
While regular physical activity is known to improve CVD associated morbidity and 
mortality, the optimal duration, frequency, and intensity of exercise remains unclear 354. 
Exercise training procedures should therefore take into account intensity, modality of 
exercise, frequency, and duration. Basing these on exercise classifications such as 
dynamic355,356, and exhaustion or fatigue testing 357.  

 
2. RESULTS 
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In here, we compare how long-term (14 months on 40% CR) and progressive EX affect 
muscle biology and potentially protect against age-related disease by measuring the 
synthesis rates, half-lives and content of proteins across the global proteome in skeletal 
muscle of mice. In particular, we explore how short-term (2-weeks on 30%) and daily 
exhaustion EX affect muscle biogenesis.  
 
We have previously described a liquid chromatography mass spectrometry 
(LC/MS/MS) technique measuring the synthesis rates and half-lives of proteins across 
the global proteome in tissues and body fluids 194,326. This technique involves in vivo 
metabolic labeling of newly synthesized proteins with 2H2O (heavy water) followed by 
the measurement of the isotope patterns and relative abundances of thousands of 
individual trypsin-generated peptides by LC-MS/MS (Figure 4-1). We have previously 
used this “dynamic proteomics” approach to measure the in vivo synthesis and 
degradation rates of hundreds of proteins in the liver of CR mice 7,194,326 and in skeletal 
muscle of exercised humans 358. We have also shown that individual proteins within 
multi-protein complexes often have very similar turnover rates, including complexes 
within the mitochondria 359. In generating an entire mitochondrion, more than 1000 
specific proteins must be synthesized 360. Therefore, if the cell is modulating the rates of 
mitochondrial biogenesis or degradation, we should see it reflected in the turnover rates 
of many proteins within our data as a direct representation of mitochondria biogenesis. 

 
It is important to note that in both EX and CR experiments, we compared the 
differences in mitochondrial protein kinetics relative to age matched controls. Healthy 
18-month old male mice from the NIA CR colony and age-matched controls were used. 
These animals have been maintained on a CR diet for 14 months, which ensures that we 
are measuring the proteome dynamics and mitochondrial protein kinetics in animals 
that are at steady state and are experiencing the well describe CR-dependent benefits 
7,194. The CR animals weighed significantly less than the controls (SED) but gained 
weight during the study, confirming that they were healthy and at a metabolic steady 
state (Figure 4-2E).  
 
For the EX group, mice were placed into a progressive increase in exercise regimen 
(Figure 4-2A through 4-2B). Mice were first acclimated to the rodent treadmill at low 
speed for the first 10 min followed by timed increases up to 30 mins. After acclimation, 
a low intensity level (level 1) regimen was performed for the first five days in which 
the average speeds were increased. The next step was an increase in intensity (level 2) 
between days 6-10 where the time was extended to a 50 min run. Then, a high-
performance course (level 3) was performed for days 11-14 with an increase in both 
time and intensity. Level 3 was repeated for 14 days by avoiding acclimation and 
increased steps (level 4) to establish a constant exercise dataset. The diet and labeling 
planning (Figure 4-2C) for CR was set to restrict caloric intake by 40% and label the 
proteome at specific time-points. The EX-group weighed significantly less than 
sedentary control mice (SED) at all time points and weighed 12% less at the conclusion 
of the training protocol (26.5±0.6 g vs. 30.2±1.7 g, p<0.001) (Figure 4-2D).   
 
Long-term CR also resulted in lower body weight; CR mice weighed significantly less 
than AL controls at the beginning of the experiment and throughout the 2H2O labeling 
period (p<0.001 at all time points).  CR mice weighed 29% less than AL animals at the 
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conclusion of the experiment (26.5+1.0 vs. 35.8+5.0, p<0.001) (Figure 4-2E). EX mice 
consumed an average of 4.2 g/day (represented by level 4 group) and SED mice 
consumed an average of 4.3 g/day. CR mice were energy restricted by 40% throughout 
the study; CR mice ate 3.0 g of food daily, and AL mice consumed an average of 5.0 g 
per day (Figure 4-2F). 

 
To analyze the effects of EX and CR on global muscle protein turnover, we measured 
the synthesis rates of 7550 peptides between EX and SED animals. Following 
application of the stringent filtering criteria for acceptance of protein synthetic 
measurements previously described 194,326, the synthesis rates of 174 proteins found in 
EX animals and SED animals were calculated (Figure 4-3A).  
 
Exercised animals exhibited higher mean overall FSR (73% higher, 2-tailed p < 0.0001) 
with values being higher by >10% (FC>0.1) for 56.3% out of the 73% proteins with 
higher mean. Of the 27% with a lower mean FSR, only 19.5% were lower by >10% 
(FC>0.1). For muscle turnover rates under CR, we measured the fractional synthesis 
rates of 9560 peptides, resulting in 209 proteins observed in both AL and CR (Figure 
4-3B). In contrast with EX, CR exhibited lower global FSR by >10% (78% lower, 2-
tailed p < 0.0001) compared with AL Only 5% of proteins showed higher FSR 
(FC>0.1), with 17% showing no significance (FC<0.1).  
 
We then determined the gene ontology of significantly altered proteins identified in our 
global analysis through the DAVID informatics database 361,362. Proteins were grouped 
into five main ontologies (Figure 4-4A) by their highest level of significance: 
mitochondrial proteins, sarcoplasmic reticulum (SR) proteins, cytoskeletal proteins, 
contractile fiber proteins, and glycolytic proteins. A linear correlation showed that EX 
significantly increased the FSR of proteins in all groups (above the line) except 
contractile fiber and glycolytic proteins. For CR ontological analysis (Figure 4-4B), the 
group assignation by highest level of significance was: mitochondrial proteins, 
antioxidant proteins, cytoskeletal proteins, contractile fiber proteins, and glycolytic 
proteins. A linear correlation showed significantly lower values of FSR after CR in 
mitochondrial proteins, cytoskeletal proteins, contractile fiber proteins, and glycolytic 
proteins. 
 
Through quantitative proteomics, we also determined the change in protein pool size 
(abundance) of EX and CR relative to age matched control using label free quantitative 
proteomics.  EX mice (Figure 4-5A) exhibited significantly higher pool size for many 
ontologies, with the strongest effect on mitochondrial and cytoskeletal proteins. Pool 
size was overall higher in mitochondrial proteins by 13% in EX mice (n=95, p<0.001), 
and cytoskeletal proteins by 26% (n=40, p<0.001). Similar to exercise training, CR 
mice (Figure 4-5B) showed significantly higher pool sizes of proteins across many 
categories with the strongest effect on mitochondrial proteins. Mitochondrial protein 
abundance was higher by 14% (n=109, p<0.001), while cytoskeletal protein abundance 
was greater by 18% (n=30, p<0.01). Of interest was that there were no differences in 
glycolytic protein pool size for both interventions (Figure 4-5A through 4-5B). 
 
Next, we determined within proteome absolute synthesis (WPAS) rates of individual 
proteins. Exercise trained mice (Figure 4-6A) exhibited significantly higher WPAS 
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rates of many protein classes, including 38% higher values for mitochondrial proteins 
(n=50, p<0.001), 41% higher for cytoskeletal proteins (n=21, p<0.01), and 62% higher 
values for glycolytic proteins (n=17, p<0.05). Mitochondrial proteins were markedly 
affected by exercise training. In contrast, CR mice (Figure 4-6B) did not significantly 
alter WPAS rates for proteins involved in mitochondrial metabolism, cytoskeletal 
proteins, nor glycolytic proteins.  
 
Based on the experimental results above, we then examined whether similar effects 
could be repeated in a different paradigm through a commonly used anaerobic or 
exhaustion EX approach, where the progression of aerobic exercise capacity by 
increasing intensity levels is not applied. This EX was applied as a training routine 
instead of a performance test 217 and done alongside a short-term (2 weeks) CR (30%) 
group in aged matched C57Bl/6J mice. Of note, the effects of EX and CR on global 
muscle protein turnover were compared for 104 common proteins (Figure 4-7A 
through 4-7B) shared between Con, CR and EX. During EX (Figure 4-7A), animals 
did not exhibit an excess fraction with higher global FSR (52%) in contrast to the first 
EX group. In contrast, under CR (Figure 4-7B) we again observed globally that 81% of 
muscle proteins had a lower FSR, and 68% of those proteins had a FC>0.1. 
 
We then looked at gene set enrichment analysis of the FSR (% per day) values for Con, 
CR, and EX. The top 2 (p < 0.5) enrichment phenotypes for enrichment under treatment 
condition were evaluated (Figure 4-8A). Of note was that under EX, core enriched 
proteins matched through the GO database showed upregulation of EX proteins in 
NADH metabolic process. On the Reactome database we observed core enrichment of a 
number of proteins under glucose metabolism. Downregulated under EX we observed 
abnormality of connective tissue and actin cytoskeleton ontologies. Similar to the EX 
analysis approach, CR proteins (Figure 4-8B) were most enriched under the regulation 
of cell death and, interestingly, abnormality of coordination. On their downregulation, 
we observed ATP metabolic processed and carbohydrate catabolic processes. 
Interrogating the FSR (% per day) data for mitochondria-related ontologies through the 
same enrichment analysis, we observed (Figure 4-9) an obvious downregulation of 
proteins under CR that was more modest under EX.  

 
Through quantitative proteomics, we determined the change in protein pool size 
(abundance) of EX and CR relative to controls.  EX mice (Figure 4-10A) exhibited 
significantly higher pool size for many ontologies, with the strongest effect on actin 
binding and the electron transport change (ETC). Downregulated pathways, in contrast 
were involved in carbohydrate derivatives and the anchoring junction. For CR (Figure 
4-10B), of note was an increase in the pool size of some classes of proteins. Ontologies 
observed with higher relative concentration under CR were involved in apoptotic 
process and muscle contraction. Downregulated pathways were involved in secretion 
and, interestingly, mitochondria envelope. Following up on specific mitochondria and 
muscle ontologies (Figure 4-11) by enrichment analysis showed downregulation of a 
number of proteins under both exhaustion exercise and its age-matched CR for proteins 
involved in muscle spasm. No obvious change in pool size was observed for proteins 
involved in cellular respiration.  
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Next, we determined WPAS rates for CR (Figure 4-12B) and exhaustion EX (Figure 
4-12A). While no obvious global changes were observed under EX, core-enriched 
pathways were seen on NADH metabolic process and glucose metabolism. 
Downregulated pathways were observed for abnormality of connective tissue and actin 
of the cytoskeleton. CR resulted in significantly higher WPAS rates of some protein 
classes, including pathways core-enriched for regulation of cell death and abnormality 
of coordination. Downregulated under CR were pathways for ATP metabolism and 
contractile fibers. Following the interest on muscle and mitochondria proteins we 
observed (Figure 4-13) EX having a more modest decrease in many proteins involved 
in myogenesis and the mitochondrion. On the other hand, CR noticeably decreased the 
WPASR of both, in contrast with the overall increase in global WPASR. 
 
Lastly, plasma (Figure 4-14A) was analyzed for lipid and insulin content. Insulin levels 
were significantly lower under CR (p<0.05) but not in the exhaustion EX group. 
Plasma triglyceride levels were significantly decreased for both groups. The FSR of 
trigyceride-palmitate, triglyceride-glycerol and their relation to DNL (fatty acid 
synthesis from carbohydrates) showed no significant changes. Enrichment analysis 
showed cardiovascular abnormalities under CR (Figure 4-14B), so we then tested heart 
DNA turnover rates (a measure of cell proliferation 7,326) and saw trends but no 
significant decrease in cell proliferation of heart.  

 
These data indicate that EX increases the fractional synthesis and the pool size of 
mitochondria proteins leading to an overall increase in WPAS rates. CR on the other 
hand decreases the FSR while increasing the pool size leading to a decrease in WPAS 
rates. These results were validated under short-term CR and to a lesser extent during 
exhaustion exercise.  

 
3. CONCLUSION 
 
To compare the effects of EX and CR on mitochondrial protein synthesis rates, half-
lives and concentrations in mice, we used an LC-MS/MS approach with in vivo heavy 
water labeling. We report that EX and CR have different effects on the muscle 
mitochondrial dynamic proteome. EX was tested in two paradigms, 1) Aerobic training 
over time, which is shown to increase the WPAS rates (based on combination of 
individual protein FSR and abundance quantitation) and increases both the rate of 
protein turnover and the mitochondrial protein pool size. 2) Exhaustion only module 
leading to anaerobic exercise resulted in modest increases in WPAS rates when 
compared to aerobic training. During CR, on the other hand, two lengths of intervention 
were applied, 1) Long term CR which increases mitochondrial protein pool size in 
skeletal muscle not by increasing mitochondrial protein synthesis rates but instead 
through a reduction in mitochondrial protein degradation rates (prolonged half-lives). 2) 
Short-term CR decreased WPASR had no noticeable changes in pool size.  
 
Because there are no external concentration references necessary for FSR measurement, 
many studies assume homeostasis during the period of the measurement 7,326,358,363–365. 
We used the measurement of relative protein pool size within the proteome to correct 
for any effects of either intervention on protein expression and composition. The 
calculation of WPAS rates provides a comparison of protein synthesis and degradation 
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rates in the face of changes in relative protein expression within the muscle proteome. 
The WPAS calculation requires a measurement of protein pool size (concentration), 
which was performed here by using label-free mass spectrometric quantitation 7. We 
measured relative protein concentration within the proteome for each protein in the 
experimental group versus the control group.  As expected, EX resulted in higher 
concentrations of many proteins including mitochondrial proteins. Interestingly we 
observed that CR also resulted in some significantly higher mitochondrial protein 
concentrations, in agreement with previous studies 237,267 but that this increase in pool 
size is due to lower turnover (lower FSR), not higher synthesis rates. The WPAS rates 
showed that the mass of mitochondrial protein synthesized per unit of time (reflecting 
mitochondrial biogenesis) was unchanged in CR compared to controls, whereas WPAS 
rates were significantly higher in EX than in controls. 
 
Our results show that during CR the muscle reduces mitochondrial protein turnover or 
replacement rates (increasing half-lives) concomitantly with an increase in 
mitochondrial protein pool size.  This result exemplifies the general principle that direct 
kinetic measurements are required to explain changes in pool size 7,194,326. The higher 
muscle mitochondrial protein pool sizes in CR mice were not due to increased rates of 
synthesis, but can instead be explained by slower mitochondrial protein degradation 
rates or mitophagy, i.e., prolonged half-lives.  
 
Taken in context of the lower body weight, lean body mass and energy flux in CR mice 
compared to AL controls 240,241,366–370, these findings are consistent with CR inducing a 
conservation program that includes reducing the rate of mitochondrial protein 
degradation in skeletal muscle, resulting in an increase relative mitochondrial content. 
Whether mitochondria comprising, on average, older proteins that are more efficient 
oxidatively and reduce production of partial oxidation products, as has been proposed 
as a mechanism of the health benefits for CR 341,371, is an interesting question that is 
raised by our findings. 
 
This study has some limitations. As previously noted, exercise training will likely cause 
new cells to be produced and cell size to increase, meaning that the tissue may have 
more total protein content. We did not calculate total muscle mass or whole-body 
mitochondrial protein synthesis here, however but rates relative to other proteins in the 
muscle proteome. 
 
Taken more broadly, Chapter Four shows that EX training and CR alter mitochondrial 
protein kinetics differently.  Exercise induces mitochondrial biogenesis, manifested by 
mitochondrial higher protein synthesis rates and pool sizes rates in comparison with 
SED mice.  In contrast, CR does not induce higher rates of new protein synthesis in 
muscle mitochondria (mitochondrial biogenesis) but causes a relative increase in 
mitochondrial protein content through reduced protein degradation rates, i.e. longer 
half-lives. The addition of protein turnover measurements to static proteomics here 
brings new insights into metabolic control. By classifying both the protein synthesis 
rates and pool sizes of related protein groups, a critical dimension of understanding into 
the regulation of protein homeostasis was added.  

 
4. METHODS 
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Exercise Training. Eight-week old male C57Bl/6 mice (n=12) were purchased from 
Charles River (Wilmington, MA), and were randomly divided into the exercise training 
group (EX, n=6) or the sedentary group (SED, n=6).  Eight-week old male C57Bl/6J 
mice (n=4) were purchased from (Jackson laboratory, Bar Harbor, ME) for the level 4 
study. Following one week of acclimation, EX animals were trained on an Exer3/6 
treadmill (Columbus Instruments, Columbus, OH) for a total of 3 weeks (5 sessions per 
week).  The exercise period was divided into four levels of increasing speed and 
duration (Figure 4-2A), while level 4 was designed as an exhaustion only experimental 
approach by inducing only level 3 throughout the experiment.  Animals in both groups 
were provided unrestricted access to the AIN-93M diet (Bio-Serv).  Body weights and 
food intake were recorded approximately every 4 days during the training period. 
Animals were labeled with 2H2O following the third week of EX training and sacrificed 
3-4 days later.  
 
Calorie Restriction.  Male C57Bl/6 mice which had been calorie restricted for 14 
months (n=12) and age-matched AL controls (n=12) were purchased from the NIA 
Caloric Restricted Mouse Colony via Charles River (Wilmington, MA).  Animals in the 
CR group were fed 3.0 grams of the NIH-31/NIA fortified diet at 5pm daily, and 
animals in the AL group were provided unrestricted access to the NIH-31 diet (Figure 
4-2C). Animals were sacrificed following 0.4, 1, 4, 8, 15 or 32 days of heavy water 
labeling.  Body weight and food intake were monitored on a weekly basis, and at the 
time of euthanasia.  
 
Euthanasia. Animals were anesthetized with isoflurane and euthanized by cardiac 
puncture. All experiments were performed under the approval of the Institutional 
Animal Care and Use Committees of the University of California at Berkeley.  
 
Measurement of 2H enrichment in body water. Animals in each group were labeled 
with an intraperitoneal injection of 100% 2H2O saline (0.35mL/10 g body weight), and 
provided with 8% 2H2O drinking water for the remainder of the study to maintain body 
2H2O enrichments of approximately 5%, as described previously 372.  Measurement of 
2H2O enrichment in body water was done from whole blood samples using a Liquid 
Water Isotope Analyzer (Los Gatos Research, Mountain View, CA) after a 1:300 
dilution and distillation as previously described 373.  
 
Muscle Protein Isolation and In-Gel Trypsin Digestion. Bilateral soleus and triceps 
muscles were harvested from mice at the time of euthanasia, and immediately snap 
frozen on liquid nitrogen until further analysis. Tissue protein was isolated by 
homogenization in RIPA buffer containing PhosStop phosphatase inhibitor cocktail 
(Roche, Indianapolis, IN), 1mM DTT, 7.5ug/mL leupeptin, 1ug/mL pepstatin, 2ug/mL 
aprotinin, 1mM PMSF in isopropanol, and 100nM nicotinamide using a TissueLyser 
(Qiagen, Germantown, MD), followed by centrifugation at 10,000g for 10 minutes at 4 

oC. The supernatant containing soluble proteins was used for the analysis. Protein from 
prepared homogenates was uniformly reduced by incubation in 10 mM DTT and SDS-
PAGE sample loading buffer for 10 min at 70°C. The reduced samples were then 
alkylated by incubating in 15 mM iodoacetamide for 1 hour at room temperature in the 
dark. Proteins were then fractionated by SDS-PAGE. Using in-gel molecular weight 
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markers, each sample was divided into molecular weight regions and trypsin digested at 
37oC (Trypsin Gold, Promega, Madison, WI). In each experiment, 5 gel bands were 
analyzed by LC-MS/MS, corresponding to a molecular weight range of 20-80kDa. 
 
LC/MS Analysis and Protein Turnover Calculations. Trypsin-digested peptides 
were analyzed on an Agilent 6520 QTOF (quadrupole time-of-flight) mass 
spectrometer with 1260 Chip Cube nano ESI source (Agilent Technologies, Santa 
Clara, CA). Peptides were separated chromatographically using a Polaris HR chip 
(Agilent #G4240-62030) consisting of a 360 nL enrichment column and a 0.075 x 150 
mm analytical column, each packed with Polaris C18-A stationary phase with 3 µm 
particle size. Mobile phases were (A) 5% v/v acetonitrile and 0.1% formic acid in 
deionized water and (B) 95% acetonitrile and 0.1% formic acid in deionized water. 
Peptides were eluted at a flow rate of 350 nL/min during a 18 min LC gradient (2%B at 
0 min, 5%B at 0.5 min, 30%B at 10 min, 50%B at 13 min, 90%B at 13.1-18 min, 2%B 
at 18.1 min; Stop time: 32 min). Each sample was analyzed twice, once for 
protein/peptide identification in data-dependent MS/MS mode and once for peptide 
isotope analysis in MS-only mode. Acquisition parameters were: MS/MS acquisition 
rate = 6 Hz MS and 4 Hz MS/MS with up to 12 precursors per cycle, MS acquisition 
rate =  0.9 Hz, ionization mode = positive electrospray; capillary voltage = -1980 V; 
drying gas flow = 4 L/min; drying gas temperature = 290 °C; fragmentor = 170 V; 
skimmer = 65 V; maximum precursor per cycle = 20; scan range = 100-1700 m/z (MS), 
50-1700 m/z (MS/MS); isolation width (MS/MS) = medium (~4 m/z); collision energy 
(V) = -4.8+3.6*(precursor m/z/100); active exclusion enabled (exclude after 1 
spectrum, release after 0.12 min); charge state preference = 2, 3, >3 only, sorted by 
abundance; TIC target = 25,000; reference mass = 922.009798 m/z. Acquired MS/MS 
spectra were extracted and searched using Spectrum Mill Proteomics Workbench 
software (version B.04.00, Agilent Technologies, Santa Clara, CA) and a 
UniProtKB/Swiss-Prot mouse protein database (UniProt.org, release 2012_02). Data 
files were extracted with the following parameters: fixed modification = 
carbamidomethylation of cysteine, scans with same precursor mass merged by spectral 
similarity within tolerances (retention time +/- 10 sec, mass +/-1.4 m/z), precursor 
charge maximum z = 6, precursor minimum MS1 S/N = 10, and 12C precursor m/z 
assigned during extraction. Extracted files were searched with parameters: enzyme = 
trypsin, Mus Musculus, fixed modification = carbamidomethylation of cysteine, 
variable modifications = oxidized methionine + pyroglutamic acid + hydroxylation of 
proline, maximum missed cleavages = 2, minimum matched peak intensity = 30%, 
precursor mass tolerance = 10 ppm, product mass tolerance = 30 ppm, minimum 
detected peaks = 4, maximum precursor charge = 3. Search results were validated at the 
peptide and protein levels with a global false discovery rate of 1%. Proteins with scores 
greater than 11.0 were reported and a list of peptides with scores greater than 6 and 
scored peak intensities greater than 50% was exported from Spectrum Mill and 
condensed to a non-redundant peptide formula database using Excel. This database, 
containing peptide elemental composition, mass, and retention time was used to extract 
MS spectra (M0-M3) from corresponding MS-only acquisition files with the Find-by-
Formula algorithm in Mass Hunter Qualitative Analysis software (version B.05.00, 
Agilent Technologies, Santa Clara, CA). MS spectra were extracted with parameters: 
EIC integration by Agile integrator, peak height > 10,000 counts, include spectra with 
average scans > 12% of peak height, no MS peak spectrum background, unbiased 
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isotope model, isotope peak spacing tolerance = 0.0025 m/z plus 12.0 ppm,  mass and 
retention time matches required, mass match tolerance = +/- 12 ppm, retention time 
match tolerance =  +/- 0.8 min, charge states z = +2 to +4, chromatogram extraction = 
+/- 12 ppm (symmetric), EIC extraction limit around expected retention time = +/- 1.2 
min. Details of FSR calculations and data filtering criteria were described previously 
305,326. Briefly, in-house software was developed to calculate peptide elemental 
composition and curve fit parameters for predicting isotope enrichments of peptides in 
newly synthesized proteins based on precursor body water enrichment (p) and the 
number (n) of amino acid C–H positions per peptide actively incorporating 1H and 2H 
from body water. Incorporation of 2H into tryptic peptides decreases the relative 
proportion of M0 within the overall isotope envelope spanning M0-M3. Fractional 
synthesis was calculated as the ratio of excess %M0 (EM0) for each peptide compared 
to the maximal absolute EM0 possible at the measured body water enrichment. Data 
handling was performed using Microsoft Excel templates, with input of precursor body 
water enrichment for each subject, to yield fractional replacement rate (FSR) data at the 
protein level. The kinetics data were filtered to exclude protein measurements with 
fewer than two peptide isotope measurements per protein. Following LC-MS/MS 
measurement of peptide spectra, we used five stringent selection criteria to remove low 
confidence kinetic data: (a) peptide signal intensity must be more than 30,000 counts, 
(b) RMS error for unlabeled peptide mass isotopomer abundance measurements must 
be less than 1.5% compared with natural abundance, (c) observation of the parent 
protein in at least 2 mice per experimental group, (d) a coefficient of variation of the 
one-phase exponential association curve fit less than 30%, and (e) an r2 curve fit value 
greater than 0.7 (Figure 4-1). Since all animals in the EX group were labeled for 3 
days, the latter two curve-fit criteria were not applied.   
 
Label Free Quantitative Proteomics. The signal intensities of unlabeled peptides 
were log2 transformed and mean centered to account for small variations in sample 
loading and instrument variability. A Pearson cross correlation matrix was then created 
as a visual quality control step in order to examine peptide-level intra-group and inter-
group variability.  Peptides were then rolled up into their parent proteins, using the top 
30% most intense peptides. Proteins containing only a single peptide were eliminated 
from further analysis. A second Pearson cross correlation matrix was then created as a 
visual quality control step in order to examine protein-level intra-group and inter-group 
variability, followed by a principal component analysis (PCA) to examine protein-level 
clustering. The signal intensities of both experimental groups were normalized against 
their age-matched control group means. All label free calculations, plots and analysis 
were performed using Inferno for Proteomics 1.0b (formerly known as DAnTE, 
developed and distributed by the Pacific Northwest National Laboratory (PNNL). 
 
Calculation of Within Proteome Absolute Synthesis (WPAS) Rates. Protein FSR 
was calculated using the rate constant (k) calculated from curve fitting fractional 
synthesis values (f) vs. time (t) according to a single pool, monoexponential model: 
f=1-e(-kt), so that k=[-ln(1-f)]/t,  where t1/2=ln(2)/k. The label free normalized signal 
intensity quotient (Q) was calculated for each protein by correcting individual signal 
intensities against the control group mean. The WPAS rate is a quantitative metric that 
combines fractional synthesis and relative pool size changes. WPAS for a given protein 
was determined by multiplying the fractional synthesis rates and label free values 
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together: WPAS=k*Q. Our calculation of WPAS rate of individual proteins represents 
the mass of newly synthesized proteins within a proteome. 
 
Insulin. To determine glucose level, blood samples were taken by venipuncture. To 
quantify insulin level, plasma was obtained after ON fasting and spun at 14,000 rpm for 
5 min to pellet blood cells and supernatant transferred to a fresh tube and placed on dry 
ice and stored at -80C until use. Insulin in plasma were measured by ELISA kits 
(Crystal Chem Inc., Downers Grove, IL) using manufactures instructions.  

 
DNL. Mice under the exhaustion EX group were tested by their plasma. We measured 
DNL of palmitate and synthesis of the glycerol moiety of plasma triglyceride as 
previously described 374. In short, body 2H2O enrichments were measured by using 
isotope-ratio mass spectrometry (IRMS) (Metabolic Solutions); average enrichments 
were 5±1.00% of plasma water. Deuterium incorporation into TG-palmitate was 
determined by using gas chromatography–mass spectrometry (GC-MS) on an Agilent 
6890N GC gas chromatograph coupled to a 5975 MS detector and 7683B injector 
(Agilent Technologies). Enrichments were determined by selective ion monitoring for 
their respective m/z under electron ionization, and the percentage of newly made TG-
palmitate and TG-glycerol were calculated through MIDA.  
 
Statistics. Protein synthesis rates (k) were modeled using a nonlinear monoexponential 
biosynthetic model, f = 1- ekt within a mixed-effects statistical model which accounted 
for the variability in mean peptide counts calculated for each protein as well as the 
correlation among measurements from the same animals. Reported rates and 
signifcance levels are based on the mixed model. Tests of the within ontological group 
treatment effects on FSR assess the difference between rates calculated from mean 
peptide counts from the control and experimental animals and correspond to tests on 
fixed effects coeffcients for treatment. Analyses were conducted using R (version 
3.1.2). Data were analyzed using GraphPad Prism software (version 9.0) (La Jolla, CA, 
USA), InfernoRDN (https://omics.pnl.gov/software/infernordn) windows application 
(version 1.1), Gene set enrichment analysis, GSEA software, and Molecular Signature 
Database (MSigDB) 327 (http://www.broad.mit.edu/gsea/), and Real Statistics Resource 
Pack (http://www.real-statistics.com/free-download/real-statistics-resource-pack/) in 
Excel (version 16). 
 
Gene Ontology Analysis. Gene annotation, gene ontology and biochemical pathway 
information were obtained from the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) v6.7 from the National Institute of Allergy and 
Infectious Diseases (NIAID), at the National Institutes of Health (NIH) 375,376. In-house 
software was developed and used to query, compile and statistically analyze gene 
ontology data, accessed programmatically from DAVID. 
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5. FIGURES 

Figure 4-1. Dynamic proteomics experimental workflow. Dynamic proteomics 
measurements were performed by labeling rats with 2H2O (intraperitoneal bolus 
followed by 8% 2H2O in drinking water) to achieve a body water 2H2O enrichment of 
5%, to allow metabolic labeling of newly synthesized proteins. Muscle isolation, SDS-
PAGE protein separation, in-gel trypsinization, and LCMS analysis were performed 
following 12 hours, 2 days and 5 days of labeling. Dynamic proteomics measurements 
were performed by analysis of the change in peptide isotope abundance, and 
quantitative proteomics measurements were performed by label-free analysis. A 
representative curve-fit for a protein in the CR intervention is shown, filtered according 
to the following criteria: (a) at least 2 peptides per protein, (b) protein must be 
identified in at least 2 time points (c) a %CV of the exponential curve fit less than 30%, 
(d) r2 value of the protein curve fit greater than 0.7. The rate constant (k) in the 
experimental group was then compared against the rate constant (k) in the control 
group. Only proteins that were altered by a minimum of 10% were considered different 
than age-matched controls.  
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Figure 4-2. EX training protocol and calorie restriction (CR) regimen. (A) EX 
mice were trained on a rodent treadmill for a total of 3 weeks, at 5 sessions per week. 
The training protocol was divided into four levels of increasing speed and duration 
(acclimation, level 1, level 2 and level 3). (B) The total distance run during a single 
exercise session showed a stepwise increase with each level of increasing difficulty. (C) 
CR mice were fed the NIH-31/NIA fortified diet at 5pm daily, and AL mice were 
provided unrestricted access to the NIH-31 diet. (D) Body weight was significantly 
decreased in EX mice in comparison with SED control mice at all time points after the 
start of the intervention. (E) CR mice weighed significantly less with a stable difference 
compared to AL control mice throughout the duration of 2H2O labeling. (F) Food intake 
was measured for all groups. Data for EX group represents level 4 animals. CR were 
maintained on a 40% calorie restricted regimen vs. AL control mice from months 4-18 
of life. CR mice were fed 3.0 grams of the NIH-31/NIA fortified diet at 5pm daily, and 
AL mice were provided unrestricted access to the NIH-31 diet. Significance was 
calculated by a student’s t-test vs. age-matched controls (*, p<0.05; **, p<0.01; ***, 
p<0.001). 
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Figure 4-3. Differential effects of calorie restriction on global muscle protein 
turnover rates. Stacked bars represent the FSR of individual proteins in the 
experimental and control groups. (A) Of the 174 proteins common to the exercise and 
sedentary samples, exercised mice exhibited higher values of FSR by at least 10% for 
56.3% of proteins (n = 98) lower values of FSR by at least 10% for 19.5% proteins (n = 
34) and < 10% difference in FSR for the remaining 24.1% of proteins (n = 42). (B) Of 
the 209 proteins common to the CR and sedentary samples, CR mice exhibited lower 
values of FSR for 77.5% proteins by at least 10% (n = 162), higher values of FSR by at 
least 10% for 9.1% of proteins (n = 19) and< 10% difference in FSR for the remaining 
13.4% of proteins (n = 28). 3 proteins with FSR over 40% were truncated within panel 
for simplicity of presentation (A) (Q61838, Q00898, P29699). 

 

A
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Figure 4-4. EX training increases and CR decreases global muscle protein 
turnover across many ontologies. (A) Plotted against the line of unity for each 
individual protein, exercise trained mice exhibited significantly higher protein FSR 
values across many ontologies including mitochondrial, sarcoplasmic reticulum, and 
cytoskeletal proteins. Proteins with FSR above 25% were omitted (2 from SR panel, 2 
from cytoskeletal panel, 17 from other panel). (B) Plotted against the line of unity, CR 
mice exhibited significantly lower protein FSR values across many ontologies 
including mitochondrial, cytoskeletal, contractile fiber, and glycolytic proteins. Proteins 
with FSR above 25% were omitted from the plot. Reported p-values derived from the 
mixed model assess the within-ontological-group difference in FSR comparing control 
and intervention. 
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Figure 4-5. EX Training and CR increase global and mitochondrial protein pool 
size. Median fold difference in protein pool size for experimental group versus median 
normalized protein pool size in the control group. Protein pool sizes were higher in 
response to EX training (A, top panels) and CR (B, lower panels) for mitochondrial 
and cytoskeletal proteins. 
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Figure 4-6. Protein WPAS rates are increased in EX but not in CR. WPAS rates for 
proteins observed in exercise training vs. sedentary animals (A, top panels) and CR vs. 
ad lib animals (B, lower panels); plotted against the line of unity. Points above the line 
of unity indicate that the WPAS rate for a given protein is higher in the experimental 
intervention animals than in the control animals. Most points fall above the line in the 
top panel indicating WPAS rates are higher for proteins in exercised trained animals 
compared to control animals; the points cluster around the line in the bottom panel, 
indicating that WPAS rates are similar for proteins in CR and ad lib animals. Proteins 
with WPAS rates above 25% are not included in the plot. 
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Figure 4-7. Protein FSRs in Skeletal Muscle Are Lower than Controls in CR but 
not in exhaustion EX. (A) Fractional synthesis rates for proteins observed in EX vs. 
Con and (B) CR vs. Con; plotted as the logarithmic fold change. Points above the line 
(point 0) represent upregulated proteins (shorter half-lives). Under exhaustion, FSR 
values are not changed. Under CR condition there was a significant decrease in FSR 
values (increased half-lives). 
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Figure 4-8. Effects of age-matched CR and exhaustion EX on skeletal muscle FSR. 
An expression data set sorted by correlation with phenotype was used. The 
corresponding heat map was generated by the maximum enrichment score (ES) ran 
through a series of datasets. The ES scores were sorted by a rank order of N genes 
according to their correlation to their expression profile. The top ontological of the 
datasets used (GO, HP, Hallmark, Reactome) led to the most significant pathways 
observed by functional enrichment analysis of these top bins by EX (A) and CR (B) 
phenotypes. A nominal p<0.5 was used as our selection cutoff for the top ontological 
pathways.  
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Figure 4-9. Effects of age-matched CR and exhaustion EX on mitochondria and 
muscle FSR. An expression data set sorted by correlation with phenotype through 
enrichment analysis was used to compare the effects of intervention on muscle and 
mitochondria of ontological related pathways.  
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Figure 4-10. Effects of age-matched CR and exhaustion EX on the relative pool 
size of proteins. EX (A) and CR (B) comparisons of pool sizes of proteins compared to 
control. Pool size of CR had a greater fold change than EX on all proteins identified. 
Ontological analysis by enrichment of comparable proteins by ontology are shown. 
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Figure 4-11. Effects of age-matched CR and exhaustion EX on mitochondria and 
muscle relative pool size. An expression data set sorted by correlation with phenotype 
was used to compare the effects of intervention on muscle and mitochondria of 
ontological related pathways. 

Muscle & Mitochondria

HP
_M

US
CL

E_
SP

AS
M

CR EX Con

RPS: ES Analysis  

GO
_C

EL
LU

LA
R_

RE
SP

IR
AT

IO
N

CR EX Con

Color Key
Increased expression in experimental phenotype Decreased expression in experimental phenotype



76  

 
 
Figure 4-12. Effects of age-matched CR and exhaustion EX on the WPAS rate. EX 
(A) and CR (B) comparisons of reveal that CR has a higher global WPASR of proteins 
compared to control. 
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Figure 4-13. WPASR of mitochondria and muscle proteins. Enrichment score 
analysis show that while global WPASR of muscle proteins under CR is observed, 
mitochondria and muscle ontologies show a lower WPASR (true increase in half-lives). 
No obvious changes were observed under EX.  
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Figure 4-14. Other metrics evaluated. (A) Plasma from mice was used to determine 
insulin and triglyceride content. FSR of TG-palmitate (de novo lipogenesis) and TG-
glycerol (all-source triglyceride replacement) were measured by GC-MS.  (B) 
Enrichment score analysis of muscle WPASR revealed differences within groups 
towards abnormal cardio vasculature. Cell proliferation studies were therefore done by 
measuring heart DNA. The cell replacement rate marked by newly synthetized DNA 
for heart tissue were measured as FSR (%) values.  
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CHAPTER FIVE: Metformin Increases Hepatic Protein Half-lives in Mice 
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1. INTRODUCTION 
 

CR is one of the oldest strategies known to promote health-span and increase lifespan 
in a wide array of animal models. The ability of CR to ameliorate the morbidity of 
various pathologies, including age-associated diseases has led to numerous scientific 
efforts to understand its mode of action in order to apply it towards human health. 
However, the current understanding behind the mechanisms of CR on health remains 
lacking, with many challenges complicating its application to higher organisms such as 
non-human primates 41,43,377. In humans, this is particularly challenging as its adherence 
is poor 378 and with the concern that sustained CR may have undesirable consequences 
such as negative outcomes toward reproductive hormones that can lead to lower libido, 
loss of strength, and/or decreased quality of life 379. This issues are compounded by the 
fact there are no long-term data on longevity and mortality available on the effects of 
CR in humans 379. This has led to increased efforts to replicate the beneficial effects of 
CR through mimetic compounds with the ability to imitate the health-promoting and 
lifespan-extending effects of CR without the need for dietary restriction.   
 
The ancient historian Herodotus talked of a society that lived up to one hundred and 
twenty years old and beyond. It was said that what gave them their exceptional 
longevity was their flower scented water 11, conceptualizing the idea that compounds 
hidden in nature can be key to the fountain of youth. Metformin, an anti-diabetic drug 
derived from the french lilac (Galega officinalis), has garnered considerable attention 
because it has been shown to extend the health and lifespan in mice 217. Even though 
the exact mechanism by which metformin improves health span is not fully understood 
380, cumulative evidences supports its role in modulating mitochondrial metabolism, 
extend life- and health span in mice 217, and induce autophagic flux in a manner 
similar to CR by targeting AMPK, mTOR, histone acetyltransferases, and sirtuins 
54,380–382.  
 
CR is also known to trigger a series of complex events, including activation of cellular 
stress response elements, induction of autophagy, adaptation to apoptosis, and alteration 
in hormonal balance 383. Potential CR mimetics like metformin have been explored in 
hopes to identified important modulators of one or more of these complex events 
through one of a number of major signaling pathways known to be regulated under CR 
such as: I) insulin receptor signaling, II) mTOR/S6K signaling, and III) adenylate 
cyclase/protein kinase-A 384. The current research on CR mimetics has explored 
numerous compounds including, but not limited to,  2-Deoxy-d-glucose (glycolytic 
inhibitor) 385, spermidine and triethylenetetramine (acetyltransferase inhibitor) 386,387, 
hydroxycitrate (AcCoA synthesis inhibitor) 386, polyphenols like resveratrol or their 
analogues (sirtuin activators) 105,386, and metformin (AMPK activator) 381,388. This 
compounds all share some commonalities within the aforementioned signaling 
pathways such as their capacity to induce autophagy 9. For example, mTOR and 
autophagy signaling share common pathways with that of CR, suggesting they both 
might share the capacity to maintain proteome homeostasis by balancing the synthesis 
and recycling of intracellular proteins 9. In addition, CR mimetics like resveratrol have 
been shown to influence and increase autophagic flux in a manner similar to the CR-
induced deacetylase activity of Sirt1 and other cellular signals in the absence of 
cytotoxicity 13,389. 
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While CR can be broadly defined as decreased caloric intake while maintaining proper 
nutrition, it is also a known activator of autophagy. Under CR and nutrient deprivation, 
the cell is believed to maintain homeostasis through catabolic adaptations such as 
autophagosome-lysosome biogenesis 390. This adaptation is responsible for allowing the 
lysosome to dispose and recycle macromolecules and damaged organelles through the 
autophagy degradation processes 156. While induction of autophagy occurs rapidly 
under nutrient deprivation, its inactivation can be caused by nutrient enrichment which 
increases the presence of amino acids and growth factors such as insulin 391. The 
possible beneficial effects of CR-induced autophagy could be explained by its role in 
cell surveillance where autophagy functions as a housekeeping system to maintain 
proper cellular homeostasis under both normal physiology and pathologic conditions 
156. Another important aspect of autophagy is its role in the clearance of protein 
aggregates 391. Studies of CR in young rats have shown autophagic-lysosomal system 
activation through expressions levels of LAMP1, p62, and LC3II:LC3I 392. 
Furthermore, in vitro and in vivo studies were done to explore the role of CR-induced 
autophagy in alleviating amyloid burden and tau pathology in animal models of 
dementia 388. Therefore, understanding how CR and its mimetics can induce autophagy 
under various conditions may have important implications in understanding their 
beneficial effects.  
 
The demonstration that CR can extend the lifespan of many organisms has been a topic 
of great interest. As a highly metabolically active cellular process, autophagy is 
hypothesized plays a crucial role in regulating organism longevity 380. This has led to 
the question of whether CR mimetics could potentially induce similar beneficial effects 
through autophagy. Metformin has many diverse benefits and has been tested in 
numerous phase 3 and 4 studies 393, even though the exact mechanism by which 
metformin improves heath is not fully understood 380. Nevertheless, cumulative 
evidence supports its role in modulating mitochondrial metabolism, extending life- and 
health span in mice 217, and inducing autophagic flux in a manner similar to CR by 
targeting AMPK, mTOR, histone acetyltransferases, and sirtuins 54,380–382.  
 
AMPK phosphorylation and activation by LKB1 occurs on the surface of lysosomes in 
response to starvation 394, and emerging evidence indicates that metformin has some 
favorable effects on health that are mediated through lysosomal regulation 380,394. 
Indeed, alterations in AMPK signaling in response to metformin appear to require the 
lysosome. For example, metformin was shown to coordinate with mTORC1 and 
AMPK on purified lysosomes, while attenuating the age-related fitness decline 
(determined by measuring locomotion, neutral fat depots, and age pigments) through 
lysosome-dependent activation of AMPK in C. elegans 234. In human subjects who 
underwent 12 weeks of metformin therapy, it was observed that pro-autophagy genes 
(ATG4D, ATG9B, p62, ULK1) were increased through blood leukocyte qPCR 
analysis 382. In a study on the anti-myeloma effects of metformin in cell lines, it was 
observed that metformin inhibited their proliferation through cell viability assays, an 
effect associated with the induction of autophagy 395. In another study using CD4+ T 
cells from old human subjects, autophagy indicators were quantified (eg. LC3II and 
p62 accumulation) and metformin was shown to improve all measures of autophagy in 
this group 396. Other findings have suggested that metformin not only activates AMPK, 
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but also inactivates mTORC1 through the AXIN/LKB1-v-ATPase-Ragulator pathway 
397.  
 
The most selective form of lysosomal proteolysis is the chaperone-mediated 
autophagy (CMA), where individual peptides, recognized by a consensus motif, are 
translocated directly across the lysosomal membrane. Macroautophagy and CMA 
activity are maximally activated under stress conditions such as starvation, oxidative 
stress, or conditions leading to enhanced protein misfolding 398. However, CMA is the 
only autophagic pathway that allows selective degradation of soluble proteins in 
lysosomes. Proteins targeted for degradation are carried to the lysosomal membrane by 
recognition of a targeting motif (a KFERQ-like motif), by a chaperone complex, 
consisting of heat shock cognate 70 kDa protein (HSC70) and its cochaperones, in the 
cytoplasm. Once at the lysosomal membrane, the protein interacts with a lysosomal 
receptor for this pathway, lysosomal associated membrane protein type 2A (LAMP-
2A), and it is translocated across the membrane into the lysosomal lumen assisted by a 
lysosome resident chaperone 399. CMA regulates the abundance of many disease-
related proteins, with causative roles postulated in neoplasia, neurodegeneration, 
hepatosteatosis, and other pathologies relevant to human health and aging. At the 
lysosomal membrane, CMA is inhibited by Akt-dependent phosphorylation of the 
CMA regulator GFAP. The INS-PI3K-PDPK1 pathway regulates Akt, but its role in 
CMA is unclear. However, it has been reported that inhibition of PI3K activates CMA 
400.  
 
The autophagy activating kinase 1 (ULK1) complex plays a central role in the 
initiation stage of autophagy. However, the function of ULK1 in the late stage of 
autophagy is unknown. ULK1 is associated with autophagy initiation by promoting 
autophagosome–lysosome fusion. It has been reported that phosphorylation of ULK1 
enhances its interaction with HSC70 and increases its degradation through CMA 401, 
where proteins harboring the KFERQ-like motif are unfolded and translocated across 
the lysosomal membrane directly as single molecules by an HSP7C (heat shock 
cognate 71 kDa protein) chaperone complex through a pore formed by LAMP-2A 402. 
While the exact link between metformin action and lysosomes remains elusive, the 
hypothesis that its role as a CR mimetic providing longevity and healthy aging 
suggests the possibility that autophagy plays a vital role. 
 

2. METHODS AND RESULTS 
 

Here, we use a novel flux proteomics approach to explore the role of metformin 
(referred to here as Met) in hepatic proteome regulation and activation of autophagic 
pathways. We first compared the effects of Met with those of CR to test the hypothesis 
that Met is a CR mimetic by using protein half-lives across the global proteome as 
biomarkers of lifespan extension, as we have previously demonstrated CR, rapamycin 
administration and the Snell Dwarf mouse 7. We also included a group administered 
SBI-0206965 (SBI), a small molecule inhibitor of ULK1 which is a key regulator of 
autophagy initiation 403. 
 
In the experimental setup, (Figure 5-1A), repeat experiments were divided into five 
groups (Control [Con] n=4-8; CR n=4-7; Met n=4-15; Met+CR n=4; Met+ULK1 
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inhibitor SBI n=3-7) were used with C57Bl/6J (6 weeks old) placed under CR (30%) 
and/or Met treatment (HED: 12-14mg/kg/day) in their drinking water (Figure 5-1B) for 
the duration of the experiment. Body weights (Figure 5-1A) were measured regularly 
throughout the experimental intervention and groups under CR had significantly less 
weight (p<0.05). Insulin (Figure 5-1C) was measured in plasma under fasting 
conditions and showed significant downregulation under CR (p<0.04) but not Met 
(p=n.s.). Glucose (Figure 5-1D) was measured in plasma and showed highly significant 
fall (p<0.007) under CR but not Met (p=n.s.).  

 
We first took a comprehensive view of gene expression during CR at the length of our 
intervention. We used hepatic RNA to perform RNA-seq and performed gene sequence 
enrichment analysis (Figure 5-2A), where we identified the major upregulated (1281 
genes) and downregulated (2552 genes) ontological-enriched pathways. Data 
characterization was then performed using gene enrichment scores to define some of the 
major biological themes (Figure 5-2B) within an enrichment map including clusters of 
either up- or downregulated groups. Of note was significant upregulation of nitric oxide 
(NO) stimulated pathways which interacted with the plateau phase 4 and unblocking 
nmda.  
 
A similar approach was done for gene expression during Met. We first took a 
comprehensive view of gene expression during Met. We used hepatic RNA to perform 
RNA-seq and performed gene sequence enrichment analysis (Figure 5-3A), where we 
identified the major upregulated (2144 genes) and downregulated (752 genes) 
ontological-enriched pathways. Data characterization was then performed using gene 
enrichment scores to define some of the major biological themes (Figure 5-3B) within 
an enrichment map including clusters of either up- or downregulated groups. Of note 
was significant upregulation of binding proteins and a downregulation of cholesterol 
SREBP.  
 
Following up on the observation of cholesterol biogenesis on the biological theme 
analysis. We performed ontological analysis of enriched pathways for both CR and Met 
(Figure 5-4A through 5-4B). Reactome analysis showed significant (FDR<0.003) in 
cholesterol biosynthesis under CR (Figure 5-4A) and Hallmark cholesterol homeostasis 
(Figure 5-4B) at high significance (FDR<0.08). We then measured the fractional 
synthesis of cholesterol in both plasma and liver (Figure 5-4C) but we did not detect 
any significant changes. These results point out that mRNA levels often do not predict 
or correlate with metabolic fluxes through their cognate pathways. 
 
We then measured the FSR (%) of liver proteins (Figure 5-5A) and observed a 
significant downregulation (longer half-lives) of proteins under CR under Met. Met and 
CR co-intervention did not differ from the results with either alone. We then analyzed 
the fold change of the proteins as compared to the control and quantified their binomial 
distribution of FSR values that were higher vs lower (Figure 5-5B). CR had the most 
dramatic decrease in FSR with 92.3% of proteins downregulated (2-TAILED 
P<0.0001), with Met+CR showing 91.5% of proteins downregulated (2-TAILED 
P<0.0001) and Met treatment similarly slowing down the FSR of 78.9% of hepatic 
proteins (2-TAILED P<0.0001).  
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We performed enrichment analysis for both CR and Met (Figure 5-6A through 5-4B). 
HP analysis reveals core enrichment of genes downregulated under all interventions in 
abnormal glucose homeostasis under CR (Figure 5-6A) and hallmark mTORC1 
signaling (Figure 5-6B). We also looked at proteins involved in autophagy (Figure 5-
6C). Of note was the increase in the half-lives of HSC70 which is involved in 
autophagy signaling.  
 
Through free label quantitative proteomics, we then determined the change in protein 
pool size (abundances) in response to Met and CR. Using the pool size estimations for 
each protein and its corresponding FSR values as previously described in Chapter Four, 
we then determined the within-proteome absolute synthesis (WPAS) rates of hepatic 
proteins (Figure 5-7A through 5-7C) under Con, CR, Met and Met+CR. Under CR 
(Figure 5-7A), all values but two were below their respective protein control for the 81 
proteins that were identified. Met (Figure 5-7B) shared a similar pattern as CR where 
most proteins were downregulated, demonstrating that this antidiabetic drug has a 
potential CR mimetic by WPASR values. A similar pattern of downregulation was 
observed for the Met+CR group (Figure 5-7C).  

 
Activation of autophagy is a promising target of both CR and Met where the literature 
(discussed above) suggests that these interventions are potent activators. In agreement, 
our data point to a possible novel role of autophagy in the regulation of a particular 
subset of proteins resistant to this process. We therefore included a study group in 
which we inhibited the initiation of autophagy by administration of SBI-0206965 (SBI) 
403. Recently, the role of ULK1 in the fusion of the autophagosome to the lysosome was 
shown to be dependent on its phosphorylation state via the nutrient signal protein 
kinase C (PKC), which leads to ULK1 degradation by CMA. We administered Met as 
before, with the inclusion of an extra group where Met was combined with SBI. Body 
weights (Figure 5-8A) show the changes over time and the CR effect is observed early 
on; this Figure also points when SBI was administered IP. For the Met+SBI subgroup 
(Figure 5-8A through 5-8D), we induced inhibition (n=7 mice, in two separate 
experiments) with SBI at the start of the labeling period for proteome turnover (Figure 
5-8A). We hypothesized that if there is activation of autophagy by Met, we could 
inhibit some of its effects by administration of a ULK1 inhibitor (Figure 5-8B).  
 
We first analyzed the hepatic proteome FSR values (Figure 5-8C) which show that 
under CR, as previously observed, most proteins had longer half-lives when compared 
to control. This pattern was reflected in the Met group. However, after inhibition of 
autophagy by SBI administration in the Met treatment group there was a more modest 
decrease in hepatic protein FSRs. When we analyzed the fold change of the FSR values 
compared to controls statistically (Figure 5-10D) by the binomial distribution test, CR 
had 80% decrease in protein FSR and Met had a 92% decrease in FSR values. 
However, while FSR values remained statistically significantly downregulated (longer 
half-lives) compared to controls, inhibition of autophagy with SBI through inhibition of 
ULK1 resulted in a 24% lower percent of proteins with reduced FSR values during 
metformin treatment (from 92% in Met, p < 0.0000001 to 68% in Met+SBI, p = 
0.00004). 
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We then looked at the WPAS rates of all groups (Figure 5-9A through 5-9B), 
observing that both CR and Met had a significant decrease in the WPAS turnover rate 
of most proteins when compared to Con. In contrast, several points in the Met+SBI 
group showed proteins with a higher turnover rate than Met alone. This reveals a 
potential role for measuring protein half-lives in assessing macroautophagy. We then 
hypothesized that during the labeling period we could see a signature of proteins whose 
replacement rate is influenced by the CMA signal sequence (KFERQ). We therefore set 
to explore how changes in protein half-lives could be influenced by the presence of this 
CMA signal sequence (Figure 5-9B) and found that 37% of the identified proteins were 
KFERQ-positive and 63% were KFERQ-negative. 
 
To explore the role of autophagic targeting further, we looked at the fold change 
(Figure 5-10A through 5-10C right side) of the groups when compared to control in 
the context of proteins with a KFERQ positive or a KFERQ negative signal for CMA. 
In a global context, KFERQ positive proteins under CR (Figure 5-10A) had the 
greatest decrease in WPAS rates. Distribution analysis showed that the proteins with 
the greatest degree of change were also those within the longest period of turnover and 
were notably enriched for KFERQ-positive sequences. In the Met group (Figure 5-
10B), no pronounced patter was observed although longer-lived proteins tended to have 
the highest degree of change. However, after SBI administration in the Met group 
(Figure 5-10C) a fascinating observation was that fast-turnover proteins were uniquely 
upregulated for FSR (had shorter half-lives) in the KFERQ-positive group. The power 
of flux proteomics allowed us to detect changes in kinetically distinct subsets within the 
whole dataset. 

 
3. CONCLUSION 

 
Metformin has been used for over a half a century to treat type 2 diabetes. In humans, 
metformin enhances insulin sensitivity and suppresses gluconeogenesis but the 
molecular mechanisms that underlie its function remain unclear. It has been suggested 
that metformin acts as a CR mimetic, as both conditions are known to regulate many 
shared pathways. Using a novel flux proteomics approach to label newly synthetized 
proteins in vivo, we report here novel observations of the effects on proteome 
dynamics of metformin alone, in combination with CR or in combination with an 
autophagy inhibitor (SBI)  
 
We demonstrate that metformin is a powerful CR mimetic that, like CR, slows down 
the FSR and WPAS (fractional and total synthesis) rates of hepatic proteins. We show, 
more specifically, that metformin significantly reduces the turnover rate of proteins in 
a signature that resembles CR. We then tested the effects of metformin within the 
context of lysosomal regulation through modulations of the lysosomal pathway to 
understand if autophagy could coordinate the half-lives of longer-lived proteins. 
 
Within this context, we observed as a general effect that the half-lives of hepatic 
proteins were less prolonged by metformin treatment when autophagy was inhibited 
by SBI co-administration. This result suggests a possible role for autophagy in 
maintenance of proteins over a more non-specific response activation. Indeed, as more 
biology of autophagy is learnt, the mechanism appears to be regulated in an 
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increasingly nuanced manner. One such known regulatory mechanism for autophagy is 
CMA, where proteins with a KFERQ sequence are able to be targeted to the lysosome 
through a regulated process. Looking at a subset of proteins in our data set where we 
identified those with the longest lifespan (longest half-lives), we observed that the 
presence of the KFERQ specifically alters response of protein dynamics to Met 
treatment in more slowly turning over proteins. More broadly, our findings show that 
inhibition of autophagy does not slow down the replacement rate of all proteins in the 
setting of Met administration but accelerates replacement rates in longer-lived proteins 
that we measured.  This is contrary to expectation, as autophagy is generally 
conceptualized as a general pathway for protein degradation and turnover. Our data for 
CMA-targeted proteins and SBI show that autophagy plays a role in maintenance of 
proteosome activity through the upkeep of KFERQ-positive proteins. 
 
We also compare gene expression by RNA-Seq. We observed induction of important 
regulators of cell death such as a significant upregulation of the caspase recruitment 
domain (CARD) binding (Figure 5-3B). In this regard, the modulatory roles of 
caspases are poorly understood. However, recent evidence has shown that in contrast 
to apoptosis, autophagy promotes cell survival by providing energy and nutrients 
through the lysosomal degradation of cytoplasmic constituents where caspases have 
been shown to directly interact with core autophagy proteins 404. 

 
4. METHODS 

 
Mice. Six-week old male C57Bl/6 mice (n=50) were purchased from Jackson labs 
(Jackson laboratory, Bar Harbor, ME), and were randomly divided into control group 
(n=12), CR under 30% restriction (n=11), metformin treated (n=16), metformin under 
CR (n=4), and metformin plus SBI administration (n=7). Animals not under CR were 
provided unrestricted access to the AIN-93M diet (Bio-Serv). Animals under CR were 
given 30% less food than the control group. Body weights and food intake were 
recorded approximately every 3-4 days during the duration of the experiment. Animals 
were labeled with 2H2O 4 days before sacrification.  
 
Calorie Restriction. Male C57Bl/6J mice under CR were given 30% less food than the 
control every day between 12-1pm. Weight adjustments for diet were done weekly 
based on the amount of food the controls consumed.  
 
Metformin Administration. Male C57Bl/6J mice under metformin administration 
were given USP grade Metformin (Sigma 1396309 USP) in their drinking water. 
Metformin was dissolved in the same water used for the whole colony at 1.5 mg/mL 
and sterile filtered through 0.22-μm disposable filters (Millipore, Millex-GV) before 
use. The solution was made fresh and given to mice in their drinking water bottles. 
Bottles with metformin were changed every 5 days for the duration of the experiment.  
 
SBI-0206965 Administration. Male C57Bl/6J mice under metformin administration 
were given SBI-0206965 (Sigma SML1540) at 2 mg/kg body weight and injected into 
mice intraperitoneally (i.p.) as previously described 405. 
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Euthanasia. Animals were anesthetized with isoflurane and euthanized by cardiac 
puncture. All experiments were performed under the approval of the Institutional 
Animal Care and Use Committees of the University of California at Berkeley.  
 
RNA-Sequencing. Total RNA was isolated from mouse livers using RNeasy Micro Kit 
from Qiagen (Hilden, Germany). RNA Quantity was determined using a Qubit (TM) 
fluorometric assay and quality was determined using Eukaryote Total RNA Pico 
(Agilent Bioanalyzer 2100). The library preparation and sequencing were done on a 
single lane (Illumina HiSeq4000) at 100bp pair-end (PE) reads and performed at the 
Vincent J. Coates Genomics Sequencing Laboratory at University of California (UC), 
Berkeley. The raw sequencing files were processed with CASAVA 1.8.2 (Illumina) to 
generate fastq files. We first obtained read quality reports by using the FastQC tool 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which gave us overall 
high-quality scores. The fastq files were then uploaded onto the Galaxy project portal 
(https://usegalaxy.org/) 337. The reads were then mapped to the mouse reference genome 
(mm10) using the Burrows-Wheeler Aligner (BWA) module. Differential gene 
expression of RNA-seq was determined using DESeq2 338. 
 
Measurement of 2H enrichment in body water. Animals in each group were labeled 
with an intraperitoneal injection of 100% 2H2O saline (0.35mL/10 g body weight), and 
provided with 8% 2H2O drinking water for the remainder of the study to maintain body 
2H2O enrichments of approximately 5%, as described previously 372.  Measurement of 
2H2O enrichment in body water was done from whole blood samples using a Liquid 
Water Isotope Analyzer (Los Gatos Research, Mountain View, CA) after a 1:300 
dilution and distillation as previously described 373.  
 
Liver Protein Isolation and In-Gel Trypsin Digestion. Livers were harvested from 
mice at the time of euthanasia, and immediately snap frozen on liquid nitrogen until 
further analysis. Tissue protein was isolated by homogenization in RIPA buffer 
containing PhosStop phosphatase inhibitor cocktail (Roche, Indianapolis, IN), 1mM 
DTT, 7.5ug/mL leupeptin, 1ug/mL pepstatin, 2ug/mL aprotinin, 1mM PMSF in 
isopropanol, and 100nM nicotinamide using a TissueLyser (Qiagen, Germantown, 
MD), followed by centrifugation at 10,000g for 10 minutes at 4 oC. The supernatant 
containing soluble proteins was used for the analysis. Protein from prepared 
homogenates was uniformly reduced by incubation in 10 mM DTT and SDS-PAGE 
sample loading buffer for 10 min at 70°C. The reduced samples were then alkylated by 
incubating in 15 mM iodoacetamide for 1 hour at room temperature in the dark. 
Samples were then trypsin digested at 37oC (Trypsin Gold, Promega, Madison, WI). In 
each experiment, samples were analyzed by LC-MS/MS, corresponding to a molecular 
weight range of 20-80kDa. 
 
LC/MS Analysis and Protein Turnover Calculations. Trypsin-digested peptides 
were analyzed on an Agilent 6520 QTOF (quadrupole time-of-flight) mass 
spectrometer with 1260 Chip Cube nano ESI source (Agilent Technologies, Santa 
Clara, CA). Peptides were separated chromatographically using a Polaris HR chip 
(Agilent #G4240-62030) consisting of a 360 nL enrichment column and a 0.075 x 150 
mm analytical column, each packed with Polaris C18-A stationary phase with 3 µm 
particle size. Mobile phases were (A) 5% v/v acetonitrile and 0.1% formic acid in 
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deionized water and (B) 95% acetonitrile and 0.1% formic acid in deionized water. 
Peptides were eluted at a flow rate of 350 nL/min during a 18 min LC gradient (2%B at 
0 min, 5%B at 0.5 min, 30%B at 10 min, 50%B at 13 min, 90%B at 13.1-18 min, 2%B 
at 18.1 min; Stop time: 32 min). Each sample was analyzed twice, once for 
protein/peptide identification in data-dependent MS/MS mode and once for peptide 
isotope analysis in MS-only mode. Acquisition parameters were: MS/MS acquisition 
rate = 6 Hz MS and 4 Hz MS/MS with up to 12 precursors per cycle, MS acquisition 
rate =  0.9 Hz, ionization mode = positive electrospray; capillary voltage = -1980 V; 
drying gas flow = 4 L/min; drying gas temperature = 290 °C; fragmentor = 170 V; 
skimmer = 65 V; maximum precursor per cycle = 20; scan range = 100-1700 m/z (MS), 
50-1700 m/z (MS/MS); isolation width (MS/MS) = medium (~4 m/z); collision energy 
(V) = -4.8+3.6*(precursor m/z/100); active exclusion enabled (exclude after 1 
spectrum, release after 0.12 min); charge state preference = 2, 3, >3 only, sorted by 
abundance; TIC target = 25,000; reference mass = 922.009798 m/z. Acquired MS/MS 
spectra were extracted and searched using Spectrum Mill Proteomics Workbench 
software (version B.04.00, Agilent Technologies, Santa Clara, CA) and a 
UniProtKB/Swiss-Prot mouse protein database (UniProt.org, release 2012_02). Data 
files were extracted with the following parameters: fixed modification = 
carbamidomethylation of cysteine, scans with same precursor mass merged by spectral 
similarity within tolerances (retention time +/- 10 sec, mass +/-1.4 m/z), precursor 
charge maximum z = 6, precursor minimum MS1 S/N = 10, and 12C precursor m/z 
assigned during extraction. Extracted files were searched with parameters: enzyme = 
trypsin, Mus Musculus, fixed modification = carbamidomethylation of cysteine, 
variable modifications = oxidized methionine + pyroglutamic acid + hydroxylation of 
proline, maximum missed cleavages = 2, minimum matched peak intensity = 30%, 
precursor mass tolerance = 10 ppm, product mass tolerance = 30 ppm, minimum 
detected peaks = 4, maximum precursor charge = 3. Search results were validated at the 
peptide and protein levels with a global false discovery rate of 1%. Proteins with scores 
greater than 11.0 were reported and a list of peptides with scores greater than 6 and 
scored peak intensities greater than 50% was exported from Spectrum Mill and 
condensed to a non-redundant peptide formula database using Excel. This database, 
containing peptide elemental composition, mass, and retention time was used to extract 
MS spectra (M0-M3) from corresponding MS-only acquisition files with the Find-by-
Formula algorithm in Mass Hunter Qualitative Analysis software (version B.05.00, 
Agilent Technologies, Santa Clara, CA). MS spectra were extracted with parameters: 
EIC integration by Agile integrator, peak height > 10,000 counts, include spectra with 
average scans > 12% of peak height, no MS peak spectrum background, unbiased 
isotope model, isotope peak spacing tolerance = 0.0025 m/z plus 12.0 ppm,  mass and 
retention time matches required, mass match tolerance = +/- 12 ppm, retention time 
match tolerance =  +/- 0.8 min, charge states z = +2 to +4, chromatogram extraction = 
+/- 12 ppm (symmetric), EIC extraction limit around expected retention time = +/- 1.2 
min. Details of FSR calculations and data filtering criteria were described previously 
305,326. Briefly, in-house software was developed to calculate peptide elemental 
composition and curve fit parameters for predicting isotope enrichments of peptides in 
newly synthesized proteins based on precursor body water enrichment (p) and the 
number (n) of amino acid C–H positions per peptide actively incorporating 1H and 2H 
from body water. Incorporation of 2H into tryptic peptides decreases the relative 
proportion of M0 within the overall isotope envelope spanning M0-M3. Fractional 
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synthesis was calculated as the ratio of excess %M0 (EM0) for each peptide compared 
to the maximal absolute EM0 possible at the measured body water enrichment. Data 
handling was performed using Microsoft Excel templates, with input of precursor body 
water enrichment for each subject, to yield fractional replacement rate (FSR) data at the 
protein level. The kinetics data were filtered to exclude protein measurements with 
fewer than two peptide isotope measurements per protein. Following LC-MS/MS 
measurement of peptide spectra, we used five stringent selection criteria to remove low 
confidence kinetic data: (a) peptide signal intensity must be more than 30,000 counts, 
(b) RMS error for unlabeled peptide mass isotopomer abundance measurements must 
be less than 1.5% compared with natural abundance, (c) observation of the parent 
protein in at least 2 mice per experimental group, (d) a coefficient of variation of the 
one-phase exponential association curve fit less than 30%, and (e) an r2 curve fit value 
greater than 0.7 (Figure 4-1). Since all animals in the EX group were labeled for 3 
days, the latter two curve-fit criteria were not applied.   
 
Label Free Quantitative Proteomics. The signal intensities of unlabeled peptides 
were log2 transformed and mean centered to account for small variations in sample 
loading and instrument variability. A Pearson cross correlation matrix was then created 
as a visual quality control step in order to examine peptide-level intra-group and inter-
group variability.  Peptides were then rolled up into their parent proteins, using the top 
30% most intense peptides. Proteins containing only a single peptide were eliminated 
from further analysis. A second Pearson cross correlation matrix was then created as a 
visual quality control step in order to examine protein-level intra-group and inter-group 
variability, followed by a heatmap examination of protein-level intensities. These signal 
intensities of the experimental groups were normalized against their control group 
means. All label free calculations, plots and analysis were performed using Inferno for 
Proteomics 1.0b (formerly known as DAnTE, developed and distributed by the Pacific 
Northwest National Laboratory (PNNL). 
 
Calculation of Within Proteome Absolute Synthesis (WPAS) Rates. Protein FSR 
was calculated using the fractional synthesis values (f) according to a single pool. The 
label free normalized signal intensity quotient (Q) was calculated for each protein by 
correcting individual signal intensities against the control group mean. The WPAS rate 
is a quantitative metric that combines fractional synthesis and relative pool size 
changes. WPAS for a given protein was determined by multiplying the fractional 
synthesis rates and label free values together: WPAS=k*Q. Our calculation of WPAS 
rate of individual proteins represents the mass of newly synthesized proteins within a 
proteome. 
 
Insulin. To determine glucose level, blood samples were taken by venipuncture. To 
quantify insulin level, plasma was obtained after ON fasting and spun at 14,000 rpm for 
5 min to pellet blood cells and supernatant transferred to a fresh tube and placed on dry 
ice and stored at -80C until use. Insulin in plasma were measured by ELISA kits 
(Crystal Chem Inc., Downers Grove, IL) using manufactures instructions.  

 
Cholesterol Biosynthesis. Mice under CR, Met and their control were measured for 
their liver and plasma cholesterol as previously described 406.  
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Statistics and Analysis. Reported rates and signifcance levels are based on a mixed 
model. Tests of the within ontological group treatment effects on FSR assess the 
difference between rates calculated from mean peptide counts from the control and 
experimental animals and correspond to tests on fixed effects coeffcients for treatment. 
Analyses were conducted using R (version 3.1.2). Data were analyzed using GraphPad 
Prism software (version 9.0) (La Jolla, CA, USA), InfernoRDN 
(https://omics.pnl.gov/software/infernordn) windows application (version 1.1), Gene set 
enrichment analysis, GSEA software, and Molecular Signature Database (MSigDB) 327 
(http://www.broad.mit.edu/gsea/), and Real Statistics Resource Pack (http://www.real-
statistics.com/free-download/real-statistics-resource-pack/) in Excel (version 16). 
KFERQ Sequence analysis was conducted using the KFERQ finder (version 0.8) 
considering for the output options the canonical standard motifs. CMA-targeting 
(KFERQ-like) targeting motifs were searched in mouse proteins in UniProt KFERQ-
like motifs belonging to different classes based on their amino acid composition 407.  
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5. FIGURES 
 

 
Figure 5-1.  Experimental conditions. (A) C57Bl6/J mice (n=4 per group) at 6 weeks 
of age were single caged and their body weights tracked throughout the length of 
intervention. (B) Dose by factor method was used to estimate human equivalent dose 
(HED) to reflect the dose that in humans is anticipated to provide the same degree of 
effect as that observed in animals 408. Met doses were calculated by HED for both Met 
and Met+CR groups and correspond to a dose of approximately 1,000 mg/day in a 70kg 
human subject, which is a low and common clinical dose in diabetic patients. (C) 
Plasma levels of insulin and (D) glucose. Data are represented as the mean ± s.e.m. P ≤ 
0.05 versus control mice (two-Sample assuming unequal variance followed t-test two 
tailed).
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Figure 5-2.  Gene sequence enrichment analysis. RNA-Seq experiment for CR 
group. (A) Top data sets significantly enriched at a FDR < 0.25. Ranked gene list 
correlation profile for FSR expressions showing the distribution of FSR between 
positive (CR group) and negative (Con group) correlation. Gene sets were counted by 
size and ordered by normalized enrichment score (NES). (B) Gene enrichment 
visualization of pathway networks under CR and clustered by function, where gene 
enrichment visualization of pathway networks under CR are represented by Blue dots 
as downregulated pathways, and red dots as upregulated pathways. (P-value Cutoff: 
0.05, FDR Q-value Cutoff: 0.25) 
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Figure 5-3.  Gene sequence enrichment analysis. RNA-Seq experiment for Met 
group. (A) Top data sets significantly enriched at a FDR < 0.25. Ranked gene list 
correlation profile for FSR expressions showing the distribution of FSR between 
positive (CR group) and negative (Con group) correlation. Gene sets were counted by 
size and ordered by normalized enrichment score (NES). (B) Gene enrichment 
visualization of pathway networks under Met and clustered by function, where gene 
enrichment visualization of pathway networks under Met are represented by Blue dots 
as downregulated pathways, and red dots as upregulated pathways. (P-value Cutoff: 
0.05, FDR Q-value Cutoff: 0.25)
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Figure 5-4. Effects of CR and Met on mRNA levels and metabolic fluxes through 
the cholesterol synthesis pathway. An expression data set sorted by correlation with 
phenotype through enrichment analysis (ES) (A and B) was used to compare the effects 
of intervention on liver gene expression by of ontological related pathways of 
cholesterol regulation. (C) The measurement of newly synthetized cholesterol was 
carried out in both plasma and liver.
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Figure 5-5.  Fractional synthesis rate (FSR) of hepatic proteins. (A) Heat map of 
FSR (%) after Met and/or CR interventions (B) Fold change of proteins compared to 
control represents the regulation of hepatic proteins after intervention. Proteins with 
either a faster FSR (shorter half-life) or slower FSR (prolonged half-life) were 
compared by binomial distribution and reveal a highly significant increase in the half-
lives of hepatic proteins compared to control for CR, MET and Met+CR groups. 
Proteins compared (n =142) had kinetic data in all 4 groups. FSR is shown in the heat 
map as % replaced per day.
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Figure 5-6. Analysis of enriched pathways for protein FSR measurement during 
Met and CR interventions. An expression data set sorted by correlation with 
phenotype through enrichment analysis (ES). (A) Metformin is a known glucose 
sensitizer. Here, we observed an increase in the protein half-lives under all 
experimental conditions was observed for regulation of glucose homeostasis. (B) CR is 
a known mTORC1 inhibitor. Here, mTROC1 signaling was noticeably decreased in all 
experimental conditions. (C) mTOR signaling is a central regulator of autophagy by 
modulating multiple aspects of the autophagy process. Here, analysis of protein FSR 
values (%) for autophagy-associated proteins detected in the liver is shown in bar 
graphs. 
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Figure 5-7. Effects of CR and Met on the WPAS rate. (A) Pool sizes (top) and FSR 
values were used to estimate the WPAS rate of hepatic proteins under CR. (B) Pool 
sizes (top) and FSR values were used to estimate the WPAS rate of hepatic proteins 
under Met. (C) Pool sizes (top) and FSR values were used to estimate the WPAS rate 
of hepatic proteins under CR and Met.
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Figure 5-8.  Effects of inhibition of autophagy in combination with Met treatment. 
(A) Body weights of the four experimental groups (Control; n=8, CR; n=7, Met; n=12, 
and Met+SBI; n=3). Met was given at a human equivalent of 12.8mg/kg/day. At the 
beginning of labeling (4 days before SAC; day 33), a subset of mice (n=3-7) was given 
SBI-0206965 every 2 days (B) by IP to inhibit ULK1 in order to inhibit autophagy. The 
proposed basis of autophagy inhibition by SBI-0206965 is represented in the figure 411. 
CR and Met are known activators of autophagy through phosphorylation of ULK1. 
SBI-0206965 inhibits ULK1 directly and inhibits formation and activity of 
autophagosomes. (C) Heatmap of FSR (%) after CR, Met and Met+SBI interventions. 
(D) Fold Change of proteins compared to control represent the regulation of hepatic 
proteins after intervention. Table shows the fraction of proteins with kinetic data in all 4 
groups that exhibited higher or lower FSRs than controls.
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Figure 5-9. Effects of autophagy inhibition on WPAS rates of hepatic proteins 
under Met treatment. (A) WPAS rates are represented in by their expression in 
controls, from highest to lowest synthesis rates, as a heat map (FSR, % replaced per 
day). Each line represents an identified protein by LC/MS/MS and analysis. (B) 
Comparisons were then made for all proteins identified either with a KFERQ 
sequence or without a KFERQ sequence. The line of unity is from the control values 
for each protein. Table shows the relative fraction of proteins with the sequence and 
without the sequence. 
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Figure 5-10. Global analysis of proteins with lowest rate of WPAS by autophagic 
sequence presence. Dots (left) represent individual proteins identified by their WPAS 
rate for CR (A), Met (B), or Met+SBI (C). For each condition, the frequency 
distribution of the WPASR by fold change due to the intervention for proteins with or 
without the KFERQ sequence was plotted from highest turnover (left) to slowest 
turnover (right). From this distribution, a subset (represented by proteins whose 
WPASR fold change under treatment is < 25 or 30%) of the slowest turn-over proteins 
was noted to have the greatest degree of change. Table (inset) shows the percentage of 
proteins with or without the KFERQ sequence in correspondence with their total.  
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CHAPTER SIX: NO is Necessary for Proteome Regulation under CR 
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1. INTRODUCTION 
 

CR has been linked to lifespan extension and preserved cellular homeostasis, conferring 
the organism with a wide array of beneficial effects. Many biological functions are 
modulated under CR but it is unknown how it regulates these metabolic processes. 
However, an interesting signature of CR is its modulation of protein translation, a 
fundamental and highly controlled process that can be stimulated or inhibited by amino 
acid levels. This regulation is controlled through intracellular signaling mechanisms 
(discussed in Chapter One) that affect several translation checkpoints, including the 
initiation factor activity of eIF2 and availability eIF4 through regulation of eIF2 
guanosine exchange and 4E-BP1 binding activity, respectively. Increased amino acid 
levels can accelerate translation initiation, where the energy sensor mTORC1 mediates 
the phosphorylation of S6-K, promoting protein synthesis through the translation 
initiation factor eIF4B and the elongation regulator eEF2K. On the other hand, lack of 
essential amino acids leads to activation of eIF2 kinases such as GCN2 (EIF2AK4) that 
trap eIF2 in its inactive conformation and thus block translation 149,409,410. 
 
It is clear that many biological functions are modulated under CR to prevent the 
deleterious effects of age-related diseases, but it is unknown how CR regulates these 
metabolic processes. Of the diverse pathways known to change under CR, many 
coalesce at the point of protein translation. Of interest here, based on meta-omics data 
(Figure 5-2 and 6-1), the signaling molecule NO stands out due to its diminished 
bioavailability during aging being prevented under CR 411. Of interest in this regard was 
a previous observation done in which NO mediated NMDA-induced persistent 
inhibition of protein synthesis through dephosphorylation of 4E-BP1412. NO is 
produced enzymatically in most cells and tissues by a family of enzymes known as NO 
synthase (NOS). A function of NO is through signal transductions, first observed in 
endothelial cells to relax vascular smooth muscle through activation of guanylate 
cyclase 413. Since those initial observations, an extensive range of NO-based processed 
induced have been observed and linked to the expression of NOS enzymes involved in 
the production of NO. Endogenous NO is generated from arginine by three distinct 
calmodulin-dependent NOS enzymes. NOS from endothelial cells (eNOS) and neurons 
(nNOS) are both constitutively expressed enzymes, whose activities are stimulated by 
increases in intracellular calcium. Stress and immune function for NO are mediated by 
a calcium-independent inducible NOS (iNOS) 414,415. Interestingly, expression of iNOS 
protein requires transcriptional activation, which is mediated by specific combinations 
of cytokines 415. 

 
L-Arginine is the only endogenous nitrogen-containing substrate of NOS, and it thus 
governs the production of NO. iNOS is the only NOS enzyme not constitutively active, 
playing a fundamental role as mediator of inflammation and stress responses such as 
injury-induced insulin resistance in metabolically active tissues 416,417, and during 
nervous system development 418 as well as in disease states such as stroke, multiple 
sclerosis, Parkinson’s disease, and HIV dementia 419,420. The citrulline-NO-urea cycle 
(Figure 6-2B) is a recycling processes characterized by the synthesis of NO from 
arginine by either of the NOS enzymes using NADPH as a cofactor. Citrulline may be 
recycled back to arginine, using arginosuccinic acid as an intermediate. It has been 
shown that this pathway is a key response under CR in response to hypothermic 
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conditions. In this regard, several metabolites of the urea cycle are altered following CR 
in plasma and the hypothalamus 421. In addition, under CR the most abundant proteins 
detected (reflected by the peptide n) belong to the citrulline-NO-urea cycling (Figure 
6-2A). 
 
NO-mediated regulation of gene expression is known to involve activation of multiple 
serine (Ser)/threonine (Thr) kinases that phosphorylate eIF2 412. PERK, a Ser/Thr 
protein kinase that is a critical effector of the unfolded protein response, phosphorylates 
the alpha subunit of eIF2, leading to its inactivation and to a rapid reduction of 
translational initiation and repression of global protein synthesis 422. In this regard, 
studies on stress response have revealed PERK and GCN2 as kinases able to 
phosphorylate eIF2 to inhibit protein synthesis, revealing NOS as the activation 
controller for these kinases during cellular damage 423. This infers a further role for NO 
to be stimulated in parallel to CR and amino acid depletion through GCN2. Of note is 
that changes in cellular NO production are induced by the same stressors that stimulate 
autophagy (eg. starvation, CR, ER stress, mitochondria dysfunction, oxidative stress).  
 
NO is also capable of inducing post-translational modifications in proteins. In this 
regard, the addition of a NO group to the thiol side chain of cysteine residues within 
proteins and peptides is known as S-nitrosylation (Cys-NO). This modification conveys 
a large part of the ubiquitous influence of NO on cellular signal transduction 414, and 
has been implicated in proteins that are components of at least two pro-autophagic 
pathways: JNK1/Bcl-2/Beclin 1, where NO negatively regulates JNK1 424, and 
IKKb/AMPK/mTORC1 425.  
 
Animal studies have revealed NO as a central regulator of energy metabolism and body 
composition 426. NO bioavailability is decreased in animal models of diet-induced 
obesity 427 and in obese and insulin-resistant patients 428, and increasing NO output has 
remarkable effects on obesity and insulin resistance 428,429. On the other hand, CR has 
been linked to decreased systolic blood pressure through an increase in serum NO 
bioavailability 430. In this regard, CR was able to prevent systolic blood pressure rises in 
specific by improving the NO effect on smooth muscle and morphological changes in 
the aorta of rats 431. In the absence of NOS (eg. eNOS−/−), the outcome of heart failure 
is more sever in mice was more severe, and the protective effects of CR are not 
observed to exert cardioprotection without this fundamental enzyme 432. Indeed, the 
physiological effects of CR are numerous. As a versatile gas biomolecule that increase 
blood flow, transmit nerve signals, and regulate immune function, it is also able to 
prolong life in C. Elegans by up to 15% through its modulation of hsf1 and daf16 .433 

 
In short, NO is a free radical that mediates several biological functions. NO 
accomplishes its functional diversity through various mechanisms such as protein 
cysteine residue modifications to form Cys-NO, impacting protein function, stability, 
and location. Pathological conditions are often associated with overproduction of NO, a 
condition called nitrosative stress, and result in inappropriate S-nitrosylation of 
proteins, leading to dysfunction and pathological phenotypes. As a response to the 
overproduction of NO, cells respond by inhibiting eIF2 to slow down protein synthesis.  
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iNOS is the only NOS enzyme not constitutively active, playing instead a fundamental 
role as mediator of inflammation and stress responses such as injury-induced insulin 
resistance in metabolically active tissues like liver 416,417. It also has been implicated in 
the biology of CR, such as in an RNA-Seq analysis of enrichment networks (Figure 6-
1), where we show it interacts with ‘plateau phase 4’ and ‘unblocking nmda’ clusters. 
However, the exact mode of action between NO and CR is not known 421.  
 
Accordingly, we examined here the physiological and biological effects of CR in NO 
deficient (NO-) mice (iNOS knockout 434–436) or aminoguanidine [AG] supplemented 
mice 437) using the genetic background animals as controls (C57Bl/6J). 
   

2. METHODS AND RESULTS 
 
Exploring the role of CR on NO-related proteins (Figure 6-2A), we observed that the 
half-lives of several enzymes involved in the cycling and generation of citrulline were 
globally increased. We therefore considered the functional role of these enzymes in the 
context of NOS regulation of NO production (Figure 6-2B) and asked whether there is 
an important role for NO in regulation of proteome fluxes, particularly in the hepatic 
response of proteome fluxes to CR.  
 
We used an experimental design workflow (Figure 6-3A) in which various 
measurements were carried out throughout the length of CR intervention. We tested 
the metabolic adaptation of mice in the absence of NO under CR before mice reached 
either 10 or 22 weeks under CR. We also measured physiological and behavioral 
performance and tested their insulin sensitivity within those timepoints. Before time of 
sacrification, we labeled the mice for 4-5 days with 2H2O. After tissue collection we 
performed a series of analysis on the tandem mass spectrometer to study their 
proteome fractional synthesis flux. Comparison of body weights (Figure 6-3B), 
measured at regular intervals, showed significant body weight shifts between Con and 
CR during the first week of intervention. After seven weeks of CR, we observed a 
significant shift in body weights between Con and NO- mice. This pattern repeated 
after ten weeks of intervention between CR and NO-CR where the NO- mice were 
significantly heavier than CR. Measurements of their food consumption showed no 
significant changes in their food usage.  
 
Behavioral and performance tests were done at ten and twenty-two weeks, marked by 
significant body weight shifts. At 10 weeks (Figure 6-4A), we saw how wire-hang 
tests were performed poorly in the NO- group compared to control, while CR 
elucidated the best performance under both CR and NO-CR conditions. CageTOP tests 
revealed a similar performance deficit only under the NO- group, with both CR groups 
performing perfectly. Treadmill exhaustion test showed a non-significant trend in 
which the NO- group performed poorly (p=0.06) compared to control and both CR 
interventions performed better through the assessment of distance (m) run on a 
treadmill. Finally, the inverted pole test is used to assess the time it takes the mouse to 
turn around and climb down of a pole. The task involves both mental and physical 
coordination to execute properly and is scored accordingly, with the lower the score 
the less favorable the performance was executed. In here, we observed NO- mice 



105  

trending (p=0.06) towards a poor outcome. CR on the other hand performed the best, 
with NO-CR mice having no significant improvements compared to Con.  
 
At 22 weeks (Figure 6-4B) of intervention we saw wire-hang testing performed 
decreased in the NO- group only. CageTOP test showed a significant decrease in 
performance under NO-. The treadmill exhaustion test showed no changes within the 
ad lib groups, and time to exhaustion increased significantly under CR for both 
groups. Finally, the inverted pole test showed a significant decrease in coordination 
and performance under NO- and an improvement under CR for both conditions.  
 
Metrics of body composition were also done at 10 (Figure 6-5A) and 22 (Figure 6-
5B) weeks of intervention. At 10 weeks of CR, mice underwent GTT after fasting, 
with significant increase in blood glucose levels for all timepoints tested except minute 
15 in the NO group. CR performed better for all timepoints except during fasting. ITT 
test showed NO- having more blood glucose levels under fasting only. Comparison 
between CR and NO-CR showed a significant increase in all times measured under 
NO-CR. At 22 weeks of intervention, we saw under fasting conditions in a GTT 
experiment that NO-CR had higher blood glucose levels than CR. We also observed 
than NO- induced a prolongation of the uptake of glucose into cells at min 120, 
showing clear signs of insulin resistance. ITT testing showed no significant changes 
for any of the time points tested.  
 
Metabolic cages (CLAMS) were used to test RER, HEAT, and movement scores 
(ZTOT, XTOT, XAMB) as metrics of energy usage and behavioral movement. At 10 
weeks of intervention (Figure 6-6A), CR mice had a significant preference for using 
carbs as an energy source, which was not observed in the NO-CR group which 
preferred the use of fats as energy source. CR under both conditions generated less 
heat. Metabolic cages analysis at 22 weeks of intervention (Figure 6-6B) showed a 
shift for NO- mice to use carbohydrates as energy sources in a manner similar to CR 
and NO-CR. However, we observed a significant increase in body heat generation 
which may implicate NO in energy usage and heat production.  
 
To summarize, NO-CR mice exhibited worse functional performance, higher body 
weight, worse insulin sensitivity in comparison to CR wild-type mice. 
 
Hepatic proteome analysis of protein fractional synthesis fluxes revealed a consistent 
pattern of higher global protein FSR rates in the absence of NO. At 10 weeks of CR 
(Figure 6-7A), most proteins analyzed were increased in the NO- group (70% of 
proteins measured were upregulated), while under CR most proteins had a significant 
decrease in their turnover rate (81% of proteins were downregulated). The effect of CR 
was markedly blunted in NO-CR mice, with only 65% of hepatic proteins being 
downregulated in the NO-CR group. At 22 weeks of CR (Figure 6-7B), the NO- 
group saw a similar increase in protein fractional synthesis rates (75% of proteins were 
upregulated), while under CR 75% of proteins were downregulated (increased protein 
half-lives). Of interest was that in the NO-CR group, the effects of CR were 
completely prevented, with 69% of the proteins analyzed actually upregulated. These 
week 22 findings revealed a time-dependent modulation in which CR is no longer able 
to slow proteome fluxes when iNOS is absent in the liver.  
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Gene sequence enrichment analysis of top changes in fractional synthesis rates was 
performed to understand ontological changes. Data sets analyzed were compared to 
195 gene sets (Figure 6-8A). Of this sets, 170 out of the 194 were downregulated 
under CR. Of significance (nominal p < 0.01) were sets belonging to mitochondria 
function, oxidative phosphorylation and abnormality of acid-base homeostasis. 
Comparing the enrichment of gene sets between NO-CR and CR was then done to 
understand the pathways regulated by CR when NO is available. Interestingly, 183 out 
of 195 gene sets analyzed were enriched in the NO-CR group. Of this, 12 sets were 
significantly enriched (nominal p <0.05) and of note was that two sets were involved 
in mitochondria. Therefore, we isolated liver mitochondria (Figure 6-8B) by sucrose 
gradient ultracentrifugation and generated a large set of mitochondria protein FSRs. 
These proteins were then analyzed by core enrichment and saw that while CR 
downregulated (increased the half-lives) of most liver mitochondrial matrix proteins, 
NO-CR showed significantly higher FSRs for these proteins when compared to CR.  
 
Of the 195 gene sets analyzed and compared between NO- and Con, 157 were 
upregulated under NO-. Significantly enriched sets (nominal p < 0.05) showed 
significance in pathways involved in amino acid metabolism (Figure 6-9A). Though 
not significant, we also observed a core enrichment of proteins in the liver involved in 
adipogenesis. Therefore, based on our observations of increased body weight, and 
insulin resistance, we analyzed the FSR of white adipose tissue proteins (Figure 6-
9B). In the NO- group, there was no noticeable effect of the kinetic rate of adipose 
tissue (WAT) proteins (47% were upregulated). However, it has been reported in the 
past that disruption of iNOS can improve tissue inflammation and fibrosis in an ob 
mouse model 438. Under CR and NO-CR, 64% of proteins had a significant decrease in 
synthesis rates.  
 
An important regulator of iNOS in the liver is the peroxisome. Indeed, in hepatocytes 
the peroxisome is considered a site of iNOS localization 439, whose association exists 
as a pool believed to be involved in protective mechanisms 440. Therefore, we 
performed sucrose gradient ultracentrifugation in liver samples to obtain a 
peroxisomal enriched fraction. We analyzed these proteins by LC/MS/MS (Figure 6-
10) and observed that after 4 days of labeling, CR upregulated 77.3% of the 
peroxisomal proteins measured (p = 0.004). NO did not have an influence on the 
expression of peroxisomal proteins demonstrating CR as the unique modulator of 
proteins from the peroxisome. Because huge amounts of ROS are generated during 
oxidative reactions carried out in peroxisomes, we then looked at liver protein 
carbonylation as a marker for protein oxidation that can be promoted by ROS 441. We 
observed a dramatic increase of carbonylated amino acid side chains in the absence of 
NO- in both conditions. We further tested the level of ubiquitination and observed a 
slight increase in ubiquitination in the absence of NO-.  
 
Lastly, we validated these observations with a shorter CR intervention of 6 weeks. In 
this experiment, we also included a group of mice lacking nNOS and control groups in 
which we gave the mice either NO donors or pharmaceutical inhibitors of NOS.  
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Establishing the baseline for this experiment (Figure 6-11), we labeled mice for 4 
days with 2H2O after which we isolated livers to study their protein flux rates. We 
observed a repeat pattern of our previous observations, where NO- leads to a 
significant increase in protein FSRs (67% of proteins were upregulated; p<0.001). 
Similarly, CR led to a 73.7% decrease (p<0.001) in protein turnover rates that was 
blunted by the absence of NO (56% of proteins were downregulated in NO-CR; 
p=0.1). 
 
We then gave mice AG (Figure 6-12) as a pharmaceutical inhibitor of NOS that is 
highly specific for iNOS 437,442. We observed that in the hepatic proteome, AG 
increased the FSR of 74% of proteins under ad lib conditions, a similar finding as our 
previous observations in the genetic knockout mice. Furthermore, while CR decreased 
the turnover rate (data from Figure 6-11) in 74% of hepatic proteins, AG given to CR 
mice altered their FSR values to an even split of 50%:50%, lower vs higher.  
 
To understand whether we could rescue the effects of CR in NO- animals, we gave to 
genetic NO- mice an NO therapeutic drug, Molsidomine (Mols), that is metabolized in 
the liver where it is converted by esterases to the active metabolite, SIN-1, which then 
releases NO 443,444. The half-life of Mols in plasma is 1-2 hours. In this experiment 
(Figure 6-13) Mols was given at a dose of 120mg/L based on a study on klotho-
hypomorphic mice 445 in which this dose was enough to reverse vascular calcification. 
However this dose was roughly 10 times higher than in another study reporting similar 
effects in enhanced atherosclerotic plaque stability in ApoE deficient mice 443.  We 
observed that in the absence of NO-, Mols was capable of eliciting similar effects as 
CR, with 70% of proteins downregulated. This stood in contrast with NO- where 67% 
of proteins were upregulated. Under NO-CR, when Mols was added, 82% of proteins 
were downregulated (similar to CR alone).  
 
Because Mols is a drug used to treat myocardial dysfunction (angina pectoris) 446, we 
then looked at the effects of NO on proteome turnover in the heart (Figure 6-14A 
through 6-14B). In the NO- group, a similar signature was repeated as in the liver, 
with 82% of proteins being upregulated when compared to control. Under CR, 
however, we did not observe the same signature as in the liver and saw little if any 
effect on heart proteome turnover (59% of the proteins being upregulated). In the NO-
CR group, we observed a similar effect as in NO- alone, with an upregulation of 70% 
of cardiac proteins. In comparison, Mols was able to bring NO- mice back to a 
baseline (56% of proteins being downregulated). This observation was also repeated in 
the NO-CR group after Mols administration where only 58% of proteins were 
downregulated. 
 
Looking at the effects of NO in brain, we used nNO- mice (Figure 6-15). The first 
observation from this group of mice was that they had a significant reduction in body 
weights (Figure 6-15A) reflecting that of the CR group. While these mice (n=3) were 
ad lib their phenotype led them to consume less food putting them on a self-imposed 
CR regimen of ~22% (Figure 6-15B) over the course of the experiment. Analyzing 
their brain proteome dynamics, we observed that 69% of the proteins analyzed were 
downregulated, showing that CR is able to regulate the proteome in a similar fashion 
to liver (but not heart). As we had established earlier, these mice were under a CR 
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state, so when we analyzed their total brain proteome, we were surprised to observe no 
changes (46% of proteins were downregulated). To verify that these mice were indeed 
under a CR state, we looked at their liver proteome and observed that, in the liver, they 
had a 67% downregulation of FSRs (Figure 6-16). Comparing this group with the 
NO- group (where the iNOS enzyme was KO) demonstrate its CR condition.  
 
We conclude that NOS and CR have a fundamental interplay in the production of NO 
that has implications for global proteome dynamics (Figure 6-17). Physiologically, 
NO appears to be necessary for the slowing effects of CR on global protein turnover in 
the liver. It will be of interest to ask whether the effects on life-span extension parallel 
these effects on lobal protein turnover. 

 
3. CONCLUSION  
 
There is an interesting paradox in arginine metabolism, where intracellular levels of 
arginine far surpass the KM of the NOS enzymes, and yet, when exogenous arginine is 
added into the system more NO is produced 447,448. It is interesting to conceptualize how 
this unique family of enzymes can regulate NO production under different levels of 
amino acid (eg. arginine and citrulline) availability. CR offers a point of context in this 
regard, as less amino acids are consumed under such energy restricted conditions, 
leading to a slowdown of protein synthesis. Yet in the absence of NOS, protein 
synthesis rates are significantly increased even under CR. Here, we tackle this 
intriguing paradox to elucidate the functional role of NO interventions that influence 
turnover rates of the global proteome as well as altering lifespan in living animals 433.  
 
We conclude through meta-omics, genetic, and pharmacological approaches that NO 
plays a fundamental role in the regulation of protein turnover. We have consistently 
shown that CR leads to reduced synthesis (increased half-lives of most hepatic proteins. 
Indeed, CR and other lifespan extension interventions such as rapamycin treatment 
have been associated with the preservation of cellular homeostasis, conferring the 
organism with a wide array of beneficial effects. As discussed earlier, many biological 
functions are modulated under CR in which NO appears to play a singular role as a 
regulator of CR-linked pathways that ultimately regulate proteostasis.  
 
The physiological and biological effects of NO on mice demonstrate a unique state in 
which this signaling molecule regulates body composition, behavior and physical 
performance. These changes are a unique reflection of the dictating biology of CR, 
where NO appears to be necessary for the preservation of protein half-lives. Indeed, the 
use LC/MS/MS to measure the replacement rate of proteins in vivo shows a dynamic 
and constant role for NO to maintain protein homeostasis. In NO- mice, a significant 
number of proteins undergo replacement, and this effect is exacerbated under CR, 
whose effect was observed to be dramatically inhibited in NO- mice.  
 
In short, we demonstrate for the first time a fundamental role for NO production in 
maintenance of the proteome in liver, heart and brain (but not WAT). In tissues that 
are also affected by CR, NO plays an indispensable role in maintaining the half-lives 
increases of most hepatic and brain proteins analyzed. We observed this pattern of 
regulation throughout various lengths of intervention (eg. 6, 10, 22 weeks of CR) in 
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genetic iNOS knockout mouse models and with pharmacological interventions where 
AG duplicated the effects observed in the knockout mice. In addition, in the absence 
of iNOS, we could rescue the effects of CR by giving Mols as a NO donor.   

 
4. METHODS 

 
Mice. Six- to eight-week-old male C57Bl/6J control mice (n=48) and B6.129P2-
Nos2tm1Lau /J transgenic mice (NO-) (Stock no: 002609) were purchased from Jackson 
labs (Jackson laboratory, Bar Harbor, ME). Mice and were randomly divided into 
control group (n=29), CR under 30% restriction (n=19), ad lib NO- (n=20), NO-CR 
(n=17). Animals not under CR were provided unrestricted access to the AIN-93M diet 
(Bio-Serv). Animals under CR were given 30% less food than the control group. Body 
weights and food intake were recorded approximately every 3-4 days during the 
duration of the experiment. Animals were labeled with 2H2O 4-5 days before 
sacrification.  
 
Calorie Restriction. Male C57Bl/6J mice under CR and NO- under CR were given 
30% less food than their respective ad lib groups every day between 12-1pm. Weight 
adjustments for diet were done weekly based on the amount of food their controls 
consumed.  
 
AG administration. AG was administered to mice as previously described 449. In short, 
AG was purchased from Sigma (No. 19266598). AG was dissolved in the same 
drinking water used for the animal colony at 2mg/mL and sterile filtered through a 
0.22-μm disposable filters (Millipore, Millex-GV) before administration. The solution 
was made fresh and given to mice in their drinking water bottles daily. Bottles with AG 
were changed every day for the duration of the experiment.  
 
Mols Administration. Mols was administered to mice as previously described 445. In 
short, Mols was purchased from Sigma (No. M2901). Mols was dissolved in the same 
drinking water used for the animal colony at 120mg/L and sterile filtered through a 
0.22-μm disposable filters (Millipore, Millex-GV) before administration. The solution 
was made fresh and given to mice in their drinking water bottles daily. Bottles with 
Mols were changed every day for the duration of the experiment.  

 
Euthanasia. Animals were anesthetized with isoflurane and euthanized by cardiac 
puncture. All experiments were performed under the approval of the Institutional 
Animal Care and Use Committees of the University of California at Berkeley.  
 
RNA-Sequencing. Total RNA was isolated from mouse livers using RNeasy Micro Kit 
from Qiagen (Hilden, Germany). RNA Quantity was determined using a Qubit (TM) 
fluorometric assay and quality was determined using Eukaryote Total RNA Pico 
(Agilent Bioanalyzer 2100). The library preparation and sequencing were done on a 
single lane (Illumina HiSeq4000) at 100bp pair-end (PE) reads and performed at the 
Vincent J. Coates Genomics Sequencing Laboratory at University of California (UC), 
Berkeley. The raw sequencing files were processed with CASAVA 1.8.2 (Illumina) to 
generate fastq files. We first obtained read quality reports by using the FastQC tool 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which gave us overall 
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high-quality scores. The fastq files were then uploaded onto the Galaxy project portal 
(https://usegalaxy.org/) 337. The reads were then mapped to the mouse reference genome 
(mm10) using the Burrows-Wheeler Aligner (BWA) module. Differential gene 
expression of RNA-seq was determined using DESeq2 338. 
 
Measurement of 2H enrichment in body water. Animals in each group were labeled 
with an intraperitoneal injection of 100% 2H2O saline (0.35mL/10 g body weight), and 
provided with 8% 2H2O drinking water for the remainder of the study to maintain body 
2H2O enrichments of approximately 5%, as described previously 372.  Measurement of 
2H2O enrichment in body water was done from whole blood samples using a Liquid 
Water Isotope Analyzer (Los Gatos Research, Mountain View, CA) after a 1:300 
dilution and distillation as previously described 373.  
 
Tissue Protein Isolation and In-Gel Trypsin Digestion. Livers, brains, hearts and 
WAT were harvested from mice at the time of euthanasia, and immediately snap frozen 
on liquid nitrogen until further analysis. Tissue protein was isolated by homogenization 
in RIPA buffer containing PhosStop phosphatase inhibitor cocktail (Roche, 
Indianapolis, IN), 1mM DTT, 7.5ug/mL leupeptin, 1ug/mL pepstatin, 2ug/mL 
aprotinin, 1mM PMSF in isopropanol, and 100nM nicotinamide using a TissueLyser 
(Qiagen, Germantown, MD), followed by centrifugation at 10,000g for 10 minutes at 4 

oC. The supernatant containing soluble proteins was used for the analysis. Protein from 
prepared homogenates was uniformly reduced by incubation in 10 mM DTT and SDS-
PAGE sample loading buffer for 10 min at 70°C. The reduced samples were then 
alkylated by incubating in 15 mM iodoacetamide for 1 hour at room temperature in the 
dark. Samples were then trypsin digested at 37oC (Trypsin Gold, Promega, Madison, 
WI). In each experiment, samples were analyzed by LC-MS/MS, corresponding to a 
molecular weight range of 20-80kDa. 
 
LC/MS Analysis and Protein Turnover Calculations. Trypsin-digested peptides 
were analyzed on an Agilent 6520 QTOF (quadrupole time-of-flight) mass 
spectrometer with 1260 Chip Cube nano ESI source (Agilent Technologies, Santa 
Clara, CA). Peptides were separated chromatographically using a Polaris HR chip 
(Agilent #G4240-62030) consisting of a 360 nL enrichment column and a 0.075 x 150 
mm analytical column, each packed with Polaris C18-A stationary phase with 3 µm 
particle size. Mobile phases were (A) 5% v/v acetonitrile and 0.1% formic acid in 
deionized water and (B) 95% acetonitrile and 0.1% formic acid in deionized water. 
Peptides were eluted at a flow rate of 350 nL/min during a 18 min LC gradient (2%B at 
0 min, 5%B at 0.5 min, 30%B at 10 min, 50%B at 13 min, 90%B at 13.1-18 min, 2%B 
at 18.1 min; Stop time: 32 min). Each sample was analyzed twice, once for 
protein/peptide identification in data-dependent MS/MS mode and once for peptide 
isotope analysis in MS-only mode. Acquisition parameters were: MS/MS acquisition 
rate = 6 Hz MS and 4 Hz MS/MS with up to 12 precursors per cycle, MS acquisition 
rate =  0.9 Hz, ionization mode = positive electrospray; capillary voltage = -1980 V; 
drying gas flow = 4 L/min; drying gas temperature = 290 °C; fragmentor = 170 V; 
skimmer = 65 V; maximum precursor per cycle = 20; scan range = 100-1700 m/z (MS), 
50-1700 m/z (MS/MS); isolation width (MS/MS) = medium (~4 m/z); collision energy 
(V) = -4.8+3.6*(precursor m/z/100); active exclusion enabled (exclude after 1 
spectrum, release after 0.12 min); charge state preference = 2, 3, >3 only, sorted by 
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abundance; TIC target = 25,000; reference mass = 922.009798 m/z. Acquired MS/MS 
spectra were extracted and searched using Spectrum Mill Proteomics Workbench 
software (version B.04.00, Agilent Technologies, Santa Clara, CA) and a 
UniProtKB/Swiss-Prot mouse protein database (UniProt.org, release 2012_02). Data 
files were extracted with the following parameters: fixed modification = 
carbamidomethylation of cysteine, scans with same precursor mass merged by spectral 
similarity within tolerances (retention time +/- 10 sec, mass +/-1.4 m/z), precursor 
charge maximum z = 6, precursor minimum MS1 S/N = 10, and 12C precursor m/z 
assigned during extraction. Extracted files were searched with parameters: enzyme = 
trypsin, Mus Musculus, fixed modification = carbamidomethylation of cysteine, 
variable modifications = oxidized methionine + pyroglutamic acid + hydroxylation of 
proline, maximum missed cleavages = 2, minimum matched peak intensity = 30%, 
precursor mass tolerance = 10 ppm, product mass tolerance = 30 ppm, minimum 
detected peaks = 4, maximum precursor charge = 3. Search results were validated at the 
peptide and protein levels with a global false discovery rate of 1%. Proteins with scores 
greater than 11.0 were reported and a list of peptides with scores greater than 6 and 
scored peak intensities greater than 50% was exported from Spectrum Mill and 
condensed to a non-redundant peptide formula database using Excel. This database, 
containing peptide elemental composition, mass, and retention time was used to extract 
MS spectra (M0-M3) from corresponding MS-only acquisition files with the Find-by-
Formula algorithm in Mass Hunter Qualitative Analysis software (version B.05.00, 
Agilent Technologies, Santa Clara, CA). MS spectra were extracted with parameters: 
EIC integration by Agile integrator, peak height > 10,000 counts, include spectra with 
average scans > 12% of peak height, no MS peak spectrum background, unbiased 
isotope model, isotope peak spacing tolerance = 0.0025 m/z plus 12.0 ppm,  mass and 
retention time matches required, mass match tolerance = +/- 12 ppm, retention time 
match tolerance =  +/- 0.8 min, charge states z = +2 to +4, chromatogram extraction = 
+/- 12 ppm (symmetric), EIC extraction limit around expected retention time = +/- 1.2 
min. Details of FSR calculations and data filtering criteria were described previously 
305,326. Briefly, in-house software was developed to calculate peptide elemental 
composition and curve fit parameters for predicting isotope enrichments of peptides in 
newly synthesized proteins based on precursor body water enrichment (p) and the 
number (n) of amino acid C–H positions per peptide actively incorporating 1H and 2H 
from body water. Incorporation of 2H into tryptic peptides decreases the relative 
proportion of M0 within the overall isotope envelope spanning M0-M3. Fractional 
synthesis was calculated as the ratio of excess %M0 (EM0) for each peptide compared 
to the maximal absolute EM0 possible at the measured body water enrichment. Data 
handling was performed using Microsoft Excel templates, with input of precursor body 
water enrichment for each subject, to yield fractional replacement rate (FSR) data at the 
protein level. The kinetics data were filtered to exclude protein measurements with 
fewer than two peptide isotope measurements per protein. Following LC-MS/MS 
measurement of peptide spectra, we used five stringent selection criteria to remove low 
confidence kinetic data: (a) peptide signal intensity must be more than 30,000 counts, 
(b) RMS error for unlabeled peptide mass isotopomer abundance measurements must 
be less than 1.5% compared with natural abundance, (c) observation of the parent 
protein in at least 2 mice per experimental group, (d) a coefficient of variation of the 
one-phase exponential association curve fit less than 30%, and (e) an r2 curve fit value 
greater than 0.7.  
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Statistics and Analysis. Reported rates and signifcance levels are based on a mixed 
model. Tests of the within ontological group treatment effects on FSR assess the 
difference between rates calculated from mean peptide counts from the control and 
experimental animals and correspond to tests on fixed effects coeffcients for treatment. 
Analyses were conducted using R (version 3.1.2). Data were analyzed using GraphPad 
Prism software (version 9.0) (La Jolla, CA, USA), InfernoRDN 
(https://omics.pnl.gov/software/infernordn) windows application (version 1.1), Gene set 
enrichment analysis, GSEA software, and Molecular Signature Database (MSigDB) 327 
(http://www.broad.mit.edu/gsea/), and Real Statistics Resource Pack (http://www.real-
statistics.com/free-download/real-statistics-resource-pack/) in Excel (version 16). 



113  

5. FIGURES 

 
Figure 6-1. Gene sequence enrichment analysis. RNA-Seq experiment for CR group. 
Figure represents data sets significantly enriched at an FDR < 0.25. Ranked gene list 
correlation profile for FSR expressions showing the distribution of gene expression sets 
normalized enrichment score (NES). Gene enrichment visualization was performed 
with networks under CR and clustered by function. Genes are represented by Blue dots 
as downregulated pathways, and red dots as upregulated pathways under CR. Line 
represent the only enrichment cluster that overlaps with other clusters. 
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Figure 6-2.  Generation of NO under CR. Representation of proteins involved in the 
generation of NO. (A) Heatmap represents the fold change of proteins involved in the 
generation of NO under CR. (B) Schematic of the process by which the cells generate 
NO. In the diagram, arginine is converted intro citrulline by the enzyme NOS, 
producing NO as a byproduct of the conversion. Two pathways are also represented; 
Blue outlines the Citrulline-NO recycling process by which citrulline is converted by 
into arginine. Red; Urea Cycle by which wasted ammonia from amino acid catabolism 
is eliminated through their conversion to urea.  
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Figure 6-3. Experimental design and model. (A) Mouse experimental workflow: at 
the beginning of CR, mice underwent a series of non-invasive tests to assess their 
behavioral markers. Mice underwent two lengths of experimentation at 10 and 22 
weeks of age. Before SAC, mice were labeled with 2H2O for 4 days. Schematic 
represents labeling concept and tissue processing approach. (B) NO- mice (n=37) and 
their control C57Bl6/J mice (n=48), starting at 6-8 weeks of age, were randomly 
divided into four groups: I) Con adlib (n=29), NO- adlib (n=20), CR (n=19), NO- CR 
(n=17). Mice were single caged, and their body weights and food consumption 
measured throughout the length of intervention. Significance starts where indicated by 
the arrow; *p<0.05 between Con and CR, **p<0.05 between Con and NO-, and 
***p<0.05 between CR and NO-CR. 
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Figure 6-4. Behavioral and performance metrics. Physical and behavioral tests 
performed on mice at 10 (A) or 22 (B) weeks of intervention. Treadmill exercise was 
done to exhaustion. Cage-Top and Wire-hang were executed for up to 60 seconds. Pole-
test assessing motor function was scored by time required to turn downward. 
Significance assessed by student t-test. 
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Figure 6-5. Insulin and Glucose Tolerance Tests. ITT and GTT were performed under 
fasting conditions for 10 (A) or 22 (B) weeks of intervention. The levels of glucose in 
blood of mice fasted for 6 hours were measured in a time course after IP insulin 
injection (ITT) in all groups (n=3-4 per group). Plasma levels of glucose after 
intraperitoneal glucose load (GTT) from mice fasted ON (n=3-4 per group) (*p<0.05 
between Con and NO-, °p<0.05 between CR and NO-CR).
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Figure 6-6. CLAMS assessment of mice. Metabolic assessment was performed in 
metabolic cages before 10 (A) or 22 (B) weeks of intervention. Metabolic Cages were 
used to assess the RER, HEAT, and movement scores of mice (12 total, n=4 per 
group). Animals were placed on a CLAMS system and their metrics were taken for 3 
nights (dark) and 2 days (light). Dark and Light values were averaged together 
(*p<0.05 to Con).

RER HEAT ZTOT XTOT XAMB
Con 0.97 ± 0.025 0.43 ± 0.013 109.5 ± 38.1 476.0 ± 81.7 213.2 ± 55.2
NO- *0.91 ± 0.030 *0.48 ± 0.012 97.9 ± 15.0 432.3 ± 73.6 184.3 ± 27.0
CR  *0.91 ± 0.014 *0.32 ± 0.012 76.8 ± 19.1 431.5 ± 56.9 200.8 ± 40.5

NO-CR *0.90 ± 0.010 *0.33 ± 0.013 157.5 ± 61.4 644.4 ± 77.9 288.3 ± 58.0

A

B

10 Weeks Old

22 Weeks Old

RER HEAT ZTOT XTOT XAMB
Con 1.04 ± 0.017 0.27 ± 0.007 129.0 ± 43.0 495.6 ± 63.7 262.3 ± 41.1
NO- 1.01 ± 0.028 0.29 ± 0.012 109.0 ± 8.6 471.6 ± 51.3 238.2 ± 28.2
CR  *0.95 ± 0.008 *0.19 ± 0.010 222.9 ± 47.5 755.0 ± 69.5 453.9 ± 52.8

NO-CR *1.00 ± 0.013 *0.19 ± 0.013 97.5 ± 31.5 429.3 ± 66.0 231.1 ± 44.2

* p<0.05, Student T-test
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Figure 6-7. Effects of NO and CR on hepatic proteome FSR. FSR values were 
obtained for the liver proteome at weeks 10 (A) or 22 (B) of intervention for Con, CR, 
NO- and NO-CR. Heatmap representing the FSR of proteins. Dots along the line 
represent identified proteins sorted from highest FSR to lowest FSR on the CR group 
by the fold change to control. Comparisons are done for all groups. Table represents the 
binomial distribution of proteins with an increased FSR (upregulated, UP), or decreased 
(downregulated, Down). 
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Figure 6-8. Protein enrichment analysis of hepatic proteome FSR. This data 
represents the sequence enrichment analysis by gene expression profiling. (A) 170 out 
of 195 datasets tested were enriched in the CR group and are represented as a fraction 
of the total number of genes included in each dataset. Of these, 4 datasets were 
significantly enriched at a nominal p < 0.01. In addition, 183 out of 195 datasets were 
upregulated in the NO-CR group compared to CR. Of these, 12 datasets were 
significantly enriched at a nominal p < 0.05. (B). Mitochondria proteins were observed 
to be highly regulated among the significant ontologies analyzed by enrichment 
analysis. Liver samples were therefore prepared for mitochondria isolation and 
analyzed by LC/MS/MS for FSR. (C) Core enriched proteins under ontological 
pathways significantly regulated in our experimental groups.
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Figure 6-9.  Analysis of white adipose proteome FSR. (A) Enriched pathways within 
the NO- group compared to Con are represented by nominal p<0.05. Hallmark 
Adipogenesis was identified as one of the 157 out of 195 gene sets upregulated under 
NO- (NES:1.4). Core enriched proteins are represented in a heat map. To test if NO 
plays a role in adipogenesis in WAT, FSR were then calculated (B) where the heatmap 
represents the FSR of adipose proteins. Dots along the line represent identified proteins 
sorted from highest FSR to lowest FSR on the CR group by the fold change to control. 
Comparisons are done for all groups. Table represents the binomial distribution of 
proteins with an increased FSR (upregulated, UP), or decreased (downregulated, 
Down).
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Figure 6-10. Analysis of peroxisomal proteins in liver under CR and NO. To test if 
NO plays a role in peroxisome biogenesis, peroxisomes were isolated from liver 
samples by gradient ultracentrifugation and the fraction was analyzed by LC/MS/MS 
for peroxisomal proteins. The heatmap represents the FSR of liver peroxisomes. The 
western blots represent expression of protein carbonylation or ubiquitination in total 
liver lysate. 
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Figure 6-11. Validation of FSR results for six weeks of intervention. FSR values for 
hepatic proteins was assessed. Data represents the fold change between the group to 
control. Data is represented by either inhibiting or allowing the activity of NOS. Table 
represents the binomial distribution of proteins by either increased or decreased FSR 
values compared to control.  
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Figure 6-12. AG reverses the effects of CR. AG is a selective inhibitor of NOS 
enzymes. Here, mice were given AG in the drinking water for the same length of 
intervention as CR (6 weeks). FSR values for hepatic proteins measured in all 4 groups 
were compared. Data represent the fold change between the group to controls. Data are 
represented by either inhibiting or allowing the activity of NOS. Table represents the 
binomial distribution of proteins by either increased or decreased FSR values compared 
to controls. 
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Figure 6-13. Mols rescues the effects of CR on proteome regulation in NO- mice. 
Mols is a potent donor of NO metabolized in the liver. Here, NO- mice were given 
Mols in the drinking water for the same length of intervention as CR (6 weeks). FSR 
values for hepatic proteins were assessed. Data represents the fold change between the 
group to control. Data are represented by either inhibiting or allowing the activity of 
NOS. Table represents the binomial distribution of proteins by either increased or 
decreased FSR values compared to control.
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Figure 6-14A. Effect of NO on the heart proteome. FSR values for cardiac proteins 
were assessed. Data represents the fold change between the group to control. Data is 
represented by either inhibiting or allowing the activity of NOS. Table represents the 
binomial distribution of proteins by either increased or decreased FSR values compared 
to control.
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Figure 6-14B. Mols rescues the effects of CR on heart proteome regulation. Here, 
NO- mice were given Mols in the drinking water for the same length of intervention as 
CR (6 weeks). FSR values for cardiac proteins were assessed. Data represent the fold 
change between the group to control. Data are represented by either inhibiting or 
allowing the activity of NOS. Table shows the binomial distribution of proteins by 
either increased or decreased FSR values compared to control. 
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Figure 6-15. nNO- mice exhibit a modest signature of CR. nNO- mice exhibit a 
modest CR under adlib. (A) Body weights of nNO- mice were measured for the 
duration of the experiment and show a decrease body weight compared to control. (B) 
Food consumption revealed that nNO- mice ate 22% less food than control placing 
them in a 22% CR diet. (C) Assessment of brain proteome reveal that in the absence of 
brain NOS enzyme, the effects of CR are blunted.  
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Figure 6-16. Moderate CR observed in nNO- mice slows down the hepatic FSR in 
nNO mice. nNO mice are under 22% CR. FSR values for hepatic proteins was 
assessed. Data represent the fold change between the group to control. Data are 
represented by either inhibiting or allowing the activity of NOS. Table represents the 
binomial distribution of proteins by either increased or decreased FSR values compared 
to control. 

Faster Slower P-value (2-tailed 
binomial test)

nNO (CR: 22%) 55 (33%) 110 (67%) <0.001

20 40 60 80 100 120 140 160 180-4

-2

0

2

Proteins Identified

Lo
g2

(F
C

FS
R
)

Liver nNO-

Faster Slower P-value (2-tailed 
binomial test)

NO- 118 (67.4%) 57 (32.6%) <0.001

20 40 60 80 100 120 140 160 180-4

-2

0

2

Proteins Identified

Lo
g2

(F
C

FS
R
)

Liver NO-



130  

 
Figure 6-17. Summary of results. CR was observed to induce NO stimulating genes 
and increase the hepatic protein half-lives of proteins involved in the regulation of the 
Citrulline-NO-Urea cycles. In the absence of NOS, the half-lives of these proteins are 
dramatically decreased. Here, we suggest a role for NO in proteome regulation and the 
effects of CR on proteome flux response to modulations.  
  

• Argininosuccinate Synthetase (ASS)
• Argininosuccinate Lyase (ASL)
• Arginase I (ARI, Liver)
• Carbamoyl-phosphate synthase (CPSI)
• Nitric Oxide Synthase (NOS)
• Glutamate dehydrogenase 1 (GDH)
• Ornithine carbamoyltransferase (OC)
• Oxaloacetate (OAA)
• Aspartate aminotransferase (AST)

NO- CR CRNO-

Arginase-1

Argininosuccinate lyase

Carbamoyl-phosphate synthase [ammonia], mitochondrial

Argininosuccinate synthase

Aspartate aminotransferase, mitochondrial

Glutamate dehydrogenase 1, mitochondrial

Aspartate aminotransferase, cytoplasmic

Fumarate hydratase, mitochondrial

Ornithine carbamoyltransferase, mitochondrial

-0.3 -0.2 -0.1 0 0.1

NO- CR   NO-CR



131  

CHAPTER SEVEN: Conclusions 
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1. CHAPTERS SUMMARIZED 
 
Dysregulation of cell metabolism is a primary signature of aging whose occurrence is 
unpredictable, steering the life of an organism towards abnormal function and 
ultimately death. CR is the only method currently known to effectively ameliorate the 
effects of aging. In Chapter One, I reviewed numerous paradigms and metabolic 
pathways common in aging, and how CR contributes to health and lifespan extension 
by altering the metabolism of aging. Chapter One also discusses various aspects of 
proteome regulation that reference to these metabolic adaptations, and the current 
therapeutic potential that have arisen from this research. 
 
A large number of pathways linked to CR presented in Chapter One, from energy 
sensors to surveillance systems, act towards the maintenance of the proteome. Yet, their 
specific relations with the proteome still remain poorly defined. Deciphering the direct 
effect of CR on proteome homeostasis is critical in understanding the biological action 
that leads to lifespan extension. Dynamic proteomic technologies have arisen as a 
powerful strategy that enable the assessment of complex molecular fluxes. In Chapter 
Two I reviewed the dynamic basis of the synthesis and breakdown rate of molecules, 
and how this dynamic movement can be interconnected with proteomics to measure not 
just the concentration of a large number of individual proteins in a sample, but their 
kinetics. 
 
In Chapter Three, I used a combination of non-radioactive stable isotope labeling with 
tandem mass spectrometry in mice to assess the complex mix of proteins composed of 
thousands of peptides in a CR time course. Looking at the liver proteome for the FSR 
of the identified proteins, I discovered discreet time period by which the half-lives of 
hepatic proteins become uniquely preserved.  
 
In Chapter Four, I used forced treadmill exercise training, a well-established model for 
increasing mitochondrial biogenesis and compare it to CR. I observe that EX 
significantly increased the turnover rates (decreased the half-lives) of the majority of 
proteins involved muscle function like contractile fiber, cytoskeletal, glycolytic, and 
mitochondrial. I further observed increased cellular and mitochondrial protein 
abundances compared with control, suggesting an increase in absolute synthesis rates. 
In contrast, CR significantly reduced the turnover rates (increased the half-lives) of 
muscle contractile fiber, cytoskeletal, glycolytic, antioxidant and mitochondrial 
proteins, and increased abundances of cellular and mitochondrial proteins compared 
with control, linking the increase in concentrations of mitochondrial proteins to a 
reduction in catabolic rates rather than increasing synthesis rates. 
 
In Chapter Five, I use metformin administration to assess the effects of this antidiabetic 
drug in proteome regulation. I demonstrate that metformin acts as a powerful CR 
mimetic by increasing the hepatic protein half-lives through a partial-but-significant 
involvement with the lysosomal degradation pathway. I further find a subset of long-
lived proteins that require CMA for their maintenance.  
 
In Chapter Six, I discover a never-before-seen role for NO in proteome regulation. 
Under CR, the absence of NO inhibits its regulatory role in increasing the hepatic 
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protein half-lives. I confirm through stringent genomic analysis that under CR, NO 
signaling is significantly upregulated and interacts with various clusters for proper cell 
function. I further confirm CR increases the half-lives of the main enzymes involved in 
the Citrulline-NO-Urea cycle involved in the recycling and maintenance of NOS. I 
further validate these effects in heart and brain tissues and in a time dependent manner.  
 
Overall, the findings presented in Here show the utility of proteome dynamics in 
understanding the cellular mechanisms involved in the response to energy cell status, 
offering protein kinetics as a powerful approach for identifying novel mechanisms of 
action in the context of lifespan extension. 
 

2. FINAL REMARKS 
 

The ultimate aim of this dissertation was to present a current understanding of CR 
metabolism and its regulation of the proteome through proteome dynamics and apply 
this knowledge to further discover new CR mimetics like exercise and metformin 
administration and mechanisms of action like NO and autophagy. One of the largest 
challenges remaining in developing new therapies is that most of the approaches to 
study the proteome is through stasis; most proteins are seen in the context of a snapshot 
that does not reveal changes over time. Here, I have shown how, by coupling stable 
isotope labeling strategies, we can discover novel target pathways and proteins that 
were once considered unrelated to proteome function, including NO, to understand the 
pathogenesis of aging. 
 
Using proteome dynamics approaches, I elucidate many previously unknown aspects of 
CR, from its time dependent effect in proteome regulation to the discovery CR mimetic 
markers in protein maintenance and the fundamental role of NO on CR and proteome 
regulation. Here, I shed light into how global modulation of the proteome can be a 
powerful biomarker of lifespan extension.  
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