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Seismic Mapping of Subsurface Cavities 

Roland Gritto and Ernest L. Majer 
Center for Computational Seismology, Earth Sciences Division 

Lawrence Berkeley National Laboratory (LBNL) 
1 Cyclotron Rd, MS 90-1116 
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ABSTRACT 

This numerical study investigates the possibility of inverting seismic data for 
the location and volume of a cavity. The data is generated using an exact solution for 
the scattering of elastic waves by a sphere, whereas the inversion is based on the low 
frequency Mie approximation to the exact solution. We use correlation analysis 
between these solutions to solve the inverse problem in two steps. First, the location 
of the cavity is determined, before the volume is estimated in a second step. The 
robustness of the results is tested by adding correlated and uncorrelated noise. We 
find this method to be robust as long as the source receiver coverage is good enough 
to record various scattered phases (e.g. back and side scattered) and to reduce the 
level of coherent or random seismic noise. The locations of the cavities are well 
determined while the estimates of the radii are more susceptible to noise and the 
deviation between approximation and exact solution. 

INTRODUCTION 

A problem in geophysical exploration is the determination of the location and 
the size of cavities in the subsurface. The applications are widespread, ranging from 
the detection of abandoned mine shafts over construction sites to the detection of 
underground facilities for military purposes. In the past, attempts have been 
undertaken to solve this problem by seismic means. Although some methods provide 
an approximate location of the structure, most fail to give reliable estimates of the 
actual volume. This is based on the fact that most methods rely on linearized 
solutions that are not suitable for the problem, as one of their main restrictions is the 
assumption of small perturbations in the elastic properties. In the case of a cavity, 
however, the contrast between the surrounding material and the cavity is large, which 
causes most approximations to fail. Although the strong contrast poses a severe 
problem, it simultaneously provides valuable apriori information as the elastic 
parameters of an air filled cavity are known. If through additional measurements (in 
boreholes or at the surface) the parameters of the surrounding material can be 
estimated, the experiment reduces to a problem with two unknowns: the location of 
the center and the volume of the cavity. This scenario is the basis of the current study. 



METHODOLOGY 

In the present case it is assumed that the cavity is located in the subsurface at a 
depth within reach of a borehole. The geometry for the synthetic experiment is taken 
from a combination of a reverse VSP and single well survey with sources located in a 
borehole and receivers located in the borehole and at the surface. Thus backscattered 
energy is recorded in the borehole while side scattered energy is recorded at the 
surface. However, sources and receivers are freely exchangeable. 

The "field" data is generated using an analytical solution for the scattering of 
elastic waves by a cavity (Komeev and Johnson, 1996), and using a fixed location 
and volume of the cavity. The analytic solution contains near and far field terms and 
is valid for all frequencies. Thus it models the data acquired in the field during a VSP 
survey. The method used to invert the data is based on the Mie approximation for the 
scattering of elastic waves by a sphere (Komeev and Johnson, 1993) which is an 
approximation to the exact solution in the low to intermediate frequency range. It 
offers the advantage of fast computational speed. 

The geometry of the numerical experiment consists of a 20m deep borehole 
containing 21 equally spaced sources and 11 receivers, while 5 additional receivers 
are located at the surface extending away from the borehole (Figure 1 b). To generate 
the initial data, a cavity with a chosen radius is fixed in space and the scattered 
wavefield is computed based on the analytic solution. To estimate the location of the 
cavity, the search area is subdivided into 200 grid points (lOx20) and the scattered 
wavefield based on the Mie approximation is subsequently computed for a cavity of 
fixed radius at each point. The scattered wavefield is computed for a total of 22 
frequencies ranging from 100-1 OOOHz. After the generation of the wavefields for all 
200 possible cavity locations, a correlation coefficient is computed between the 
wavefields based on the exact and the approximate solution for each grid point. The 
correlation coefficient is defined as, 

where Ue and Ua are the wavefields computed using the exact solution and the Mie 
approximation, respectively, while * denotes the complex conjugate. At each grid 
point this coefficient is computed for all source receiver combinations and stacked 
over all frequencies. A map of the correlation coefficients shows the most likely 
location of the cavity (see Figure 1 b). In a second step, the location of the cavity is 
fixed at the point of highest correlation, and its radius is varied between R=O.l-5.0m. 
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For each value of R the correlation between exact solution and approximation is 
computed for all source receiver combinations and stacked over all frequencies again, 
with the highest correlation coefficient indicating the best estimate of the cavity 
radius. The correlation coefficient is given by 

where cr is the variance which is set to 1 in our case. 

In repeated experiments, uncorrelated Gaussian noise is added to the data to 
test the robustness of the inversion and source receiver geometry, while correlated 
noise is modeled by the presence of two cavities with different volumes. 

RESULTS 

Figure 1 shows the results of the first experiment. The geometry is detailed in 
Figure lb. The distribution of sources (stars) and receivers (triangles) can be seen 
along the border of the model. A single cavity with a radius ofR=1.2 m is located at 
x=5.5m and z=7.5m (indicated' by the circle). The elastic parameters of the 
background medium are Vp=5.3 Km/s, Vs=3.2 Km/s, and p=2.65 g/ccm. The 
scattered field based on the analytic solution is given in Figure la, while the result of 
the correlation analysis for the location of the cavity is indicated in Figure 1 b by the 
shading and the contour plot. It can be seen that the highest correlation (0.9) plots at 
the center of the cavity. It is also apparent that the correlation coefficient decreases 
gradually with increasing distance from the center of the cavity. The pattern is not 
symmetric, however, but governed by the source-receiver geometry. The results of 
the second inversion step are presented in Figure 1 c. The correlation coefficient is 
shown as a function of radius. The dashed line represents the actual value R=1.2 m 
used for the forward modeling. It can be seen that the estimate for the radius slightly 
underestimates the true radius with a value ofR=1.1m. This underestimation is based 
on the fact that the Mie approximation slightly overestimates the amplitudes of the 
exact solution at higher frequencies which translates into a smaller volume for equal 
amplitudes. 

In a second step, the first experiment is repeated with an increased noise level 
to test the robustness of the correlation analysis. In this case, 500% of the RMS 
amplitude of the seismic signal is used as uncorrelated Gaussian noise which is added 
to the scattered data computed with the exact analytical solution. The data are shown 
in Figure 2a. It can be seen that the phases visible in Figure 1 a have disappeared 
below the noise level. Referring to Figure 2b, however, it becomes evident that the 
highest correlation coefficient still coincides with the center of the sphere, although 
its value has dropped to a maximum of 0.1. This surprising result can be explained by 
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the stacking technique which incorporates the results of 21 sources, 11 receivers, and 
22 frequencies. It reduces the noise level effectively such that a correlation analysis is 
still viable. The estimate of the radius is given in Figure 2c. It can be seen that the 
curve developed a broader maximum, although the peak value is still at R=l.lm. 

Although a noise level of 500% may seem high, the fact that the noise is 
uncorrelated helps to achieve good results during the analysis. In the next step, it is 
investigated how correlated noise affects the inversion procedure. Therefore, the 
experiment is repeated using two cavities with different size assuming that the 
respective scattered wavefields will produce correlated noise for each other during the 
inversion process. The locations of the two cavities are given in Figure 3b (indicated 
by the circles). Their radii are R=1.4m and R=0.8m. The scattered wavefields seen in 
Figure 3a indicate a more complicated pattern. The inversion for the locations, 
however, produces similar promising results. It can be seen that the larger cavity is 
correctly located with a correlation coefficient of 0.8, while for the smaller cavity a 
drop in correlation coefficient to 0.3 is visible at the right location. Considering the 
pattern of the correlation coefficient around the larger cavity which acts as noise for 
the smaller one, it may be stated that the two cavities should have a separation of one 
cavity diameter for a successful estimation of their locations. Referring to the 
inversion for the radii (Figure 3c), it can be seen that similar estimates are achieved in 
both cases. The perfect estimate for the smaller cavity may be accidentally caused by 
the noise of the larger one, as both radii should be underestimated according to the 
argument made for the misfit between the two solutions at higher frequencies. 

However, the overall result is very encouraging such that the last experiment 
will test the inversion process for two cavities in the presence of uncorrelated noise, 
while the background velocities are overestimated by 10%. The results of this test are 
given in Figure 4. The locations and radii are the same as before, while the level of 
uncorrelated Gaussian noise is kept at 300%. This produces scattered wavefields 
without apparent coherent phases Figure 4a). The inversion result for the locations is 
given in Figure 4b. It can be seen that the largest correlation coefficients shifted 
slightly from the center of the cavities away from sources and receivers which is 
caused by overestimating the background velocity. Incorrect velocity estimates will 
shift the phases farther from, or closer to, sources and receivers for higher or lower 
velocity values, respectively. Therefore, the estimate of the location of the cavity 
looses accuracy. Furthermore, the Gaussian noise reduced the correlation coefficients 
to 0.15 and 0.05 for the large and small cavity, respectively. The estimates of the radii 
show a similar pattern (Figure 4c). The smaller radius is overestimated with a value 
of 0.9m while the larger one is underestimated with a value of l.3m. 

Considering the complications added to this numerical experiment (the 
presence of correlated and uncorrelated noise and overestimating the background 
velocities) the results suggest that the presented inversion method is robust enough to 
solve the problem of cavity detection~in real field environments. 
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CONCLUSION 

The presented two step inversion to solve for the location and the size of an 
underground cavity appears to be a fast and robust method to determine these 
parameters in field situations. The Mie approximation can be applied whenever a 
spherically shaped cavity is the target of the investigation. 

Knowing the elastic parameters a priori reduces the problem to a 2 parameter 
estimation for the location of the center and the radius. Therefore, a detailed search 
using a fast approximation is a feasible approach to this problem. The correct phase 
information provides the location of the cavity and therefore is susceptible to 
variations in the background velocity. The radius of the cavity is determined by the 
amplitudes of the scattered wavefield, and therefore is affected by data noise, even if 
the noise is uncorrelated. However, a carefully selected source receiver geometry 
which provides enough coverage to record back and side scattered phases and which 
is simultaneously capable to reduce uncorrelated noise, can be effectively used even 
under extreme noise conditions. 
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Figure 1 a: Exact scattered field for geometry given 
in Figure 1 b. First 10 traces are recorded 
in the borehole, while last 6 are recorded 
at the surface. 
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Figure 1 c: Result of the second inversion step. The original 
radius is indicated by the dashed line, while the 
correlation values are given by the solid line. 
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Figure 1 b: Geometry of the experiment. 21 sources 
(stars) and 11 receivers (triangles) are 
equally spaced in a borehole between Om 
and 20m, while 6 receivers (triangles) are 
located along the surface. The circle indi­
cates the location of the original cavity. 
Shading and contour lines represent the 
results of the correlation analysis to locate 
the center of the cavity. 
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Figure 2a: Same as data in Figure 1 a, including 500% 
uncorrelated Gaussian noise. 
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Figure 2c: Same as Figure 1c, including 500% uncorrelated 
Gaussian noise. 
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Figure 2b: Same as Figure1b, including 500% 
uncorrelated Gaussian noise. 
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Figure 3a: Same as data in Figure 1a, generated in the 
presence of two cavities, see Figure 3b. 
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Figure 3c: Same as Figure 1c, for 2 cavities of radius 
R=O.8m and R=1.4m. 
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Figure 3b: Same as Figure1 b, for 2 cavities with 
locations indicated by the circles. 
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Figure 4a: Same as data in Figure 1 a, generated in the 
presence of two cavities, with the addition of 
300% uncorrelated Gaussian noise. 
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Figure 4c: Same as Figure 1 c, for 2 cavities of radius 
R=0.8m and R=1.4m and 300% uncorrelated 
Gaussian noise. During the inversion the back­
ground velocity was overestimated by 10%. 
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Figure 4b: Same as Figure1b, for 2 cavities 
with locations indicated by the circles, 
including 300% uncorrelated Gaussian 
noise. During the inversion the back­
ground velocity was overestimated by 
10%. 
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