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Three-dimensional acoustic scattering by vortical flows. 1l. Axisymmetric
scattering by Hill's spherical vortex
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9500 Gilman Drive, La Jolla, California 92093-0411

Rupert Ford®
Department of Mathematics, Imperial College of Science, Medicine and Technology, 180 Queen’s Gate,
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The general theory of Part | is applied to the the specific case of scattering of a wave incident along
the axis of Hill's spherical vortex. The full asymptotic solution to the initial-value problem is
calculated. Results agree with the general approach, showing that the conditions required for the
latter to hold apply in the case of Hill's spherical vortex. ZD01 American Institute of Physics.
[DOI: 10.1063/1.1401815

I. INTRODUCTION ible version of HSV can be derivédn which £/(pr siné) is

In Part | of this papdrwe discussed the aeneral problem uniform within the vortex, and vanishes without. Perturba-
pap 9 P tions are then restricted to a class in whighfpr siné) re-

of the scattering of acoustic plane waves by three- . .
) . . , mains uniform.
dimensional vortical structures with scales small compared . . .
Previous work on HSV has been concerned with an in-

to the ngelength .Of the incoming sqund wave. Qsmg anstability that grows in time, in a thin finger in the neighbor-
asymptotic expansion of the equations of motion, th

. ! . f th t ti int wh idth -
leading-order scattered field can be calculated under qU|teOOd of the rear stagnation point whose width decreases ex

. e . onentially in time>* In these papers, prolate and oblate
general circumstances, and is identical to that predicted b Y . Papers, p .
. T erturbations to HSV are considered, which result in the vor-
what can be called the acoustic analogy approximation. |

this approximation. a forced wave equation is solved. and thtex either ejecting or entraining a thin finger of fluid at its
app ! . quation | Y Fear stagnation point. We formulate our problem following
forcing can be computed without solving in detail for the

interaction between the vortex and the acoustic wave. OnMOffatt and Mooré (hereafter M'and M but in our problem

: . ) S e vortex is forced by the time-periodic flow of the incident
important assumption must be made: the principal effect o .
acoustic wave.

the incident sound wave must simply be to cause the vortex We will employ the formalism of Part I. In the vortex,

to oscillate back and forth. Whether this is, in fact, the case, . . o
we will use coordinates centered on the vortex, while in the

ave region we will use coordinates fixed in a frame at rest.

problem in detail. In this paper, we solve in detail the prob- - .
lem of scattering of acoustic waves by Hill's spherical vortexIn Part | we assumed that the vorticity was not expanded in
9 y b powers ofM, whereas here the vorticity will be expanded in

(HSV), for the simple case in which the incident acoustic owers ofM. The analysis of Part | includes this, but effects

waves propagate along the axis of the vortex, so that thgue to the motion of vorticity, which in Part | are all repre-

entire proble_n‘_n IS axisymmetric. sented together @(1), now arise at successive orders as
The vorticity @ takes the form S .
the vorticity is expanded, as are its effects on the other flow
w=_e,, (1) variables.

. ) ) . o We outline the physical situation briefly in Sec. Il. Hill's
wheree, is the unit vector in the azimuthal direction about spherical vortex is presented in Sec. Ill, together with the
the axis of symmetry. Within HS\{ is a linear function of  extension to weakly compressible flow that we use. The
the distance sin 6 from the axis of symmetry. Outside HSV, asymptotic solution to the scattering problem is calculated in
the vorticity vanishes. By assuming, consistent with incom-ggc. IV, and we show that HSV meets the conditions re-
pressible dynamics, that perturbations also possess this proggired for the validity of the acoustic analogy approximation,
erty, the problem reduces to solving for the location of theas described in Part I. The acoustic scattering due to HSV
boundary of the vortex. This is because, for the incompresshas peen computed previously using the acoustic analogy

ible axisymmetric Euler equation/(r sin6) is a materially  gpproximatior?® We show that these results are recovered

pressible fluid, the relevant materially conserved quantity is
modified tol/(pr sin ), wherep is the density. A compress- 1l. STATEMENT OF THE PROBLEM

We consider homentropic flow of an ideal gas, for which
dDeceased. the governing equations are
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Du U
Papr =" VPa: 2) (1+M?2H) E+M2U-VU =—VP, (12)
Dpa JH )
—+p,V-u=0, 3 — +V-U+M?2V-(UH)=0, (13
Dt ot
Pa pa)v 1+ yM?P=(1+M?H)?, (14)
—=\—], 4 . . . .
Po \po @ where the gradient operator acting on a wave-region quantity

wherep, and p, denote absolute pressure and density. Thé:orresponds to differentiation with respectXo Nondimen-
2 4 sional fields in the wave region are represented by capital

physical situation consists of a vortex, in which the IocalI it t for the densit hich is denoted th b
Mach number is small, onto which sound waves with wave-¢ ers(except for the density, which is denoted there by

length long compared to the size of the vortex are incident.H)' In (12)-(14), the_ velocity field h"?‘s peen scaled by. a
Taking the size of the vortex to be and the local ve- factor of M. The leading-order dynamics in the wave region

locity to beU, the Mach number of the vortical flow i correspond to acoustic wave propagation with a mean flow.
—Ulc, wher,ecoz(ypolpo)l’z The Mach number is taken Note that, unlike the vortex region, no transformation to a

to be small and to leading order the vortex flow is incom-"°VINg frame is employed in the wave region. .
pressible. However, the vortex is modified by compressibility. . In the wave region, b_ecause_ the acoustic waves are Irro-
effects, which must be taken into account here. tational and the V(_)rtex |s_I0_caI|z_ed, the vorticity is small

The appropriate scalings for pressure and density arBeyond_all orders |r1\/I._ Thl_s implies that, to_ all alge_bralc
then orders inM, the velocity fieldU may be written using a

velocity potential®, defined byU=V ®.

Pa=Po(1+yM?p), pa=po(1+M?p); 5) The nondimensional amplitudé<1 of the incoming
I’:\ecoustic wave is assumed to be sufficiently small that we
may ignore nonlinear steepening effects. We are interested
here in the linear scattering of waves by the vortex. This is
reasonable in the case of experiments where the wave region
is the region where waves are created and detected: farther

, Du away would be outside the experimental apparatus.
(1+M P)ﬁ: —-Vp, (6) The solution is then written as an asymptotic expansion
in M and § that are independent small paramet@mse Part

these are the scalings appropriate for near-incompressib
flow.”

Using the scaling5), the nondimensional equations in
the vortex region are

M2 @Jr veul+vou=o 7 I). In this situation, however, it is convenient to make use of
LA u="q @) the equation for mass-weighted vorticity, namely
1+yM2p=(1+M?p)". ® D 2) z(ﬁ).w, 15
Dt pa Pa

In this paper, we consider Hill's spherical vortex, which
translates at a constant velocity. Therefore, we take @ys.  Which takes the following form in the axisymmetric case:
(8) to apply in a frame of reference moving with the velocity D
v of the vortex centroid;? in which case the material deriva-

J )zo. (16)

tive becomes Dtipar sing
D 4 The conserved quantity is mass-weighted azimuthal vorticity.
—=—+(u—v)-V. (99  Incommon with the practice in geophysical fluid dynantics,
Dt dt we shall refer to the materially conserved quantity

We shall use the notation of Part I, in which the spatial¢/(par Sin6) as the “potential vorticity.”
coordinate in the vortical region is

E=X—Xc, (100 1. HILL'S SPHERICAL VORTEX
wherex. denotes the “center of the vortical region, and Hill's spherical vortex is a steadily translating exact so-
dx, lution of the Euler equations. It takes its simplest form when
V= at (1) viewed in the frame moving with the vortex. In this frame

there is a uniform flowe, at infinity.
In Part | we discuss the conditions that must be satisfied by  The Stokes Streamfunctioﬂ’) for Hill's spherical vortex
Vi in particular, it must be a slowly varying function of time. in this frame is given by
Because Hill's vortex translates at a constant velocity, this
condition is automatically satisfied by taking to be the , —3(1=rrsint g, r<i,
center of Hill's vortex, for whichv is constant. o= L1—r 3r2sirg, r>1 (17)
Equations(6)—(8) are not appropriate far from the vor- 2 ' '
tex. In the wave region, the appropriate spatial variable idHere,r =|§ is the distance from the center of the vortex, and
X=Mx and the governing equations become 0 is the polar anglé€or colatitude. This is an exact solution
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FIG. 1. Streamfunction of HSV in a frame moving with the vortex. The FIG. 2. Streamfunction of HSV in a frame at rest. The contgarO runs
boundary of the vortex correspondsig=0; the contour values inside are along the axis. The contour values ar®.5: 0.05: 0.

—0.2: 0.05:—0.05, the contour values outside are 0.25: 0.25: 1.5.

of the Euler equationg.e., the limit of Eqs(6)—(7) in which
M =0]. The streamfunctiony defined by(17) is shown in
Fig. 1.

This formulation of HSV satisfie$6)—(8) with vo=—¢,,
and u—0 asr—o=, wheree, is the unit vector in thez
direction along the axis of HSV.

To proceed, we must first obtain the leading-order pres-
sure, pg. To do this, a Bernoulli integral of6) can be

In this paper, we are concerned with acoustic scattering, a4 and the result is

from a vortex moving in a medium that is at rest at infinity.

Therefore, we subtract the uniform flow at infinity frdi7),

which gives the streamfunctiogyy, for HSV moving in a

frame at rest:

- 3(5-3r)r?sirf e, r<i,
bo=

= (18
—1rtsirte, r>1.

Here,r is the distance from the center of the vortex, which
translates at velocity-e,. The streamfunctiofy, defined by

(18) is shown in Fig. 2.

The azimuthal component of vorticity corresponding to

the flows(17) and(18) is given by

1 02 — 2rsing, r<i, 19
go_ rs'ne (ﬂo_ O, r>1, ( )
where
02 92 +sin9 g 1 4 -
=2 G6sinG o6 20
The radial component of velocity is
1 dyy | —3(5—3r?cosh, r<1, o1
H0T 7 Sing a0 —r~3cosf, r>1, 2y
and the meridional component is
1 g, |3(5-6r9)sing, r<i,
Yoo= " sing ar | _1,-3¢ (22
—3zr=°sing, r>1.

1 2, r<i

- 2_ R _ 2 0 Il

5 ug— Ug*Vo+ Po 0 r>1. (23
This Bernoulli integral exists in<<1 because of the special
form of the vorticity inside HSV.

Hence, the pressumg, is given by

— 2 2r2(1-3cog 0)+ 2r4(1—2cog 0),

Do= r<i,
° 1-3co€6d 1+3cog6
ST T

(29)

To calculate the scattering in the wave region, it turns
out that we will need the first correction to the HSV due to
compressibility, which occurs @(M?). This problem has
been investigated previoushand, as then, we need to ex-
tend the HSV to the compressible case, although we only
need the smalM version of the result. We will do this by
specifying that the “potential vorticity” of the vortex be con-
stant inside a regiom<<h(#). For incompressible flow,
h(#)=1 and the value of the constant-s15/2. Extending
this condition gives

—B+M?p)rsing, r<h,
{= (25
0, r>h.
The boundary between the inner and outer portions of the
vortex becomes a function of the angular coordinate
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We carry out this calculation only in the vortical region. remain in the continuity conditions fax, andu,, and the
We expand the velocity field and boundary in power$/st third condition can be satisfied provided the boundary dis-
U=Ug+t M2Uy4---, h=1+M2h,t---. (26) placernenf[takes the formz:HoPo(,u)JerPz(M). The six

resulting linear equations are
The equations that we need to solve are then

2B, —2A;=— 152, 12B;—12A;=755, 34
Ca=Coper Uo™V pot Vey=0. 27) 1 1 105 3 37 440 (34)
Note that from(4), po=po. We now decompose the velocity Bi+2A;+ FHo— $H,= %7,
field u, into a streamfunction and a velocity potential. . 1200 (35
We hence solve for the velocity potential from 3B3+4Az+ 3H=— %50,
2, _
Vo=~ (Uo—Vo)-Vpo, (28 2B;+3Hg— $H,=— %, 12B;+ BH,=— & (36)

to which a solution is The solution to this system is

27 .3 297 .5 1.7 3 .5
(3r°— Seol *+ g )Pa(m) + 301 °Pa(u), r<1, A—=— 15 A —_ 281 g __ 1409
. 15, 18P s s 1 121 3 8801 1 16801
ho=9 (=51 >+ 5r °)Py(w)+(— 1r 1ol (37
B,=— 95 H _ 137 H _ 17
3 521 0~ 3367 27 481

+ 1%l )Pa(k), r>1,
(299  with A, andB,, equal to zero fon#1,3. The coefficients of
the boundary displacemeHt, andH, agree with the results
of Ref. 2. The nonzero value ¢f, ensures that the transla-
tion speed of the vortex remains unity @M?), and so

where P,,(u) is the Legendre polynomial of order with
argumentu=cosé. This solution satisfies boundary condi-
tions of regularity ar =0 and decay as—«, but does not
satisfy continuity conditions at the boundary of the vortex.  y,=0. (39)
Continuity conditions must be applied to the velocity, but not

necessarily to the rotational and divergent parts separatel, Ay;syMMETRIC SCATTERING BY HSV
Therefore, we will take(29) for ¢,, and apply continuity '

conditions when we determine the streamfunctign A. The O($é) solution in the wave region
The streamfunction), is determined by the potential We take the incident acoustic wave to be of the form
vorticity equation, which takes the form
Pu=F(t—02), (39
) D porisirts, r<i, o . .
D= (300  which is a plane wave propagating along theaxis. Here,
0, 1. o==*1 determines the direction of propagation of the wave.
In total, i, is expressed as the sum of two pard) and  The velocity and pressure are related by
() - el
5" . A solution to(30) in r<1 is Uos= 0P, (40)
i) _ 6 8\ i ’ . .. . .
YY) =(— 3= Zar®+ 5r)sir’ 0Py (u) Note that there is a distinction betweers 1 ando=—1; in

3.6 9 .8 , the former case, the vortex and the incident wave are propa-
+(16r°— 17 ©)sin’ 0 Pa(p), (3D gating in opposite directions, while in the latter case they are
with y&)=0 in r>1. The form of 4" is propagating in the same direction. We shall assume that, for
large values of its argumerf(7) becomes a monochromatic
function, e™'®". For smaller values of its argument, we as-
sume that it turns on smoothly. This is important because,

oo

nzl A"t si? P (), <1,
l,b(zh): o (32 although the leading-order scattered field is monochromatic,
Bor ~"sir? 9 P(u), =1 the detailed dynamics within HSV can only be resolved by
n=1 solving the initial-value problem.

. In the neighborhood of the vortex, the pressure and ve-
The conditions at the boundary of the vortex boundary arefocity of the i?]Cident acoustic wave must Ee expanded, in

continuity of the radial velocity, and the azimuthal velocity der t id ot ichi dit for the fl
u,, and the kinematic condition that the boundary be a ma®" tﬁr 0 prtow _?r?S};mpS Ic mfatﬁ ng c;on ;S'Sr;(s Srz e flow
terial surface. These may be rewritten as In the vortex. The localion of In€ VOrex Is=2~A.=2c&;,

and
[Ur2] =0, [Usot haligo] =0, 33 Z—Z.=M§&=Mr cosé, (41)
ur2(1)+h2ur’o(1):u60(1)(;_r:92, whereZ, i_s the location of the center of the vortex. In the
case of Hill's vortex,
where[ ] represents the jump in that quantityrat 1, and Z.= —Mt. (42)

primes represent derivatives with respect to
Each of these conditions is expressed as a sum of LegFhe result is that the pressure and velocity in the wave region
endre polynomials. Only the terms correspondingitel,3  take the form
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Pou=F(t—0Z)—MoéF (t—oZ)+ -, (43 dAH
dt o1

Ugi=[oF(t—0Z) —MEF (t—oZo) e+ -, (44) @

where the notation for the time-derivative is as in Part |. The

solution forASY is

g

> F(t—oZ.), (51

in the limit |E|— 0.

R
B. The O(é) solution in the vortical region A= — 5 f_mF(T_ oZ)dr, (52

The solution at this order in the vortex region that satls-in which Z, is taken to be a constant.

fies the e_quguons and the matching conditions is just a pres- Continuity of i at the boundary of the vortex gives
sure oscillation,

Ui=0, Por=por=F(t—oZy). (45) BV=A, B{MN=0, for all n#2. (53)

This is a general result, not specific to Hill's vortex, and it is Note that if the functionF(t—oz) tends to a time-
discussed in Part I. harmonic function of its argument for large times,” will
become time harmonic in the limit-c, and ASY will be-
come time harmonic, albeit possibly offset by a constant
C. The O(Mé) solution in the vortical region value. This constant value may be neglected if the acoustic
The velocity at this order is irrotational, since no vortic- SOUTCe is turned on over a time that is long compared with

ity can be introduced into the system by the acoustic wave£n€ period of the wave, so that

The streamfunction inside the vortex thus takes the form F(t)=A(et)e o, (54)
- . (D) n+1 o , in which A(t)—0 ast——o and A(t)—1 ast—o, and
Y11 nzl AR Esin? 6 Py(u), (46 el|w|<1. Henceforth we shall assume tHaft) takes the

. ) ) form given by (54). Then, in the limit of large timeF(t
while the streamfunction outside the vortex takes the form _ ;) g-i0(t-02) and the coefficienta{?, AL | andBE"
% approach their time-harmonic values:
gir= 2, (Br "+ CUrM Ysin? 6P (w). (47) "
n=1 AL 2_eikZC—iwt, (55)
We impose the continuity of velocity at the vortex boundary, @
and also the condition that the boundary of the vortex is a i ‘
material boundary, to obtain evolution equations for the co- ~ ASY—— ﬂe'sz“‘”, (56)
efficientsAY) . The result is

dA)  dcl (1) _i_ ikZg—iwt
(2n+1) d_:_d_:) Bz — Zke ) (57)
where
n(n—3) (n+1)(n+2) B
=3(n—1)( 2n—1 S‘l’)l_ 2n+3 Ag‘lgl k=ow 8

is the wave number of the incident acoustic wagRecall

—3n(n-1)Cc—(n+1)(n+2)C,]. (48 thato==*x1) _ o
o _ The pressurg,; can be obtained by expressiig) in
The procedure is identical to that of M and M, except thatine form

here an additional set of coefficients,, is retained. These
coefficients are determined by matching to the incident  Jdui;
sound wave. AD(M §), these matching conditions give at

cM=LisF(t—0Z;) C,=0, forall n>1. (49

+ {0€4XU11+ V[ (Ug—Vp)-U11]=— VP13,
o(1)

(59
atO(M 4), where here we have used the fact that the vortic-
ity vanishes aD(M 6). Hence there exists a velocity poten-
tial ¢4, such thatu,;=V ¢4,. Consequently(59) may be

Now, when all theC{") vanish except foC{", the sys-
tem of difference equationgl8) has a special solution in

which N integrated to give
dAdt
AD=c®: 2 __c  aAW=g for all n>2. 2 T, <L,
il dt 1 n ill + (Up— Vo) Uyt 1= z ¥ (60)
(50 at o(1) 0, r>1.

On solving the equation foAlY, we recall that, al- When ¢,; is obtained fromy,,, and the result substituted
thoughZ, is a function of time, its time-derivative is taken to into (60), the expression fgp,; in the limitt— is found to
be O(M), andAS! satisfies be
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9i 27 Lo 9i o
H -+ — 3 |ch7|wt+_ 3 ikZ,—iwt <
(|kr 2kr 10|r(r )Pl(,u)e 5kr Ps(w)e , r<i, .
= . . . 1
Pu ; oi -7 ikZo—iwt 3i —4 6i -7 ikZo—iwt (o
|kr—§r Pi(p)e e+ ?r —ﬁr Ps(p)e e r>1.
|
Thus the incoming wave induces &{M ) response in Ym=2rsir? OF(t—oZ,)
the vortex region whose pressure is time harmonic and de-
_4 . . . e}
cays asr “ in the farfield. This matches to a pressure at 2)rn+1 o ,
O(M?®6) in the wave region. The velocity also decays a8 +nzl ARSI 0 PA(p). (68)
at this order, and this implies a velocity potential that decays ) ) )
asr 3. This matches to terms that aB{M*5) in the wave  1he solution outside the vortex is
region. This is at first sight surprising, since one expects o
pressure and velocity potential to exist at the same order for  y5;= >, B@r "sir? 6 P (u). (69)
a radiating acoustic wave. The apparent contradiction here is n=1

resolved by the fact that the flow in the wave region is forced  The matching conditions that must be enforced across
atO(M*5), and so the anticipated relation between velocitythe vortex boundary are the continuity ¢f ¢/dr, and the
and pressure does not hold, except many wavelengths awg@hematic condition. Note that no terms of form

from the vortex. C,r"*1sir? 9P,(u) are required in69), because the velocity
V ¢,; matches to the incident wave at this order, whége
D. The O(M?§8) solution in the vortical region is given by(66).
At O(M25), the effects of compressibility enter in two The continuity of both components of velocity at the
ways. First, the continuity equatidi) is boundary of the vortex, plus the kinematic condition, are
expressed at this order as
07 4 ’
UL ST 62 [¥21=0, [hawfy+ ] =0,
It Loy (70)
(9h21 r9h11 (7h21 ,
and so we see that &(M?24) the flow is compressible. Also, i~ i o) —m =hato(1) +uz(1).
constancy of the potential vorticity implies that oM oM
Following the derivation 0of(48) for the evolution of the
{21= Lopo1, (63)  coefficientsAlY), we have
and so we see that the vorticity compensates for changes in dA? dAH
density, in such a way that the potential vorticity takes the(2n+1) d 552n_dt
value £, o o)
We decompose the velocity field into streamfunction and n(n—3) (n+1)(n+2)
potential, so that =3 Dl 5o AT T gngg A
T _ 9 Mt
U21:V¢)21_ me¢xv ¢21. (64) + 53n|: (t O'ZC) 7 51[1': (t O'ZC) (71)
To obtain the scattered field &(M*5), it appears that
Then we need only determine the value&f, since it is only the
5 , flow corresponding tm=1 that can match to flow in the
Vego=—F'(t—0Z). (65  wave region aD(M*5). Takingn=1 in (71), we see that
. : : AP satisfies
We may pick the solution to the Poisson equati65) to be
dA®@
do=— 3EF' (t—0Z,); (66) 3=t | = zFt-aZo). (72)
o(1)

the unspecified harmonic functions will all be incorporatedThe causal solution, which satisfia§?’—0 ast— —co, is
into the streamfunction at this order. For large V ¢,;

~—¢F'(t—o2)e,, which exactly matches the second term A(12)= — 3F(t—0Zy). (73
in (44). Therefore the matching condition of; is that it

decay in the farfield. The corresponding expression fB& is

Inside the vortex, the streamfunctigh, satisfies B{¥=0. (74)
D2y5,=2r2sin O F(t—0Z,). (67) Unlike the solution atO(M &), however, Eq.71) has
forcing atn=1, n=2, andn= 3. At this point, we note that
The solution to this equation is the system71) can be solved fon=3 independently of the
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FIG. 3. TheO(M26) streamfunctiony,, in the casen= 1. The upper two FIG. 4. TheO(M?26) streamfunctiony,; in the casas=10. The upper.two .
panels show the real part gk, and the lower two panels show the imagi- Panels show the real part gf,, and the lower two panels show the imagi-
nary part. The contour interval in the left two panels is 0.05; solid contours"@"Y part. The contour interval in the top left panel is 0.05, and in the top

correspond to positive values, and dashed contours correspond to negatiU@ht panel it is 0.005; solid contours correspond to positive values, and

values. The dotted contour is the zero contour. The contour interval in thé@shed contours correspond to negative values. The dotted contour is the

upper right panels is 0.005, and in the lower right panel it is 0.01. zero co_ntour: The_contour intervals in the lower pan(_els is O(EQS) and
0.001(right), implying that the real part of the solution is approximately ten
times larger than the imaginary part.

values of A{?) and AQ?). Therefore, if theA’®) can be ob-
tained forn=3, the value ofA{?) can then be evaluated

a posteriori . proportional to sif#P5(cosé)=sir? §cosé. Note also that,
Thus, although forcing at modes=1 andn=2in (71)  for =1, the real and imaginary parts are approximately
admits a solution in whicth{?’=0 for all n>2, the forcing  equal in magnitude.
at n=3 in (71) implies that, in general, th&{? will be The solution fore =10 is shown in Fig. 4. Note that the
nonzero for alln. Itis now important to determine the char- magnitude of the real part af,; is approximately ten times
acter of these solutions in the lintit>o0, for all n. If any of  |arger than the imaginary part. Note also that, fes =, the
these coefficients grows without bound s then the imaginary part has the angular dependencé &insé, con-
asymptotic expansion for the flow in the vortex may becomesjstent with matching to a quadrupole farfield, whereas the
disordered, and the results derived in Part | may no longefea| part has the angular dependence? @iy(cosb)

apply. wsir? §(5¢c0¢ 6—1).

We start by investigating time-periodic solutions(#d), The solution foro=0.1 is shown in Fig. 5. Note here
with time dependence™'“". There are two branches of so- that the magnitude of the imaginary part is approximately ten
lution, and in the limith—« they take the form times greater than the real part. In this case, however, both

Aﬁz)zn”l; AE}Z):(_l)nnvz' (75) real and imaginary parts have the quadrupolar form

Sir? #cos asr—oe.

It can readily be shown that Now, in the time-harmonic limitg,;,= % w£2, and so the

n=%i0-2; vy=—2iw—2, (76) results presented in Figs. 4 and 5 show that the velocity

induced in the vortex is in phase with the imposed velocity
[The expressions given for; and v, in M and M, Eq. of the wave ifw is small, andn/2 out of phase ifw is large.
(3.39), are incorreci. Although ¢, is bounded in these periodic solutions, the
Now, in both of these solution$A{?)| decays as 2 for  radial velocity is not bounded in the neighborhood of the rear
largen. It turns out that the sum fog,, converges, which- stagnation point. The solutions presented in Figs. 3—5 do not
ever is taken, but the expression for the velocities does nadpply at any finite time, and although,; approaches these
converge, whichever is taken. If a causal solution is soughtsolutions pointwise at— «, its gradient does not approach
by settingw— w+ie and taking the limite—0", then the any finite limit ast— .
expression for the velocity converges if the first casf) To investigate the solution in the limit—«~, we solve
=n"1, is taken. Therefore, this represents the causal solutioran initial-value problem in which the incident wave takes the
The solution foro=1 is shown in Fig. 3. Note that the form given by(44), with F given by (54). The system71)
farfield form of i,4, visible in the right-hand panels, clearly for n=3 can now be solved to good approximation, follow-
takes the form of a quadrupole, with angular dependencang M and M, by first defining
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FIG. 5. TheO(M?25) streamfunctiony,, in the casas=0.1. The upper two
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1en (v
ap(t)= 25 OtanH‘ (t—7) sech(t—7)
XF'(37—0Z)dr. (81

The integrand is more conveniently rewritten in terms of
a new variablex, defined such that tan{r)=e*, and so

ap(t)= @Jm F’(f(t—tanhlex)—azC
49 Jin(cothty |3

X e~ "dx. (82

Our primary aim in this analysis is to consider the be-
havior of a,(t) in the limit t—o, and so to establish
whether the solution remains well behaved over large times.
To analyze the limit—co in (82), we first replace In(cott)
by 2e” 2. It follows immediately that if de™2'=N;>1,
say, thena,(t)=0(e M). Thus, for any givert, there ex-
ists anN>e?' such that for allh>N the coefficients decay
exponentially withn.

On the other hand, if is large, andh is large but held

panels show the real part gf,, and the lower two panels show the imagi- fixed, then the dominant contribution (82) comes from the

nary part. The contour interval in the top left panel is 0.05, and in the top
right panel it is 0.01; solid contours correspond to positive values, an

Jegion x=0(n"1). Let u=nx. Then we may approximate

dashed contours correspond to negative values. The dotted contour is tianh *e~" by tanh {(1—u/n)~3(In n+In 2—Inu). Then

zero contour. The contour intervals in the lower panels is(l@f) and 0.1

(right), implying that the imaginary part of the solution is approximately ten

times larger than the real part.

_n(n+2)(n+3)

2
T A2, for n=0.

(77

For convenience, we define a new time sddke t. Then,
dropping the prime on the new time scale, thesatisfy the
difference equation

da,
W:n[l_ 1/(2n+5)2](an71_an+1)

+356mF' (3t—0Z), ag=0, (78)
with a,=0 att=0.

Following M and M, we approximate (21/(2n+5)?)
by 1. As discussed by M and M, and also by Pozrikftiisis
makes an error of no more than 2%, wher 1, and the
approximation improves as— o, which is our interest here.

We therefore replacé€r8) by

day, 16 (4

dt _n(anfl_an+l):4f95n1|:, §t_0'zc)- (79

Now, a solution of(79), with no right-hand side, issee
M and M)

ap=ntanH 1t seckt. (80)
At t=0, this solution satisfiesr;=1 and «,=0 for all n

>1. By using this solution as a Green’s function @), we
may express the solution {@9) as

16 (= (4
an(t)~4_9f2ne*21|: §[ —3(In2+Inn—Inu)]—oZ,

x e vdu. (83

Now, if t> ZIn n, then the argument &' in (83) is large
whenu=0(1). Theexponentiale™" implies that contribu-
tion from u>1 is then negligible, and s&'(¢) may be
approximated by—iwe™'“? in the evaluation of(83).
Hence, fort>3Inn,

16w . ) ) » .
)~ — elkZc—4iot3 o0 2Ia)/3f u-29Ba-ugy
an( ) 49 ( ) 0
32w? A . 2iw
- _ ikZ.—4iwt/3 2iwl/3 _
SV AR (2n) F( 3 ) (84)

This is the solution with behavigk,=n?“"*"2 for large
n, which we argued previously should correspond to the
causal solution. The analysis here shows how this solution
develops in time, starting with smafl and propagating to
largen, with the coefficients for sufficiently large decaying
exponentially withn for any timet. Thus, for any finite time,
this solution remains bounded.

Finally, A, is obtained by solving

dAY dAY 2 3
dt dt 541

—gA1~ (85
om > =5

o(1)

In the limit t—o, the right-hand side of this equation is
harmonic in time. Thus, in the limit— o, A(ZZ) is also har-
monic in time, possibly with a constant offset, corresponding
to a fixed displacement of the vortex. This displacement is
negligible provided the time over which the acoustic wave is
turned on is large compared with one period of the wave.
Corresponding expressions for the coefficielafé) can
be obtained from continuity of normal velocity at the bound-
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ary of the vortex. The result is that all of these coefficients ‘

remain bounded for all time. Consequently, the solution at  ¢a= >, Fn(r)e*Zc 1P (u). (92
O(M?26) remains bounded for all finite time, ati@4) shows n=0

that it contains no component that could match to a scattered For our purposes, it is necessary only to determine
wave field atO(M* 5) Finally, we must determine any terms F(r); this determines the strength of the monopole term, of
in the vortex alO(M d) that can match to a monopole wave form r~1, that matches to flow in the wave region at

field atO(M*5). O(M*5). We will see that this term can be evaluated without
evaluating the other terms ithg;, and without evaluating
E. The O(M36) solution in the vortical region 31 Henceforth we shall write
At this order, the equations are o o [Eor), r<1,
) (r):e|kzc—|wt{ (93)
p11 Ipoy o Fo(r), r>1.
e e —Vo*Vp11+ V+(Upp1atUiipg) + Vg o _ _
o(1) o(M) Substituting the expressions already obtained onto the
. _ right-hand side 0f90), and collecting thed dependence into
=0, {a1={op11- (86)

a sum over Legendre polynomials, we find that, in the large-
In order to determine the scattered wave field, att time-harmonic limit,¢s, satisfies

O(M*6), we need to determine the streamfunction and ve-

locity potential that together correspond to a monopole1 d ( ) )

source in the limitr —c. At this order, we shall be con- 2 dr\  dr %

cerned only with establishing the time-harmonic response; = gikZ—iot
the analysis of the previous section shows that the time-
harmonic response is the the long-time limit of the initial 5 24 (5 99, 63 ,
value problem for finite spherical harmonic mode numbers. AT 1 Sl LT AL
Now, using(61), one can readily see that the streamfunc- X 6i 6i
tion 5, inside the vortex satisfies - ?r*8+ ?rfll, r>1.
_ 15 | . . 9i 171
D2¢31=p11§0=7r25|n26 ikr — S+ = ) (94)
. The solution is
oi 3 ’ ikZ.—iwt - f ;
XPy( )+ 5= 35K r°Py(w) e !el (87  py=elkZeiot
It follows that, inr <1, ¢, takes the form i _ﬂ 2.1 ﬁ _3_i 6
) |k ak/" + 'k+8(k r4 sk’
Y= 2 AP e 7 19tsir? 6P (), (89) Xy =i (95)
n=1 . .
[
___ -6 -9 -1
while inr>1, the streamfunctionj/;l takes the form 5|<r N 1z< +Crh r>1,
. (@) ikZom a1 o ) whereC is a constant that must be determined by matching
ha1= Z’l Byl TN sin? 0P (). (89 the radial velocity at the boundary of the vortex. Expanding
this condition toO(M?35) gives

Hence, 4, corresponds to a velocity that @(r ) in " , ,
the limit r—l{/icl or, eguivalently, a velo)(i,ity pote(ntia?*z. hahyf Uro] e Ura] Nl Ur ]+ [Urad =0, (96)
Thus, ¢3; cannot contribute to matching to flow in the outer where, as befor¢ ] denotes the jump in a quantity at
region atO(M*5). In fact, as we shall see below, matching =1, and primes denote differentiation with respect to
conditions can be determined to flow in the wave region at  The expressions faiy, u,, U7, h,, andhy; are substi-

O(M*6) without evaluatingys; . tuted into(96), and expressed as a sum over Legendre poly-
Now, the velocity potential satisfies the equation nomials. The result is that the coefficient®§(«) obtained
from the first three terms if@6) vanishes, and hence
2, _ dpun|  dpoy

Viga=— ot ot —(Up—Vp)-Vpyy dg
o@) o(M) [ 5 31}— (97)

r

—U11°Vpo—poV-U1;. (90)

. o It follows that C in (95) is given by
In r<1, the velocity potentiatp;, takes the form

C=— zikelZeiet, (98)

$31= nZ:O En(r)e e 1Py (w), (91) Continuity conditions for the other modes in the expan-
sion will yield a system of equations analogous(id), ex-
and inr>1 the velocity potentialp3, takes the form cept that forcing will be present for a larg@ut finite) num-
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ber of modes. An analysis equivalent to that performed at
O(M?26) will also apply atO(M36), with the number of
significant modes increasing exponentially with time, but no
secular growth in the lowest-order modes.

F. The O(M*&) solution in the wave region

The equations satisfied in the wave region at this order
are

Uy
ra Uz:VUp1+Upr VU, ==V Py, (99
dHyy
T+V'(U2H01)+V‘U41:O. (100)

Scattering by vortices. Il. Hill's vortex 2899
o p ik o
a7\ R 2(p) 3R olpm) e
+0O(R™?), asR—0. (106)
This determinesb}) to be
S
(1)41:_€G0_§Gl+ EGZ (107)

The dominant behavior in the farfield is given by

2

101 1
¢41:R1(__|k__ P1(u)— §|kP2(,U«)

6 2

i—
w

% ei(kZ/wR)+ich—iwt+ O(R?)

Since the vorticity vanishes in the wave region, we write ik K\ oz _
Uy=V®,,. The momentum equation is then integrated to =— ﬁcosﬁ( cos+ — gl (kTR +ikze—iot
give the unsteady irrotational Bernoulli equation. When this
is used with the continuity equation, and previously- +0O(R™?). (108
computed expressions ftdy;, U, and Hgy, are substituted, .
the equation forb, is Now recall thatk/ o= *1. It follows that
G _ -1 i(k% w)R+ikZg—iw
(V2+ kZ)q)‘u: 2ikP2(COSG)R_SelkZ_th, (101) (I)41— —R ik COST&COSZ %19 el( IRFikZ—iwt
where hereR=|X—X|. It can readily be verified that a +O(R™ ), (109
solution to(101) is asR— . where
Pi() iz 0, k=1
q)4l: _ elkZ—th_I_(DEl' (102) 9= , , 110
2R o—m, wlk=—1. (110

where thed, is a solution of the homogeneous wave equa-
tion, which is determined by matching to the inner solution
as follows.

First, we define the monopole solutiondd,; by

1 . )
Go= ﬁe|(kZ/w)Fe+||<zc—|wt;

(103

In terms of the pressure, the scattered field far from the

'vortex is given by

P.=R 1wk cosd cod 1§ el (@RTikZ—ivt L O(R72).
(111)

It is easily shown that this expression agrees with Eq.

(134) of Part | of this paper, which states that the scattered
this solution has outgoing wave behavior. Note that, due t&ound field is given by

the time-dependence &f., this is not a solution of the wave

2 o
equation to all orders, but it is a solution to leading order, P,=— w—cosﬁ<|.—:+l el (KRRHkZe—ot) 4 O(R~2
which is sufficient here. A 44R R ! ‘ (R,
Corresponding expressions for the dip@e and quad- (112
rupole G, are where
(9 |k2 1 s2 . . 1
GlzﬁGoz(ﬁ_E) gl (KT 0)R+IKZo—i tPl(M)! IZEJ XXw(X)d3X (113
(104
5 is the vortex impulse, and the acoustic wave here is assumed
G El<(7_G i }sz ) to propagate in the positive direction. For HSV, we find
272\ 9z270 " 37 70 that the impulsd is given by
2 2 _
:( _ 1k ik 2+i3)ei(k2/w)R+ikZCithZ(M)_ |=—2me,. (114
3R wR" R There are two cases to consider=k and w= —Kk.
(105 If =Kk, Eq.(112 can be applied directly to the present

In preparation for matching to these solutions in the
wave region, the velocity corresponding to the streamfunc
tion 7, can be expressed as the gradient of a potential. Th
result is that, when contributions from the velocity field at
ordersM 8, M2, andM?35 are combined, the matching con-
dition on @, is

situation, giving
i (KR+KZ,— ot)
R

1 el(kKR+kZ—at)
= w? cosVY cog—= I
2 R

1
e Pau= —w?cos¥(1+cosd)

> +0O(R™?)

+0O(R7?). (115
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Equation(112) is derived on the assumption that=K.  the rear stagnation point,; is expected to grow as'. This

In order to apply this equation to the case= —k, we keep  suggests tha# may have to be exponentially small M in
w=Kkin (134, but reverse the direction of propagation of the order that nonlinear effects may be neglected over times
vortex, which corresponds to reversing the directionl.of O(M~1). The precise dependence 6fon M can only be
Hence, in this second case the signRyf is reversed, and determined by solving the weakly nonlinear problem, which
both cases may be represented together as has not been attempted here. Over tir@¢4 ), however, the

_ 1o il w _ analysis is valid under the much weaker, and more reason-
Pa=R""wkcosd cog' 3 /(IR %700+ O(R 2)(.116) able, assumption thatis small compared witiM itself.
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