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PHYSICS OF FLUIDS VOLUME 13, NUMBER 10 OCTOBER 2001
Three-dimensional acoustic scattering by vortical flows. II. Axisymmetric
scattering by Hill’s spherical vortex

Stefan G. Llewellyn Smith
Department of Mechanical and Aerospace Engineering, University of California San Diego,
9500 Gilman Drive, La Jolla, California 92093-0411

Rupert Forda)

Department of Mathematics, Imperial College of Science, Medicine and Technology, 180 Queen’s Gate,
London SW7 2BZ, United Kingdom

~Received 19 September 2000; accepted 5 June 2001!

The general theory of Part I is applied to the the specific case of scattering of a wave incident along
the axis of Hill’s spherical vortex. The full asymptotic solution to the initial-value problem is
calculated. Results agree with the general approach, showing that the conditions required for the
latter to hold apply in the case of Hill’s spherical vortex. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1401815#
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I. INTRODUCTION

In Part I of this paper1 we discussed the general proble
of the scattering of acoustic plane waves by thr
dimensional vortical structures with scales small compa
to the wavelength of the incoming sound wave. Using
asymptotic expansion of the equations of motion,
leading-order scattered field can be calculated under q
general circumstances, and is identical to that predicted
what can be called the acoustic analogy approximation
this approximation, a forced wave equation is solved, and
forcing can be computed without solving in detail for th
interaction between the vortex and the acoustic wave. O
important assumption must be made: the principal effec
the incident sound wave must simply be to cause the vo
to oscillate back and forth. Whether this is, in fact, the ca
can only be determined for certain by solving the scatter
problem in detail. In this paper, we solve in detail the pro
lem of scattering of acoustic waves by Hill’s spherical vort
~HSV!, for the simple case in which the incident acous
waves propagate along the axis of the vortex, so that
entire problem is axisymmetric.

The vorticity v takes the form

v5zef , ~1!

whereef is the unit vector in the azimuthal direction abo
the axis of symmetry. Within HSV,z is a linear function of
the distancer sinu from the axis of symmetry. Outside HSV
the vorticity vanishes. By assuming, consistent with inco
pressible dynamics, that perturbations also possess this p
erty, the problem reduces to solving for the location of t
boundary of the vortex. This is because, for the incompre
ible axisymmetric Euler equations,z/(r sinu) is a materially
conserved quantity, i.e., it is advected by the flow. In a co
pressible fluid, the relevant materially conserved quantity
modified toz/(rr sinu), wherer is the density. A compress

a!Deceased.
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ible version of HSV can be derived,2 in which z/(rr sinu) is
uniform within the vortex, and vanishes without. Perturb
tions are then restricted to a class in whichz/(rr sinu) re-
mains uniform.

Previous work on HSV has been concerned with an
stability that grows in time, in a thin finger in the neighbo
hood of the rear stagnation point whose width decreases
ponentially in time.3,4 In these papers, prolate and obla
perturbations to HSV are considered, which result in the v
tex either ejecting or entraining a thin finger of fluid at i
rear stagnation point. We formulate our problem followin
Moffatt and Moore3 ~hereafter M and M!, but in our problem
the vortex is forced by the time-periodic flow of the incide
acoustic wave.

We will employ the formalism of Part I. In the vortex
we will use coordinates centered on the vortex, while in
wave region we will use coordinates fixed in a frame at re
In Part I we assumed that the vorticity was not expanded
powers ofM , whereas here the vorticity will be expanded
powers ofM . The analysis of Part I includes this, but effec
due to the motion of vorticity, which in Part I are all repre
sented together atO(1), now arise at successive orders
the vorticity is expanded, as are its effects on the other fl
variables.

We outline the physical situation briefly in Sec. II. Hill’
spherical vortex is presented in Sec. III, together with
extension to weakly compressible flow that we use. T
asymptotic solution to the scattering problem is calculated
Sec. IV, and we show that HSV meets the conditions
quired for the validity of the acoustic analogy approximatio
as described in Part I. The acoustic scattering due to H
has been computed previously using the acoustic ana
approximation.5,6 We show that these results are recover
here. In Sec. V we summarize and conclude.

II. STATEMENT OF THE PROBLEM

We consider homentropic flow of an ideal gas, for whi
the governing equations are
0 © 2001 American Institute of Physics
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ra

Du

Dt
52“pa , ~2!

Dra

Dt
1ra“"u50, ~3!

pa

p0
5S ra

r0
D g

, ~4!

wherepa and ra denote absolute pressure and density. T
physical situation consists of a vortex, in which the loc
Mach number is small, onto which sound waves with wa
length long compared to the size of the vortex are incide

Taking the size of the vortex to beL and the local ve-
locity to be U, the Mach number of the vortical flow isM
[U/c0 , wherec0[(gp0 /r0)1/2. The Mach number is taken
to be small and to leading order the vortex flow is inco
pressible. However, the vortex is modified by compressibi
effects, which must be taken into account here.

The appropriate scalings for pressure and density
then

pa5p0~11g M2p!, ra5r0~11M2r!; ~5!

these are the scalings appropriate for near-incompres
flow.7

Using the scaling~5!, the nondimensional equations
the vortex region are

~11M2r!
Du

Dt
52“p, ~6!

M2S Dr

Dt
1r“"uD1“"u50, ~7!

11g M2p5~11M2r!g. ~8!

In this paper, we consider Hill’s spherical vortex, whic
translates at a constant velocity. Therefore, we take Eqs.~6!–
~8! to apply in a frame of reference moving with the veloc
v of the vortex centroid,1,8 in which case the material deriva
tive becomes

D

Dt
[

]

]t
1~u2v!"“. ~9!

We shall use the notation of Part I, in which the spat
coordinate in the vortical region is

j5x2xc , ~10!

wherexc denotes the ‘‘center’’ of the vortical region, and

v5
dxc

dt
. ~11!

In Part I we discuss the conditions that must be satisfied
v: in particular, it must be a slowly varying function of time
Because Hill’s vortex translates at a constant velocity, t
condition is automatically satisfied by takingxc to be the
center of Hill’s vortex, for whichv is constant.

Equations~6!–~8! are not appropriate far from the vo
tex. In the wave region, the appropriate spatial variable
X5Mx and the governing equations become
Downloaded 12 Aug 2002 to 132.239.191.220. Redistribution subject to 
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~11M2H !S ]U

]t
1M2U"“UD52“P, ~12!

]H

]t
1“"U1M2

“"~UH !50, ~13!

11g M2P5~11M2H !g, ~14!

where the gradient operator acting on a wave-region quan
corresponds to differentiation with respect toX. Nondimen-
sional fields in the wave region are represented by cap
letters ~except for the densityr, which is denoted there by
H!. In ~12!–~14!, the velocity field has been scaled by
factor of M . The leading-order dynamics in the wave regi
correspond to acoustic wave propagation with a mean fl
Note that, unlike the vortex region, no transformation to
moving frame is employed in the wave region.

In the wave region, because the acoustic waves are
tational and the vortex is localized, the vorticity is sma
beyond all orders inM . This implies that, to all algebraic
orders inM , the velocity fieldU may be written using a
velocity potentialF, defined byU5“F.

The nondimensional amplituded!1 of the incoming
acoustic wave is assumed to be sufficiently small that
may ignore nonlinear steepening effects. We are intere
here in the linear scattering of waves by the vortex. This
reasonable in the case of experiments where the wave re
is the region where waves are created and detected: fa
away would be outside the experimental apparatus.

The solution is then written as an asymptotic expans
in M andd that are independent small parameters~see Part
I!. In this situation, however, it is convenient to make use
the equation for mass-weighted vorticity, namely

D

Dt S v

ra
D5S v

ra
D "“u, ~15!

which takes the following form in the axisymmetric case:

D

Dt S z

rar sinu D50. ~16!

The conserved quantity is mass-weighted azimuthal vortic
In common with the practice in geophysical fluid dynamic9

we shall refer to the materially conserved quant
z/(rar sinu) as the ‘‘potential vorticity.’’

III. HILL’S SPHERICAL VORTEX

Hill’s spherical vortex is a steadily translating exact s
lution of the Euler equations. It takes its simplest form wh
viewed in the frame moving with the vortex. In this fram
there is a uniform flowez at infinity.

The Stokes streamfunctionc08 for Hill’s spherical vortex
in this frame is given by

c085H 2 3
4 ~12r 2!r 2 sin2 u, r ,1,

1
2 ~12r 23!r 2 sin2 u, r .1.

~17!

Here,r 5uju is the distance from the center of the vortex, a
u is the polar angle~or colatitude!. This is an exact solution
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2892 Phys. Fluids, Vol. 13, No. 10, October 2001 S. G. Llewellyn Smith and R. Ford
of the Euler equations@i.e., the limit of Eqs.~6!–~7! in which
M50#. The streamfunctionc08 defined by~17! is shown in
Fig. 1.

In this paper, we are concerned with acoustic scatter
from a vortex moving in a medium that is at rest at infinit
Therefore, we subtract the uniform flow at infinity from~17!,
which gives the streamfunctionc0 for HSV moving in a
frame at rest:

c05H 2 1
4 ~523r 2!r 2 sin2 u, r ,1,

2 1
2 r 21 sin2 u, r .1.

~18!

Here,r is the distance from the center of the vortex, whi
translates at velocity2ez . The streamfunctionc0 defined by
~18! is shown in Fig. 2.

The azimuthal component of vorticity corresponding
the flows~17! and ~18! is given by

z052
1

r sinu
D2c05H 2 15

2 r sinu, r ,1,

0, r .1,
~19!

where

D25
]2

]r 2 1
sinu

r 2

]

]u

1

sinu

]

]u
. ~20!

The radial component of velocity is

ur05
1

r 2 sinu

]c0

]u
5H 2 1

2 ~523r 2!cosu, r ,1,

2r 23 cosu, r .1,
~21!

and the meridional component is

uu052
1

r sinu

]c0

]r
5H 1

2 ~526r 2!sinu, r ,1,

2 1
2 r 23 sinu, r .1.

~22!

FIG. 1. Streamfunction of HSV in a frame moving with the vortex. Th
boundary of the vortex corresponds toc050; the contour values inside are
20.2: 0.05:20.05, the contour values outside are 0.25: 0.25: 1.5.
Downloaded 12 Aug 2002 to 132.239.191.220. Redistribution subject to 
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This formulation of HSV satisfies~6!–~8! with v052ez ,
and u→0 as r→`, where ez is the unit vector in thez
direction along the axis of HSV.

To proceed, we must first obtain the leading-order pr
sure, p0 . To do this, a Bernoulli integral of~6! can be
formed, and the result is

1

2
u0

22u0"v01p05H 15
2 c0 , r ,1,

0, r .1.
~23!

This Bernoulli integral exists inr ,1 because of the specia
form of the vorticity inside HSV.

Hence, the pressurep0 is given by

p055
2 5

8 2 9
8 r 2~123 cos2 u!1 9

8 r 4~122 cos2 u!,

r ,1,

2
123 cos2 u

2r 3 2
113 cos2 u

8r 6 , r .1.

~24!

To calculate the scattering in the wave region, it tur
out that we will need the first correction to the HSV due
compressibility, which occurs atO(M2). This problem has
been investigated previously,2 and, as then, we need to ex
tend the HSV to the compressible case, although we o
need the smallM version of the result. We will do this by
specifying that the ‘‘potential vorticity’’ of the vortex be con
stant inside a regionr ,h(u). For incompressible flow,
h(u)51 and the value of the constant is215/2. Extending
this condition gives

z5H 2 15
2 ~11M2r!r sinu, r ,h,

0, r .h.
~25!

The boundary between the inner and outer portions of
vortex becomes a function of the angular coordinateu.

FIG. 2. Streamfunction of HSV in a frame at rest. The contourc50 runs
along the axis. The contour values are20.5: 0.05: 0.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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We carry out this calculation only in the vortical regio
We expand the velocity field and boundary in powers ofM2:

u5u01M2u21¯, h511M2h21¯. ~26!

The equations that we need to solve are then

z25z0r0 , u0"“r01“"u250. ~27!

Note that from~4!, r05p0 . We now decompose the velocit
field u2 into a streamfunction and a velocity potential.

We hence solve for the velocity potential from

“

2f252~u02v0!"“p0 , ~28!

to which a solution is

f25H ( 27
40 r 32 297

560 r 51 1
8 r 7)P1(m)1 3

40 r 5P3(m), r ,1,

(2 1
5 r 251 1

24 r 28)P1(m)1(2 3
10 r 222 3

10 r 25

1 3
176 r 28)P3(m), r .1,

~29!

where Pn(m) is the Legendre polynomial of ordern with
argumentm5cosu. This solution satisfies boundary cond
tions of regularity atr 50 and decay asr→`, but does not
satisfy continuity conditions at the boundary of the vorte
Continuity conditions must be applied to the velocity, but n
necessarily to the rotational and divergent parts separa
Therefore, we will take~29! for f2 , and apply continuity
conditions when we determine the streamfunctionc2 .

The streamfunctionc2 is determined by the potentia
vorticity equation, which takes the form

D2c25H 15
2 r0r 2sin2u, r ,1,

0, 1.
~30!

In total, c21 is expressed as the sum of two parts,c2
( i ) and

c2
(h) . A solution to~30! in r ,1 is

c2
( i )5~2 15

32 r 42 27
224 r 61 3

32 r 8!sin2 u P18~m!

1~ 3
16 r 62 9

176 r 8!sin2 u P38~m!, ~31!

with c2
( i )50 in r .1. The form ofc2

(h) is

c2
(h)55 (

n51

`

Anr n11 sin2 u Pn8~m!, r ,1,

(
n51

`

Bnr 2n sin2 u Pn8~m!, r .1.

~32!

The conditions at the boundary of the vortex boundary
continuity of the radial velocityur and the azimuthal velocity
uu , and the kinematic condition that the boundary be a m
terial surface. These may be rewritten as

@ur2#50, @uu21h2uu08 #50,
~33!

ur2~1!1h2ur08 ~1!5uu0~1!
]h2

]u
,

where@ # represents the jump in that quantity atr 51, and
primes represent derivatives with respect tor .

Each of these conditions is expressed as a sum of L
endre polynomials. Only the terms corresponding ton51,3
Downloaded 12 Aug 2002 to 132.239.191.220. Redistribution subject to 
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remain in the continuity conditions forur and uu , and the
third condition can be satisfied provided the boundary d
placement takes the formh25H0P0(m)1H2P2(m). The six
resulting linear equations are

2B122A152 148
105 , 12B3212A35 21

440 , ~34!

B112A11 15
2 H02 3

2 H25 1193
840 ,

~35!
3B314A31 3

2H252 1209
880 ,

2B113H02 3
5 H252 2

3 , 12B31 18
5 H252 108

55 . ~36!

The solution to this system is

A152 15
112 , A352 241

880 , B152 1409
1680,

~37!
B352 95

352 , H05 137
336 , H25 17

48 ,

with An andBn equal to zero fornÞ1,3. The coefficients of
the boundary displacementH0 andH2 agree with the results
of Ref. 2. The nonzero value ofH0 ensures that the transla
tion speed of the vortex remains unity toO(M2), and so

v250. ~38!

IV. AXISYMMETRIC SCATTERING BY HSV

A. The O„d… solution in the wave region

We take the incident acoustic wave to be of the form

P015F~ t2sZ!, ~39!

which is a plane wave propagating along theZ axis. Here,
s561 determines the direction of propagation of the wa
The velocity and pressure are related by

u015sP01ez . ~40!

Note that there is a distinction betweens51 ands521; in
the former case, the vortex and the incident wave are pro
gating in opposite directions, while in the latter case they
propagating in the same direction. We shall assume that
large values of its argument,F(t) becomes a monochromati
function, e2 ivt. For smaller values of its argument, we a
sume that it turns on smoothly. This is important becau
although the leading-order scattered field is monochroma
the detailed dynamics within HSV can only be resolved
solving the initial-value problem.

In the neighborhood of the vortex, the pressure and
locity of the incident acoustic wave must be expanded,
order to provide asymptotic matching conditions for the flo
in the vortex. The location of the vortex isX5Xc5Zcez ,
and

Z2Zc5Mj5Mr cosu, ~41!

whereZc is the location of the center of the vortex. In th
case of Hill’s vortex,

Zc52Mt. ~42!

The result is that the pressure and velocity in the wave reg
take the form
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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P015F~ t2sZc!2MsjF8~ t2sZc!1¯ , ~43!

U015@sF~ t2sZc!2MjF8~ t2sZc!#ez1¯ , ~44!

in the limit uJu→0.

B. The O„d… solution in the vortical region

The solution at this order in the vortex region that sa
fies the equations and the matching conditions is just a p
sure oscillation,

u0150, p015r015F~ t2sZc!. ~45!

This is a general result, not specific to Hill’s vortex, and it
discussed in Part I.

C. The O„Md… solution in the vortical region

The velocity at this order is irrotational, since no vorti
ity can be introduced into the system by the acoustic wav
The streamfunction inside the vortex thus takes the form

c11
2 5 (

n51

`

An
(1)r n11 sin2 u Pn8~m!, ~46!

while the streamfunction outside the vortex takes the for

c11
1 5 (

n51

`

~Bn
(1)r 2n1Cn

(1)r n11!sin2 u Pn8~m!. ~47!

We impose the continuity of velocity at the vortex bounda
and also the condition that the boundary of the vortex i
material boundary, to obtain evolution equations for the
efficientsAn

(1) . The result is

~2n11!S dAn
(1)

dt
2

dCn
(1)

dt D
53~n21!S n~n23!

2n21
An21

(1) 2
~n11!~n12!

2n13
An11

(1) D
2 3

2@n~n21!Cn21
(1) 2~n11!~n12!Cn11

(1) #. ~48!

The procedure is identical to that of M and M, except th
here an additional set of coefficients,Cn , is retained. These
coefficients are determined by matching to the incid
sound wave. AtO(Md), these matching conditions give

C1
(1)5 1

2sF~ t2sZc! Cn50, for all n.1. ~49!

Now, when all theCn
(1) vanish except forC1

(1) , the sys-
tem of difference equations~48! has a special solution in
which

A1
(1)5C1

(1) ;
dA2

(1)

dt
52C1

(1) , An
(1)50, for all n.2.

~50!

On solving the equation forA2
(1) , we recall that, al-

thoughZc is a function of time, its time-derivative is taken t
be O(M ), andA2

(1) satisfies
Downloaded 12 Aug 2002 to 132.239.191.220. Redistribution subject to 
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dA2
(1)

dt
U

O(1)

52
s

2
F~ t2sZc!, ~51!

where the notation for the time-derivative is as in Part I. T
solution forA2

(1) is

A2
(1)52

s

2 E
2`

t

F~t2sZc!dt, ~52!

in which Zc is taken to be a constant.
Continuity of c at the boundary of the vortex gives

B2
(1)5A2

(1) , Bn
(1)50, for all nÞ2. ~53!

Note that if the functionF(t2sz) tends to a time-
harmonic function of its argument for large times,A1

(1) will
become time harmonic in the limitt→`, andA2

(1) will be-
come time harmonic, albeit possibly offset by a const
value. This constant value may be neglected if the acou
source is turned on over a time that is long compared w
one period of the wave, so that

F~ t !5L~et !e2 ivt, ~54!

in which L(t)→0 as t→2` and L(t)→1 as t→`, and
e/uvu!1. Henceforth we shall assume thatF(t) takes the
form given by ~54!. Then, in the limit of large time,F(t
2sz)→e2 iv(t2sz), and the coefficientsA1

(1) , A2
(1) , andB2

(1)

approach their time-harmonic values:

A1
(1)→ k

2v
eikZc2 ivt, ~55!

A2
(1)→2

i

2k
eikZc2 ivt, ~56!

B2
(1)→2

i

2k
eikZc2 ivt, ~57!

where

k5sv ~58!

is the wave number of the incident acoustic wave.~Recall
that s561.!

The pressurep11 can be obtained by expressing~2! in
the form

]u11

]t U
O(1)

1z0efÃu111“@~u02v0!"u11#52“p11,

~59!

at O(Md), where here we have used the fact that the vor
ity vanishes atO(Md). Hence there exists a velocity poten
tial f11, such thatu115“f11. Consequently,~59! may be
integrated to give

]f11

]t U
O(1)

1~u02v0!"u111p115H 15
2 c11, r ,1,

0, r .1.
~60!

When f11 is obtained fromc11, and the result substitute
into ~60!, the expression forp11 in the limit t→` is found to
be
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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9i
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27i

10k
r 3D P1~m!eikZc2 ivt1

9i

5k
r 3P3~m!eikZc2 ivt, r ,1,

~61!
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H S ikr 2
9i

5k
r 27D P1~m!eikZc2 ivt1S 3i

k
r 242

6i

5k
r 27D P3~m!eikZc2 ivt, r .1.
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Thus the incoming wave induces anO(Md) response in
the vortex region whose pressure is time harmonic and
cays asr 24 in the farfield. This matches to a pressure
O(M5d) in the wave region. The velocity also decays asr 24

at this order, and this implies a velocity potential that dec
asr 23. This matches to terms that areO(M4d) in the wave
region. This is at first sight surprising, since one expe
pressure and velocity potential to exist at the same order
a radiating acoustic wave. The apparent contradiction he
resolved by the fact that the flow in the wave region is forc
at O(M4d), and so the anticipated relation between veloc
and pressure does not hold, except many wavelengths a
from the vortex.

D. The O„M2d… solution in the vortical region

At O(M2d), the effects of compressibility enter in tw
ways. First, the continuity equation~7! is

]r01

]t U
O(1)

1“"u2150, ~62!

and so we see that atO(M2d) the flow is compressible. Also
constancy of the potential vorticity implies that

z215z0r01, ~63!

and so we see that the vorticity compensates for change
density, in such a way that the potential vorticity takes
value 15

2 .
We decompose the velocity field into streamfunction a

potential, so that

u215“f212
1

r sinu
efÃ“c21. ~64!

Then

“

2f2152F8~ t2sZc!. ~65!

We may pick the solution to the Poisson equation~65! to be

f2152 1
2 j2F8~ t2sZc!; ~66!

the unspecified harmonic functions will all be incorporat
into the streamfunction at this order. For larger , “f21

;2jF8(t2sZ)ez , which exactly matches the second ter
in ~44!. Therefore the matching condition onc21 is that it
decay in the farfield.

Inside the vortex, the streamfunctionc21
2 satisfies

D2c21
2 5 15

2 r 2 sin2 u F~ t2sZc!. ~67!

The solution to this equation is
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c21
2 5 3

4 r 4 sin2 u F~ t2sZc!

1 (
n51

`

An
(2)r n11 sin2 u Pn8~m!. ~68!

The solution outside the vortex is

c21
1 5 (

n51

`

Bn
(2)r 2n sin2 u Pn8~m!. ~69!

The matching conditions that must be enforced acr
the vortex boundary are the continuity ofc, ]c/]r , and the
kinematic condition. Note that no terms of form
Cnr n11 sin2 uPn(m) are required in~69!, because the velocity
“f21 matches to the incident wave at this order, wheref21

is given by~66!.
The continuity of both components of velocity at th

boundary of the vortex, plus the kinematic condition, a
expressed at this order as

@c21#50, @h21c091c218 #50,
~70!

]h21

]t U
O(1)

1
]h11

]t U
O(M )

1v0~1!
]h21

]u
5h21u08~1!1u21~1!.

Following the derivation of~48! for the evolution of the
coefficientsAn

(1) , we have

~2n11!
dAn

(2)

dt
U

O(1)

15d2n

dA2
(1)

dt
U

O(M )

53~n21!S n~n23!

2n21
An212

~n11!~n12!

2n13
An11D

1d3nF8~ t2sZc!2 9
4 d1nF8~ t2sZc!. ~71!

To obtain the scattered field atO(M4d), it appears that
we need only determine the value ofA1

(2) , since it is only the
flow corresponding ton51 that can match to flow in the
wave region atO(M4d). Taking n51 in ~71!, we see that
A1

(2) satisfies

3
dA1

(2)

dt
U

O(1)

52
9

4
F8~ t2sZc!. ~72!

The causal solution, which satisfiesA1
(2)→0 ast→2`, is

A1
(2)52 3

4 F~ t2sZc!. ~73!

The corresponding expression forB1
(2) is

B1
(2)50. ~74!

Unlike the solution atO(Md), however, Eq.~71! has
forcing atn51, n52, andn53. At this point, we note that
the system~71! can be solved forn>3 independently of the
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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values ofA1
(2) and A2

(2) . Therefore, if theAn
(2) can be ob-

tained for n>3, the value ofA2
(2) can then be evaluated

a posteriori.
Thus, although forcing at modesn51 andn52 in ~71!

admits a solution in whichAn
(2)50 for all n.2, the forcing

at n53 in ~71! implies that, in general, theAn
(2) will be

nonzero for alln. It is now important to determine the cha
acter of these solutions in the limitt→`, for all n. If any of
these coefficients grows without bound ast→` then the
asymptotic expansion for the flow in the vortex may beco
disordered, and the results derived in Part I may no lon
apply.

We start by investigating time-periodic solutions to~71!,
with time dependencee2 ivt. There are two branches of so
lution, and in the limitn→` they take the form

An
(2)5nn1; An

(2)5~21!nnn2. ~75!

It can readily be shown that

n15 2
3 iv22; n252 2

3 iv22. ~76!

@The expressions given forn1 and n2 in M and M, Eq.
~3.35!, are incorrect.#

Now, in both of these solutions,uAn
(2)u decays asn22 for

largen. It turns out that the sum forc21 converges, which-
ever is taken, but the expression for the velocities does
converge, whichever is taken. If a causal solution is soug
by settingv→v1 i e and taking the limite→01, then the
expression for the velocity converges if the first case,An

(2)

5nn1, is taken. Therefore, this represents the causal solut
The solution forv51 is shown in Fig. 3. Note that the

farfield form ofc21, visible in the right-hand panels, clearl
takes the form of a quadrupole, with angular depende

FIG. 3. TheO(M 2d) streamfunctionc21 in the casev51. The upper two
panels show the real part ofc21 , and the lower two panels show the imag
nary part. The contour interval in the left two panels is 0.05; solid conto
correspond to positive values, and dashed contours correspond to neg
values. The dotted contour is the zero contour. The contour interval in
upper right panels is 0.005, and in the lower right panel it is 0.01.
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proportional to sin2 uP28(cosu)}sin2 u cosu. Note also that,
for v51, the real and imaginary parts are approximate
equal in magnitude.

The solution forv510 is shown in Fig. 4. Note that the
magnitude of the real part ofc21 is approximately ten times
larger than the imaginary part. Note also that, forr→`, the
imaginary part has the angular dependence sin2 u cosu, con-
sistent with matching to a quadrupole farfield, whereas
real part has the angular dependence sin2 uP38(cosu)
}sin2 u(5cos2 u21).

The solution forv50.1 is shown in Fig. 5. Note here
that the magnitude of the imaginary part is approximately
times greater than the real part. In this case, however, b
real and imaginary parts have the quadrupolar fo
sin2 u cosu as r→`.

Now, in the time-harmonic limit,f215
1
2ivj2, and so the

results presented in Figs. 4 and 5 show that the veloc
induced in the vortex is in phase with the imposed veloc
of the wave ifv is small, andp/2 out of phase ifv is large.

Althoughc21 is bounded in these periodic solutions, th
radial velocity is not bounded in the neighborhood of the re
stagnation point. The solutions presented in Figs. 3–5 do
apply at any finite time, and althoughc21 approaches these
solutions pointwise ast→`, its gradient does not approac
any finite limit ast→`.

To investigate the solution in the limitt→`, we solve
an initial-value problem in which the incident wave takes t
form given by~44!, with F given by ~54!. The system~71!
for n>3 can now be solved to good approximation, follow
ing M and M, by first defining

s
tive
e

FIG. 4. TheO(M 2d) streamfunctionc21 in the casev510. The upper two
panels show the real part ofc21 , and the lower two panels show the imag
nary part. The contour interval in the top left panel is 0.05, and in the
right panel it is 0.005; solid contours correspond to positive values,
dashed contours correspond to negative values. The dotted contour i
zero contour. The contour intervals in the lower panels is 0.005~left! and
0.001~right!, implying that the real part of the solution is approximately te
times larger than the imaginary part.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



.

of

e-

es.

the
tion

is

ing
t is
is

.

d-

i-
to
an
s

en

2897Phys. Fluids, Vol. 13, No. 10, October 2001 Scattering by vortices. II. Hill’s vortex
an5
n~n12!~n13!

2n15
An12

(2) , for n>0. ~77!

For convenience, we define a new time scalet85 3
4t. Then,

dropping the prime on the new time scale, thean satisfy the
difference equation

dan

dt
5n@121/~2n15!2#~an212an11!

1 12
49 dn1F8~ 4

3 t2sZc!, a050, ~78!

with an50 at t50.
Following M and M, we approximate (121/(2n15)2)

by 1. As discussed by M and M, and also by Pozrikidis,4 this
makes an error of no more than 2%, whenn51, and the
approximation improves asn→`, which is our interest here
We therefore replace~78! by

dan

dt
2n~an212an11!5

16

49
dn1F8S 4

3
t2sZcD . ~79!

Now, a solution of~79!, with no right-hand side, is~see
M and M!

an5n tanhn21 t sech2 t. ~80!

At t50, this solution satisfiesa151 and an50 for all n
.1. By using this solution as a Green’s function for~79!, we
may express the solution to~79! as

FIG. 5. TheO(M 2d) streamfunctionc21 in the casev50.1. The upper two
panels show the real part ofc21 , and the lower two panels show the imag
nary part. The contour interval in the top left panel is 0.05, and in the
right panel it is 0.01; solid contours correspond to positive values,
dashed contours correspond to negative values. The dotted contour i
zero contour. The contour intervals in the lower panels is 0.5~left! and 0.1
~right!, implying that the imaginary part of the solution is approximately t
times larger than the real part.
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an~ t !5
16n

49 E
0

t

tanhn21~ t2t! sech2~ t2t!

3F8~ 4
3 t2sZc!dt. ~81!

The integrand is more conveniently rewritten in terms
a new variable,x, defined such that tanh(t2t)5e2x, and so

an~ t !5
16n

49 E
ln(coth t)

`

F8S 4

3
~ t2tanh21 e2x!2sZcD

3e2nxdx. ~82!

Our primary aim in this analysis is to consider the b
havior of an(t) in the limit t→`, and so to establish
whether the solution remains well behaved over large tim
To analyze the limitt→` in ~82!, we first replace ln(cotht)
by 2e22t. It follows immediately that if 2ne22t5N1@1,
say, thenan(t)5O(e2N1). Thus, for any givent, there ex-
ists anN@e2t such that for alln.N the coefficients decay
exponentially withn.

On the other hand, ift is large, andn is large but held
fixed, then the dominant contribution to~82! comes from the
region x5O(n21). Let u5nx. Then we may approximate
tanh21 e2u/n by tanh21(12u/n)'1

2(ln n1ln 22ln u). Then

an~ t !;
16

49E2ne22t

`

F8S 4

3
@ t2 1

2~ ln 21 ln n2 ln u!#2sZcD
3e2udu. ~83!

Now, if t@ 1
2 ln n, then the argument ofF8 in ~83! is large

whenu5O(1). Theexponentiale2u implies that contribu-
tion from u@1 is then negligible, and soF8(w) may be
approximated by2 ive2 ivw in the evaluation of ~83!.
Hence, fort@ 1

2 ln n,

an~ t !;2
16iv

49
eikZc24ivt/3~2n!2iv/3E

0

`

u22iv/3e2udu

52
32v2

147
eikZc24ivt/3~2n!2iv/3GS 2

2iv

3 D . ~84!

This is the solution with behaviorAn5n2iv/322 for large
n, which we argued previously should correspond to
causal solution. The analysis here shows how this solu
develops in time, starting with smalln and propagating to
largen, with the coefficients for sufficiently largen decaying
exponentially withn for any timet. Thus, for any finite time,
this solution remains bounded.

Finally, A2 is obtained by solving

dA2
(2)

dt
U

O(1)

52
dA2

(1)

dt
U

O(M )

2
2

5
A12

3

5
a1 . ~85!

In the limit t→`, the right-hand side of this equation
harmonic in time. Thus, in the limitt→`, A2

(2) is also har-
monic in time, possibly with a constant offset, correspond
to a fixed displacement of the vortex. This displacemen
negligible provided the time over which the acoustic wave
turned on is large compared with one period of the wave

Corresponding expressions for the coefficientsBn
(2) can

be obtained from continuity of normal velocity at the boun

p
d
the
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ary of the vortex. The result is that all of these coefficie
remain bounded for all time. Consequently, the solution
O(M2d) remains bounded for all finite time, and~74! shows
that it contains no component that could match to a scatte
wave field atO(M4d). Finally, we must determine any term
in the vortex atO(M3d) that can match to a monopole wav
field at O(M4d).

E. The O„M3d… solution in the vortical region

At this order, the equations are

]r11

]t U
O(1)

1
]r01

]t U
O(M )

2v0"“r111“"~u0r111u11r0!1“"u31

50, z315z0r11. ~86!

In order to determine the scattered wave field,
O(M4d), we need to determine the streamfunction and
locity potential that together correspond to a monop
source in the limitr→`. At this order, we shall be con
cerned only with establishing the time-harmonic respon
the analysis of the previous section shows that the tim
harmonic response is the the long-time limit of the init
value problem for finite spherical harmonic mode numbe

Now, using~61!, one can readily see that the streamfun
tion c31

2 inside the vortex satisfies

D2c31
2 5r11z05

15

2
r 2 sin2 uF S ikr 2

9i

2k
r 1

171i

70k
r 3D

3P28~m!1
9i

35k
r 3P48~m!GeikZc2 ivt. ~87!

It follows that, in r ,1, c31
2 takes the form

c31
2 5 (

n51

`

An
(3)~r !eikZc2 ivt sin2 uPn8~m!, ~88!

while in r .1, the streamfunctionc31
1 takes the form

c31
1 5 (

n51

`

Bn
(3)eikZc2 ivtr 2n sin2 uPn8~m!. ~89!

Hence,c31
1 corresponds to a velocity that isO(r 23) in

the limit r→`, or, equivalently, a velocity potentialr 22.
Thus,c31

1 cannot contribute to matching to flow in the out
region atO(M4d). In fact, as we shall see below, matchin
conditions can be determined to flow in the wave region
O(M4d) without evaluatingc31.

Now, the velocity potential satisfies the equation

“

2f3152
]r11

]t U
O(1)

2
]r01

]t U
O(M )

2~u02v0!"“r11

2u11"“r02r0“"u11. ~90!

In r ,1, the velocity potentialf31
2 takes the form

f31
2 5 (

n50

`

En~r !eikZc2 ivtPn~m!, ~91!

and in r .1 the velocity potentialf31
1 takes the form
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f31
1 5 (

n50

`

Fn~r !eikZc2 ivtPn~m!. ~92!

For our purposes, it is necessary only to determ
F0(r ); this determines the strength of the monopole term
form r 21, that matches to flow in the wave region
O(M4d). We will see that this term can be evaluated witho
evaluating the other terms inf31, and without evaluating
c31. Henceforth we shall write

f̄31~r !5eikZc2 ivtH E0~r !, r ,1,

F0~r !, r .1.
~93!

Substituting the expressions already obtained onto
right-hand side of~90!, and collecting theu dependence into
a sum over Legendre polynomials, we find that, in the lar
t time-harmonic limit,f̄31 satisfies

1

r 2

d

dr S r 2
d

dr
f̄31D

5eikZc2 ivt

3H 5

2
ik2

27i

4k
2S 5

2
ik2

99i

4k D r 22
63i

4k
r 4, r ,1,

2
6i

k
r 281

6i

k
r 211, r .1.

~94!

The solution is

f̄315eikZc2 ivt

35
S 5

12
ik2

9i

8kD r 21S 2
1

8
ik1

99i

80kD r 42
3i

8k
r 6,

r ,1,

2
i

5k
r 261

i

12k
r 291Cr21, r .1,

~95!

whereC is a constant that must be determined by match
the radial velocity at the boundary of the vortex. Expandi
this condition toO(M3d) gives

h2h11@ur09 #1h11@ur28 #1h2@ur118 #1@ur31#50, ~96!

where, as before@ # denotes the jump in a quantity atr
51, and primes denote differentiation with respect tor .

The expressions foru0 , u2 , u11, h2 , andh11 are substi-
tuted into~96!, and expressed as a sum over Legendre po
nomials. The result is that the coefficient ofP0(m) obtained
from the first three terms in~96! vanishes, and hence

Fdf̄31

dr
G50. ~97!

It follows that C in ~95! is given by

C52 1
3 ikeikZc2 ivt. ~98!

Continuity conditions for the other modes in the expa
sion will yield a system of equations analogous to~71!, ex-
cept that forcing will be present for a larger~but finite! num-
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ber of modes. An analysis equivalent to that performed
O(M2d) will also apply atO(M3d), with the number of
significant modes increasing exponentially with time, but
secular growth in the lowest-order modes.

F. The O„M4d… solution in the wave region

The equations satisfied in the wave region at this or
are

]U41

]t
1U2"“U011U01"“U252“P41, ~99!

]H41

]t
1“"~U2H01!1“"U4150. ~100!

Since the vorticity vanishes in the wave region, we wr
U415“F41. The momentum equation is then integrated
give the unsteady irrotational Bernoulli equation. When t
is used with the continuity equation, and previous
computed expressions forU01, U2 and H01 are substituted,
the equation forF41 is

~“21k2!F4152ikP2~cosu!R23eikZ2 ivt, ~101!

where hereR5uX2Xcu. It can readily be verified that a
solution to~101! is

F4152
P1~m!

2R2 eikZ2 ivt1F41
H , ~102!

where theF41
H is a solution of the homogeneous wave equ

tion, which is determined by matching to the inner solutio
as follows.

First, we define the monopole solution toF41
H by

G0[
1

R
ei (k2/v)R1 ikZc2 ivt; ~103!

this solution has outgoing wave behavior. Note that, due
the time-dependence ofZc , this is not a solution of the wave
equation to all orders, but it is a solution to leading ord
which is sufficient here.

Corresponding expressions for the dipoleG1 and quad-
rupoleG2 are

G1[
]

]Z
G05S ik2

vR
2

1

R2Dei (k2/v)R1 ikZc2 ivtP1~m!,

~104!

G2[
1

2 S ]2

]Z2 G01
1

3
k2G0D

5S 2
1

3

k2

R
2

ik2

vR2 1
1

R3Dei (k2/v)R1 ikZc2 ivtP2~m!.

~105!

In preparation for matching to these solutions in t
wave region, the velocity corresponding to the streamfu
tion c11

1 can be expressed as the gradient of a potential.
result is that, when contributions from the velocity field
ordersMd, M2d, andM3d are combined, the matching con
dition on F41 is
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F415S i

kR3 P2~m!2
ik

3R
P0~m! De2 ivt

1O~R22!, as R→0. ~106!

This determinesF41
H to be

F41
H 52

ik

6
G02

1

2
G11

i

k
G2 . ~107!

The dominant behavior in the farfield is given by

F415R21S 2
1

6
ik2

1

2
i
k2

v
P1~m!2

1

3
ikP2~m! D

3ei (k2/vR)1 ikZc2 ivt1O~R22!

52
ik

2R
cosuS cosu1

k

v Dei (k2/vR)1 ikZc2 ivt

1O~R22!. ~108!

Now recall thatk/v561. It follows that

F4152R21ik cosq cos2 1
2q ei (k2/v)R1 ikZc2 ivt

1O~R22!, ~109!

asR→`, where

q5H u, v/k51,

u2p, v/k521.
~110!

In terms of the pressure, the scattered field far from
vortex is given by

P415R21vk cosq cos2 1
2q ei (k2/v)R1 ikZc2 ivt1O~R22!.

~111!

It is easily shown that this expression agrees with E
~134! of Part I of this paper, which states that the scatte
sound field is given by

P4152
v2

4pR
cosqS I "J

R
1I 1Dei (kR1kZc2vt)1O~R22!,

~112!

where

I5
1

2 E xÃv~x!d3x ~113!

is the vortex impulse, and the acoustic wave here is assu
to propagate in the positivez direction. For HSV, we find
that the impulseI is given by

I522pez . ~114!

There are two cases to consider:v5k andv52k.
If v5k, Eq. ~112! can be applied directly to the prese

situation, giving

P415
1

2
v2cosq~11cosq!

ei (kR1kZc2vt)

R
1O~R22!

5v2 cosq cos2
1

2
q

ei (kR1kZc2vt)

R
1O~R22!. ~115!
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Equation~112! is derived on the assumption thatv5k.
In order to apply this equation to the casev52k, we keep
v5k in ~134!, but reverse the direction of propagation of t
vortex, which corresponds to reversing the direction ofI .
Hence, in this second case the sign ofP41 is reversed, and
both cases may be represented together as

P415R21vk cosq cos2 1
2q ei [(k2/v)R1kZc2vt]1O~R22!.

~116!

Hence the scattered sound field~116! predicted by the gen
eral theory of Part I agrees with the result of the expli
calculation for Hill’s spherical vortex~111!.

V. CONCLUSIONS

In Part I of this paper, we showed that the sound fi
scattered by a vortex in response to an incident plane ac
tic wave could be evaluated without solving the problem
detail, provided it was assumed thatuJ2JUu5o(Md)
throughout the time period of interest. Here we see that
apparently remains true for all time in the case of HSV, b
cause the coefficients of the low-order moments of fields
O(M2d) remain bounded, even over timesO(M 21). Hence,
we appear to have demonstrated that this assumption is
vacuous, and is in fact satisfied by the most familiar exam
of a translating vortex.

However, throughout this pair of papers, we have
sumed thatd is ‘‘sufficiently small that terms quadratic ind
can always be neglected.’’ Now, although the coefficients
the low-order moments of the solution atO(M2d) remain
bounded, the number of coefficients of significant magnitu
grows asn;e2t so that, especially in the neighborhood
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the rear stagnation point,u21 is expected to grow ase2t. This
suggests thatd may have to be exponentially small inM in
order that nonlinear effects may be neglected over tim
O(M 21). The precise dependence ofd on M can only be
determined by solving the weakly nonlinear problem, whi
has not been attempted here. Over timesO(1), however, the
analysis is valid under the much weaker, and more reas
able, assumption thatd is small compared withM itself.
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