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FOR SINGU~R CAPACITANCE MATRIX EQUATIONB
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Berkeley, Cali·fornia 94 720 

ABSTRACT 

It is shown analytically in this work that the conjugate 

gradient method is an efficient means of solving the singular 

capacitance matrix equations arising from the Neumann problem 

of the Poisson equation. The total operation counts of the 

algor{thm does not exceed constant times n 2 (log n) 2 (n = 1/h) 

for any bounded domain with sufficiently smooth boundary. 
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Madison. 
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§ 1. Introduction 

Over the past decade, very fast direct rrethods have been 

developed to solve Poisson's equation on certain simple regions with 

Dirichlet, Neumann or periodic boundary conditions. See e.g. [2], [7], 

[10], [17], [19], and [29]. 'lhe capacitance matrix rrethods are 

developed recently to solve Poisson's equation on arbitrary bounded 

regions with srrooth boundaries by imbedding the discrete problem into 

a region where these fast direct rrethods are applicable. See section 7 

of this ·work for a brief survey of previous work an capacitance matrix 

rrethods. In this work it is shown mathematically that by making the 

correct Ansatz guided by classical potential theory, the convergence 

of the conjugate gradient rrethod for solving the capacitance matrix 

equations is essentially independent of the rresh size. 'lhe total 

operation counts of the algorithm do not exceed constant n
2

(log n) 
2 

Where h = 1/n is the rresh size. Only nllllerical scherres of first order 

accuracy for the interior Neunann problem of the Poisson equation an 

bounded two dirrensional regions with srrooth boundaries are considered 

here. See [28] for a similar treat:ITent of the Dirichlet problem. 



§ 2. CertaiQ results from classical potential theory 

We give only a very brief review of a few results of classic<d potential theory. For a 

detailed exposition see e.g. [8], [ 12], [22] and L25]. We define the potential 'lr 

resulting from a charge distribution p on a smooth boundary curve ()Q by 

'lr(x) :: (lj1r) J p(~) log r ds(O 
()Q_ 

II ( ) " (t (: ) :1 · 2 ( " )2 ( .. )2 ere x = x
1

, x 
2 

, !; = ., 
1
, s 

2 
anr r = x

1 
- s 

1 
+ x 2 - !; 

2 
· The Green's functiuJJ 

* (l/2rr) log r which we shall denote by G satisfies 

L1(1/2rr) log r = o(r)' 

where 6( r) is the delta function. For the interior Neumunn problc:n, we make the 1\ns.:Jtz 

(2.1) u(x) = (l/2rr) J J f(~)G*d£ + 'lr(x) 
n 

for the solution of 

LlU = £; 
( 2. 2) 

au/av = g, x E an. 

Here v denotes the outer normal to the boundary curve aQ. The first term on the right 

hand side of (2.1) is a space potential term and will be denoted by u
8

. The boundary 

condition is satisfied Ly choosing p such that 

(2.3) p- (1/rr) J paG*/av ds = 
X 

()Q 

This equation can be written as 

(2.4) (I - K)p = g, 

g +(a/av)u
8

j . 
an 

where K is a compact operator defined by the integral above. The equation is a Fredholm 

integral equation of the second kind and thus a well posed problem. It has a simple zero 

* eigcnvulue and is solvuble if g has a zero mean vulue. We remark that G · in equotions 

(2.1) and (2. 3) can be. replaced by the Green's function on a rectangle with zero Dirichlet 

boundary conditions or any other Green's function of the Laplacian. 

-2-
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§ 3. 
0 .;·') . ,--~ ' ,... ,.. ... ' 

\., d d ;t,Ji -~ ~.~ d f., f) ~ 
The capacitance matrix 'iheth'od 'lor fhe '1\rcll'fnoh41oblem 

In this section we develop a similar formal potential theory for the di s~retc problems 

arising from the original Neumann problem (2. 2). See also sections 3 and .5 of [26] for a 

similar discussion. We shall assume that uniform mesh sizes in both coordinate directions 

arc used. 

* We replace the Laplace operator by the five-point formula. The Green's ftmction G 

~ used in section 2 will then be replaced by the discrete Green's function on a reclungulur 

;· 

region 
. -1 

S with Dirichlet boundary conditions. We denote this Green's function by B 

where B is the matrix representing the discrete Laplacian 
2 

h ~h' employing unJividcd 

differences, on S and zero boundmy values on the grid points of as. 

We imbed ':!. inS as 'follows. The set of mesh points is decomposed into ti1rec 

disjoint sets Qh' anh and (C0.)h. The set anh contains all the irregular mesh points 

in n, i.e. mesh points that do not have all four neighbors within the open set r.l. nh 

is the set of regular mesh points inside \2 and (en h) contains the remaining, the 

exterior mesh points. We further require that \2 is bounded away £rom as uniformly in 

h. We then set up the matrix equation 

( 3.1) Au = ·v 

that we are solving as follows. We require that B and A differ only on the rows that 

corresponds to the irregular mesh points. On these rows we combine the discrete 

Laplacian with difference approximations to the normal derivative. We must, however, be 

sure that the solution on nh U anh is independent of the solut~on or data on (Cn)h. 

This is achieved by eliminating from the discrete Laplacian, centered at an irregular mesh 

point, the values of the solution at its exterior neighbors. We write 

. T 
A = B- UV • 

-3-



l'he matrices U and V have m columns where in is the number of points in {)Qh. 

U represents an extension operator that retains the values of mesh function on asth and 

makes the remaining values equal to zero. The rows of 
T 

V are simply the differences 

between the corresponding rows of B and A. After a suitable permutation, the matrix 

A is reducible, 

( 3. 2) 

The submatrix A is the matrix for the linear system of equations of the original discrete 
1 I 

problem arising from discretization of the original problem (2. 2). It is easily seen that 

the restriction to sth U asth of any solution of Au = v must be a solution to the original 

discrete problem. VT will be chosen so that the row sums of A 
l 1 

and VT ·vanish and 

A
11 

has a simple zero eigenvalue. The matrix A
22 

is nonsingular since it represents 

a finite difference approximation to a Dirichlet problem on CQ. It is then easily verified 

that the matrix A also have a simple zero eigenvalue . 

. We now describe our method for solving the system equations ( 3.1). It is solvable 

if and only if the right-hand side v is orthogonal to the left eigenvector of A which 

corresponds to the zero eigenvalue. It is shown in section 5 of [ 26] that the right hand 

side v is always consistent regardless of its values on (Cr.! h) if the data is already 

consistent on sth U asth. 

Guided by the classical potential theory, we make the Ansatz 

( 3. 3) 
- l -l 

u = B v + B UDp 

Here p is a m-vector to be determined. D is a nonsingular diagonal matrix containing 

certain scaling factors to be specified later. Computing the residual vector we obtain 

(3.4) 
T -1 -1 . 

Au - V = { B - UV ){ B v + B U D p) - v 

-4-



0 0 o a 
Because of the factor U the residuals are zero for all x E nh U( Cn)h. They must also 

vanish on anh. We therefore multiply equation (3. ·t) by UT and obtain 

( 3. 5) (D- VTB- 1UD)p = VTB-lv. 

Here we have used the relation UTU = I 
m' the m X m identity matrix. We shall rcf..:.'r 

. to equation (3. 5) as the capacitance matrix equation and the matrix on the left hond sick 

of (3.S) as the cupacltuncc matrix. It is shown in section 5 of l2.£.jlh.:lt the cap,l•'itllth.·l: 

matrix which we shall denote by C has a simple zero eigenvalue and that tho right hand 

side VTB-
1

v of (3. 5) is consistent if v is consistent for the original problem Au = v. 

For the special case when v = UUTv; we can simply make ~he Ansatz u = B- 1 UDp. '!'he 

capacitance matrix equation now becomes 

( 3. 6) 

Let 
T 

¢ satisfy 
T 

<!> c = 0. Then 

T T 
<!> u v = 0. Hence the right hand side 

consistent for Au = V; 

T 
Cp = U v . 

Therefore 
T T -1 

c::,VB v=O implies 

UTv of equation (3.6) is again consistent if 

We now describe our choices of difference equations at the irregular mesh points. 

* Let P e anh. Let P be its closest point on an. Let W, E, N, S and NE 

be its western, eastern, northern, southern and northeastern neighbors 0:1 the mesh. 

is 

Assume that the local orientation of the bound.::~ry is such that W is always in (CO.)h 

while N is either in 0\lh or (Cn)h depending on whether P has one or two neighbors 

in (Cn)h. Let a~ rr/4 be the angle that the normal through P makes with the closest 

coordinate axis. We approximate the Neumann boundary conditions by the following first 

order scheme. 

* (3.7) u(W) - (1- tan a)u(P)- (tan a}u(S) = g(P )h cos a 

* ( 3. 8) u(N)- {1- tan a)u(NE)- (tan a)u(E) = g(P }h cos a. 

-5-



In our first scheme, we combine the equations (3. 7) and (3. 8) with the discrete 

Laplacian. to form the following equation regardless of whether N is in (Cn)h or not. 

(3.9) cos a[(3 +tan a)u(P)- (1 +tan a)u(S)- (1- tan a)u(NE)- (l +tan ~~)u(E)] 

2 * =cos a[h f(P) + Zg(P )h cos a-] 

We shall refer to this scheme as scheme I. N. a. 

The second scheme is os follows. If P t anh has two neighbors in ( c~~)l, 
1 

obtain the equation ( 3. 9) as ir. schc:l!e I. N. a. If only W is in ( C\~ )h' we only usc · 

equation (3. 7) to combine with the discrete Laplacian. We then multiply both sides of 

the combined equation by 2 cos a- instead of cos a to obtain the following equation 

( 3. 10) 2 cos a[(3 +tan a)u(P)- u(N)- u(E)- (1 +tan a)u(S)] 

* = 2 cos ry(f(P) + g(P )hcos a]. 

We shall refer to this scheme as scheme I. N. b. Both schemes I. N. a and I. N. b give rise 

to matrices All that are positive semidefinite with null space of dimension one that 

consists only of constant functions. It is easily verified (see e. g. [ 3]) that the solutions 

of the discrete problems are · O(h log h) approximations to the exact solutions. 

The matrix D on the left hand side of equation ( 3. 5) contains the scaling factors 

dp = sec a. Here dp is the diagonal element of D on the row corresponding to .he point 

P t: 8~\. The scaling factors cos a and 2 cos a' in equation ( 3. 9) and ( 3. 10) res pecti vel y 

and the diagonal elements dp of D are chosen so that the off diagonal part of C may 

be a formal approximation to the compact integral operator K defined by equations 

* (2. 3)-( 2. 4) with G replaced by the Green 1 s function on a rectangle with Dirichlet boundary 

conditions. Because of the irregular patterns of points in anh, the near diagonal part~ 

the remaining part of C, will not in general be a formal approximation to the identity 

operator. It will be shown in section S that this ncar diagonal part is uniformly well 

conditioned in the spectral norm and that the singular values of C are distributed like that 

-6-



is shown .in [ 14} that the convergence of conjugate gradient method for solving operator 

equations with such operators depend asymptotically only on the spectral condition number 

of the positive de finite symmetric parts of the operators. The method of pro'1f in ll·l I lk)~..'.s 

. . 
not apply in our case. We shall show, however, in section 6 with a different approach 

that the corresponding rates of convergence in our cases depend also asymptoticullY on 

the spectral condition numbers of Bh . 

..,. 

-7-



§ 4. Computationul procedures and operation counts 

We shall solve the matrix equation 

by the conjugate gradient method. This is equivalent to solving the least square problem 

for the capacitance matrix equation. See section 6 for further details. 

In principle we can set up the nratrix C by computing VTl3-iUD. This takes ut 

ieast m fast Poisson solvers and 
2 

m storage requirement. It is therefore much better 

to use the following algorithm. For any vector v we compute Cv as follows. Generate 

the mesh function. UDv, use the fast solver to obtain B -lUDv and compute VTB-
1 
U Dv 

ut an expense on Llw order of rn operations. The vector c?cv cun be obtained in thi:> 

fashion at a cost of essentially two fast solvers. It is easily seen from (6.1) and (6. 2) of 

section 6 that each iteration of the conjugate gradient method will therefore cost about two 

fast solvers. The theory presented in sections 5 and 6 does not preclude the possibility 

that the number of iterations to achieve a given accuracy grows like log m as we refine 

the mesh size. We have, however, consistently found in our experiments that the number 

of iterations stays constant as m increases and that we can achieve an accuracy of between 

two and three correct decimal digits for only four iterations. The operation counts for many 

discrete problems are therefore ten times that of a fast Poisson solver on a rectangle and 

2 
the storage requirements are of the order n where n = 1/h. We have used the generalized 

marching algorithm described in [ 2 J for our fast solver on the rectangle. The operation 

counts of this fast solver is approximately 
2 n + 1 

3n log
2
(-k-)' where k is the size of each 

1 
marching step, if n = k2 - 1 for some positive integer 1. The marching algorithm is 

unstable for large k. We have, however, found that k = 16 is good enough for our 

purpose. The operation counts for many problems therefore do not exceed 
2 

120 n . It is 

possible that if fast Fourier transform methods are used to compute 
-I 

B UDv in the 

-8-



computation of Cg, qhEi'~lg~rit~m ~ill{{e ~veH mJre 0fficient if we exploit the sparsity 

of toe vector UDv in the Fourier analysis step. 9ne big advantage of the capacitance 

matrix method is that it can be speeded up by the replacement of a subroutine, whenever a 

faster Poisson solver becomes available. Finally we mention that our algorithm can be 

used for the numerical solution of the Ncumunn problem for 

-Au + Cu = f on \2, C > 0 

although the theoretical results i.n this work does not immediately apply. 

-:-9-



§ 5. The distribution of singular values of C 

We shall show that given e > o, then almost all the singular values of C lie in 

the interval [ d
1 

- e, d
2 

+ e] · where d
1 

and d
2 

are positive numbers independent of h. 

This is accomplished by first proving that Bh is uniformly well conditioned in the spectral 

norm and that almost all the singular values of ~ lie in the interval [ 0, t: J. Our main 

result then follows by a simple application of a well known result in matrix theory which 

we shall state below as lemma 5. 8. 

Definition. The matrix Bh which we refer to as the near diagonal part of the capacitance 

matrix is defined as follows. Each entry of Bh that corresponds to the irregular mesh 

points P and Q iszeroif d(P,Q)>..Jh; otherwise Bh(P,Q)=Ch(P,Q). Here d(·,·). 

denotes the Euclidean distance function. 

Definition. The matrix ~ which we refer to as the off diagonal part of the capacitance 

matrix is defined to be the difference between M and Bh, i.e. ~ = C- Bh. 

Theorem 5.1. Given e > o, there exists a positive integer. N such that for all 0 < h, 

all except N singular values of Kh lie in [ o, e]. 

This theorem will be a consequence of lemmas 5.1-5. 6 below. First we need some 

basic results from the theory of collectively compact operators. Let K: X --X be a compact 

operator on a complex Banach space X. 

Definition. A subset S C X is sequentially compact if any sequence in S contains a 

convergent subsequence with limit in X. 

Def:i.nition. A family of operators K on X is collectively compact if the set 
n w 

{Knf : II fll ,.:S 1, f E X, n = 1; 2, •.. } is sequentially compact in X. The following result 

is an immediate consequence of a theorem in [ 1]. See also Chapter 4 of [ 26] . 

Lemma 5.1. Let {K } be a family of collectively compact operators on a complex Banach 
n . 

space X with K converging pointwise to a compact operator K. Given e > O, 
n 

-10-
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•. 

with algebraic m3ti3icit~eP n::;;f,. ~e tbe UN(~ !igJnvalues of K with absolute values 
i . 

* * t greater: than e. Then there exists a positive integer N and a e > 0 such that for all n ~ N • 

* each e neighborhood of ~· contains exactly m. eigenvalues of K while all the 
. 1 . 1 n 

other eigenvalues of K lie in an £-neighborhood of zero. n . . 

We now construct a family of operators {K
8

} from {~} as follows. Let <j>, l(; 

both mappings from the unit interval . [ 0, 1] to the real line, be a smooth parameterization 

* of an. Let P., j = 1, .•. ,m be the irregular mesh points. Let P. = (<j>(t.), l(;(t.)) be 
J • J J J 

* the points on an which lie on the normals through P. with d(P., P.) <h. We require that 
J J J - . 

O<t <t· <··· <t <1. 
- 1 2 m 

Let L denote the space of m tuples with the sup norm. Let C[ 0, 1 J denote the Banach 
m 

space of continuous functions on the unit interval with the sup norm. Let 

( 5 .1) 

where 

( 5. 2) i = 2, ... , m ; 

(5. 3) y = (t- t1 - 1}/(t - tl - 1), t > t ; pi 1 E p ' P. E pl ; m - m - m 1 

( 5. 4) 

Define bounded linear operators p :C[0,1)-L·, K :L -C[O,l), 
m · m m m 

K : C[ 0, 1) - C( 0, 1] by 
m 

(5: 5) 

(5. 6) 

( 5. 7) 

m 
·- (K v)(t) = ~ k(t, t.)v(t.) ; 

m j=l J J 

(K f)(t) = (K p f)(t) = (K V)(t) • m mm m 

and 

We then construct another family of operators . {K:n} from {K~} by the above procedure. 

-11-



Let K := K' K . It is easily verified that {K } is also the fumily of operators formed from 
s m m s 

{KTK } by the same procedure. 
h h 

Lemma 5. 2. Let [X] denote the Banach space of bounded linear operators on a Banach 

space X. For any A. 1 0, 

{A.I- KTK f" 1d L I 
h h m 

iff (X.l- K )-
1
dClO,Ijj 

s 

Proof. For X. = 1, the lemma is proved in [ 1]. Exactly. the same argument applies for unY \'" l). 

T 
Therefore, the nonzero eigenvalues of KhKh -·and Ks coincide. 

We shall now briefly describe the relations between various discrete ond 

continuous Green's functions. Let the discrete analogue of the logarithmic 

Green's function be denoted momentarily by G. This discrete Green's function G has 

been studied in great detail in [ 4], [ 24], Chapter 3 of [ 27] and section 4 of [ 28]. 1t is 

translational invariant so that we may assume that the second parameter is fixed at the 

origin and define G as a function of one parameter by 

G{a, b) = G{P;O) where P = (a, b), 0 = (0, 0) . 

* Let G : (a, b) __ .. R be defined by 

* 2 2 G (a, b) = (1/Zrr) log( a + b ) . 

Let G , G be de fined by 
X y 

* * 

G)a, b)_= G(a + h, b) - G{a, b) 

G {a, b)= G(a,b +h)- G(a,b) 
y 

Let Gx' G be similarly defined. It is shown in section 4 of [ 28] that for any nonnegative 
y ' . 

integers r and s, r > s, the following holds 

( 5. 0) I * I I * I- - 3 
max{ G (sh, rh) ...: G (sh-, rh) , G (sh, rh) - G (sh, rh } < (0. 34)r 

X X y y -

(5.9) G (sh, rh), G {sh, rh), -G (sh, rh) are always positive . 
x y xy 

-12-



( 5. 10) are 

always nonnegative for r .?_ s, r ::/- 0 or s l 0 . 

The following property of G permits us to extend (5. 8)-(5.10) to negative values of 

r and s 

( 5. 11) G(rh, sh) = G(sh, rh) = G( -sh, rh) = G(sh, -rh) . 

FinullY, G satisfies 

r = 0, s == 0 

otherwise , 

so thut by (5.11), the following holds 

( 5 .12) G (0,0) = G (0,0) = l/4. 
X y 

Let G' be the Green's function on· the rectangle with zero Dirichlet boundary conditions. It 

* is shown on p. 315-318 in [ 11] that G' and G differ only by a smooth function H and 

-1 ' 
that. B and G differ by il mesh function Hh which is un O(h) upproximation to H. 

Using the same technique of proof used in [ ll], it is easy to see that if P, 0 are both 

bounded uway from uS uniformly in h, then Hh(P, Q) is an O(h
2

) approximation to 

* H(P;Q). In what follows, we shall denote 
-1 

B and G• by · G and G unless stated 

otherwise. 

* Lemm_U:_J.. aG /av P is uniformly continuous with respect to both parameters P and 0 

* of G if both P and Q lie on a closed curve with continuously turning tangent and with 

continuous and bounded curvature. 

* Proo(. This result is well known if G is the logarithmic potential. See e.g. [ 25]. Since 

* G' and G differs only by a smooth function, the lemma clearly follows. 

J,emm._s 5. 4. Let P · and Q be two points in ()Q h with .d( P, 0) = hf3, f3 ~ l/2 and let P * 

* and Q be their corresponding points on ()Q. Let ap and a
0 

be the angles that the 

normals through P and Q respectively make with the closest coordinate axis 

(S.l3) * * * 2-2(3 Kh{P, 0) = 2[ aG /av ,..](P ;0 ) h sec a
0 

+ O(h · ) 
p 

-13-



Proof. We shall only treat the case for scheme I. N. b when P has only one neighbor in 

(Cn)h. The proof for all other cases is almost identical and will not be given. Let 

W £ (C~)h. Then 

Kh{P, Q) = {sec ac/sec o:p)[ 2G(W,Q) - 2(1 - tan o:p)G(P, Q) - 2 tan llpG(S. Q)] 

By (5. 8) and the discussion following (5.12), 

G(W, Q) - G(P, Q) 

G(S, Q) - G(P, Q) 

* . * 6 = G (W;Q) - G (P;Q) + O(h ) 

* . * 0 = G (S;Q)- G (P;Q) + O(h ) . 

Here & = min{2, 3(1- f3)}. Since the modulus of the second partial derivatives of log d\P, Qi 

-2 
.is not greater than [ d( P, Q)] , it .is easily verified that ( S .13) holds. 

Lemma .5. 5. The family of operators {K } is collectively compact on C[ o, 1]. 
s 

Proof. We first show that {K } is collectively compact on · C[ 0, l]. We construct a family 
m . 

* of operators K on [ C{ 0, 1]] by the same procedure described above with k( t, t.) in 
m J 

* ( 5 .1) replaced by k (t, t.) defined as follows 
) . 

( 5. 9) * * * * k (t, t.) = yh sec ap [ aG /av ](P. 
1
;P.) 

) . 1- ) 
) 

* * * + ( 1 - y) h sec a P [ a G I a v ]( P. ; P. ) , 
. 1 ) 
) 

where the normal derivative is taken with respect to the first variable and y is defined by 

( 5. 2)- ( 5 . ·l) . Let Ilk !I = max lk(t, t.) I and Ilk II = max Ilk II . By lemma 5. 3, 
t J' ) • t. 

) ) 

* II K f II ~ constant II k II II f II , 
m .· 

* * . 
I(Kmf)(t).:.. (Kmf)(t') I ; constant Jlkt- kt' II 11£11 

Herice, * {K } is collectively compact on C[ O, 1] by the Ascol.i-Arzela theorem. B}· 
m 

lemma 6. 3, 

* m * IlK - K II< max ~ lk(t,t.)- k (t,t.)l = 0{1) as m ... oo. 
m m - t j=l J l 

-14-



easily follows. 

Lemma 5. 6. K
8

f _.. KTKf for each f c C[ 0, 1] where K is the compact integral operator 

defined by 

( 5. 10) 

where · P = (¢(tp), l)!(tp)). 

= 2 J [ a G *I av p] f d s 
()Q 

Proof. Let {Qj = Pi(j)' j = 1, ... ,n} be a.subset of ()Qh that is chosen as follows. The 

are strictly increasing as j ranges from 1 to m and d(Q., 0. 
1
) 

J J + 
is bclwecn 

* and z..Jh. Let 0. be the corresponding points on aa. It is easily seen that as h c .. o, 
J 

( 5. 11) 

* * The d(Qj, Qj+l) on the right hand side of (5.11) can be replaced by [i(j + 1)- i(j)] h sec aQ . 
. 1 

without affecting the 0(1) nature of the remaining term. It then easily follows from lemma 5. ·~. 

that K f _.. Kf and similarly K' f ..... KTf for each .f ~ C[ O, 1]. 
m m 

Proof of Theorem 5.1. By lemmas 5.1, 5. 5 and 5. 6, we see that Theorem 5.1 holds for the 

singular values of K . 
m 

_Theorem 5. 2. 

The theorem then follows because of lemma 5. 2. 

T 
0. 251 _:: BhBh _:: 7. 291 for scheme I. N. a 

T . 
0. 25J _:: BhBh _:: 141 for scheme I. N. b . 

Proof. Below we give the proof for scheme I. N. a. Details of the proof for scheme I. N. b may 

be found in section 5 of [ 28], where it is shown that the Bh matrix for schemes I. N. a and 

I. N. b are essentially the same as that of schemes I. a and I. b considered in [ 28] respec-

ti vely. We shall first prove that the following holds for scheme l. N. a 

(5.14) 

The following lemma is well known. 

-15-



Lemma 5. 7. Let the symmetric part of a matrix A satisfy 

Then 

Let B denote 
s 

(5.15) 

(A t AT)/2 ~ ol, o > 0 . 

. T 
Bh + Bh. We shall show that 

min {8 (P, P) 
s 

PE()Qh 
~ Is {P,O)I}~l 

Q E aa h, Q:f P s 

so that (5.14) holds because of lemma 5. 7 and a well known Gerschgorin theorem. 

Let P E ()Qh. Assume that the l?cal orientation of the boundary near P is such thut 

for any point P' E aah in a neighborhood of P, either w• and N' 
' 

the western and 

northern neighbors of P', are both in (Ca)h or W' alone is in (CD)h. Let E and S 

denote the eastern and southern neighbors of P respectively. Then 

(5.16) 

+ G {N;Q) - (tan ap) G (E;Q)] . 
X y 

Here the subscripts x and y denote the forward differences in the x
1 

and x
2 

directions 

respectively taken w.i.th respect to the first parameter of G. Because of the band structure 

of B
11

, we may assume without loss of generality that G is the discrete analogue of the 

logarithmic Green's function. The error resulting from this assumption is less than a constant 

times .fh. 

Assume that tan ap is bounded away from 0 and l. Then for h sufficiently small, 

(anh) , a subset of eah which contains a .Jh neighborhood of P can be .partitioned 
loc 

into blocks as follows. Let 

1
0 

= {(O,h), ... ,{O,M
1
h)} 

Ik = { (kh, Mkh + h), ... ,(kh, Mk+lh)}, k = 1, .•• , K
1 

, 

l_k = {(-kh, -M-{k-l)h), ... , (-kh, -M-kh +h)}, k = 1, •.. , K
2 

.;..16-



0 0 
Then 

= p E I . 
0 

Let mk and m -k be the number of points in the nonempty sets \-
1 

and I -k respec-

tively. Then Mk = rn
1 

+ · · · + rnk; M_k = rn_
1 

+ · · · + rn_k; M0 = 0. Let P. denote lhe 
J 

··point with Y:-coordinate jh. By (5.8), (5.16) and the smoothness of an, it is easily 

verified that . L I 8 ( P, 0) I will remain essentially unchanged if tan a
0 

is replaced 
Q:f.P s 

throughout by tan ap .. Let a::::: tan ap. Let G(i,j) == G(ih,jh). Let P ==Pi. Then 

(5.17) R(P,P)=Z+Z(l-a)G (0,0); 
s xy 

8 ( P, P.) = (1 - a)[ G ( 1, I j - i I - 1) - G ( 0, I j - i I - 1)], P
1
. ~ 1

0 
. 

s J yy yy 

then 

(5.18) L; 
j>i 

8 (P,P.) = (1-a)[G (0,0)- G (O,M
1

- i)- G (0,1) + G (O,M
1 

+ 1- i)] 
S J X X X X 

(5.19) L; 
i>j 

8 (P, P.) = (l- a)[G (0,0)- G {O,i- l)- G (0,1) + G (O,i)] 
S· J X · X X X . 

Similarly, if Pj e Ik, k = 1,Z, ... ,K
1

, then 

8 (P;P.) = (1- a)[G (k,j- i) +G (k -1,j- i -1)]; 
s J xy xy 

~- 8 (P,P.) = 
p E I s J 

j k 

-(1 - a)[ G (k M + 1 - i) - G (k M + 1 - i) 
X 1 k X 1 ktl 

+ G (k - 1 M - i) - G (k - 1 M - i)] 
X 

1 k X 
1 k+l. 

On the other hand, if P . £ I k' k = 1, 2, •.. , K
2

, then 
-J -

8 (P, P .) = (1 - a)[ G (k, i + j) + G {k - 1, i + j - 1)] , 
s -J xy xy 

L 8 {P, P .) = -(1 - a)[ G (k, M (.k l) + i) - G (k, M k + i) 
S -J X - - X -p c I . 

-j -k 

+ G (k - 1 M + i - 1) - C (k - 1 M + i - 1)] 
X 1 -{k-1) X 1 -k 

-n-



It is easily verified from (5.9) and (5.10) that 

B
8

(P, Pj) ~ o, Pj e lk; k = ±1, ±2, · · · 

(5.20) B ( P, p.) > 0' p E I . 
s J - j 0 

Since we only want to obtain an' upper bound for ~ IB (P, P.) I, we may assume without 
P:f-P s J 

j 

loss of generality that B (P, P.) -f- 0 iff P. E (asth) . Then, by summing P
1
, over j > M

1 s J J 1oc 

K-1 
+ \' { G ( k, M

1 
l + 1 - i) + G - ( k - l. M, 

1 
- i)} 

U XX ~ t XX . t~ + 
k=l 

- G (K1, MK +l - i) - G (K- 1, MK +l - i)) 
X - 1 X 1 

By (5.9) 

Kl 

~~ ( G (k + 1;Mk 
1 

- i) + G (k, Mk 
1 

- 1 - i)) < Gy(2, M2 - i) + Gy(l' M2 - i - 1) 
k= 1 yy + yy + 

Hence, the following holds when P. is summed over all j > M 
J 1 

~IB (P,P.)I <(1-a)lG (l,M
1

+1-i)+G (o,M
1

-i) 
S J X X 

( 5. 21) 

+ G { 2, M
2 

- i) + G {1, M - i - 1)] 
y y 2 

Similar! y, the following holds when P. is summed over all j ~ 0 
J -

(5. 22) 1 Is {P,P.I <(1-a)[G (l,i) +G (O,i-1} +G (2,M 
1
ti-l} +G (l,M

1
+i-2)) 

S J X X y- y 

By (5.17)-(5.22), 

(5.7.3} Bs(P, P)- 2:: Is (P, P.) I < 2- 4(1- a}[G (o, o)- G (o, 1)]- (1- a) H(i}. 
S J X X P=t-P. 

J 

where 

H(i) = G (0, i) + G (1, i) + G (0, M
1 

+ 1 - i) + G (1, M
1 

+ 1 - i) 
X X X - X 

+ G (1, M 
1 

+ i - 2) + G (2, M 
1 

+ i - 1) + G {1, M
2 

- i. - 1) + G (2, M
2 

- i) . 
y - y - y 

-18-



· 0 0 ,; U ;;;~ S 0 U 6 1 ~-· · 
It is easily seen from the table on p. 2<)2 of [ 2·r, that H(i) attains its maximum at 

either i = 1 or i = Ml' It is then easily verified with the aid of the above mentioned 

table that 

(5.2'1) 'laG (0, 0) + ·l(l - u)G {0, 1) > (1- a)B(i), 
X X 

i·= l, ... ,M
1 

By ( 5. 23) and ( 5. 2'1), we see that (5.15) holds for our choice of P. 

The proof for other choices of P is almost identical and will not be completed. Thus 

we corn ple tc Lhe proof for ( :"i. (l). We now proceed Lo prove 

(5.25) 

We shall show that the following holds 

(5.26) 

We assume that the local configuration of points in a\2h in a ~h neighborhood of P is 

* similar to that in ( 8\2h) described earlier in ~his section. Let 

loc * 
Bh ( P, 0) be defined by 

equation ( 5. 8) with G replaced by its continuous analogue G . 
T* 

Let Bh (P, 0) be 

similarly defined. We shall hrst show that 

( 5. 27) 

* Let r, r , r
1
, r', r* and r

2
. denote d(P, 0), d(w, 0), d(S, 0), d(NE, 0), d(N, 0) and 

d(E, 0) respectively. We agai.n assume that ·tan ap =tan a
0 

=a for all 0 such that 

Bh ( P, 0) =1- 0. Then 

* . 
-log(r /r) +a log(r/r) 

-log(r /r') + a log(r 
2
/r') . . . 

Let the coordinates of. P, 0 be (0, 0) and (x
0

, y 
0

) respectively. We have 

*2 2 2 2 12 
r - r = 2hx0 + h ; r * ""' r 

2 2 2 2 2 '2 
= 2hx - h · r - r = 2hy + h · r - r Q • l Q • 2 

. 2 = 2hy
0

-h 
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Hence, 

2 12 2 . 2 12 
= ( -zx

0
h + 2ay Qh)(l/r + 1/r ) + (a - l)h (1/r - 1/r ) + RQ , 

where 

I I r , 2 2 2 4 2 2 2 1 4 
RQ ::: L (zx

0 
+ n) + a(2yQ +h) ]h /2r + [ (2x

0
- h) + a(2yQ- h) ]h /2r .. 

It is easily verified that if P, Q are two points on an with d(P, Q) _shY, 0 < y _:=:: l, 

and ta is the tangent at Q to an, then 

d ( P, ta) _s-( K + 0 ( 1)) h 
2 

Y , 

where K is the maximum absolute value of the curvatures of an. Hence, for all proclic~1l 

purposes we may assume K = 0. Then 

x
0 

= ay
0 

+ £h, 

Hence, 

where 

\' 2 2 I 2 I 2 I 2 I F(r, r 1
) = LJ {2h (1/r + 1/r ) + (1- a) 1/r - 1/r 

IYQI >2 

. 2 2 2 2 4 1 4 4 4 4 14. 
+ (2x

0
h + 2ay 

0
h )(1/r + 1/r ) + (1 + a)(h /2r + h /Zr ) 

3 4 3 1 4 
+ 2(x

0 
+ ay 

0
}(h /2r - h /2r ) } . 

Taking into account the local configuration of points in a '-fh neighborhood of P for 

a certain a = tan ap, we easily see th.at for all 0 .:S. a _s 1, 

\' 2 2 14 \' 2 4 2 4 
LJ (x

0 
+ ay 

0
)/r < LJ {k /(k - 1) + k /(k + 1) } 

IY
0

I>z k=3 

.. 

Hence, 

-20-



... 

Q 0 <~ u •r1 S 
2 

U 0 6 I 6
2

, 

F{r,r')2 L: {8/k + (3- a)/(k -1) + (1 + a)/(k + 1)
2 

k::: 3 

< 8. 78. 

+ 2k
2
(1/(k - 1) 

4 
+ 1/(k + 1)

4
) 

+ 1/k
4 

+ l/2(k -:-1}
4 

+ l/2(k + 1)
4 

+ 2"./2 (1/k
3 

+ 1/(k + 1)
3

} 

This completes the proof of inequality (5. 27). By (5.17), 

(5. 28) 

It is easily verified that ~I Bh ( P, Q) I, P :f- Q, I y Q I 2 2 attains its maximum when a = 0 

and P has two neighbors in (C:J)h. A simple calculation with the aid of table I in [ 4] 

or table II in [ 24] shows th~t when summed over all Q with 0 < IY
0

1 2 2, 

( 5. 29) 

By theorem 4. 3 of [ 2 8] and table I of [ 4] , we see that. 

( 5. 30) 

By (5. 27)-(5. 30), 

( 5. 31) 

Since the same inequality holds by a similar argument when Bh in ( 5. 31) is repla_ced by 

T 
Bh' we easily see that (5. 26) and hence (5. 25) holds. 

Lemm~. If D = A + B, where A and· B are arbitrary matrices with singular values 

a > a > · · · > a > 0 and A > A > · · ·. > A > 0 respectively and o > o > · · · > 6 > 0 1 - 2 - - n- tJl- tJ2 - - tJn ~ 1 - 2 - - n -

are the singular values of D, then 

o < a + A i j positive integers . i+j+l- i+l tJj+l' ' 

Proof. Seee.g. ex. 28onp. 89of[20). 
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Theorem 5. 3. Let d
1 

and ct
2 

be the spectral bounds ot Bh. Then given e > o, there 

exists a positive integer N independent of h such that all except N singular values 

of c lie in [d
1

- e,d
2 

+e). 

Proof. Let C, Kh and Bh be matrices A, B and D respectively in lemma s. 8. By 

theorem 5.1, given e > 0, there exists a positive integer p such that for all h > 0, 

A . < E 
t-' ptj +1 - ' 

j=O,l,Z, ... 

Since 

d <6 <a t 1::t 
1- m- m-p-j ~"'ptj+l' j = 0,1,2, ... ' 

only the last p + 1 singular values of C may He to the left of d
1 

- L Stm ilarl y, b~· 

letting Bh, -Kh and C be the matrices A, B and D respectively in lemm3 ;, 8, vve 

see that only the first p + 1 singular values of C can lie to the right of d + E.. . 2 

Theorem 5 . .f. Let liM II and R(M) denote the spectral norm and range of a matrix M 

T I T respectively. Let A
11 

be the same as in (3.2). Let As= A
11

A
11 

R(A
11

) and 

Tj T T T T T 
Cs = C C R(C) betherc·strictionsof A

11
A

11 
and C C to R(A

11
) and R(C) respec-

tively. Then 

where B and D are the same as in equation ( 3. 5). 

T ( ) . T ) Proof. Let v = UU v e R A . It is shown in section 3 that U v e R( C so that we may 

-1 
make the Ansatz u. = B UDp for the solution of Au = v and solve the alternative form .... 

of capacitance matrix equation Cp = UTv for p. Let p be the eigenvector correspondin9 
1 .• 

to the smallest eigenvalue of the positive definite matrix 
T 

Cs. Let Cp
1 

= U v
1
, where 

T 
v 

1 
= UU v 

1
• Then 

( 5. 32) 

Here llv II denotes the Euclidean norm of a vector v. Let 
-1 * 

u
1 

= B UDp
1

. Let U and 
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·' 

.. -

_Qh U anh respectively that are defined the same way as U. Let * *T * * u
1 

= U u
1 

= u
2 

+ u
3 

* * T where u
2 

e N(A
11

), the null space of A
11

; u 
3 

E R(A
11

). Because of the reducible structure 

*T 
of A, U v < N(A

11
) if v < N(A). Hence we may write u

1 
= u

2 
+ u 3' where u)(N\;'\). 

L. 

*T * *T * 
U u 

2 
= u

2 
and U u 

3 
= u 

3
. Let ~ry 1 0 t N(C). It is rcuc!ily Vt'tiCicd Lhdt 

-1 
B UDIP i 0 E N(A). Since both N(A) and N(C) are of dimension one, 

-1 . 
B UD<Pl = u 2 . Then such that 

* *T -1 * 
u = u B u u I D( p - "'' ) • 

3 1 1 

Hence, 

( 5. 3 3) 

On the other hand, 
*T . 

= U v
1
. Hence, 

(5.34) 

The theorem then easily follov.;s from (5. 32)-(5. 34) . 

-23-
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§ 6. Rdtc of convergence of the conjug_gte gradient iterations 

Let b denote the right hand side of the capacitance matrix equation. We are concerned 

with solving CTCp = CTb by the conjugate gradient method. It is shown in [ 21] that the 

conjugate gradient method gives the solution 

,+ 
r = c b + (I - P)r0 

Ilere 
+ 

C is the ~J(mcralized inverse of C. 
. + 

For any m-vector b, C b is the unique 1L~i1!;t 

square solution of Cp = b that is of the minimum Euclidean norm. P is the orhtogonal 

projection of L 
m 

T 
onto R( C ) and p

0 
is the initial guess. We shall assume throughout 

-1 
r = c v. 

s 
More-

over, from ( 6.1) and (6. 2) below we see that all the relevant vectors generated in the 

conjugate gradient process are in R(CT). Hence, the original problem is reduced to solving 

Or = v by the conjugate gradient method where Q = C is a positive definite symmetric 
s 

mu.trix. 

Wenowbrieflydescribetheconjugategradientrnethod. Seee.g. [9], [14], [15], 

[16] and [ 23] for details. Let p
0 

= -g
0 

= v- Qp
0

• The conjugate gradient process 

generates a sequence of vectors pk approximating the solution p by 

( 6. l) 
T T 

pk+l = pk- [gkpk/pkQpk]pk' 

( 6. 2) 
T T 

pk+l = -gk+l + [ 9 k+l Qpk/pk Qpk J pk ' 

T 
where gk = Qxk- v. The pk are 0-conjugate, i.e.· pi Qpj = 0, i =f: j. The pk ,... 

T T 
minimizes the quadratic form (l/2)w Qw- v w on the linear variety p

0 
+ Yk where Yk 

is the subspace spanned by {p
0

, p
1
, ... , pk_

1
}. The iterates pk satisfy 

Where P k-l is a polynomial of degree k - 1. It is shown in [ 23] that among all iterative 

methods that satisfy (6. 3), the conjugate gradient method is optimal in the sense that 

-24-
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<.i 

0. U
,. 

"-,,-'' iJ ·~ $ JJ d 6 iT 8 
E( pk) = (l/Z)( Pk - p) Q( Pk - p) 

is minimal. It then easily follows that if A.. are the eigenvalues .of Q, then 
1 

2 ' 
(6. 4) E(pk) ~ max(l + \/k-l(\)) E(p

0
) , 

A. . 
i 

for any choice of a polynomial Pk-l of degree k- 1. Let Z: (a, b) -• H, where (a, b) 

arc ordered pairs of positive numbers a and b be defined by 

Z(a, b) :.: [ (l - "Ja)/(1 + ,.Ja) ]b . 

It is known (.see e.g. [9] or [23]) that we can select Pk-l(\) such that 

(6. 5) maxll t\/k-l(\i) I_::: 2Z(K, k), 
\. 

1 

where K is the spectral condition number of Q. On the oi.:her hand, suppose all except 

N eigenvulucs of Q lie in the interval [ c
1
, c

2
]. Let \ i' i ::: 1, ... , N be tlw c'xccp-

tional eigenvalues. Let 1<
1 

=, c
1
;c

2
. Then as before we can choo.3e Pk-N(\) such th<ll 

I I [ r. r )]k-N max 1 +\.Pk N(\.). 2 2 (1- '\K1)/(l + "'"1 c <\ < c 1 - 1 
1- i- 2 

Choose P k-
1 
(\) such that 

Then, 

N 
( 6. 6) max /1 + \/k-lp, i) I 2 2Z(,<

1
, k- N) max { TT l1- \j\i I} 

\. c <f... <c i=1 
1 1- - 2 

By (6. 4)-(6. 6) and theorem "i. 3, we easily have the following theorem. 

_Theorem (). l. Let 
T 

K and 1<
1 

be the spectral condition numbers of C and l3 B . s h h 
res pc~c-

tively. Then given £ > o, there exists a positive integer N independent of k and h 

such that 
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N 
Here x( >..) = max n II - >../>... I 

c <>..<c i=l 
1 

where >..., i = 1, .•• , N are the N eigenvalues 
1 

I- - 2 

of C
5 

that lie outside [c
1

- c,c
2 

+ c:.]. Here c
1 

·and c
2 

arc the spcctr~1l bounds 

T 
of BhBh. 

Corollary 6.1. The number of iterations needed to reduce E(pk)(E(p
0

) to a given accuracy 

can grow no faster than constant log m as h - 0. 

Proof. By theorem 5. 4, the smallest eigenvalue of c 
s 

-4 
is larger than constant· m 

corollary is therefore an immediate consequence of theorems 5. z; 5. 3 and 6.1. 
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We give here only a brief survey of previous work on capacitance matrix mclhocb. 

See also section 8 of [ 26] for more references and more details on some of the referenc~s 

mentioned here. C. W. Hockney gave a brief description of a method of this type' in [ W 1. 

He credited Oscar Buneman for the idea. 

The papers [ 7 J and [ 13] by Buzbee, Dorr, George, and Golub and Gcurgc rt:spc'-·~ivcly 

used the same Ansatz 

:.1 -1 
u = B v + B UDp 

as is used in our algorithm to treat the Dirichlet problem. It is then shmvn exp•,'rimcnt,11ly 

in [ 26] and theoretically in [ 27] that the resulting capacitance matrices C are ill-

conditioned and that the singular values of C cluster around zero. The conjugate grad·.ent 

method was used in [ 13] to solve the capacitance matrix equations using an iterd~ive 

imbedding technique similar to that mentioned in section -i of this work. The n'Jmber of 

iterations used to achieve a given accuracy are proportional to the square root of m, the 

order of C. The regions considered in [ 7 J are of a rather simple type. The matrices C 

are positive definite symmetric and the Cholesky method is used to faco:torize C. The 

numerical results are '.:Jbtained on a CDC6600 and a gain in speed of a factor three is 

reported in [ 5] for runs on CDC 7 600. 

The paper [ 2(,] by Proskurowski and Wi'dlund is probably the first one tha~ c.•xplc·~ts 

the similurity between the classical potential theory and the capacitance rnulrix :lll'th(•li. 

It is shown experimentally there that by making the correct Ansatz guided by the classical 

potential theory the capacitance matrix method becomes a well posed problem. The matrices 

C for many test regions arc uniformly well conditions in the spectral norm and the 

convergence of the conjugate gradient iterations for these regions appears to be independent 

of the mesh sizes. It is then shown theoretically in [ 26] that for a large class of domains 

-27-



and some special schemes of approximuting bounda.ry conditions, the above observution 

·is always vulid. This work is mainly an outgrowth of [ 26]. It extends some of the 

thcoreticul estimutes in [ 26 J to ull bounded domains with smooth boundaries. 
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To illustrate the effectiveness of our algorithm, we have used linear polynomials as test 

functions. Truncation errors are not present and the right hand side of equation (8 .1) is always 

consistent 

( 8.1) *T 
A

11
u = U v . 

* Let u and u be respectively the exact and numerical solutions of (8.1). Let ... 

E = II 5 ( u - u *)II + II 6 ( u - u *) II , where 6 max x oo x co x and 6 denote the undivided forward 
1 2 1 x2 

differences in the x
1 

and x
2 

directions resp~ctively. The domain n is an ellipse with the ratio 

of half axes equal to y and the test function u satisfies u(x) = x
1

. · The following is a table of 

numertca"l results obtained by test runs on the Univac 1110 at MACC, University of Wisconsin, 

Madison. 

Table I 

No. of iterations y m Norm of C. G. Residual E (approx.) 
max 

4 1 36 . 5172056-03 -04 

4 1 76 . 5409905-03 -04 

4 1 108 .7234433-03 -,04 

4 0.7 32 . 3189510-02 .2-03 

4 0.7 64 .8658407-03 . 2-03 

4 0.7 92 . 12667 53-02 .2-03 

4 0.5 60 . 57 68389-02 . 2-03 

4 0.5 84 • 3497 684-02 . 2-03 

7 1 108 .1820406-04 -06 

7 0.7 92 .1372015-04 -06 

7 0.5 84 .3218270-04 -06 

Scheme I. N. a is used to obtain results listed in Table I. Typically it will take one or two 

more iterations to achieve similar accuracies if scheme I. N. b is used. The norm of C. G. residual 

given in the fourth column of Table I is the 1
2 

norm of the conjugate gradient residuals divided 

by the square root of the number of mesh points inside n. 
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Since it takes two fast Poisson solvers to complete each conjugate gradient iteration, 

the total operation counts of the algorithm are approximately ten or eleven times that of 

a fast Poisson solver for the Laplace or Poisson equation respectively. It is reported 

in [2] that the opcrotion counts of a fast 1\)isson sol v~~r can be reduced to O(n
2

) if 

the fast Fourier transform methods are combined with k cyclic reduction methods if k 

is proportional to log
2

n. It is, however, more realistic to say that the operation counts 

of our algorithm are proportionally to n 
2
log 

2
n in the experiments carried out so far. 

2 2 
Our theoretical estimate of a constant times n (log

2
n) is perhaps too conservuti\'e. It. 

is shown in [ 27] and [ 28] that theoreticar estimates of constant · n 2 (l~g 2 n) can be 

obtained for u special class of domains in some cases although it is still an open question 

whether this is true in general. 
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