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ABSTRACT

It is shown analytically in this work that the COnjugate
gradient method is an efficient means of solving tﬁe singular
capacitance matrix equations arising from the Neumann problem
of the Poieson equation. The total operation counts of the
algorithm does not exceed constant times n2(log n)2 (n = 1/h)

for any bounded domain with sufficiently smooth boundary.
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§ 1. Introduction

Ovef the past decade, very fast direct methods have been |
developed to solwve Poisson's equatlon on certain simpie regions with
Dirichlet, Neumann or periodic boundary conditions. See e.g. [2], [7],
{10}, [i7] , [19], and [29]. The capacitance matrix methodsb are '
developed recently to solve Poisson's equation on arbltrary bounded
regions with smooth boundaries by imbedding the discrete problem into =

a region where these fast direct methods are applicable. See section 7

‘Of this work for a brief survey of previous work on capacitance matrix

methods. In this work it is shown mathematically that by making the
correct Ansatz gulded by classical potential theory, the convergence

of the conjugate gradient method for solving the capacitance matrix

equations is essentially independent of the mesh size. The total
| operation counts of the algorithm do not exceed constant n2( log n) 2

" where h = 1/n is the mesh size. Only numerical schemes of first order

accuracy for the interior Neumann problem of the Poisson equation on
bounded two dimensional regions with smooth bbu_ndaries are considered

here.  See [2‘8] for a similar treatment of the Dirichlet problem.'



§2. Certain results from claésical potential theory

We give only a very brief review of a few résulfs of classiéal potential théory. For a
detailed exposition see e.g. [8 ], [12], [22] and" [\25]. We defﬁne the potential ¥
resulting >f_rom a.ch'arge‘ disvtribution p ona sm_oéth onndary curve 9 by

v(x) = (1/x) [ p(t) logr ds(s) .

. -2 . ’ .42
Here x = (xl,xz), £ = (gl,gz) and 1 = (xl - gl) + (XZ - gz) . The Green's function
*
(1/27) log r which we shall denote by G  satisfies
A(l/2w) log'r = &(r) ,
where o(r) is the delta function.' For the interior Neumann problem, we make the Ansatz

(2.1) ' S | u(x) (1/27) ff £)G dE + 7(x)

for the solution of

Au = f, X e
(2.2) ‘-

1t

au/ov g, . x € 992 .
Here v denotes the outer normal to the boundary curve §Q. The first term on the right _
hand side of (2.1) is a space potential term and will be denoted by Ug- The boundary

condition is satisfied by choosing. p such that

(2.3) : l/Tr f paG /av ds = g +(8/av)us .
: 1) _ Yy ' \

This equation can be written as
(2.4) o . (I-Kp=g,
where K is a compact operator defined by the integral above. The equation is a Fredholm -
integral equation of the second kind and thus a well posed problem. It has a simple zero
. ~ * .
eigenvalue and is solvable if g has a zero mean value. We remark that G in equations

(2.1) and (2. 3) can be replaced by the Green's function on a rectangle with zero Dirichlet

boundary conditions or any other Green's function of the Laplacian.
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_re_gion S with Dirichlet boundary conditions. We denote this Green's‘function by B~

disjoint sets Q., af

¥ P TR 1%
: . R ‘J DY
§ 3. The capacitance matrix

ﬁ%etﬁods%or {éhe Ll%cénafg}m L;?oblem

In this section we develop a similar i’ox'mal' potentiél theory for the discrete problems

arising from the original Neumann problem (2.2). See also sections 3 and 5 of [26] for a

similar discussion. We shall assume that uniform mesh sizes in both coordinate directions

are used.

) ! . ' . *
We replace the Laplace operator by the five-point formula. The Green's function G

used in section 2 will then be replaced by the discrete Green's function on a rectangular

1

where B is the matrix representing the discrete Laplacian h A , employing undivided
differences, on S and zero boundary values on the grid points of 88S.
We imbed 7 in S as follows. The set of mesh points is decomposed into three

The Sef %2, contains all the irregular mesh points

and (CQ)h. h

h’ h

in .Q,‘ i.e. mesh point's that do not have all four néi‘ghbors within the open set ®. Qh
is the bset"of reg-uiar _mesh points inside @ and (CQh) contajns th¢ remaining, thev
exferidr mesh points. We further require that  is b_ounded .away from S uhiformly in
h. We then set ub the matrix. equation

(3.1) Au =V

that we are solving as follows. We require that B and A differ only on the fQVvs that

corresponds to the irregular mesh points. On these rows we combine the discrete

Laplééian with difference approximations to the normal derivative. We must, however, be

sure that the solution on Qh U 902, is independent of the solution or data on (CQ)h.

h

This is achieved by eliminating from the discrete Laplacian, centered at an irregular mesh

point, ‘the values of the solution at its exterior neighbors. We write

A= B-UV .



The matrices U and V have m . columns where 'm is the number of points in 'th.

v represents an extension operator that retains the values of mesh function on th' and
makes the remaining values equal to zero. The rows of V~ are simply the differences

between the corresponding rows of B and A. After a suitable permutation, the matrix

A is reducible,

{3.2) _ A=

The subma-trix A” is.the matr'ix for the linear éystem of. equatiohs of the original discrete
problem arising frpm »di_scretizatioﬁ of the original prbblem {2.2). 1Itis easily seen that
the restr‘icfion to Qh U 8Qh of any solution of Au = v must k?e a solution to the original
.discrete problem. V.T will be chosen so that the rowv sums of ‘A“ and VT v‘vanish and
A” has a simplg zero eigen‘value.. The matr‘ix. AZIZ is nonsingular since it represents
a finite d__ifference approximation to a Diric.hlet problem on CQ.. Itis then easily verified
thaf the matrix A alsé have_ é simple zero eigenvalue.

We now describe our method for solving the s‘ystem equations (3.1). It is solvable
‘ if and only if the_riéht—hand side v is orthogonal to the left eigenvector of A which |
c_o.rres.ponds to the éero eigenvalue. It is sﬁoWn in section 5 of [ 26] that the right hand

side v is always consistent regardless of its values on (C®,) if the data is already

h

consistent Q. U oan, .
(o} 1snon.h.ah

Guided by the c_:lassicél potential theory, we make the Ansatz

(3.3) . . u=pBlv+rlupp. |

Here p is a m-vector to be determined. D is'a nonsingular diagonal matrix containing

certain scaling factors"to_be specified later. Computing the residual vector weIOb_tain

v + B 1UDp) - v

'lB_lv .

(3.4) . Mu-V=(B- uvhyB™!

1

(UD - Uv'B"'UD)p - UV
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DO 0 U450y 8

Because of the factor U the residuals are zero for all x ¢ QhU(CQ)h. ‘They must also

: . ' T y
vanish on th. We therefore multiply equation (3.4) by U and obtain

(3.5) N (- VB 'up)p = VB .

Here we have used the relation U U =1 , the mXm identity matrix. We shall reter

m

- to equation (3. 5)‘ as the capacitancé matrix equation énd the matrix on the left hand side
of (3.5) as the capacitance matrix. It is shown in section 5 of [ 2¢] that the capacitance

matrix which we shall denote by C has a simple zero eigenvalue and that the right hand

, T -1 _ ‘ _ ‘ .
side V'B v of (3.5) is consistent if v is consistent for the original problem Au = v.

. T _ - - ]
‘For the special case when v = UU v, we can simply make the Ansatz u = B ]UDp‘. tThe
capacitance matrix equation now beéomes "
' . ' T
(3.6) ‘ Cp=U'v.

' T - : T T - ) '
Let ¢ satisfy ¢TC = 0. Then ¢T = ¢TVTB ]U. Therefore & V B lv = 0 implies

T, T T o
¢ U'v = 0. Hence the right hand side U v of equation (3. 6) is again consistent if « is
consistent for Au = v.

We now describe our choices of difference equations at thevi"rreg“ular'r'nesh points.

, .
Let P th. Let P Dbe its closest pointon 8. Let W, E, N, S and NI

be its western, eastern, northern, southern and northeastern neighbors on the mesh.

Assume that the local orientation of the boundary is such that W is always in (CQ)h

while N is either in th or (CQ)h

Let a <7m/4 be the angle that the normal through P. makes with the closest

depending on whether P has one or two neighbors

~in (CQ)h.

coordinate axis. We approximate the Neumann boundary conditions by the following first:
order scCheme.

*

g(P )h cos o .

(3.7) ’ | u(W) - (1 - tan a)‘;l(P) - (tan o)u(S)

(3.8) u(N) -1 - tan. a)u(NE) - (ta:n a)u(E). = g(P*).h_cos a .



. ~In our first scherhe, we combine the equations (3.7) and (3.8) with the discrete

Laplacian. to form the following equation regardless of whether N is in (CQ)h or not,

(3.9) cos a[ (3 + tan a)u(P) _,(l + tan a)u(S) - (1 - tan «)u(NE) - (1 + tan (V)Q(E)]

*

= cos a[hzf(P) + 2g(P )h cos a] .
We shall refer to this scheme as scheme I.N.a.

The second scheme is as follows. " If P ¢ 502 . has two neighbors in (CQ), ., we

I h’

- obtain the equation (3.9) as in scheme I.N.a. If only W isin (CQ) we only use ’

h’

-equatiion (3.7) to combine with the discrete Laplacian. We then multiply both sides of

the combined equation by 2 cos o -instead of cos o to obtain the following equation

(3.10) . 2cos a[(3 + tan a)u(P) - u(N) - u(E) - (1 + tan «)u(S)]
' . * '
= 2 cos a[f_(P) +g(P )hcos af .
We shall refer to this scheme as scheme I.N.b. Both schemes I.N.a and I.N.b give rise

to matrices All that are positive semidefinite with null space of dimension one that

consists only of constant functions. Itis easily verified (see e.g. [ 3]) that the solutions

of the discrete problems are "O(h log h) approximations to the exact solutions.

The matrix D on the left hand side of equation (3.5) contains the scaling factors

dP = sec a. Here dP is the diagonal element of ‘D on the row corresponding to .he point

P e th. The scalihg factors cos @ and 2 cos a- in equation (3.9) and (3.10) respectively

and the diagonal elements dP of D are chosen so that the off diagonal part of C may

be a formal approximation to the compact integral operator K defined by equations
(2.3)-(2.4) with G  replaced by the Green's function on a rectangle with ‘Dirichlet boundary

-

conditions. Because of the irregular patterns of points in 9% the near diagonal part,

h’
vt'he'remaining part of C, will not in general be a formal approximation to the identity

opcrator. It will be shown in section 5 that this necar diagonal part is uniformly well

conditioned in the spectral norm and that the singular values of C are distributed like that
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| of the sum of a ;ggs,litiwekdefi?mté‘sﬁnmetn%j oé%:rag%r ?nd a éombact symnieﬁri.c 'ope,ratér.. It
is shown.in [14] that the conQergené_e lof conjugate gradient method for solving operator
equations with such operators delpend asymptotic..aklly only on the spectral condition number
of the positive definite symmetfic. partsl of the operators.  The mcthc.)d Qi’ prvoot' in [ 1] do'.cs
not apply in our case. Wé' s.h:a‘l'l shovs.f, hoWever, inv'sectio:n_ ,6' with a different: épproagh
that the‘ corre‘s'ponding ratve’s Qf co_nve'rge_nce.in_ our cases depend alsp aéymptoticdlly on

‘the spectral condition numbers of B -
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§4. Computational procedures and operation counts

We shall solve the matrix equation
' T T, T -1
(4.1) : : CCp=CVB v
by the conjugate gradient method. This is equivalent to solving the least square problem
for the capacitance matrix equation. See section 6 for further details.
o o o T "

In principle we can set up the matrix C by computing V B "UD. This takes at
icast m fast Poisson solvers and m storage requirement. It is therefore much better
to use the following algorithm. For any vector v we compute Cv as follows. Generate

| . -] T ~1
the mesh function. UDv, use the fast solver to obtain B "UDv and compute V B UDv
at an expense on Lthe order of m  operations. The vector C Cv  can be obtaincd in this
fashion at a cost of essentially two fast solvers. It is easily secn from (6.1) and (6.2) of
section 6 that each iteration of the conjugate gradient method will therefore cost about two
fast solvers. The theory pfesented in sections 5 and 6 does not preclude the possibility
that the number of iterations to achieve a given accuracy grows like log m as we refinc
the mesh size. We have, however, consistently found in our experiments that thé number
of iterations stays constant as m increases and that we can achieve an accuracy of between
two and three correct decimal digits for only four viterati‘ons‘. The operation counts for many
discrete problems are therefore ten times that of a fast Poisson solver on a rectangle and

. , ' 2 ' . ,
the storage requirements are of the order n~ where n = 1/h. We have used the generalized .

marching algorithm describe‘d in [ 2] for our fast solver on the rectangle. The operation

(n+l
2k

marching step, if 'n = k2 - 1 for some positive integer £. The marching algorithm is

counts of this fast solver is approximately 3nzlog ), where k is the size of each
unstable for large . k. We have, however, found that k = 16 is good enough for our
purpose. The operation counts for many problems therefore do not exceed 120 n'. Itis

possible that if fast Fourier transform methods are used to compute B UDv  in the
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COmputation of »Cv, é‘theﬁ"ialgjégrifi’m i:%ul%‘%e ae’?‘ve'{? mkj;re gfﬁéi‘ent if we exploit the sparsity
of the vector Ui)v in the Fourier analysis step. One big advantage of the capa.‘c.it‘anc'e ‘
matrix méthoa is that it can be speeded up k;yv‘the.‘rep'lacem.ent of a spbroutine, whenever a
| faster Poisson sol\fef bec.:om'esv availgb'le. Finai‘ly we vmentionv thét og’r' algérithm can be
used for’thc'numériéal solut.ion'of _the.Nerumann probiem_fér.

| -Au + Cu = f on O, cC>0,

although the theoretical results in this work does not immediately. épply.

+



§5. The distribution of singular vglue's of C

We shall' show that given & >0, then almbst_ all the singular values of C lie in

+¢] where d, and d. are positive numbers independent of h.

the interval '[dl -g, d ) 2

2

This is accomplished by first proving that B, is Lmiformly well conditioned in the spéctral

h
" norm and that almost all the singularvvalues of Kh lie in the interval [0,e]. Our main

result then follows by a simplé application of a well known result in matrix theory which

we shall state below as lemma 5. 8.

h which we réfer to as the near diagonal part of the capacitance

'Deﬁnition. The matrix B

matrix is defined és follows. Each entry of B that corresponds to thé irregular mesh

h
points P and Q is zero if d(P, Q) > ~h; otherwise - Bh(P, Q) ECh(P, Q). Here d(-,-).
denotes the Euclidean distance function. |

Definition. The mz;trix Kh which we refer to. as vthe off diagonal- part of the capgcitance |
matrix is defined to be the difference between.v M and Bh’- i.e. Kh = C —Bh.v

Theérem 5.1. Given & >‘ 0, there exists a positive integer N sqch that for all 0 < h,

all except N singular values of K _ liein [0,¢].

h
" This theorem wili .be a consequence of lerhmaé 5.1—5. 6 below. TFirst we need some

ba_sic results from the theéry df collectively compact operators. Lét K:X X be‘ a compact

operator oﬁ a complex Banach space X. |

Definition. A subset SCX is _séquentially cormpa.ct if any sequence in S confains a

convergent subsequence with limit in X. , e A o -

Definition. A family of operatorsb Kn ‘on X is colleqtively compact if the set

{an : "f” <l, feX, n-= 1,. 2,... } is sequentia}ly cémpact in X. The following result

is_.an immediate consequence ofva theorem in [1]. See also Chapter 4 of [26‘] .

| Lemma 5.1. Let {Kn} be a family of collectively éompact operators on a complex Banach

space X with Kn convérging pointwise to a compact operator K. Given & >0, let Ky

-10-
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with algebraic multiplicities mi be the N(% igénvalues of K with absolute values

: grea_‘te( than €. Then there exists a pqsitive integer N‘«r and a e*>0‘ such“that for all nzN’,
each ve* ne_igh__box"hood of ¥ contairie exavctllyv m1 eigenvalues of Kn while all the
other leigen;)alues of Kh lie in an e-neighborhood of zero.'

We now _cohstruct a family of operators '{KS} from L{Kh} es follows.. | Let ¢,¢
both.mapbings from the unit ih-_terval l [O, 1] to the reai 1ine, be a smooth parameterization
ef a‘Q., Let Pj” j=1,...,m be the ir;eqular mesh points. Let P; = (¢(tj), Lp(tj))f be

_ _ - _ ’ *
the points on 9 which lie on the normals through Pj with d( Pj’ Pj) <h. We require that

S 0<t, <t <0 < <l.
0 = tl t2 tm ‘1
Let Lm denote the space of m tuples with the sup_norm.. Let ‘C[O_, 1] denote the Banach

spa'ee of continuous functions on the unit interval with the sup norm. Let

(5.1) o k(t,t) = yK (P, P,-)}" (1 - y)-Kh(Pi,lv’j)-’,

where ‘ | | “ |

(5.2) o Y“'(t-" t')/(ti-l-.vti)’ t St<t, i=2,...,m;
(5.3) | ' (t - t - 1)/(1: -t - 1), t>t Pi-i_E Pm, Pi = P1 ;
(5.4) ' | Y =,.(t - tl)/(tm -t - 1), t <t Pi_-l = Pm,} Pi = P1 .

Define bounded linear operators P_ : C[.O,‘l]‘-—— L,K :L -cC[o0,1], and
s > 'm m’ m m

K :C[0,1] = C[0,1] by

- (5,5) - P f=v, | = f(tj) ;
- Q
(5.6) (K v)(t) = &, g(t,tj)v(tj) ;

(51 A0 = R0 = R V).

We then construct another fémily of operator‘e {Kx'n} from {K;I;} * by the above procedure.



Let Ks = K;nKm. It is easily verified that {KS} is also the family of operatdrs forn'xéd. from

T
{Khhh

} by the same procedure.
Lemma 5.2. Let [X] denote the Banach space of bounded linear opevrators on a Banach
sbace X. For any \#0,
()\I.—-KTK )'—le..[ L ] iff (\]1-K )'la[c[o 1]] .
- h h’ m' s ’

E@i- For \ = 1, the lemma is proved in ['lr] . Exactjly,’ thé same argument applies fér any \ = 0.
Therefore, the noﬁzero»eigenvalues bf K’rTth "and K.S coinci‘dve.
We shall ndw brieﬂy describe‘the relaiions, between various disérete and
coﬁtinuous Green's fun.ctions.. Let the discrete analogue of the. loga'ri’thmicf
Green's function be denoted momentarily b}'/ G. This discrete Green's fuhction G has
been studied in great détail in [ 4], [24], C'Ihapter. 3 0of [27] and section 4 of [28]. It 1<
translvational invariant so 'that we mayréssume tﬁat the second barameter is fixed at the
origin and define G as a function of one parameter by
Ghﬁ)=ﬂ&0)w%m P=(a,b), O=(0,0).

* ' .
Let G :(a,b) ~R Dbe defined by

.G*(a,b) = (1/2w) log(a2 + bz) .

Let 'Gx, Gy be defined by

‘G, (a,b) = G(a +h,b) - G(a,b) ;

G(a,b + h) - G(a,b) .

G, (a,b)

, * * ‘ ' ’ : : : _
Let Gx’ Gy be similarly defined. - It is shown in section 4 of [ 28] th_at f_or any nonnegative
integers r and s, r >s, the following holds
3

% * . -
(5.8) max{ lGx(sh,rh) - Gx(sh», rh) l, le(sh, rh) - Gy(sh, rh] }._<_ (0,.' 34)r T .

(5.9) Gx(sh, rh), Gy(sh,rh), —ny(sh,rh) are always positive .

-12-
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(5.10) -G__(sh,rh - h) and G_(sh,r }gx) —"“)C (sh - h,rh - h) are
Yy o - YY - YY

always nonne(ja'tive for r>2s5, r#0 or s#0.
The following property of - G permits us to extend (5.8)-(5.10) to negative values of

r and s .

(5.11) . . C(fh,sh) = G(sh,rh) = G(—sh,fh) = G(s'h',"—rh') )

Finally, G satisfies

, {1, r=0,s=0;
h"AhG_(rh,sh) = :

0 otherwise o

so that by (5.11), the following holds

(5.12) - |  G,(0,0) = g;y(o,o) = ,1/4"

Let G' be the Green's function on the rectangle with zero’ Dirichlet boundary conditions. It -
] S . ) A v : * . .
is shown on p. 315-318 in [1l1] that G' and G differ only by a smooth function H and

y -1 ‘ ‘ ' : - ,
that B and G differ by @ mesh function H_ which is an O(h) approximation to H.

h

~ Using the same technique of proof used in [11], it is easy to see that if P, Q are both

bounded away from 9S uniformly in h, “then (P, Q) is an O(hz) approximation to- -

. Hh
: -1 ) * )
H(P;Q). In what follows, we. shall denote - B and G' by G and G unless stated

otherwise.
] . * ) . ) .
Lemma 5.3. aG /avP is uniformly continuous with respect to both parameters P and Q
. * . . . .
of- G ifboth P and Q lie on a closed curve with continuously turning tangent and with
continuous and bounded curvature.

Proof. This result is well known if G is the logarithmic potential. See e.g. [25]. Since

* : , » .
G' and G differs only by a smooth function, the lemma clearly follows.

- Lemma 5.4. Let 'P-and Q be two points in 9%, with d(P,Q) = hB, ‘B <1/2 andlet P

h K

and g be the angles that the

~and Q be their corresponding points on _aQ. Let ‘aP

normals through P and Q respectively make with the closest coordinate axis

_.(5.13) : Kh(P, Q) = 2f BG*‘/BV- '*](P*;Q*) h sec aq O(.hz'—zﬁ) .

P Q

-13-
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Proof. We shéll ohiy treat the case for scheme I.N.b wh'e‘n_ P has only one neighbor in

(CQ)h' The proof for all other cases is almost identical and will not be given. Let

W e (C2) Then

h* _ .
(p Q) = (sec aQ/sec a ) 2G(W,Q) - 2(1 - tan aP)G(P,AQ) - 2 tan o ,G(S, Q)] .
Byv (5.8) and the discussion following (5.12), , |
. x % : 5
G(W, Q) - G(P,Q) = G (W;Q) - G (P;Q) + O(h ),
' * . * 8
G(S,Q) - G(P,Q) = G (5§;Q) - G (P;Q) + O(h ) .
Here & = min{2, 3(l - B)}. Since the modulus of the second partial derivatives of log d(P, Q)
. is not greater than [d:(P, YQ)].—Z, it'is easily verified that (5.13) holds.
Lemma 5.5. The family of operators {'Ks. }. is collectively compact on Cl 0, 1].
Proof. We first _showihat {Km } is collectively compacton C[0,1]. We construct a family
of operators Km on .[C[0,1]] by the same procedure described above with Kk(t, 'tj) in
(5.1) replaced by k (t, tj)- defined as follows
: % ' * * -
(5.9) k (t,tj) vh sec ap [8G /av]( 1-1‘Pj)
o s ]v
* * %
+ (1 - y)h sec ap [ G /at{](Pi ;Pj) ,
j ) .

where the normal derivative is taken with respect to the first variable and vy is defined by

(5.2)-(5.4). Let ”kt '|= max k(t,tj)l and k| = <, | . By lemma 5.3,
i ' ~ j j '

*
Ik £l < constant lkllllell,

00 = (57,00 | £ constan Ik -k el . N .

Hence, {Km} is collectively compact on C[0,1] by the Ascoli-Arzela theorem.. By

lemma 6. 3,

. * m - *
Ik -k | <max ), Ix(t,t) -k (t,;t)] = 0(1) as m=e .
m m . t j=1 J . ] _

-14~
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. . N ! i I 1 £ 2 g .
Thercfore '{Km} Qndi'?sini’iéla rly “"3 Yre ‘goll%ctiﬂlelé compact on C[0,1]. The theorem
easily follows.

Lemma 5.6. st - Kle for each f ¢ clo,1] whéré K is the compact integral operator

defined by

(5.10) - KD = 2 f aG*/avP]fds,

‘where P = (¢(tp), LL('tP)).

Proof. Let {Q. = Pi(j')’ j=1,...,n} be asubset of th that is chosen as follows. The

t are strictly increasing as j ranges from 1 to m and d(Qj’Qy{-l) is between ~h

i(j)

and 2~h. Let_ Qj be the corresponding points on 9%R. It is easily seen that as h -0,

NG

(511 KAt = 2 ) (96T /avI(BQ)A(Q), Q) )Y ) + 0(1)

j=1

* % ' o '
The d(Qj , Qj +l) on the right hand side of (5.11) can ke replaced by [i(j + 1) - i(j)] h sec acy
. ' j
‘without affecting the 0(l) nature of the remaining term. ‘It then easily follows from lemma 5. .
that Kmf - Kf and similarly _Kl'nf - KTf foreach fe C[0,1].

Proof of Theorem 5.1. By lemmas 5.1, 5.5 and 5.6, we see that Theorevm 5.1 holds for the

singular values of Km. The theorem then follows because of lemma 5.2.

Theorem 5. 2. 0.251 < BTB' <7.291 for scheme I.'N.a ;o

h h
0. 251 < BEBh < 141 for scheme I.N.b .

Proof. Below we give the proof for scheme I.N.a. Details of the proof for scheme I.N.b may

~ be found in section 5 of [28], where it is shown that the Bh matrix for schemes I.N.a and

I.N.b are essentially the same as that of schemes I.a and I.b considered in [28] respec-

tively. We shall first prove that the folloWing holds for scheme I.N.a

. (5.14) , BhBh>I

The following lemma is well known.

-15-



Lemma 5.7. Let the stmetrié pért of av'matrix A satisfy

(A + AT)V/Z >8I, 6§>0.
Then |
ATA > 51 .
Let BS .denote | Bh + B:' We shall s‘how‘ th_atf ; ;
(5.15) o ‘min  {B_(P,P) - Z ‘ IBS(P, Q1) >1
Pean Qea, Q+P :

so that (5.14) hclds beéauée of lemma 5.7 and a' well known Gerschgorin theorem.

Let P ¢ 30 Assume that the local orientation of the boundary near P is such that

h'
for any point P! e-'th in a"__neighbofliood_of P, either W' and N', the western and

northern neighbors. of P!, are both in (CQ) h

b or W' alone is in (C@) . Let E and S

denote the eastern a'ndsbuthem neighbors of P respectively. Then

) GX(W;Q) - (tan aP) G.y(S;Q)

. (.‘ﬂl()) . ‘sh(P’ Q) = (sec aQ/sec dP

+ GX(N?Q) - (tan O/P), Gy(E;Q)] -

Here the subscripts x and vy denote the forward differences in the vxl and X, directions
respectively taken with respect to the first parameter of G. Be‘cau'sc of the band structure

of B_, we may assume without loss of generality that ‘G is the discrete analogue of the

logarithmic Green's function. The error resulting from this assumption is less than a constant

times ~h.

p is bounded away from- 0 and 1. Then for h sufficiently small,

"~ Assume that tan o
(th) , a subset of 9 »vs}hich contains a ~h neighborhood of P can be.partitionad
loc v ' ' ' '
into blocks as follows. Let

h

1, = {(0,n), ...,(O,Mlh)} ,
I = {(kh, M h +h), ... (kh, Mk+1h)}, k=1..,K,
I, = {(-kh,—M_(k_l)h),...,(—kh,—M_kh + h)}, k=1...,K .

T=16-



o
#
)
s
&

2 U U 6 | 4

Then -

o K

: !

(th) = U _Ik; P e IO- .

loc  k=-K,
2 .

Let m and rh_k be the number o f points in the nonempty sets Ik-—l and I_k respec-
tively. Then Mk. = _ml -0+ m, M_k =m_, .+ I m_; M0 = 0. Let Pj denote the

- point with yfcoordinate jh. By (5.8), (Sl.blé).and the smoothness of 9%, itis easily

verified that L »]BS(P', Q)| will remain essentially unchanged if tan aq is replaced
' Q+P ) . : . . ‘

throughout by tan e Let a = tana,. Let G(i,j)= G(ih,jh). Let P= P1 Then

p v

(5.17) BS(P,P) =2+ 21~ a)ny(0,0) ;

B.(P,P) = (1-a)(G, (1] - i_l».- D -G, (0 ]-1l- D), Byl

Hence, if F’j € 10, then
(5.18) j;i B_(P, Pj) = (1~ a)[G (0,0) - G (0,M, - i) - G (0,1) + GX(O,.MI +1-1)]

(5.19) ), BUP,P) = (1-a)[G,(0,0) - G (0,i - 1) = G, (0,1) + G (0,1)]

i>j K
Similarly, if Pj €I, k=12,...,K, then

. = - ‘-‘l. (k - TR -

BS(P,PJ,) {1 a)[ny(k,J 1)+ny\k Lj-i ]

b, BRP) - -0 - a)G (K, M, +1- 1) - G kM, +1- 1)

' k
% L -
. + Gx(k -1, Mk - i) - Gx(k -1, Mk+l,— i)] .
On the other hand, if Pl k=12...,K, then
- _ . . D . + . v
B (P, P_j) | (1 a)[ny(k,l +j) + ny(k 1.,1 Rl nr,
) Z(JI By(P,P_) = ~(1= )G (k,M_y )y +1) = Gy (k, M_y + 1),
-j -k : .

+ Gx(k - 1, M-(k,-l) +i- ‘1) - Qx(k —. 1, M_k +i-1].

-11-



It is easily verified from '(5.9) and (_5.10) that
BJP,P) <0, B el k=52,
. ’ . >0 )
(5.20) | B,(P,P) 20, P I

‘Since we only want to obtain an upper bound for Z IBS(P, Pj) [, we may assume without

| PP,
loss of generality that Bé(P’ Pj) # 0. iff Pj ¢ (th) . Then,,'by summing Pj over j>M
' loc '

]
+1-4) + Gx(‘o, M - i)

- Y B (P, P) = (1= )G (1, M 1

1
' kz:‘/l {.GXX(k, M]('H - 1) + Gxx(k - 1, M}_C'H - 1)}

K,+1"i)'Gx(K".1’MK+1‘1)]'

-G (K,M
xl. 1 _ 1

By (5.9)
1 C . . o |
k};l[ny(k +LM - i) + ny(k, MkHv -1-14)] < Gy(Z,MZ'- i) + Gy(l,MZ S ).

i
+1—i)+GX(0,M

Hence, the following holds when Pj is summed over all j >'M

1 - 1)

(5.21) ) IBS(P,_pj)l <(1-a)lG (M ]

+G (2,M, - i) + G (L, M, - -]

Similarly, the following holds when Pj is summed over all j <0

l«}i—z)].

(5.22) ), B (P, le < (1-a)[Gx(1,_ i) + G}’{(o,‘i'- ) +G(2,M_

+i-1) +Gy(1,M

By (5.17)-(5.22),

(5.23) B_(P,P) - P}é IB'S(P, pj)_l <2 - 4(1-a)[G(0,0) - Gx(o,l)]. -(1-a) H(i) \
j - »

where

H(i) = Gx(o_,i) + Gx(l',bi) + Gx('o, M

1

+1-1) Jer(l,'Ml +»;—i)»

+ Gy(l, M_1 +i-2)+ Gy(-Z,M +i-1)+G (], M2 -i-1)+ Gy(z, M2 - 1) .

-1
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It is easily seen from the table o

p. 292 of [Za that H(i) attains its maximum at

either i =1 or i= MI" It is-then easily verified _with‘the_aid of the above mentioned
- table that
(5.24)  4aG_(0,0) + (1 - a)G}‘((O-,vl)_S (1- a)H{), i=1,...,M

"By (5.23) and (5. 24), we see that (5.15) holds for our choice of P. 4
The proof for other choices of P is almost i_dén‘ticall'_a'nd will not be completed. Thus

~ we complete the proof for'(S.'(s_). We now proceed to prove.

5.25 : : : < . .
( ) __ BhBhv_ (7.29)1
We shall show that the following holds , ¢

. » . N ' \ T o N
(5.26) L max{), |B (P, Q)l, ) IB(P,Q)I} <2.7.

. _ h h ! _
We assume that the local configﬁrat_ion of points in anh ina ~h -_ neighborhood of P is
similar to that in (th) describad earlier in this section. Let Bh(P, Q) be defined by
- loc ' ‘ ' ‘
T*

. . *
equation (5.8) with G replaced by its continuous analogue G . Let B (P, Q) be

h

similarly defined. We shall first show that

. - *
C(5.27) | l %/ lBh(P, Q) <0.7.
. Y >3 o
, YQ =
* . : : . , .
Let r, r, ) r', r, and rz.'deno'te ~d(P, Q), vd(w,Q_), d(s, Q), d(NE, Q), d(N, Q) and
d(E, Q) respectively. We aéa’in assume that 'tan o, = .tan a Ea fof all™ Q such that

P Q
Bh(P’ Q) # 0. Then o N
| | 2 - B;(P, Q.) = —lrog(r*/r)v+"a log(fl/r) |
| —log(r*/r') + a l‘og(rz/r')‘ .

Let the coordihate_s of P,Q be (0,0) and ( ) respectivély. We have

*¥q
*2 2 2 2 22 2 2 2 2 S
- o= + -3 - = 2 - ; - = + h ; - - 2[ - }  -
T r -. thQ hiyr, -r : th‘ h r, r ZhyQ | rz r 1yQ 1.
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Hence,

' 41rB;(P, Q) = (—va h + Za'}'Qh)(l/r2 s l/rlz) +(a - 1)1’12(1'/1”2 - l/rlz) +R

Q -- Q-
- where

IR | <{(2x

0 + 'n)2 + a(2yQ + h)z]hZ/Zr4 +[(2x - h)2 + a(ZyQ - h)z]hZ/Zr"% -

Q Q

It is easily verified that if P, Q are two points on 8@ with d(P,Q) <h', 0 <y<1,
and ta is the tangent at Q to 3s2, then
’ - - ) . 2 , .
d(P, ta) <(x + O(1)h“Y,

where « is the maximum absolute value of the curvatures of = 9% Hencé, for all practical

purposes we may assume « = 0. Then

xQ = §y§+€h, 'Ieljl.
Hence,
L emeolsree,
|le>2 N L
‘where _ :
F(r,r') = Z {th(l/r2 + l/r,Z) + (1 - a) |l/1r2 - l/r'_ZI
Y | >2 '
(@b’ 2yt vt s a)nt/art +ntsery)

»+ 2(xQ + ayQ)(hz’/Zr4 - .h3/2r'_4)} .

Taking into account the local configuration of points in a Nh neighborhood of P for

a certain = tan ap, we easily see that for all 0 <acxl, _
| 2 2. 14 2 4 2 4
b (kg tavghr < X KAk -1 +k Ak D)
ly 1>2 k=3 | »
Q
Hencé,

-20-



, U4 s U Ube e
Fir,r) < ), {8/k" +(3-a)/(k - 1) + (1 +a)/(k + 1)

)4

2

s 1/k + 1)
4

2k - 1

4

vkt v 20 -0t F 2k 4 )

£ 282 (LK + Lk + 1))

<8.78.

This completes the proof of inequality (5.27). By (5.17),

(5.28) : '_ IBh(P,P)I ;1.

It is easily verified that ElBh(P, Q) ,, Pz Q, N <2 attains its maxi'mum when a =0

Q

A simple calculation with the aid of table Iin [ 4]

and P has two neighbors in (Ci?)

b
or table II in [ 24] shows th%t when summed over all Q with 0 < |yQ-| <2, ,
(5.29) 3 =[B,(P,Q)] <0.96 .

By theorem 4.3 of [ 28] and table I of [ 4], we see that

(5.30) L B (PO -B(PQl<0.04.
. " lyQ'|_23 ' S,
By (5.27)-(5. 30), | |
(5.31) ), V]Bh(P, Ql<2.7.
. : Qe dn : ’

h

Since the same inequality holds by a similar argument when B, in {5.3l) is fe'pla_ced by

h
T : . '
‘Bh, we casily see that (5.26) and hence (5.25) holds.

Lemma 5.8. If D= A+B, where A and B are arbitrary matrices with singular values

2Z----_>_an‘_>_0 and {312(32-_>_A'r_>_[3n_>;0 respectively and & 26 > >6 >0

>
“1 - 0 1 2 _ n—
are the singular values-of D, then o - , ' -
6 < + . PN . . . ‘_ >. 3 .
j4j41 = ai+l (5], ne i,) p051_t1.vc integers

Proof. See e.g. ex. 28 on p. 89 of [20].
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.Theorem 5.3. Let d, and ‘d_ -be the spectral bounds ot B. .

o SN :
i 5 h Then g‘u__/en € >0, thgre

exists a pos_itive integer N independent of h such that all except N singular values

of C liein [d‘l—'e,d2+e].

Proof. Let C, Kh and Bh be mafrices A, B and D respectively in lemma f»’.8.‘ By

theorem 5.1, given & >0, there exists a positive integer p such that for all h >0,

B j=0,1,2,...

<
Since

d <6 <a + B

S j = 0,1,2,...
1= m~— m-p-j ptjtl ]‘ P ’

‘only the last p +1 singular values of C may lie to the left of dl - €. Similarly, by

letting Bh, —Kh» and C be the matrices A, B and D respectively in lemma 5.8, we
. *

- see that only the first. p +1 singular values of. C lcén lie to the right of d2 1 €.

Theorem 5. 4. Let ”M “ and R(M) denote the spectral norm and range of a matrix M

. _ : o s . _ o T ST .
rgspectwely. Let All' be the same as in (3.2). Let As = AllAll IR(AH) and |
Cs = CTCIR(_CT) be the restrictions of AlrlAll and CTCV to- R(Arlrl) and R(C") respec-

tively. .The.n 7
o R P T Ky o
s s
where B and D' are the samé as in equation (3.5).
Proof. -Let v = ﬁUTv e R(A). Itis shown in svec'tion 3 that 'UT'v € R{C) 50 that we may
make the Ansatz u} B_IUDp fér the solution of Au = v and solve the altelmativ‘e form
bf capacitancé matrix equation vCp = UTV for_ p let p1 be the eigenvectqr corresponding

e

. ' T
to the smallest eigenvalue of the positive definite matrix Cs' Let Cpl = U Vl’ where

1 1
s e

v. = UU%.. Then
_ 5
e

1° |

- T
= lcH vty
s
'_l . ’ *
=B UDpl. Let U and

Here ”v” denotes the Euclidean norm of a vector v. Let ‘ul

-22-



. SRS - T T o
U' be the exten@iofffop‘érat@rs"’fro:ﬁ ftz'h Wad?} tgq oAl mesh points and from €, to

h
o _ _ * AT *
'Qh U aQ_h respectively that are defined the same way as U. Let ul = U ul =u, + Uy
n * | * T N :
where u, ¢ N(All)’ the null space of Au; uj € R(All)' Because of the reducible structure
of A, U Tv ¢ N(All) if v ¢ N(A). Hence we may write upE o, + U, where u, « N{A),
. * * ' *T * v ) ' : - . h
- U u2 = uZ and U uj = u3. Let ¢ % 0 ¢ N(C). It is readily verilied that
B‘llﬂ)w #0 ¢ N(A). Since both N(A) and . N(C) are of dimension one, we can choose 9
such that -B-II.J‘D - u.. Then ut = U UDG - w). Clearly, o -0 > i
a ¢ = U, en uj = | (p) g C arly, gy = 2oy
Hence,
- . .
(5.33) | o T > e
._' : * V*T' :
On the other hand, A“u3 = U v, Hence,
' * 12 -1 2
< . < R
(5. 34) | oy I < lla "o 17

The theorem then easily follows from (5.32)=(5. 34).
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§ 6. Rate of convergence of the conjugate gradient iterations

Let b denote the right hand side of the capacitance matrix equation. We afe concerne:!
' T T . :
with solving C Cp = C'b by the conjugate gradient method. It is shown in [ 21] that the

conjugate gradient method gives the solution

A
p 'v(/ b '*(l_ I)po.

A ' : : -4+ .
Here C - is the generalized inverse of C. For any m-vector b, C b is the unique least
square solution of Cp = b that’is of the minimum Euclidean norm. P is the orhtogonal

T .
projection of Lm onto R(C”) and o is the initial guess. We shall assume throughout

' T + ' ‘ -1
~this scclion that p,. ¢ R(C”) 'so that = C b, Let v = CTb. Then p = C "v. More-
Po P s

over, from'(6.1) and (6.2) below we see that all the relevant vectors generated in. the
conjugate gradient process are in R(CT). Hence, the origibnal problem is reduced t'tO‘sol-ying
Qp = v ‘by the cohjugéte gradient method where » ,Q.E Cs is a posifive definite sym.metrivc 7
matrix.

We now brieﬂy describe the conjugate gradient method. See e.g. [9], [l4»], [15],
[16] and [ 23] for details. Let Py = 94 = v —'on. The conjugate gradient process

generates a sequence of vectors

Py approximating the solution p by

. T T

: T T
y _ , - T _ C o N ,
where 9, = ka - v. The p, are Q-conjugate, i.e. P; ij =0, 1#j. The Py
' T . L
minimizes the quadratic form (l/Z)WTQw - v 'w on the linear variety Po + Yk where’ Yk‘

is the subspace spanned by {po, pl, cony pk-l}" The iterates Py svv‘atisfyv

+ P (Q)g

(6.2) Po * k-1

Px 0

- where Pk ] 1s ‘a polynomial of degree k - 1. Itis shown in [ 23] that among all iterative

methods that satisfy (6. 3), the conjugate gradient method is optimal in the_ sense that

- -24-



- p) | )

is minimal. It then easily follows that if )\i are the eigenvalues of Q, then

. . 2
. < ' ) ,
(6.4) _ . E(pk) < max(l + \iPk_l(\i)) E(.po) ,
for any choice of a polynomial Pk—l of degree k - 1. Let Z: (a,b) -~ R, where (a,b)

are ordered pairs of positive numbers a and b be definad by

Z(a,b) = [(1 - ~Na)/Al + \f)]b.

It is known (.seé e.g. [9] or [23]) that we can select Pk~l(\) such that

(6.5) _ max,l+>\ P

N
i.

k- l(\ )’ = 22(}"7 k) ’

where « is the spectral condition number of Q. On the other hand, suppose all except

N eigenvalues of Q lie in the interval [c‘tl,cz] . Lot \i’ i=1,...,N be the excop-

tional eigenval ues. Let Ky = cl/cz. Then as before we can choose P, (\) such that

k-N
max JL+xP )l <2[(1 - ~Ne) /1 + N ) BTN
i F-nty ] )
c,Sx <c
I—i—= 2
Choose Pk_l(k) such that
LANP. () = [14NP 0T =x ) e v =n )=DA oen
k-1 k-N 1 N 1 N
Then
(6.6) Comaxllen e ()] < 22(ic, k = N)  max {TT - D)
IN 1 1 c. <\ <c i=1

i - =2
By (6.4)-(6.6) and theorem 5.3, we easily have the following theorem.

Theorem 6.1. Let « and «

1 h h

tively. Th'en given € >0, there exists a positive integer N »inde_pendent of k and

such that

-25-
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E(pk)/ﬂ(po) 5 nv‘fi..n{‘:l‘Z(k, 2k), 4Z(Ki - 8, ék - ZNI)X( NB I

v N _ | | ,
Here x(\) = max T I - )\/)\il where A i=1,...,N arethe N eigenvalues
¢, x=<c , i=] :

of CS that lic outside [cl - &,0C, +¢}. Here S v"and c, are the spectral bounds
T ' '
of Bh.Bh'

Corollary 6.1. The number of iterations needed to reduce E(pk)/E(po) to a given accuracy

‘can grow no faster than constant logm as- h - 0.

Proof. By theorem 5.4, the smallest eigenValue of CS is larger than constant-m . The

corollary is therc_afore an immediate consequence of theorems 5.2, 5.3 and 6.1. _
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§7. Survey of prévidus work on'ca’%acﬁ‘iani ‘o Matrix n%ethods

We give here only a brief survey of previdus work on capacitance matrix méthods.
See also section 8 of [ 26_] for more references antd more details on some of the refer_enﬁcs
mentioned here. C. W. Hockney gave a briev”f description of a method of this typo in [ 18].
He credited Oscar Buneman for the idea.

The papers[f] and [13] by Buzbee, Dorr, George, and Golub énd.chrgcfospocnx@Iy
used the same Ansatz

u = By« B"IUDP

as is used in our algorithm to treat the Dirichlet problem. It is then shown expﬁrimgnm&ﬂ]y
in [26] énd theoretically in [ 27] that the resulting capaciténce matrices C are ill-
" conditioned and that the singular values of C clusfer afound zero. The conjugate grad.ent
methbd was used in [13] to solve the éapacitance matrix equations using an iterative
imbedding technique similar to that mentioned in section 4 of-this work. The _.number of-
iterations used to achieve a given accuracy are ﬁropqrtnanalto the square root of ﬁn, the
order of‘ C. The regions considered in [ 7] ‘a‘re of a rathér simple type. The matrices C
are positive definite symmetric and the Cholesky method is qsed to factorize. C. The
numerical results are obtained on a CDC6600 and a gain in speed of a factor ‘t_hree is
reporuxiih [ 5] for runs on CDC 7600.

The paper [ 26] by Proskurowski and Mﬁdlumﬂisxxobablythe first ono tha* exploits
the sirﬁi]arity between the classical potential thevory and thé ca.pacita'nce malrix mothod.
It is shown experimentally theré that by maki.ng the correct Ansatz guided by the classical
potential theory the capacitance matrix m'ethod becomes a well posed problem. The matrices
C for many test regions are uniformly well conditions in the spectral norva and the

'~ convergence of the conjugate gradient iterations for these regions appears to be independent

of the mesh sizes. It is then shown theoretically in [ 26] that for a large class of _domairis

=27~



" and some special schemes of appréximating_boundary'conditions‘, the above obs'erva_tion
is always valid. This work is mainly an outgrowth of [ 26]. It extends some of the

theoretical es’t'imat,es in [ 26] to all bounded domains with smooth boundaries.
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§8. Numerical exg@rixﬁ@nts" U ,;,g 5 Uy H 2 g

To illustrate the effectivéﬁess» of ouf aléorithm, we have uséd linéar polynomials as test
'.functicins. Trunca_tion.errors are riot present and the right hand svide of équation (8. 1) is always
consistent | |

(8.1 | | - N
(8.1) Auu U v

Let u and u be respectively the exact and numerical solutions of (8.1). Let

‘ , * * o '
- Emax = ” ﬁxl(u -u )”qo + ” 6x2(u -u )||°°, where 6x1 and 6x2 denote the undivided forward
Idi'_fferencves in the x1 and XZ directions respéctively. The domain 2 is an ellipse with the ratic

of half axes equal to y and the test function u satisfies u(x) = x,. The following is a table of

1

numerical results obtained by test runs on the Univac 1110 at MACC, University of Wisconsin,

Madison.
Table I
No. of iterations Y m Norm of C.G. Residual Emax (approx.)
4 1 36| ..5172056-03 -04
4 1 76 .5409905-03 -04
4 108 .7234433-03 -04
4 0 32 .3189510-02 .2-03
4 0.7 | 64|  .8658407-03 .2-03
4 0.7 | 92 | .1266753-02 .2-03
4 0 60 .5768389-02 .2-03
4 0.5 | 84 . 3497684-02 .2-03
. 7 1 |108 . 1820406-04 | -o06
7 0.7 | 92|  .1372015-04 } =06
e 7 0.5 | 84|  .3218270-04  -06

Scheme I.N. a is used to obtain results listed in Table I. ‘Typically it will take one or two
more iterations to achieve similar accuracies if scheme I.N.b is used. The norm of C.G. residuai

given in the fourth column of Table I is the L, norm of the conjugate gradient residuals divided

2

by the square root of the number of mesh points inside Q.
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§9. Conclusions
Since it takes two fast Poisson soi;/ers to complete .ea_ch conjugqte gradient iteratign,
the total operation cdunts of. thc algofithm are approximately ten or ‘eleven times that of
a fast Poissoﬁ s'ol;lef fér the La'placé'cy)r Poisson equation respectively. It is reported
in [ 2] thét the operation counts of a fast I‘o.iss.-pn solvcr. can be reaué(:('i to O(.nz)_ 11
the: fast F_ourier transform methods are Con1bined with k cyclic reduction ﬁietho‘ds if k

is proportional to log_n. It is, however, more¢ realistic to say that the operation counts

2

o . 2
of our algorithm are proportionally to n log

2n in the experiments carried out so far.

2 ;
n)~ is perhaps too conservative. It

: 2
Our theoretical estimate of a constant times n (log2

. ‘ 5> S
is shown in [27] and [ 28] that theoretical estimates of constant + n (logzn) can be
obtained for a special class of domains in some cases although it is still an open question

whether this is true in general.
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