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ABSTRACT

Data-driven techniques are growing at an unprecedented pace due to the
recent super-fast computational tools and resources and the availability of big data
by sensors. In the field of dynamics and control, many researchers are investigating
algorithms to learn from data to model systems, estimate physical parameters, and
design controllers, especially for complex dynamical systems. However, many of
these researches are still limited to simulations due to the unavoidable noise in
practical cases and the limitations in data acquisition. Some techniques lack any
physical meaning and it makes it hard to analyze the effect of parameters in the
system’s performance. Low performance to predict the system response for unseen
data is another issue that researchers are dealing with. Therefore, it is of great
potential to develop intelligent and robust data-driven algorithms to model and
estimate parameters of the system, where the reliable model can be used for the
model based control design.

We propose a nonparametric system identification technique to discover the
governing equation of nonlinear dynamic systems with a focus on practical aspects.
The algorithm builds on Brunton’s work in 2016 and combines the sparse regression
with algebraic calculus to estimate the required derivatives of the measurements.
This reduces the required derivative data for system identification. Furthermore,
we make use of the concepts of K-fold cross validation from machine learning and
information criteria for model selection. This allows the system identification with
fewer measurements than the typically required data for the sparse regression. The
result is an optimal model for the underlining system of the data with a mini-
mum number of terms. The proposed system identification method is applicable for
multiple-input–multiple-output systems. Two examples are presented to demon-
strate the proposed method. The first one makes use of the simulated data of a
nonlinear oscillator to show the effectiveness and accuracy of the proposed method.
The second example is a nonlinear rotary flexible beam. Experimental responses of
the beam are used to identify the underlining model. The Coulomb friction in the
servo motor together with other nonlinear terms of the system variables are found
to be important components of the model. These are, otherwise, not available in
the theoretical linear model of the system.

We also extend the sparse optimization algorithm to nonlinear systems with
time delay. We further integrate the bootstrapping resampling technique with the
sparse regression to obtain the statistical properties of estimation. We use Taylor

xv



expansion to parameterize time delay. The proposed algorithm in this paper is com-
putationally efficient and robust to noise. A nonlinear Duffing oscillator is simulated
to demonstrate the efficiency and accuracy of the proposed technique. An experi-
mental example of a nonlinear rotary flexible joint is presented to further validate
the proposed method.

Finally, we examine the efficiency of our identified model to design model based
controllers. First, we propose a robust flat output-based sliding mode control for
trajectory tracking and to deal with under-actuated degree of freedoms. Moreover,
we investigate the optimal control design. Optimal control design needs the solution
of Hamilton-Jacobi-Bellman equation, where the nonlinearities in the model make
the solution challenging or even infeasible. We propose an efficient algorithm to es-
timate a neural network solution to gain the feedback control law. We examine the
efficiency of our algorithm through several popular examples in the optimal control
community and more importantly our identified nonlinear model of rotary flexible
manipulator link.

xvi



Chapter 1

INTRODUCTION

Recent technologies have enthusiasm about data-driven techniques and so-
lutions. In the recent decade, thanks to the explosive growth of available data
and computing resources, data-driven techniques and machine learning approaches
have yielded transformative results across diverse scientific disciplines of robotics,
natural language processing, economics, etc. In the field of mechanical systems,
the high-tech systems tends to add complexity such that the classical methods and
techniques are not able to deal with them. That’s why data-driven modeling and
control design techniques are growing at the fast pace. The present thesis focuses on
developing algorithms to find data-driven solutions for optimal modeling or system
identification, time delays estimations, and optimal controller design. We first give a
brief introduction about our works in this chapter and then in the next chapters we
detail the problem statements, algorithms, results and conclusions. In this chapter,
we first give a literature review in the field of system identification and mention our
contributions, especially in practical aspects. Then, we describe the works are done
to detect the time delays in the systems and count the highlights of our work in this
field. Finally, after a brief definition of data-driven control systems, we focus on
model-based controller design where the system’s model is obtained by data-driven
methods. In particular, we detail in the literature done in the field of optimal con-
trol and reinforcement learning-based controllers for nonlinear and high-dimensional
systems.

1.1 Optimal Data-Driven Modeling

Modern engineering systems can be highly complex with time-varying non-
linearities and uncertainties. It is a challenge to develop accurate mathematical
models of such systems, which are often needed for designing precision controls and
for optimal operations. In the age of high-tech and super-computing, it has become
increasingly feasible to use a large number of sensors to measure the input and out-
put of complex systems over a long time. With the availability of big data of input
and output, we should be able to identify the underlining mathematical model of
the system and determine the model parameters without much knowledge about the
system. Chapter 2 presents a study of this kind. The study reported in this work
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falls in the general area of system identification, which is a well established technical
field.

Data are abundant whereas models often remain elusive, as in climate science,
neuroscience, ecology, finance, epidemiology, etc. In biology, data-driven modeling
of fish trajectories in group or individual stands for complex stochastic systems [4,5].
Porfiri’s group models an individual zebrafish trajectory through stochastic equa-
tions and Markov chain. The calibration of the model parameters through experi-
mental data by the maximum likelihood and weighted least squares method allows
studies of how the fish behaves in front of constrains like walls and when exposed
to the material such as caffeine [6]. In transportation, machine learning-based ap-
proaches aim at accurate trajectory prediction of aircraft to manage air traffic and
control environment [7] and and of vehicles for safe and efficient autonomous driv-
ing [8].

Various system identification techniques have been developed over the years
and are well documented in the survey papers [9, 10]. During the past decade,
nonlinear system identification has attracted a great deal of attraction. A compre-
hensive survey of nonlinear system identification techniques from 2006 to 2016 can
be found in [11]. Using time-varying linear system model to describe the responses
of nonlinear dynamic systems is frequently studied [12–14]. Factors including the
looseness of structural joints, amplitude dependent material properties and bound-
ary conditions with variable stiffness constraints make the behavior of engineering
structures highly nonlinear and complex [15]. Other intrinsic nonlinear phenomena
such as hysteresis, friction, inelasticity, harmonics, jumps or modal interactions call
for nonlinear system model [11].

The system identification is often done in frequency-domain. An efficient
data-driven technique to identify a differentially flat output of under-actuated dy-
namic systems is developed in [16]. A modified H2 algorithm for frequency response
function estimation is proposed in [17]. The modification of the algorithm intro-
duces additional correlated output to improve the computational effectiveness. A
generalized approach to apply the method of “Reverse Path” to continuous me-
chanical systems with multiple nonlinearities is introduced in [18]. The methods for
linear systems are extended to nonlinear systems with the help of associated linear
equations (ALEs) and associated frequency response functions (AFRFS) [19]. Some
technical issues and limitations are addressed in this reference in order to apply
the method to MDOF systems. Another technique in frequency domain interprets
nonlinearities as feedback forces acting on the underlying linear system [20]. The
system identification can also be done in time domain or in time-frequency mixed
domain [21–23]. The method of nonlinear subspace identification is formulated in
time and frequency domain for a strongly nonlinear satellite structure [24].

A general framework is still not available for nonlinear system identification
problems. The well-known model of Nonlinear Auto-Regressive Moving Average
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with eXogenous Input (NARMAX) is considered for the detection of damage in
engineering structures [25]. The work in [26] studies an amplitude and frequency
modulation method (AFMM) for extracting characteristics of nonlinear systems and
intermittent transient responses by processing stationary/transient responses using
the empirical mode decomposition, Hilbert-Huang transform (HHT), and nonlinear
dynamic characteristics derived from perturbation analysis. The experimental ex-
traction of nonlinear normal modes (NNMs) under broadband forcing is investigated
in [21], where a state-space model is first established, and then is converted to the
system in the modal space.

Nonparametric or black-box methods directly work with input-output data
and are very popular. Some common examples include subspace identification, ker-
nel methods, statistical learning, data mining, artificial neural networks (ANNs),
auxiliary model identification, multi-innovation identification and hierarchical iden-
tification [27–32]. The black-box model does not need the prior knowledge of the
system and sometimes has no clear physical meaning [15]. Raissi and colleagues
have developed a deep learning based algorithm and illustrated the method on com-
plex dynamic systems of Lorenz, fluid flow behind a cylinder, Hopf bifurcation and
the Glycoltic oscillator [30]. A long short-term memory (LSTM) recurrent neural
networks (RNNs) has been recently introduced to predict high-dimensional chaotic
systems [33]. A reservoir-based computing algorithm gives impressive predictions
for chaotic systems [34]. It should be noted that the high-dimensional neural net-
work models are lack of physical meaning. As a tool for regression, neural net-
works also don’t predict well out of the range of the training data set [15, 29]. The
Bayesian framework is currently attracting a great attention from the research com-
munity [35–37]. This method tries to find the best fitting model among the proposed
models by studying the occurrence probabilities of the proposed functions [38].

When the dynamic model of the system is represented by differential equa-
tions, we often have to create the time series of derivatives of the measured data.
The algebraic method and operational calculus are excellent tools for computing
derivatives of the measured signals by means of integration, thus to avoid amplify-
ing the measurement noise in the data [39,40]. The algebraic framework in [41] has
been studied for identification of first-order linear systems. The algebraic identifi-
cation has been used to estimate parameters of a servo motor [42], highly damped
flexible structures [43], and mass-spring-damper systems [44]. In this chapter, we
apply the algebraic method to identify nonlinear dynamical systems. We use exten-
sive simulations and experimental examples to show that the algebraic method is
effective for nonlinear dynamical systems and is robust to measurement noise.

Polynomials have been a popular functional choice for modeling nonlinear
systems. From the point of view of fitting the data, whether we use polynomials,
artificial neural networks or any other functions, as long as a sufficient number of
functions are used, the resulting model will fit the data to any degree of accuracy.
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In this case, the major concern is overfitting when the obtained model offers little
flexibility to describe the dynamic behavior of the system that may not have been
contained in the data used for the system modeling. For a given set of measure-
ments, an important question to ask is: What is the simplest model that can fit
the measured data sufficiently accurate and still provide enough flexibility to make
reliable predictions with the unseen data? This chapter investigates the answer to
the question.

Brunton and colleagues proposed a method called the sparse identification
of nonlinear dynamics (SINDy) in 2016 for creating a sparse representation of the
unknown nonlinear function of the system [45]. The method has attracted a great
attention from the community. The method assumes that only a few important
terms out of a library of functions are needed to describe the dynamics of the
system. It combines machine learning and sparsity-promoting techniques to find the
sparse representation in the space of possible functions to model nonlinear dynamical
systems. The connection of the SINDy method to the Akaike information criteria
(AIC) for model selection has been studied in [46]. The promising results for difficult
system identification problems such as hybrid dynamical systems, chaotic Lorenz
system and Burger’s partial differential equation have been obtained [46, 47]. The
SINDy method applied to the model predictive control delivers better performance,
requires significantly less data, and is more computationally efficient and robust
to noise than the neural networks model [48]. Studies of the SINDy method have
reported the usage of high volume of time series data from different initial conditions
for model selection and for cross-validation [46]. While this is feasible for simulation
studies, it can be expensive for applications with real time data. Robustness to
noise and requirement for measurements of derivatives are concerns with the SINDy
approach [29]. The total variation regularized derivatives are commonly used to deal
with these concerns [49,50]. An integral form of equations of motion in combination
with sparse regression is proposed in [51]. An application to model identification
of nonlinear mechanical systems is reported in [52]. In Chapter 2, we extend the
SINDy approach by combining it with the algebraic method and a K-fold cross
validation approach to deal with the issue of measurement noise, initial conditions
and derivatives.

We focus on the model development and parameter identification of mechan-
ical systems satisfying Newton’s second law of motion. That is, the acceleration
of the system is partly due to a restoring force, which is a nonlinear function of
the displacement and velocity. There is a well-known method called the method of
restoring force surface, first proposed by Masri and Caughey in 1979 [53] for iden-
tifying the nonlinear restoring force function. The method continues to receive lots
of attention from researchers [11]. The original method of restoring force surface is
non-parametric and calls for extensive data to construct the restoring functions in
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the state space. More recent studies involve piecewise linear functions and polyno-
mials for fitting the data to create the restoring force function. In our algorithm in
Chapter 2, we use polynomials to represent the restoring force functions.

The main contribution of our work is a comprehensive approach to develop
an optimal sparse representation of the restoring force function. The procedure
includes the adoption of the algebraic method for dealing with the dependence on
the initial conditions of the measurements and measurement noise, and a K-fold
cross validation approach for training and validating the model. The result is a
sparse polynomial of the minimum order that accurately describes the underlining
nonlinear dynamic system of the data.

1.2 Time-delayed System Identification

Time delay exists in many engineering, physics, chemistry, biology and eco-
nomics systems. In control systems, time delay due to sensor and actuator dynamics,
signal transmission, and digital computations is an important factor that influences
the stability and control performance. To make matter worse, time delay is of-
ten unknown. Time delay estimation in a control system is a challenging problem.
It is even more challenging when the system dynamics is nonlinear and unknown.
Chapter 3 presents a nonparametric identification technique to identify nonlinear
dynamic systems and estimate time delay introduced by the feedback control.

There have been many studies of time delay identification of control systems.
Richard presented an overview of time delay estimation methods in [54]. The time
delay estimation techniques based on pulsed inputs have been developed in [55,
56]. The Padé approximation [57], the modified least square and recursive methods
[58–62] , instrumental variable identification [63], neural networks [64], algebraic
estimation [65,66], adaptive techniques [67,68], and non-commutative rings [69] are
just a few popular methods for time delay estimation.

The methods for time delay estimation can be in frequency or time do-
main [70, 71]. In Chapter 3, our focus is on the approaches in time domain. Since
time delay usually appears in the system implicitly, the methods for conventional
parameter estimation of dynamic systems cannot be directly applied to estimate
time delay. Time delay τ usually appears in the exponential term e−τs in the trans-
fer function of the system. The expansion techniques can parameterize it, including
the classical Padé approximation, the Laguerre Fourier series, the Kautz series, the
second-order Padé shift and the diagonal Padé shift. The main concern with the
rational approximation is the truncation error and stability complications. Even
though higher order expansions can reduce the truncation error, the system can
become unstable even when the system is linear with a constant time delay [54]. In
Chapter 3, we employ the Taylor expansion. Xu demonstrates that the low order
Taylor expansion gives promising estimation of small time delay [72].
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The work in [73] presents a nonlinear least square-based algorithm in which
the instrumental variable method estimates the parameters of the transfer function
of the system while an adaptive gradient-based iteration finds the optimal time delay
from the filtered irregularly sampled data. The main problem with this algorithm
is that the proposed cost function may have several local minima. Therefore, it
highly depends on the initial guess for the parameters and especially the time delay.
To deal with this issue, the authors use a low-pass filter to widen the convergence
region around the global minimum. Another nonlinear recursive optimization algo-
rithm is proposed in [74], which combines the linear method of Levenberg-Marquardt
to compute the plant parameters with a modified Gauss-Newton algorithm to es-
timate time delays. A low-pass filter and a binary transformation are applied to
the data corrupted by the white noise to create the regressor matrix for minimizing
a quadratic cost function of the estimation error. The identification is online and
is demonstrated on a MISO plant with multiple time delays. Similarly, the algo-
rithm in [62] employs the Gauss-Newton method to estimate time delay when the
simplified refined instrumental variable (SRIV C) method is used to find the plant
parameters.

The Taylor expansion is used to parameterize the system with explicit time
delay in [68]. An adaptive law for the parameter estimation is proposed such that
the estimation error is converged. A recursive formula is introduced in [59] to
improve the accuracy and convergency rate of another recursive algorithm for online
estimation in [75]. The strategy in [61] aims at fractional time delay identification
for discrete-time systems. It separates the influence of the system structure and
the time delay by discretizing the system. With the help of the Kalman filter,
the parameters are estimated recursively. The algorithm in [64] first parameterizes
the system by a polynomial function and trains a neural network to estimate the
parameters and time delay. A Schweizer and Wolff’s σ measure denoted as σSW from
the copula theory is introduced to study the relationship of input-output signals for
SISO systems [76]. It is found that the measure reaches its maximum when the time
delay is removed from the data. This property offers an approach to estimate time
delay without the need of estimation of other parameters.

Most existing methods for time delay estimation rely on the knowledge of
the system model. In fact, precise model of the system is needed. In Chapter 3, we
propose the application of SINDy technique in [45] for the time delay estimation.
Indeed, we extend the application of our algorithm in Chapter 2 to identify nonlinear
dynamical systems with time delay.

In practical cases, the data is often contaminated with noise. Fliess and
Ramirez proposed a robust and fast algebraic identification technique to estimate
time invariant linear systems without time delay [77]. Inspired by the algebraic
operation, Belkoura in [65] and [66] first investigated the identifiability conditions
for a general class of systems described by convolution equations. Then, an algebraic
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formulation is introduced for online estimation of time delay and parameters of
structured and arbitrary input-outputs.

In Chapter 3, we extend the SINDy approach by combining it with the alge-
braic signal processing method to deal with the issue of measurement noise, initial
conditions and derivatives. The algebraic operation generates useful signals for sys-
tem identification while filtering out the noise. We apply the Taylor expansion to
make the time delay appear as a parameter of the model to identify. A nonlinear
extended state estimator is adopted for derivative estimation. As a result, we arrive
at a robust sparse regression combined with cross validation and bootstrapping tech-
niques for nonparametric system identification. The simulation and experimental
results illustrate that the proposed algorithm can overcome the following limitations
of the existing techniques:

• Multiple local minima: Achieving the global minimum is the main chal-
lenging for modified least square methods with recursive approach. The sparse
regression is a convex optimization problem with a global minimum [15].

• Nonparametric nonlinear identification: The only assumption of the pro-
posed algorithm about the structure of the system is that the system is sparse
in the space of base functions. The proposed algorithm relies on the data to
make selection and is not limited to linear and SISO systems.

• Noise resistant: The sparse regression is already robust. The algebraic
operation offers additional filtering of the noise. Furthermore, the proposed
algorithm is equipped with bootstrapping to study the statistics of estimation
such as mean and standard deviations.

• Unstructured entries: Many classical strategies are designed for pulsed
entries. The proposed approach analyzes the input and output data without
any frame and structure assumption for entries.

• Initial conditions: Another general assumption in time delay estimation is
that the initial conditions are zero while in most of practical applications, it is
not true. The algebraic operation and operational calculus make the proposed
algorithm independent of the initial conditions.

1.3 Data-Driven Control Design for Trajectory Tracking

Data-driven and machine learning-based techniques have made a revolution
in the field of control systems. Data-driven control systems are a broad family of
control systems where the identification of the model and/or the control design are
totally based on the experimental data collected from the plant. Control design
often begins with a model of the system. Notable exceptions include mode-free
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adaptive control strategies and many uses of PID control. For mechanical systems
of moderate dimension, it may be possible to write down a model based on the
Newtonian, Lagrangian, or Hamiltonian formalism and linearize the dynamics about
a fixed point or periodic orbit. However, for modern systems of interest, typically
there are no simple models suitable for control design.

Real-world systems are usually nonlinear and the control objective is not
readily achieved via linear techniques. It is still difficult to find a simple yet reliable
nonlinear model for a physical system, that includes only those dynamics of the
system that are of interest for the control specifications. From the recent studies,
we can mention the researches on differentially flat output model of systems for
control design [16, 78]. In Chapter 4, we investigate how our system identification
algorithm delivers optimal models regarding control design for trajectory tracking or
stabilization problems. First, we propose robust sliding model control and then we
study how to solve nonlinear optimal control for our system identification approach.
As a case study, we focus on control design for our identified rotary flexible link in
Chapter 2.

RFL is widely used in industrial automation and there has been many studies
on the control design for the past few decades. From those, we can mention the data-
driven reinforcement learning-based controller in [79], backstepping design scheme
in [80], fractional order control in [81], active fuzzy logic and neural networks-based
control in [82], modified PID controller in [83], and adaptive fuzzy output feedback
control approach in [84]. An optimal sliding mode control (SMC) is also proposed
in [85]. SMC is known as a robust controller but depends on the full knowledge of the
system model. Therefore, to validate the efficiency of our identified model for control
design, we suggest SMC. RFL is an under-actuated system in which the number of
actuators is less than the number of degree-of-freedom to be controlled. Therefore;
we involve the concept of flatness in [86, 87] in our control design and define a flat
output-based SMC. Flatness, in its more popular conception, is a property that
readily trivializes the exact linearization problem in a nonlinear system.

Optimal control has emerged as a powerful modern controller that finds the
feedback controller law by optimizing the value function as the performance index of
the controller’s operation and energy usage over time. In fact, in the field of control,
the line between optimal control and Reinforcement Learning (RL) can be quite
blurry, as optimal control involves the essential elements underlying the theory and
algorithms of modern RL. Optimal control is mainly a mathematical optimization
problem, where the learning and data-driven algorithms are playing a crucial rule.
Finding a reliable predictive model of the system dynamic or model-based techniques
can make the learning algorithms more effective and data-efficient. We investigate
the efficiency of our data driven modeling algorithm in Chapter 2 to deliver simple
but complete models to design optimal control.
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Identified models usually contain nonlinearities. Computing optimal feed-
back controls for nonlinear systems generally requires solving the Hamilton-Jacobi-
Bellman (HJB) equation to find the value function, which are notoriously difficult
especially when the state dimension is large [88]. Moreover, the non-linearities in the
identified model causes an optimization problem with a non-convex cost function
landscape with multiple local minima. Therefore, there is an extensive literature
on the methods of finding approximate solutions for HJB equations. Some key ap-
proach includes patchy dynamic programming [89], series expansions [90, 91], level
set methods [92], semi-Lagrangian methods [93, 94], methods of characteristics and
Hopf formula-based algorithms [95–97], and polynomial approximation [98].

Using neural networks (NNs) as a basis for solving HJB equations is not
by itself a new idea, and deep learning approaches have led to promising results;
see for instance [99–104]. To the best of our knowledge, state-of-the-art NN-based
techniques generally rely on either minimizing the residual of the PDE and (artificial)
boundary conditions at randomly sampled collocation points [99, 100, 103, 104]; or,
due to computational limitations, approximating the control and/or HJB solution
and its gradient in a small neighborhood of a nominal trajectory [101,102]. In [105,
106], a specialized NN architecture is proposed to solve some classes of Hamilton-
Jacobi equations, but this method has yet to be generalized to state-dependent
HJB equations arising in optimal control. Deep learning techniques have also been
proposed for solving high-dimensional stochastic optimal control problems [107,108].

To solve HJB equation for nonlinear dynamics, we propose a NNs-based
estimation algorithm to solve the continuous-time infinite horizon optimal control
problem. In fact, we model the solutions to HJB equation or the same value function
with NNs trained on data generated with discretizing the state space. We selected
the basis functions in NNs as the quadratic vector in the state components. To train
NNs, we suggest ADAM algorithm in [109] which is well-known algorithm for deep
networks where the number of parameters is huge. Machine learning is complemen-
tary, as it constitutes a growing set of techniques that may be broadly described
as performing nonlinear optimization in a high-dimensional space from data. The
candidate optimal feedback control is then easily computed by the value function
in real-time. Comparing our results with the the reinforcement learning algorithm,
online actor-critic approach proposed by Frank Lewis in [99], our algorithm gains
more accuracy. More importantly, the algorithm in [99] requires a persistence of
excitation condition to guarantee the convergence, while this condition is hard to
generate. Our approach is free from this condition, although it depends on the
sufficient data points used for training NNs.

The main contribution of our work in Chapter 4 is the validation of the system
identification in Chapter 2 to design model-based controller. Furthermore, our flat
out-put based sliding mode controller design successfully perform the tracking con-
troller for the under-actuated system. Moreover, our NNs-based estimation to solve
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HJB equation can be potentially advanced to solve higher-dimensional problems.

1.4 Thesis Organization

This dissertation consists of 4 chapters. Chapter 1 presents the introduction
and dissertation organization; this is while Chapter 2 focuses on the algorithm de-
velopment for optimal model identification of nonlinear dynamical systems with the
algebraic method. Chapter 3 provides details about the identification of nonlinear
dynamical systems with time delay. In Chapter 4, we focus on trajectory track-
ing control design for our data-driven model of the systems, where the designer is
dealing with the non-linearities, high-dimensionality, and under actuated degree of
freedom.
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Chapter 2

DATA-DRIVEN MODELING

In the present chapter, we present the work in [52]. It proposes a procedure to
develop mathematical models of nonlinear dynamical systems and to identify their
parameters at the same time. We use polynomials as an example to model nonlinear
systems and have developed a criterion for identifying an optimal model in the sense
that the order of the polynomial to best model the system from a given data set
is minimum. We use a nonlinear Duffing oscillator to motivate the development of
the proposed algorithm. Experimental response time histories of a nonlinear flexible
beam with friction are used as an example to validate the proposed algorithm.

The rest of the chapter is organized as follows. In Section 2.1, we present
the problem statement and the method for identifying the optimal model from the
measurement. In particular, we discuss the algebraic method in Section 2.1.2, and
the sparse representation in Section 2.1.3. The proposed method is summarized in
the form of an algorithm. We then present two examples to demonstrate the method.
Section 2.2 makes use of the simulated data of a nonlinear oscillator to show the
accuracy and effectiveness of the proposed algorithm of. Section 2.3 presents the
model of a nonlinear flexible beam identified from the experimental data. Finally,
Section 3.5 concludes the paper.

2.1 The Proposed Method

2.1.1 Polynomial Model of Restoring Force

As an example, we shall use a single-degree-of-freedom system to illustrate
the research concept. Assume that the system with an inertial element of mass m
satisfies Newton’s second law such that the acceleration ẍ is governed by

mẍ+ g(x, ẋ) = f(t) (2.1)

where f(t) the excitation and g(x, ẋ) represents the internal and nonlinear restoring
force of the system. In general, we can express g(x, ẋ) in terms of a series expansion
of regular or orthogonal polynomials. Because the range of the variables (x, ẋ) may
not be bounded and is unknown, it is natural to consider the regular polynomials
with time-invariant coefficients given by,

g(x, ẋ) =
N∑
i=0

M∑
j=0

cijx
iẋj (2.2)
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where cij are the unknown coefficients of the polynomial. The coefficients cij are
usually related to the physical properties of the dynamic system. For the system
without any prior knowledge, the orders N and M of the polynomial are unknown.
This study develops an algorithm to identify the polynomial defined in Equation
(2.2) from the input and output data such that it has a minimum number of terms
and with the minimum orders N and M .

2.1.2 Data Pre processing with Algebraic Method

We prepare necessary signals from the measurements by using the algebraic
method in order to apply the least square method to compute the parameters m
and cij of the system [41]. We use a nonlinear oscillator to illustrate the steps of
the method.

mẍ+ c1ẋ+ c2ẋx
2 + c3ẋ

3 + k1x+ k3x
3 = f(t) (2.3)

x(0) = x0, ẋ(0) = v0

where (x0, v0) are the initial conditions, which are generally unknown.
Remark: The input excitations must be chosen such that it can excite the

system to exhibit rich dynamics in the output.
We introduce several short-hands for the nonlinear terms.

z1 = ẋx2, z2 = ẋ3, z3 = x3 (2.4)

Applying the Laplace transform to Equation (2.3), we have

m
{
s2X(s)− sx0 − v0

}
(2.5)

+ c1 {sX(s)− x0}+ k1X(s) = G(s)

where
G(s) = F (s)− c2Z1(s)− c3Z2(s)− k3Z3(s), (2.6)

X(s) is the Laplace transform of x(t), Zi(s) is the Laplace transform of zi(t) and
F (s) is the Laplace transform of f(t).

To eliminate the dependence on the unknown initial conditions x0 and v0, we
take derivatives with respect to s twice in Equation (2.5) and obtain

m

{
2X(s) + 4s

dX(s)

ds
+ s2d

2X(s)

ds2

}
(2.7)

+ c1

{
2
dX(s)

ds
+ s

d2X(s)

ds2

}
+ k1

d2X(s)

ds2
=
d2G(s)

ds2

12



Dividing both sides of Equation (2.7) by s2 to avoid derivatives with respect to time,
we obtain

m

{
2

s2
X(s) +

4

s

dX(s)

ds
+
d2X(s)

ds2

}
(2.8)

+ c1

{
2

s2

dX(s)

ds
+

1

s

d2X(s)

ds2

}
+ k1

1

s2

d2X(s)

ds2
=

1

s2

d2G(s)

ds2

Equation (2.8) can be rewritten in terms of the following signals

mP1(t) + c1P2(t) + k1P3(t)+ (2.9)

c2P4(t) + c3P5(t) + k3P6(t) = Pf (t)

where

P1(t) = 2

∫ (2)

x(t)− 4

∫
tx(t) + t2x(t)

P2(t) = −2

∫ (2)

tx(t) +

∫
t2x(t) (2.10)

P3(t) =

∫ (2)

t2x(t), P4(t) =

∫ (2)

t2z1(t)

P5(t) =

∫ (2)

t2z2(t), P6(t) =

∫ (2)

t2z3(t)

Pf (t) =

∫ (2)

t2f(t)

Note that
∫ (n)

φ(t) denotes the multiple integral
t∫

0

σ1∫
0

...
σn−1∫

0

φ(σn)dσn...dσ1. Let tk

(k = 1, 2, ...nt) be a set of sampled times. Define an error at time tk as

e(k) = mP1(tk) + c1P2(tk) + k1P3(tk) (2.11)

+ c2P4(tk) + c3P5(tk) + k3P6(tk)− Pf (tk).

Let us introduce an nt×1 error vector as e = [e(1), e(2), ..., e(nt)]
T , a parameter vec-

tor as c = [m, c1, k1, c2, c3, k3]T and a force vector as p = [Pf (t1), Pf (t2), ..., Pf (tnt)]
T .

Let P(x) be the nt × 6 data matrix determined by the measurement of x(t) such
that its (k, j)th component is given by Pk,j = Pj(tk). Then, Equation (3.11) can be
written in the matrix form as

e(c) = P(x)c− p. (2.12)

13



To find the unknown parameters c, we formulate a least mean square error
problem as follows. For the following cost function,

J(c) = eTe = ‖e‖2
2 (2.13)

we find the parameter vector c such that J is minimized. The solution of the
parameters c can be found by either the matrix inversion or by an iterative search
algorithm. In general, when the numbers of unknown parameters and data points
nt are large, as is the case for multi-degree of freedom systems, it is better to use a
global search algorithm to compute the parameters.

2.1.3 Sparse Representation

Assume that the system in Equation (2.3) is unknown and that only the dis-
placement measurement x(t) of the system is available and contains random noises.
We consider the polynomial model for the restoring force in Equation (2.2). The
questions are: What are the minimum orders N and M? Are all the terms in the
polynomial needed?

One popular way is to start with high enough orders of the polynomial or a
large library of functions, which may contain non-polynomial functions, and penal-
ize the the terms with smaller coefficients through a sparse regulator by using the
least absolute shrinkage and selection operator (LASSO) [110]. The recent studies
of the sparse identification of nonlinear dynamics (SINDy) have developed a com-
putationally efficient algorithm to solve the sparse regression. To find the sparse
regulator, SINDy uses the “elbow” of the bias-variance tradeoff curve called the
“Pareto front”. In most of cases, finding the curve’s elbow is ambiguous due to
existence of a cluster of candidate models close to the elbow. To address this issue,
an information criterion for the candidate models can be used to rank and select
the right model [46]. It is important to point out that the selection of the models
on the Pareto front from a large library can be computationally intensive.

In this work, we build the models starting from lower order polynomials. We
divide the data into the training set and test set. In the training, we apply the sparse
regression LASSO to select the models and employ the K-fold cross validation within
the training set to find the sparse regulator. This process generates a model with the
smallest mean squared cross validation error in the training set for a given order of
the polynomial. Finally, we compute the information criterion of the trained model
over the test set, and then increase the order of the polynomial. We stop increasing
the order of the polynomial after the information criterion reaches a minimum value
and starts to grow.
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Figure 2.1: Illustration of the data segmentation for the K-fold cross validation.

For a given order of the polynomial, the LASSO proposes to add an L1

regularization term to the cost function in Equation (2.13) in order to penalize the
nonzero parameters that don’t contribute much to the model [110].

Jλ(c) = ‖e‖2
2 + λ ‖c‖1 (2.14)

= ‖P(x)c− p‖2
2 + λ ‖c‖1

where λ > 0 is a preselected small positive number known as the sparse regulator
and ‖c‖1 =

∑
i |ci|. The sparse regression algorithm in [45] is applied to find the

parameter vector c in order to minimize Jλ in Equation (2.14). The algorithm is
computationally efficient and robust to noise. It should be noted that the opti-
mization problem in the framework of the LASSO is convex [15], which implies the
existence of a unique optimal solution.

In the studies of SINDy, the sparse regulator λ is determined through cross
validation [45]. The simulations from different initial conditions are usually used to
generate rich data sets to train and validate the model. The training data is often
much larger than the validation data. Although the rich data set leads to more
accurate model with the help of the regularization term, especially for stochastic
systems, it is quite expensive to generate such a data set from experiments. To
resolve this issue, we apply the K-fold cross validation method by splitting the
training set consisting of a long time series of the measurement x(t) into K roughly
equal parts or folds as Figure 2.1 illustrates. One of the K folds of the training
dataset is used for cross validation of the model trained with the rest of the data in
the same training dataset.

Let Tk denote the time instances of the kth part of the K folds to be used for
validation, and Tk̄ denote its compliment, i.e. the time instances of the rest of the
K folds of the data to be used for training. The model is trained on each fold of the
data in Xk̄ and is validated on the set Xk. For a given regulation parameter λ, the
mean square cross validation error MSECV of the model on all the validation sets
is defined as

MSECV (λ) =
1

nt

K∑
k=1

‖P(x(t ∈ Tk))ck − p(t ∈ Tk)‖2
2 (2.15)
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where ck denote all the model parameters trained on Tk̄. MSEcv is an implicit
function of λ. The minimum MSEcv with respect to λ represents a compromise
between the accuracy and complexity of the model [45]. This leads to the optimal
choice of the regulation parameter λ for the given order of the polynomial.

Next, we consider the variation of the sparse representation of the candidate
model with the order of the polynomial. Here, we adopt an information criterion
to rank the sparse representation of the model [46]. Popular statistical examples
of information criteria include the Akaike information criterion (AIC), Bayesian
information criterion (BIC), deviance information criterion (DIC) and minimum
description length. This work considers the AIC for evaluating the candidate models.
The AIC describes the generality and goodness of fit of the candidate models and
is calculated on the test dataset that is not used in training.

Let nc denote the number of nonzero parameters in the vector c. The AIC
index for the model is defined as

AIC = 2nc − 2 ln(L(x, c)) (2.16)

where L(x, c) = p(x|c) is the likelihood function of the prediction x by the model
with the parameters c. Assume that the error e which contains the measurement
noise is normally distributed, the residual sum of squares (RSS) can be considered
as the likelihood function such that the AIC for the model can be defined as [111]

AIC = nt ln(RSS/nt) + 2nc (2.17)

If the least squares estimation is used, the RSS is equal to the cost function RSS =
J(c) in Equation (2.13). We summarize the previous steps in Algorithm 1.

2.2 A Numerical Example

To validate the proposed algorithm, we consider a second-order oscillatory
system with nonlinear stiffness and damping.

mẍ+ k1x+ k3x
3 + c1ẋ+ c2ẋx

2 + c3ẋ
3 = f(t) (2.18)

where the external force f(t), as an example, is given by

f(t) = 10 sin(t) + 40 sin(4t) + εf (2.19)

εf is a normally distributed Gaussian noise with zero mean and standard deviation
σεf = 0.01. In the simulations, we have set k1 = 6, k3 = 0.1, c1 = 1, c2 = 0.2 and
c3 = 1. A measurement noise is considered such that the system output is given
by x(t) + εx where εx is another normally distributed random noise with zero mean
and standard deviation σεx = 0.01. The general restoring force function g(x, ẋ) in
Equation (2.2) is used to model the system.
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Algorithm 1
The proposed algorithm for nonlinear system identification with the algebraic
method.

1: procedure System Identification(x, f, kfold, ratio, λmin, λmax)
2: for PolyOrder ∈ [1, N ; 1,M ] do
3: g(x, ẋ)← x, ẋ, PolyOrder . Generate polynomial terms
4: P (X)← library(X,PolyOrder)
5: P(x)← library(Algebraic Operation(g(x, ẋ))) . Add new polynomial

terms only
6: p← Algebraic Operation(f(t))
7: Ptrain(x),ptrain,Ptest(x),ptest ← ratio . Split data for training and test
8: for λ ∈ [λmin, λmax] do . Search for the sparse regulator
9: MSEcv(λ)← SINDy & K− fold(Ptrain(x),ptrain, λ)
10: end for
11: λcv,min ← min(MSEcv(λ))
12: Model(PolyOrder)← SINDy(Ptrain(x),ptrain, λcv,min) . Sparse models
13: end for
14: AIC(PolyOrder)← AIC(Model,Ptest(x),ptest) . AIC of candidate models
15: Model(c)← Overall min(AIC) . Select the model with minimum AIC
16: return Model (c)
17: end procedure
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Figure 2.2: The AIC index of the model as a function of the order of polynomial
for the system in Equation (2.18) when λmin is used for all the models.

We follow the steps in Algorithm 1 to identify the best model for the data.
The order of the polynomial starts from 1 and increases to 6. For simplicity, we
have taken N = M in the simulations. The time series generated from Equation
(2.18) is equally divided into the training and test datasets. We choose K = 5 for
the K-fold cross validation to train and select the candidate model by using the
training dataset. The sparse representation of the model with a given order of the
polynomial is further tested by using the test dataset. On the test dataset, the AIC
index is also computed.

The results of the study are well summarized in Figures 2.2 and 2.3. Figure
2.2 shows the variation of the AIC index of the sparse model as a function of the order
of the polynomial. The curve indicates that the AIC index reaches its minimum
when the order is 3. This is consistent to the known order of the system.

Figure 2.3 shows the variation of the mean squared error MSEcv of the K-fold
cross validation for the model with the third order polynomial with the regulation
parameter λ. The figure clears shows that there exists an optimal λ such that
MSEcv is minimum. This is true for all the orders of the polynomials we computed.

The resulting model is optimal in the sense of sparse representation of the
SINDy. Table 2.1 compares the true parameters of the system with the estimated
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Figure 2.3: The mean squared error MSEcv of the K-fold cross validation as a
function of the regulation parameter λ for the system in Equation
(2.18) when the model is the third order polynomial.
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Table 2.1: The true and estimated coefficients of the polynomial terms in Equation
(2.18).

Terms True value Estimated Terms True value Estimated

ẍ 2 1.9981 x 6 5.9857
x2 0 0 x3 0.1 0.1059
ẋ 1 0.9147 ẋ2 0 0
ẋ3 1 1.0064 xẋ 0 0
xẋ2 0 0 xẋ3 0 0
x2ẋ 0.2 0.1973 x2ẋ2 0 0
x2ẋ3 0 0 x3ẋ 0 0
x3ẋ2 0 0 x3ẋ3 0 0

values of the parameters when the polynomial of the model is third orderN = M = 3
when the AIC index is minimum. It is evident from the results that the proposed
method for identifying the model of nonlinear dynamic systems is quite accurate
and effective.

2.3 An Experimental Example

Here, we apply the proposed algorithm to identify the model of a multiple
degree of freedom (MODF) system from experimental data. In particular, we con-
sider a rotary flexible beam made by Quanser in the experimental study. Figure 2.4
depicts the setup. The flexible beam is driven by a DC servomotor with an input
voltage Vm. The angle of the base holding the flexible beam is θ. The deflection
angle of the beam is denoted as α. Table 2.2 lists the system parameters.

The beam has a moment of inertia Jl about the center of rotation and a mass
ml. It is rigidly fixed at one end and mounted on the servo motor. The servo motor
and gear system have Coulomb friction with an unknown coefficient Bc and viscous
damping coefficient Beq. The beam has viscous damping due to the air with the
coefficient Bl. The flexible beam has a linear stiffness Ks when the motion is small,
and the stiffness becomes nonlinear when the excitation level is high.

The equations of motion for the system can be derived as [112],

(Jeq + Jl)θ̈ + Jlα̈ +Beqθ̇ = τ, (2.20)

Jlα̈ + Jlθ̈ +Blα̇ + ksα = 0

τ =
ηgkgηmkt(Vm − kgkmθ̇)

Rm
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Figure 2.4: Quanser rotary flexible beam set up.

The system has two outputs θ and α under the input of voltage Vm. We assume
that the torque τ is linearly dependent on voltage Vm, while the parameters of the
motor are unknown. Table 2.2 shows the parameters provided by Quanser.

In terms of the control voltage, the equations of motion (2.20) can be written
as

Rm

ηgkgηmkt
(Jeqθ̈ + (Beq +

ηgk
2
gkmηmkt

Rm

)θ̇ − ksα) = Vm,

− Rm

ηgkgηmkt
(Jeqα̈− (

ηgk
2
gkmηmkt

Rm

+Beq)θ̇ + ks
Jl + Jeq
Jl

α) = Vm

(2.21)

We assume that the restoring force of the system (2.21) can be represented
by a sum of four polynomials of a single variable, i.e. θi, θ̇i, αj, and α̇j, together
with a friction term due to θ̇, without considering the cross-product terms. We
should point out that the original model of the system (2.21) does not account for
the effect of friction and nonlinearity, which exist in the experimental data. We
assume that the restoring force of the system (2.21) can be represented by a sum of
four polynomials of a single variable, i.e. θi, θ̇i, αj, and α̇j, together with a friction
term due to θ̇, without considering the cross-product terms.

Some signals contain the terms involving the first order derivative of the angle
such as θ̇i. We use the nonlinear state observer from the control studies to estimate
the first-order derivatives. Let us take θ as an example. The second order observer
with the gains β1 and β2 can be implemented with the following state equations.

ż1 = z2 − β1e, (2.22)

ż2 = −β2fal(e, α, δ)
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where

fal(e, α, δ) =

{
|e|α · sign(e), |e| > δ
e
δα
, |e| ≤ δ

(2.23)

and the error e = z1−θ stands for the difference between θ and its observer estimate
z1. We have chosen α = 0.5, δ = 0.05, β1 = 100 and β2 = 900. According
to [113, 114], the estimation error e converges to zero quickly. Consequently, by
definition, z2 is an accurate estimate of the first derivative θ̇. We split the data
into two equal sets for training and test. We chosen K = 10 for the K-fold cross
validation during the training. We have considered the order of the polynomials
from 1 up to 4.

We again follow the steps in Algorithm 1 to identify the best model for the
data. The results are summarized in Figures 2.5 and 2.6. Figure 2.5 shows the AIC
indices for both the angles as a function of the order of the polynomials when the
optimal regulation parameters λθ and λα are used. The figure clearly indicates that
the optimal order of the polynomial for both the angles is three. This is consistent
with the geometrical nonlinearity of the beam, which is typically the third order in
the displacement variable.

Figure 2.6 shows the mean squared error MSEcv of the K-fold cross validation
for the third order polynomial model as a function of the regulation parameters λθ
and λα for the system in Equation (2.21). The figure indicates the optimal values
of the regulation parameters λθ and λα for both the angles α and θ.

The results in Figures 2.5 and 2.6 indicate the existence of an optimal model
from the experimental data. Specifically, the following equations of motion are the
optimal polynomial model of the system with the smallest AIC indices: AICθ =
−1.0205 ∗ 104 and AICα = −8.833 ∗ 103.

a11θ̈ + a12θ̇ + a13θ + a14θ
2 + a15θ

3 + a16α̇ + a17α + a18α
2 + a19sign(θ̇) = Vm,

(2.24)

a21θ̈ + a22θ̇ + a23θ + a24θ
2 + a25θ

3 + a26α̇ + a27α + a28α
2 + a29sign(θ̇) = Vm,

(2.25)

where the terms a19sign(θ̇) and a29sign(θ̇) represent the Coulomb friction that exists
in the experiment.

Table 2.3 compares the estimated parameters of Equations (2.24) and (2.25)
with the ones provided by Quanser corresponding to the linear system of Equation
(2.21). We should point out that the parameters provided by Quanser are nominal
and may not represent the physical system accurately. If the nonlinear equations
(2.24) and (2.25) of the identified model represents the physical system better in
real time, the estimated parameters would be more reliable. One way to make this
assessment is to compare the predicted responses of Equations (2.21), (2.24) and
(2.25) with the experimentally measured response.
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Figure 2.5: The AIC index of the model as a function of the order of polynomial
for the rotatory flexible beam system in Equation (2.21) when λθ,min

and λα,min are used for all the models.

Table 2.2: The parameters of the rotary flexible beam provided by Quanser [2].

Symbol Description Value

Jl Cross sectional area moment of inertia 0.0038kg.m2

Jeq Equivalent moment of inertia of the beam 9.76 ∗ 10−5kg.m2

Bl Damping coefficient unknown
Beq Equivalent viscous damping 0.015 kg
ks Beam stiffness 1.3 N.m

rad

kg Gear ratio 70
kt Motor current torque constant 7.68 ∗ 10−3N.m

A

km Motor back-emf constant 7.68 ∗ 10−3 v
rad/s

Rm Motor armature resistance 2.6Ω
ηg Gearbox efficiency 0.9
ηm Motor efficiency 0.69
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Figure 2.6: The mean squared error MSEcv of the K-fold cross validation as a
function of the regulation parameters λθ and λα for the rotatory flex-
ible beam system in Equation (2.21) when the model consists of the
third order polynomials.
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Table 2.3: The estimated coefficients of the polynomial terms in Equations (2.24)
and (2.25) for the rotary flexible listed to compare with the identified
numbers. fc is the coefficient of friction.

Eq. (2.24) Quanser Identified Eq. (2.25) Quanser Identified

θ̈ 0.016231 0.0190 α̈ -0.016231 -0.0118
θ 0 0.4151 θ 0 0.7113
θ2 0 0.0933 θ2 0 0.0935
θ3 0 -1.5354 θ3 0 -2.7442

θ̇ 0.7323 0.6623 θ̇ 0.7323 0.5890

θ̇2 0 0 θ̇2 0 0

θ̇3 0 -0.0065 θ̇3 0 0
α -10.124 -6.3840 α -15.672 -13.1712
α2 0 5.8953 α2 0 6.2922
α3 0 0 α3 0 0
α̇ 0 -0.0420 α̇ 0 -0.0872
α̇2 0 0 α̇2 0 0
α̇3 0 0 α̇3 0 0
fc 0 0.1151 fc 0 0.1474
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Figure 2.7: Comparison of the responses of Equations (2.21), (2.24) and (2.25)
with the experimentally measured response. The response of θ follows
a square trajectory with the amplitude of 30 degree and frequency
0.66 Hz. Top: Noisy Input voltage. Middle: θ angle response. Bot-
tom: α angle response. Solid line: Equation (2.21). Solid line+circle:
Experimental data. Solid line+cross: Equations (2.24) and (2.25).

Figure 2.7 compares the predicted responses of Equations (2.21), (2.24) and
(2.25) with the experimentally measured response. The angle θ is driven to follow
a square wave trajectory with frequency 0.66 Hz. The figure shows that there
is a big difference between the response of the model of Equation (2.21) and the
experimental measurements. This difference is most likely due to the fact that the
model of Equation (2.21) does not include the Coulomb friction and nonlinear terms,
both of which exit in the experimental data.

On the other hand, Equations (2.24) and (2.25) contain both the Coulomb
friction and nonlinear terms. The Coulomb friction coefficients are estimated to be
a19 = 0.1151 and a29 = 0.1474. The coefficients of nonlinear terms, e.g. a12 and
a22, are considerable. Generally, the estimated value of the coefficients of the linear
terms are close to the nominal values provided by Quanser.
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2.4 Conclusions

In this work, we have proposed a procedure to find the optimal polynomial
model for nonlinear dynamic systems from experimental data. The model is optimal
in the sense that it has a minimum order to fit the experimental data with the
smallest number of terms. The model is selected by using the LASSO algorithm so
that it has the smallest modeling error with respect to the order of the polynomial
without overfitting and the minimum mean squared cross validation error. The
algebraic method is used to create the signal matrix for estimating the parameters.
Both simulated and experimental data of nonlinear dynamic systems have been used
to validate the proposed method.
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Chapter 3

IDENTIFICATION OF NONLINEAR DYNAMICAL
SYSTEMS WITH TIME DELAY

In this chapter, we discuss our work in [115]. This work proposes an esti-
mation technique to identify time delay and parameters of delayed nonlinear dy-
namical systems. We use Taylor expansion to parameterize the time delay in the
motion equation and employ algebraic approach to make the algorithm resist to
noise and independent from initial conditions. Moreover, the algorithm is equipped
with a statistical approach to increase the accuracy of estimation. The technique is
free from the limitations caused by structured entries and local minimum problems
which usually happen in iterative estimation techniques. In this paper we assume
the structures of the system and controller are both known.We use a nonlinear
Duffing oscillator to motivate the development of the proposed algorithm. Experi-
mental response time histories of a nonlinear flexible joint are used as an example
to validate the efficiency and accuracy of the proposed algorithm. Furthermore,
the experimental analysis shows the potential of the method for MIMO dynamical
systems.

The rest of the paper is organized as the follows. Section 3.1 introduces
the assumptions and formulates the mathematical problem of system identification.
The techniques of algebraic data preprocessing and derivative estimations, sparse
regression in combination with bootstrapping resampling, and cross validation are
explained in Section 3.2. Section 3.3 presents an example of a simulated nonlinear
mass-spring-damper system under a proportional control with time delay. The ex-
perimental validation of the proposed algorithm on the rotary flexible joint made
by Quanser is presented in Section 3.4. Finally, Section 3.5 concludes the paper.

3.1 Problem Definition and Assumptions

Consider a closed-loop second order system given by,

mẍ+ g(x, ẋ) = f(t) + b1ẋ(t− τ) + b0x(t− τ) (3.1)

where m > 0 is the mass of the system, the function g(x, ẋ) represents the nonlinear
restoring or internal force of the system. The term f(t) contains the reference
information as well as external disturbances. The control consists of the output and
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its first-order derivative with feedback gains b0 and b1, and a time delay τ . We make
the following assumptions in this study.

Assumptions

1. Only the system response x(t) is measured.

2. The system is exposed to random excitations included in f(t).

3. The measurement contains Gaussian white noise with zero mean denoted as
εx.

4. The system structure in terms of the function g(x, ẋ) is unknown.

5. The system is second order.

This paper is focused on nonparametric identification of closed-loop nonlinear
dynamical systems with a control time delay.

3.2 The Proposed Method

For the restoring force g(x, ẋ) with an unknown structure, there are many
candidate functions available to approximate it, such as polynomial, trigonometric,
exponential functions or a combination of these functions. Because the polynomial
is a popular base function to describe a wide range of dynamical systems, we use reg-
ular polynomials of x and ẋ with time-invariant coefficients to explain the proposed
method,

g(x, ẋ) =
N∑
i=0

M∑
j=0

cijx
iẋj (3.2)

where cij are the unknown coefficients of the polynomial. Other functions can also
be considered with the proposed method.

For the system without any prior knowledge, the orders N and M of the
polynomial are unknown. This study develops an algorithm to identify the polyno-
mial defined in Equation (3.2) from the response data such that it has a minimum
number of terms and with the minimum orders N and M .

3.2.1 Algebraic Operation

Noise robustness has been always an inevitable part of system identification
techniques as the noise is unavoidable in real data. Time delay caused by sensors and
actuators is usually so small that it is difficult or even impossible to estimate correct
values of time delay from noisy data. In addition to noise robustness, dynamical
system identification methods require derivatives of time series of the measured
response. Traditional finite difference methods to estimate derivatives can amplify
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the noise. To deal with this issue, we propose to apply the algebraic operation to
pre-process the data.

We use a nonlinear oscillator under a proportional control with gain kp to
illustrate the method.

mẍ+ c1ẋ+ c2ẋx
2 + c3ẋ

3 + k1x+ k3x
3 − kpx(t− τ) = f(t) (3.3)

x(0) = x0, ẋ(0) = v0

where m denotes mass, c1, c2 and c3 stand for damping coefficients, k1 and k3 are
the stiffness coefficients. The system starts from initial conditions (x0, v0) which are
generally unknown.

Remark: The input excitations must be chosen such that it can excite the
system to exhibit rich dynamics in the output.

We introduce several short-hands for the nonlinear terms.

z1 = ẋx2, z2 = ẋ3, z3 = x3 (3.4)

Applying the Laplace transform to Equation (3.3), we have

m
{
s2X(s)− sx0 − v0

}
(3.5)

+ c1 {sX(s)− x0}+ k1X(s)− kpe−sτX(s) = G(s)

where
G(s) = F (s)− c2Z1(s)− c3Z2(s)− k3Z3(s), (3.6)

X(s) is the Laplace transform of x(t), Zi(s) is the Laplace transform of zi(t) and
F (s) is the Laplace transform of f(t).

Consider the Taylor expansion of the exponential term e−sτ

e−sτ = 1− sτ +
s2τ 2

2!
− s3τ 3

3!
+ ... (3.7)

We should point out that keeping too many higher order terms may not be beneficial
to the identification process. We only need to keep a sufficient number of terms to
generate enough equations to determine the unknown parameters including time
delay.

As an example, we keep the terms up to the third order and substitute the
Taylor expansion in Equation (3.5).

m
{
s2X(s)− sx0 − v0

}
+ c1 {sX(s)− x0} (3.8)

+ k1X(s)− kp
{

1− sτ +
s2τ 2

2!
− s3τ 3

3!

}
X(s) = G(s)
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To eliminate the initial conditions, we differentiate Equation (3.8) with re-
spect to s twice. To eliminate the derivative terms in time domain, we divide the
resulting equation by s3. Back to time domain, we obtain an equation of signals

Pf (t) = kp
τ 3

3!
P1(t) +

{
m− kp

τ 2

2

}
P2(t) + {c1 + kpτ}P3(t) (3.9)

+ c2P4(t) + c3P5(t) + {k1 − kp}P6(t) + k3P7(t)

where

P1(t) = 6

∫ (2)

x(t)− 6

∫
tx(t) + t2x(t)

P2(t) = 2

∫ (3)

x(t)− 4

∫ (2)

tx(t) +

∫
t2x(t) (3.10)

P3(t) = −2

∫ (3)

tx(t) +

∫ (2)

t2x(t)

P4(t) =

∫ (3)

t2z1(t), P5(t) =

∫ (3)

t2z2(t)

P6(t) =

∫ (3)

t2x(t), P7(t) =

∫ (3)

t2z3(t)

Pf (t) =

∫ (3)

t2f(t)

Note that
∫ (n)

φ(t) denotes the multiple integral
t∫

0

σ1∫
0

...
σn−1∫

0

φ(σn)dσn...dσ1. Let tk

(k = 1, 2, ...nt) be a set of sampled times. Define an error at time tk as

e(k) = kp
τ 3

3!
P1(tk) +

{
m− kp

τ 2

2

}
P2(tk) + {c1 + kpτ}P3(tk) (3.11)

+ c2P4(tk) + c3P5(tk) + {k1 − kp}P6(tk) + k3P7(tk)− Pf (tk).

Let us introduce an error vector e, a parameter vector c and a force vector p as
follows.

e = [e(1), e(2), ..., e(nt)]
T , (3.12)

c = [kp
τ 3

3!
,m+ kp

τ 2

2
, c1 − kpτ, c2, c3, k1 + kp, k3]T ,

p = [Pf (t1), Pf (t2), ..., Pf (tnt)]
T .

Let P(x) be the nt × 7 data matrix determined by the measurement of x(t)
such that its (k, j)th component is given by Pk,j = Pj(tk). Then, Equation (3.11)
can be written in the matrix form as

e(c) = P(x)c− p. (3.13)
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To find the unknown parameters c, we formulate a least mean square error
problem as follows. For the following cost function,

J(c) = eTe = ‖e‖2
2 (3.14)

we find the parameter vector c such that J is minimized. The solution of the
parameters c can be found by either the matrix inversion or by an iterative search
algorithm. In general, when the numbers of unknown parameters and data points
nt are large, as is the case for multi-degree of freedom systems, it is better to use a
global search algorithm to compute the parameters.

3.2.2 Sparse Representation

Assume that the displacement measurement x(t) of the system in Equation
(3.3) and external force f(t) are available and contain random noises. We consider
the polynomial model for the restoring force in Equation (3.2). Two questions
immediately arise:

What are the minimum orders N and M?
Are all the terms in the polynomial needed?

To investigate answers for these questions, we apply the methods in statis-
tical learning [110]. One popular way is to start with big enough orders N and M
or a large library of functions which may contain non-polynomial functions, and
penalize the terms with small coefficients through a sparse regulator by using the
least absolute shrinkage and selection operator (LASSO) [110]. The recent studies
of sparse identification of nonlinear dynamics (SINDy) have developed a computa-
tionally efficient algorithm to compute the solution of the sparse regression. LASSO
regression proposes to add an L1 regularization term to the cost function in Equa-
tion (3.14) to penalize the nonzero parameters that don’t contribute to the system’s
dynamics

Jλ(c) = ‖e‖2
2 + λ ‖c‖1 (3.15)

= ‖P(x)c− p‖2
2 + λ ‖c‖1

where λ > 0 is a preselected positive number known as the sparse regulator and
‖c‖1 =

∑
i |ci|. The sparse regression algorithm in [45] is applied to find the pa-

rameter vector c in order to minimize Jλ in Equation (3.15). The algorithm is
computationally efficient and robust to noise. It should be noted that the opti-
mization problem in the framework of the LASSO is convex [15], which implies the
existence of a unique optimal solution. The selection of the sparse regulator λ is
critical. In Section 3.2.3, we explain how to employ cross-validation techniques to
select a proper regulator value.
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The LASSO penalizes the terms with small coefficients by regularization and
keeps the important terms in the system model. In real world, time delay is usually
small. Moreover, time delay appears in high order terms of the Taylor expansion.
Therefore, the LASSO will penalize these terms, such as the coefficient of term P1(t)
in Equation (3.11).

We can recover the terms involving time delay in the following way. After
each sparse regression computed with the SYNDy algorithm, we keep all the terms
involving time delay as well as the terms selected by the LASSO regulation. The
resulting data matrix denoted by Ps(x) is substituted in Equation (3.15) to compute
the updated coefficients c.

3.2.3 Cross Validation and Bootstrapping

It is common to use cross-validation techniques from machine learning to
determine the sparse regulation parameter λ. The value of λ in an finite interval
is sampled. The cross-validation mean square error MSECV of the model over the
test dataset is computed. The λ value which minimizes the cross-validation error
is selected. The corresponding model is chosen as an optimal model with a proper
balance of complexity and accuracy.

Let Tcv denote the set of time instances of the test signal to be used for cross
validation. For a given regulation parameter λ, the mean square cross validation
error MSECV of the model over all the validation datasets is defined as

MSECV (λ) =
1

nt
‖P(x(t ∈ Tcv))cλ − p(t ∈ Tcv)‖2

2 (3.16)

where cλ denotes the model parameters for the regulation parameter λ. MSEcv is
an implicit function of λ. The SINDy algorithm attempts to select λ on the Pareto
front of the multi-objective optimization problem with the objectives being accuracy
and complexity of the model. The elbow of the Pareto front parameterized by λ is
often the choice [45].

Unfortunately, in most of cases, the elbow of the Pareto front is ambiguous
due to existence of a cluster of candidate models near the elbow. The information
criteria (IC) for the candidate models can help to rank and select a model with
a proper trade-off between the accuracy and complexity [46]. Popular statistical
examples of the information criteria include the Akaike information criterion (AIC),
Bayesian information criterion (BIC), deviance information criterion (DIC) and min-
imum description length. The work reported in [46] makes use of a big data matrix
P(x). The sparse regression procedure is repeated over all possible combinatorial
subsets of the data matrix. The resulting models are ranked through IC scores. The
model with the smallest score is selected.

However, a big data matrix P(x) may not always be available for real-world
applications. In this work, we propose a search algorithm to determine the sparse
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representation of the polynomial in Equation (3.2). We start with linear model when
N = M = 1, and increase the polynomial order until the prediction error of the
model over the test dataset reaches an acceptable low level and begins to increase.
The error of the test dataset is defined as,

MSEtest =
1

nt
‖P(x(t ∈ Tcv))ĉ− p(t ∈ Tcv)‖2

2 (3.17)

where ĉ stands for the estimated vector of coefficients. There are different ways
to generate training and test datasets. When the SINDy algorithm is applied to
simulation examples, we can generate rich datasets to train and validate the model
by considering the system responses for different initial conditions and excitations.
In this work, we assume that the dataset consists of two long time series of the
system response. One is used for training and another for cross-validation. The
data matrices P(x) are generated for different orders of the polynomial. The SINDy
algorithm selects the sparse model built on the training data while the regularization
parameter λ is selected with the help of cross validation on the test dataset.

Real measurements often contain noises, and can have outliers and missing
data. Here, we propose to combine the sparse regression with bootstrapping in
order to develop robust sparse regression. In particular, we consider K bootstrap
sample vectors containing L elements of the original data points. Each vector is
generated by uniform sampling of the data with replacement. For each bootstrap
sample vector, the sparse regression is applied to identify the model. Finally, the
parameters of the model is the average of the K estimated coefficient vectors ĉl.

c̃ =
1

K

K∑
l=1

ĉl (3.18)

The standard deviation of estimated coefficient vectors ĉl is computed to study the
variation of parameter estimation.

Algorithm 2 summarizes the procedure.
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Algorithm 2 Bootstrapping sparse regression algorithm for time-delay estimation.

1: procedure Time-Delay Estimation(Xtrain, ftrain, Xtest, ftest, N,K,L, λmin, λmax)
2: for PolyOrder ∈ [1, N ; 1,M ] do
3: g(x, ẋ)← x, ẋ, PolyOrder . Generate candidate polynomial restoring

force
4: P(x)train,P(x)test ← library(Algebraic Operation(g(x, ẋ)))
5: ptrain,ptest ← Algebraic Operation(ftrain(t), ftest(t))
6: for k ∈ [1, K] do . Generate uniformly random sampling with

replacement
7: P(x)k,train,pk,train ← Bootsraping Sampling(P(x)train,ptest, L)
8: for λ ∈ [λmin, λmax] do . Search to find the sparse regulator
9: MSE(λ)← SINDy(P(x)k,train,pk,train, λ)
10: end for
11: λmin ← min(MSE(λ))
12: Model(PolyOrder, k)← SINDy(P(x)k,train,pk,train, λmin)
13: if cτ = 0 then
14: Model(PolyOrder, k)← OLS(Ps(x)k,train,pk,train)
15: end if
16: end for
17: Model(PolyOrder)← Average(Model(PolyOrder, k))
18: MSEtest(PolyOrder)←MSE(Model(PolyOrder),Ptest(x),ptest)
19: end for
20: Model(c)← Overall min(MSEtest) . Select the model with minimum test

error
21: return Model (c)
22: end procedure
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Remarks

Some remarks on the estimation error and the stability of the system are in
order. The estimation error of the coefficients c, in particular, time delay τ , can
be attributed to two sources: the truncation error of the Taylor expansion and the
regression error.

While keeping more higher order terms of the Taylor expansion helps to re-
duce truncation error, we may run the risk of instability of the truncated model. We
have found that the third order term is a good compromise for accuracy, complexity
and stability.

3.3 Simulated Example

To demonstrate the proposed algorithm, we consider the second-order oscil-
latory system with nonlinear stiffness and damping in Equation (3.3). The following
external forces are used to generate the training and test datasets.

f(t)Train = 10 sin(4t) + 40 sin(4t2) + εf (3.19)

f(t)Test = 10 sin(2t) + 40 sin(8t) + εf (3.20)

For the training dataset, the system starts from the initial conditions x0 = 1
and v0 = 0. For the test dataset, the initial conditions are x0 = −1 and v0 = 0.5.
The excitation contains a normally distributed random noise εf with zero mean
and standard deviation σεf = 0.01. We assume that the sensors have measurement
noises such that the system output is given by x(t) + εx where εx is the normally
distributed random noise with zero mean and standard deviation σεx = 0.01.

Table 3.2 lists the system parameters used in the simulation. A proportional
control with gain kp = 2 is considered. We employ the third order of Taylor expan-
sion of the time delay x(t − τ). The order of expansion is selected such that there
are enough equations to solve for the unknown parameters of the system. Following
Algorithm 2, we create the data matrix P(x) with polynomials of orders from 1 to 6
and N = M . For each polynomial model, 30 bootstrapping samples with the ratio of
50 percent of the total data are selected. 50 values of λ are sampled logarithmically
in the range from 10−6 to 100.

Because the first term includes the time delay, we constrain the LASSO
algorithm to keep it from being penalized and removed in the process of searching for
sparse representation. The average of sparse polynomials out of all the bootstrapping
samples is taken as the final result.

Figure 3.1 shows the variation of the cross validation error MSEcv as a func-
tion of the order N of the polynomial. It is seen from the figure that the cross
validation error has a large drop when approaching N = 3 and stays at the same
range for N = 4 and starts increasing from N = 5. We choose N = 3 as the optimal
order of the polynomial when the minimum validation error occurs and the order is
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Table 3.1: The true and estimated parameters of the simulation example.

Terms Parameters Exact Value Estimated Standard Deviation ∗10−3

...
x kp

τ3

6
0.0026667 0.001515 0.0125

ẍ m− kp τ
2

2
0.96 0.9611 0.0137

x k1 − kp 4 3.9830 0.1612
x2 0 0 0 0
x3 k3 2 2.0041 0.0943
ẋ c1 + kpτ 1.4 1.3922. 0.2896
ẋ2 0 0 0 0
ẋ3 c3 1 0.9973 0.0432
xẋ 0 0 0 0
xẋ2 0 0 0 0
xẋ3 0 0 0 0
x2ẋ c2 1 1.0074 0.0961
x2ẋ2 0 0 0 0

: : : : :
x3ẋ3 0 0 0 0

minimum. Table 3.1 lists the estimated coefficients of the signals in Equation (3.9).
The proposed algorithm has successfully detected the sparse terms and precisely
estimated the coefficients. The time delay and parameters of the original system are
calculated and listed in Table 3.2 together with the known values. The accuracy of
the estimated parameters is quite acceptable.

Remarks

A remark on small values of the standard deviation in Table 3.1 is in order.
This fact is an indication that the randomness of the data is not significant so that
the bootstrapping samples are not sufficiently different. We have checked the results
several times to confirm this observation.

3.4 Experimental Example

In this section, we employ a flexible joint experimental setup, made by
Quanser, to prove the efficiency of the method for experimental data from a single-
input-multiple-outputs (SIMO) dynamical system. The joint is connected to the
base through two springs with equal stiffness ks and the base is fixed to the servo
motor as Figure 3.2 shows. The servo motor with input voltage Vm generates a
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Table 3.2: The parameters of the mass-spring-damper system for the simulation
example.

Parameters Selected Value Estimated Value

m 1 0.9885
k1 6 5.9830
k3 2 2.0041
c1 1 1.0609
c2 1 1.0074
c3 1 0.9973
τ 0.2 0.1656
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Figure 3.1: The cross validation test error for the mass-spring-damper system.
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Figure 3.2: The flexible joint set up by Quanser [1].

torque M to turn the base with a rotation angle θ. The deflection angle of the joint
relative to the base is α. The moment of inertia of the base is Jeq. The viscous
damping coefficient of the base is Beq. Jl stands for the moment of inertia of the
joint. The equations of motion for the system can be derived as,

(Jeq + Jl)θ̈ + Jlα̈ +Beqθ̇ = τM , (3.21)

Jlα̈ + Jlθ̈ +Blα̇ + ksα = 0,

τM =
ηgkgηmkt(Vm − kgkmθ̇)

Rm

≡ a · Vm + b · θ̇,

a =
ηgkgηmkt
Rm

, b = −ηgkgηmktkgkm
Rm

,

where torque τM is linearly dependent on the servo motor voltage Vm and θ̇. We
assume that the motor parameters are known. Table 3.3 lists the parameters of the
motor and joint provided by Quanser. We should point out that these numbers may
not be exactly the same as the physical system parameters. Therefore, we should
treat these numbers as a reference.

A proportional control with gain kp adjusts the motor voltage to make the
joint follow the desired trajectory of the angle θ while the deflection angle α stays
minimum. The control is given by

Vm = kp ∗ (θd − θ) (3.22)
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Table 3.3: The parameters of the rotary flexible link provided by Quanser [2].

Symbol Description Value

Jl Link moment of inertia 0.0038kg.m2

Jeq Equivalent moment of inertia 9.76 ∗ 10−5kg.m2

Bl Flexible link torsional damping Not available
Beq Equivalent torsional viscous damping 0.015N.m/rad/s
ks Link torsional stiffness 1.3N.m

rad

kg High gear total gear ratio 70
kt Motor current torque constant 7.68 ∗ 10−3N.m

A

km Motor back-emf constant 7.68 ∗ 10−3 v
rad/s

Rm Motor armature resistance 2.6Ω
ηg Gearbox efficiency 0.9
ηm Motor efficiency 0.69

The control is implemented in Simulink/MATLAB. The outputs of the system are
θ and α. A time delay is introduced in the feedback signal θ.

In this example, we employ the second order Taylor expansion of the time
delay term.

θ(t− τ) = θ(t)− τ θ̇(t) +
τ 2

2
θ̈(t) (3.23)

The closed-loop system can be written as,

(Jeq + akp
τ 2

2
)θ̈ + (Beq − akpτ)θ̇ −Blα̇− ksα = akp(θd − θ) + bθ̇, (3.24)

Jeqα̈− akp
τ 2

2
θ̈ + (akpτ −Beq)θ̇ +

Bl(Jl + Jeq)

Jl
α̇

+
ks(Jl + Jeq)

Jl
α = −akp(θd − θ)− bθ̇. (3.25)

We should point out that the tracking performance of the closed-loop system
will not be as good as we would like to have. This is because the proportional control
alone is not adequate and the time delay further deteriorates the performance. The
purpose of choosing this control with time delay is simply for generating the data
in a stable manner.

To generate the training dataset, we select a desired trajectory θd as

θd = 2 sin 2πf1t (3.26)
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where the frequency f1 = 0.66Hz is for the desired trajectory θd. To generate the
test data, we choose a square-wave signal for the desired trajectory θd with the same
amplitude and frequency as in Equation (3.26). We introduce a 0.2s delay in the
control such that the closed-loop system is stable.

Figures 3.3 and 3.4 show the motor input voltage Vm and the sample responses
of θ and α, The time series is one minute long with a sample time 0.001s. For
simplicity, we assume that for each coordinate θ and α, the restoring force can be
represented by a sum of four polynomials of a single variable, i.e. θi, θ̇i, αj, and
α̇j, together with a friction term related to θ̇, without considering the cross-product
terms. The second coefficient in Equation (3.25), akp

τ2

2
, includes the time delay.

We apply the constraint to the LASSO algorithm to keep it from being penalized
and removed.

Some signals in the matrix P(x) contain the first order derivative of the angles
θ̇ and α̇. Recall that the real measurements contain noises. We use the nonlinear
state observer from the control studies to estimate the first-order derivatives without
amplifying the noise in the computation [113,114]. The second order observer with
gains β1 and β2 is defined by the following state equations.

ż1 = z2 − β1e, (3.27)

ż2 = −β2fal(e, α, δ)

where

fal(e, α, δ) =

{
|e|α · sign(e), |e| > δ
e
δα
, |e| ≤ δ

(3.28)

and the error e = z1 − θ. We have chosen α = 0.5, δ = 0.05, β1 = 100 and
β2 = 900. According to [113, 114], the estimation error e converges to zero quickly.
Consequently, by definition, z2 is an accurate estimate of the first order derivative
θ̇. Figures 3.3 and 3.4 show the plot of estimated θ̇ and α̇ for both training and test
dataset.

To train the model, we consider 10 bootstrapping samples with the length of
50 percent of the training dataset and search the polynomial order from 1 to 7. For
the sparse regulator, 100 values of λ are sampled logarithmically in the range from
10−10 to 100.

Figure 3.5 shows the variation of the cross validation error as a function of
the order of polynomials. The results suggest that for both coordinates θ and α,
the polynomial order N = 5 leads to the minimum cross validation error. This is
the optimal order for the polynomials.

Table 3.4 lists the polynomial terms and the corresponding coefficients and
associated standard deviation for the trained model of polynomial order N = 5. We
should mention that the reported results have been round to 10−5. The estimated
value of Coulomb friction fc is not negligible. It can play an important role in the
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Figure 3.3: The system response to track a sinusoidal trajectory θd with amplitude
2 radian and frequency 0.66 Hz.
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Figure 3.4: The system response to a square-wave signal θd with amplitude 1
radian and frequency 0.66 Hz.
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system dynamics. We should point out that the linear model in Equation (3.21) does
not include the friction term, although the actual device always has friction. The
friction is the primary reason for the discrepancy between the predicted response by
Equation (3.21) and the actual measurements.

Figures 3.3 and 3.4 indicate that the responses of the closed-loop system are
not really tracking the references accurately. This is partly due to the effect of time
delay and also the poor control design, as discussed earlier. The oscillatory responses
of the closed-loop system are obviously responsible for the high order terms of the
polynomials, particularly for the deflection angle α, as can be seen in Table 3.4. This
highlights the ability of the proposed system identification algorithm to estimate the
time delay and to identify the nonlinearities in the system when the linear models
are no longer adequate.

The motor parameter a is known and kp is the given control gain. Hence,

from the coefficient −akp τ
2

2
, the time delay can be calculated and is listed in Table

3.5 in comparison with the time delay we introduced to the control. The values
of the parameters in Table 3.5 fall in a wide range from 0.002 to 2. Hence, the
parameters can be serval order of magnitudes apart, which makes it difficult to
accurately estimate all the parameters in the presence of unwanted noises. This
experimental study strongly demonstrates the robustness of the proposed algorithm
to noises.

3.5 Conclusions

In summary, we have demonstrated that the proposed algorithm is effective
to obtain governing equations of nonlinear dynamical systems with time delay from
noisy experimental data. It can accurately estimate the time delay in the feedback
control. For the first time, this study extends the sparse regression to nonlinear
dynamical systems with time delay. We have equipped the sparse regression with
an algebraic signal pre-processing and a nonlinear state observer. These operations
are essential to compute the needed derivatives of measured time series and other
signals without the need to know initial conditions, and to filter noises due to random
excitations and measurements. Both simulation and experimental results have been
used to validate the algorithm. The algorithm demonstrates excellent performances
in identification.
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Figure 3.5: The cross-validation error of the rotary flexible joint.
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Table 3.4: The θ and α terms, their coefficients and the standard deviations of the
estimation for the rotary flexible joint.

Terms Estimated Standard Terms Estimated Standard
in θ-equation Deviation in α-equation Deviation

θ̈ 0.0061 0. θ̈ 0.0012 0.0001
α̈ − − α̈ -0.0061 0
θ 0.0625 0.0026 θ -0.0603 0.0029
θ2 0.0003 0.0026 θ2 0.0003 0.0018
θ3 -0.0254 0.0009 θ3 0.024 0.0010
θ4 -0.0004 0.0006 θ4 0.0003 0
θ5 0.0019 0.0034 θ5 -0.0019 0

θ̇ -0.0922 0.0002 θ̇ 0.0920 0.0036

θ̇2 0.0002 0 θ̇2 -0.0002 0.0002

θ̇3 0.0004 0 θ̇3 -0.0004 0

θ̇4 0 0 θ̇4 0 0

θ̇5 0 0 θ̇5 0 0
α -1.1976 0.0139 α 1.2483 0.0128
α2 0.9040 0.0896 α2 -0.9458 0.0991
α3 -2.3784 0.2446 α3 2.4237 0.2634
α4 -0.7031 0.2916 α4 0.6930 0.3149
α5 8.9105 0.5177 α5 -9.0823 0.5629
α̇ -0.0650 0.0005 α̇ 0.0644 0.0008
α̇2 -0.0215 0 α̇2 0.0216 0.0005
α̇3 0.0001 0 α̇3 -0.0001 0
α̇4 0.0004 0 α̇4 -0.0004 0
α̇5 0 0 α̇5 0 0
fc 0.0516 0.0083 fc -0.0477 0.0084
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Table 3.5: The nominal and estimated values of the parameters of the rotary
flexible link by Quanser [2].

Symbol Nominal Values Estimated values

Jeq + akp
τ2

2
0.0102 0.0061

Beq − akpτ −0.0662 −0.0922
ks 1.3 1.1976
Jeq 0.00208 0.0012
Bl Small unknown 0.0650

akp
τ2

2
0.008121 0.0061

akpτ −Beq 0.0662 0.0920
ks(Jl+Jeq)

Jl
2.0501 1.2483

Bl(Jl+Jeq)

Jl
Small unknown 0.064

τ 0.2 0.1734
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Chapter 4

DATA-DRIVEN CONTROL OF NONLINEAR SYSTEMS
FOR TRAJECTORY TRACKING

Data-driven control systems are a broad family of control systems, in which
the identification of the process model and/or the design of the controller are based
entirely on experimental data collected from the plant. Model-based controller de-
signs highly depend on the model of the systems. However, it is still difficult to find
a simple yet reliable model for a physical system, that includes only those dynamics
of the system that are of interest for the control specifications. In this chapter, we
investigate how our system identification algorithm delivers reliable and accurate
models of the system to design model-based controllers.

We first start with the robust sliding model controller and add the concept of
flat-output in our design for under-actuated systems. In the next design, we inves-
tigate the optimal control design procedure for the identified models. Date-driven
models usually include nonlinearities to precisely describe the dynamics and physics
of the systems. Furthermore, the identified models are mostly high-dimensional.
Therefore, in indirect data-driven control systems, the designers are usually dealing
with high-dimensional nonlinear controller designs. Optimal control design mostly
focuses on solving Hamilton-Jacobi-Bellman (HJB) equation. The solution is mostly
difficult or even infeasible for nonlinear and high-dimensional models. In this chap-
ter, we also introduce an algorithm to solve HJB equation for our system identifi-
cation method.

4.1 Problem Statement

The main goal of this chapter can be formulated as the control design of the
identified model of rotary flexible link (RFL) in Eq. 2.24 and 2.25. The identified
model can be rewritten as the state-space form in Equation (4.1),

ẋ(t) = f(x(t)) + g(x(t))u(x(t));x(t0) = x0 (4.1)
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where t0 is the initial time and x0 is the initial state. The state x(t), the drift matrix
f and control matrix g are defined as,

x(t) = [θ, α, θ̇, α̇]T (4.2)

f(x(t)) = [0, 0, fθ(x(t)), fα(x(t))]T

g = [0, 0, Bθ, Bα]T ; Bθ =
1

a11

, Bα =
1

a21

the control input u(t) ∈ R is the servo-motor voltage Vm. The function f(x)+g(x)u
is Lipschitz continuous on a set Ω ⊆ R4 that contains the origin, and the system
is stable on Ω. The identified mathematical model fθ and fθ include the nonlinear
terms of stiffness, viscous damping and Coulomb friction. The control goal of a RFL
is to keep the link tip tracking a desired trajectory while suppressing the undesired
vibration. In fact, the angular location θ should follow the desired θd and the
deflection angle α is kept zero. Therefore, the reference state is defined as,

xd(t) = [θd, 0, 0, 0]T (4.3)

the system has only one control input Vm to control two degree-of-freedom θ and α.
Therefore, the system falls into the under-actuated control systems.

4.2 Flat-Output Sliding Mode Control for Identified Models

4.2.1 Design procedure

In this section, we discuss the mathematical background our proposed flat-
output based sliding model controller. First, we give a brief definition of flat systems
and explain how we consider the flat output of our identified nonlinear model in
Eq(4.2). Then, we detail in our procedure to design the flat output-based sliding
mode controller.

4.2.1.1 Flat Systems Model

Let us consider the general state-space model of nonlinear systems in Equa-
tion (4.1) and let p = (xe, ue) denotes an operation or equilibrium point of the
system. The tangent linearization of the system can be obtained as

ẋδ = (
∂f

∂x
|p +

∂g

∂x
u(t)|p)xδ + g|puδ (4.4)

= Aδxδ +Bδuδ

where xδ = x − xe, uδ = u − ue, Bδ is the control influence vector, and Aδ is a
matrix of the linear state. The tangent or Jacobian linearized system in Equation
(4.4) is flat if, and only if, it is controllable, which means there exists a function yf
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of the output yδ such that all the states xδ are expressible in terms of yf and its
finite successive time derivatives [86, 87].

To find the flat output yf for RFL, we consider the tangent linearization of
Equation (4.2) around the equilibrium θ = 0, θ̇ = 0, α = 0, α̇ = 0, and u = 0. Let
us ignore the friction terms such that,

θ̈ = a11α +Bθu (4.5)

α̈ = a21α +Bαu (4.6)

then, a local differentially flat output yf can be found analytically as

yf = Cθθ + Cαα; (4.7)

Cθ =
Bα

a11Bα − a21Bθ

Cα = − Bθ

a11Bα − a21Bθ

We can show that all the incremental states of the system can be expressible
in terms of yf and its time derivatives,

α = ÿf (4.8)

α̇ = y
(3)
f

θ =
1

Cθ
(yf − Cαα)

θ̇ =
1

Cθ
(ẏf − Cαα̇) =

1

Cθ
(ẏf − Cαy(3)

f )

Equation (4.8) suggests that a nonsingular state transformation is generated
by the flat output yf . The term y(n), n = 3, 4., , , denote the n order derivative of
y. Using the the state in Equation (4.8) and Equation (4.5), the linearized system
equations can be written in the norm form,

y
(4)
f = a21ÿf +Bαu (4.9)

to involve the nonlinearities, we consider the state θ̈ = fθ + Bθu in Equation (4.2),
therefore, the flat output for the nonlinear system with the states in Equation (4.8)
is as,

y
(4)
f =

1

Cα
ÿf +

Bα

Bθ

f(yf , ẏf , ÿf ) +Bαu (4.10)
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with f(.) representing all the nonlinearities affecting the flat output dynamics. The
preferred route in sliding mode control is to overcome this quantity. This type of
relation is fundamental in sliding mode creation problem for a control objective
defined on the basis of the flat output. In the next section, we detail in the flat
output-based sliding model control design.

4.2.1.2 Sliding-Mode Control Design

In this section, a trajectory tracking control is desired to move the system’s
state x(t) to follow xd(t) = [θd, 0, 0, 0]T . Considering the flat output yf , one can
define the flat output tracking error as ef = yf − yf,d where yf,d denotes the desired
flat output. The relative order of the flat output system in Equation (4.10) is nf = 4,
therefore; a sliding surface can be readily proposed to be

s(e, ė, ë, e(3)) = e
(3)
f + λ1ëf + λ2ėf + λ3ef (4.11)

with the control gains λi, i = 1, 2, 3 chosen so that the associated characteristic
polynomial:

p(s) = s3 + λ1s
2 + λ2s+ λ3 (4.12)

is a Hurwitz polynomial. To simply the design, let us define the surface as a function
of a single λs as

s(e, ė, ë, e(3)) = (
d

dt
+ λs)

nf−1ef

= e
(3)
f + 3λsëf + 3λ2

s ėf + λ3
sef

(4.13)

Given the initial condition x(t = 0) and therefore yf (t = 0), the problem of
tracking the vector yf,d is now equivalent to that of remaining on the surface s(t)
for all t > 0. Indeed s ≡ 0 represents a linear differential equation whose unique
solution is ef ≡ 0. As a result, the problem of tracking vector yf,d can be reduced
to that of keeping the scalar quantity s at zero. In fact, we can say the problem
of tracking vector yf,d can be replaced by a first-order stabilization problem in s.
Moreover, bounds on the surface s can be directly translated into bounds on the
tracking error vector ef . To guarantee the stability of the control design, it is usual
to define the Lyapunov function as

V =
1

2
s2 (4.14)

such that the first time derivative is defined as

V̇ = sṡ ≤ −ηs |s| (4.15)
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where ηs is a strictly positive constant. Therefore, keeping the stability condition
one can define

ṡ = −ηs
|s|
s

= −ηssgn(s) (4.16)

where

sgn(s(t)) =

{
+1 for s(t) ≥ 0
−1 for s(t) < 0

(4.17)

making the first derivative of Equation (4.13), one obtains

ṡ = e
(4)
f + 3λse

(3)
f + 3λ2

s ëf + λ3
s ėf (4.18)

as e
(4)
f = y

(4)
f − y

(4)
f,d, we replace the term y

(4)
f by the flat output in Equation (4.10)

to obtain the control law uSMC as

uSMC =
1

Bα

(y
(4)
f,d −

1

Cα
y

(4)
f −

Bα

Bθ

fθ − 3λse
(3)
f − 3λ2

s ëf − λ3
s ėf − ηssgn(s)) (4.19)

In practical cases, the term sgn(s(t)) in uSMCcauses the drawback of chatter-
ing. One approach for chattering reduction involves introducing a boundary layer
around the switching surface and using a continuous control with the boundary
layer. Therefore, we replace the term sgn(s(t)) by sat(s(t), φs) is defined as

sat(s(t), φs) =

{ s(t)
φs

for |s(t)| < φs
sgn(s(t)) for otherwise

(4.20)

where φs is a strictly positive constant. In the next section, we validate the feasibility
and efficiency of the proposed flat output-based sliding mode controller by simulating
the RFL model with the identified model.

4.2.2 Simulated Results

Using the identified nonlinear model of RFL in section 2.3, we simulate the
system in MATLAB. To generate the control input uSMC , we set ηs = 5 × 104,
φs = 500, and λs = 16 such that the whole roots of Hurwitz polynomial in Equation
(4.12) are located on the left half-plane of the complex plane to keep the stability.
We set the desired or reference trajectory for the motor angular location θd as a
square signal, the blue line in Figure 4.1.

The system response in Figure 4.1 shows that the controller is capable of a
smooth trajectory tracking while suppressing the undesired vibration in the link.
The control input is smooth and without any chattering. Moreover, the controller
input satisfies the saturation limit of the servo motor |Vm| ≤ 10. Figure 4.2 demon-
strates the variation of the sliding surface during the control operation. Starting
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from any initial conditions or suddenly changes in the desired trajectory, the control
input makes the states trajectory slide along the surface toward the desired states
when the surface value is zero or there is no trajectory error.

Figure 4.1: The control simulated results of the identified RFL system with a
flat-output sliding model controller.
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Figure 4.2: Sliding surface to track a square trajectory for rotary flexible link.

4.3 Optimal Control Design for Identified Nonlinear Rotary Flexible
Link

Optimal control has emerged as one of the fundamental design philosophies of
modern control systems design. Optimal control policies satisfy the specified system
performance while minimizing a structured cost index which describes the balance
between desired performance and available control resources. From a mathematical
point of view, the solution of the optimal control problem is based on the solution of
the underlying HJB equation. The solution of HJB equation is mostly challenging
for nonlinear systems due to the intractability of this nonlinear differential equation
for continuous-time (CT) systems, as this is the interest of this section. In this
section, after giving a short review of optimal control theory, we propose a neural
network solution to estimate the semi-global solution of HJB equation. Then, we
validate the approach through several simulated system and finally our identified
model of RFL.

4.3.1 Theoretical background

We consider the time invariant and continuous time system in Equation (4.1).
Focusing on infinite horizon optimal control problem, we define the infinite horizon
integral cost as,
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V (x0) =

∫ ∞
0

r(x(τ, u(τ)) dτ. (4.21)

where r(x, u) = xTQx+uTRu acts as the reward function. The matrix Q is positive
definite and R ∈ Rm×m is a symmetric positive definite matrix. Based on the
definition in [99], a control policy µ(x) is defined as admissible with respect to
Equation (4.21) on domain Ω, denoted by µ ∈ ψ(Ω), if µ(x) is continuous on Ω,
µ(0) = 0, u(x) = µ(x) stabilizes Equation (4.1) on Ω, and V (x0) is finite ∀x0 ∈ Ω.

For any admissible control policy µ ∈ ψ(Ω), if the associated cost function

V µ(x0) =

∫ ∞
0

r(x(τ, µ(x(τ))) dτ. (4.22)

is C1, then an infinitesimal version of Equation (4.22) is so-called nonlinear Lya-
punov equation

0 = r(x, µ(x)) + (V µ
x )T (f(x) + g(x)µ(x)), V µ(0) = 0 (4.23)

where V µ
x denotes the partial derivative of the value function V µ with respect to the

state vector x.
The optimal control problem can now be formulated: Given the continuous-

time system in Equation (4.1), the set µ ∈ ψ(Ω) of admissible control policies and the
infinite horizon cost functional Equation (4.21), we find an admissible control policy
such that the cost index Equation (4.21) associated with the system in Equation
(4.1) is minimized. Defining the Hamiltonian of the problem

H(x, u, Vx) = r(x(t), u(t)) + V T
x (f(x(t)) + g(x(t))µ(t)) (4.24)

the optimal cost function V ∗(x) defined by

V ∗(x0) = min
µ∈ψ(Ω)

(

∫ ∞
0

r(x(τ, µ(x(τ))) dτ) (4.25)

with x0 = x is known as the value function, and satisfies the HJB equation

0 = min
µ∈ψ(Ω)

[H(x, µ, V ∗x )]. (4.26)

Assuming that the minimum on the right hand side of Equation (4.26) exists
and is unique then the optimal control function for the given problem is

µ∗(x) = −1

2
R−1gT (x)V ∗x (x) (4.27)

Inserting this optimal control control policy in the nonlinear Lyapunov equa-
tion we obtain the formulation of the HJB equation in terms of V ∗x
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0 = Q(x) + V ∗Tx (x)f(x)− 1

4
V ∗Tx (x)g(x)R−1gT (x)V ∗x (x)

V ∗(0) = 0. (4.28)

For the linear system cases, considering a quadratic cost functional, the equiv-
alent of this HJB equation is the well-know Algebraic Ricacati Equation (ARE).

In order to find the optimal control solution for the problem one only needs
to solve the HJB equation (4.28) for the value function and then substitute the
solution in Equation (4.27) to obtain the optimal control. However, due to the
nonlinear nature of the HJB equation finding its solution is generally difficult or
impossible.

4.3.2 Algorithm to Solve Hamilton Jacobi Belman Equation

In this section, we aim at developing an algorithm to solve HJB equation for
identified nonlinear systems. First, we estimate the value function by neural network
to solve HJB equation and therefore we gain the optimal feedback control law. We
propose the effective Adam optimization algorithm, the recent popular algorithm in
the field of deep learning, to train our network and estimate the parameters.

4.3.2.1 Neural Network Approximation of Value Function

Therefore, it is justified to assume there exist weights W such that the value
function V (x) is approximated as

V (x) = W Tφ(x) + ε(x) (4.29)

Then φ(x) Rn → RN is called the NN activation function vector, N the
number of neurons in the hidden layer, and ε accounts for the NN approximation
error. As per the above, the NN activation functions {φi(x) : i = 1, ..., N} are
selected so that {φi(x) : i = 1, ...,∞} provides a complete independent basis set
such that the value function V (x) and its derivative

∂V

∂x
= (

∂φ(x)

∂x
)TW +

∂ε

∂x
= ∇φTW +∇ε (4.30)

are uniformly approximated. Based on universal approximation, as the number of
hidden layer neurons N →∞, the approximation error ε→ 0 and therefore ∇ε→ 0
uniformly . Furthermore, for fixed number of neurons N , the NN approximation
errors ε(x), and ∇ε are bounded by constants on a compact set [116].

Considering a fixed control policy u(t) and using the NN value function ap-
proximation, the nonlinear Lyapunov Equation (4.23) becomes
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H(x, u,W ) = W T∇φ(f + gu) + xTQx+ uTRu = εH (4.31)

where εH is approximation error and goes to zero when N → ∞. The object of
interest in this chapter is finding the solution of the HJB using the introduced
function approximator in Section 4.3.2.1, therefore; it is interesting now to look at
the effect of the approximation error on the HJB equation (4.28).

W T∇φf(x)− 1

4
W T∇φgR−1gT∇φTW + xTQx = εHJB (4.32)

In the next section, we define the cost function to train the NN or estimate
the parameters W based on Equation (4.32).

4.3.2.2 Cost Function to Train Neural Network

The weights or parameters of NN approximator W for the value function V
in Equation (4.29) is unknown. In fact, we need to train the network to find the
weights W and at each training step, we have an estimation of the weights Ŵ and
consequently, the output of NN is an estimation of the value function as

V̂ (x) = Ŵ Tφ(x) (4.33)

Recall that φ(x) : Rn → RN is the vector of activation functions, with N
the number of neurons in the hidden layer. The approximate nonlinear Lyapunov
equation is then

H(x, u, Ŵ ) = Ŵ T∇φ(f + gu) + xTQx+ uTRu = eH(x) (4.34)

defining the weight estimation error

W̃ = Ŵ − Ŵ (4.35)

Then
eH(x) = −W̃ T∇φ(f + gu) + εH (4.36)

in fact, the total error estimation is caused by the NN approximation function and
weight estimation error which is related to training NN. As our focus is on solving
HJB equation, we define the residual error in HJB equation such that,

Ŵ T∇φf(x)− 1

4
Ŵ T∇φgR−1gT∇φT Ŵ + xTQx = e(x) (4.37)

Given any admissible control policy u, it is desired to select Ŵ to minimize
the squared residual error. If we consider each state x denotes a data point and
assume that {ei : i = 1, ..., Nd} refers the residual errors for nd number of data
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points. Then we can define the residual error vector e = [e1, e2, ..., eNd ] and define
the cost function J as the squared residual errors as,

J =
1

2
eTe =

Nd∑
i=1

e2
i (4.38)

training the NN by minimizing the cost function, then Ŵ → W and e→ εHJB.

4.3.2.3 Data Generation to Train Neural Network

The data selection to train NN to solve HJB equation not only essentially
affect the accuracy but also can mitigate the curse of dimensionality. In fact, except
for systems with two or three state variables, numerically solving HJB equations for
general nonlinear systems is difficult or even unfeasible.

In our algorithm, we select a roughly wide but physically feasible domain Ω
for each state variable and simply discretize each dimension that results in a mesh-
like grids or finite dimensional data points. Our algorithm performs fast for the
nonlinear systems with two or three state variables as we report the time elapsed
for the the computations. However, for the dimensions larger than three, we have
to deal with the curse of dimensionality. This is also because of the fact that high-
dimension systems require more activation functions ψi and consequently larger
NN which utilize more computational sources. Moreover, high-dimensional systems
require more data points on each dimension to present the state variable and give
good information to train the larger NN.

We validate the accuracy of our algorithm to solve HJB equation for the
nominal linear model of a rotary flexible manipulator link with four state variables.
Four-dimensional systems still account for high-dimensional systems. To mitigate
the curse of dimensionality, we decease the number of discretization on each di-
mension. The results prove the accuracy of solution, while the elapsed time is
considerably long. Further developments are required as it is now an active research
area in the field of optimal control. Training NN through sparse grids or the data
around the desired trajectories are the proposed methods in the literature to solve
HJB for higher dimensional problems.

4.3.2.4 ADAM Stochastic Gradient Descent Optimization

To obtain the exact solution for the weight vector W in HJB Equation (4.32)
or train NN one needs to find the stationary points of the loss function J(θ) in
Eq. (4.38), therefore; the problem is limited to an optimization problem. Our
algorithm is compatible with stochastic gradient descent (SGD) optimization, which
is commonly used in deep learning and has outperformed even in the non convex
problems.
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We use adaptive moment estimation (Adam) proposed in [117]. ADAM is
a efficient method for SGD optimization that only requires first-order gradients in
Eq. (4.39) with little memory requirement. The algorithm computes the adaptive
learning rate for each parameter in the vector of γk for each iteration k.

Ŵk+1 = Ŵk − γk∆WJ(Wk) (4.39)

We introduce Adam, an algorithm for first-order gradient-based optimization
of stochastic objective functions. The method is straightforward to implement and
is based on adaptive estimates of lower-order moments of the gradients. The method
is computationally efficient, has little memory requirements and is well suited for
problems that are large in terms of data and/or parameters. The method exhibits
invariance to diagonal rescaling of the gradients by adapting to the geometry of
the objective function. The hyper-parameters have intuitive interpretations and
typically require little tuning.

with gk = ∆WJ(Wk), we denote the gradient vector of partial derivatives of
J with respect to θ evaluated at iteration k. The algorithm updates the exponen-
tial moving average of the gradient (mk) and the squared gradient (vk) where the
hyper parameters β1, β2 ∈ [0, 1) control the exponential decay rates of these moving
averages. The moving average are the estimated of the mean and the uncentered
variance of the gradient.

We use a modified AdaMax, a variant of Adam based on the infinity norm.
Algorithm 3 details the optimization procedure we develop for our experimental
examples in the paper. We should point out that all operations on vectors are
element-wise. For more mathematical details, we encourage reading the concepts
in [117].

4.3.2.5 Algorithm Schematics

In this section, we summarize the algorithm to solve HJB equation for known
nonlinear systems in Figure 4.3 and Algorithm Schematics 3.
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Figure 4.3: Algorithm schematics of training NNs to estimate the solution of HJB
equation.

Algorithm 3 NN solution to solve HJB equation for known systems.

1: Input: Activation Basis function φi; Step size α
2: Data Collocations: Nd data point inside the domain Ω
3: Adam setting: Good default settings are β1 = 0.9 and β2 = 0.999
4: Initialize: Initial network parameters Ŵ .
5: m(0)← 0 . Initialize first moment vector
6: u(0)← 0 . Initialize the exponentially weighted infinity norm
7: k ← 0 . Initialize iteration step
8: while not converged do
9: k ← k + 1
10: gk ← ∆θJ(θk−1)
11: mk ← β1mk−1 + (1− β1)gk
12: vk ← max(β2vk−1, |gk|)
13: Ŵk ← Ŵk−1 − (α/(1− βk1 )).mk/vk := Ŵk − γk∆ŴJ(Wk) . Updating

parameters
14: end while

4.3.3 Simulation Validations

In this section, we validate the performance of our algorithm to obtain the
optimal control law for the linear and nonlinear systems proposed by Frank Lewis
in [3].
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4.3.3.1 Continuous-Time F16 Aircraft Plant

Consider the continuous-time F16 aircraft plant used in [118]

ẋ =

−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

x+

0
0
1

u (4.40)

with the state vector x = [x1;x2, x3]. The Q and R matrices in the cost function are
identity matrices of appropriate dimensions. In the linear models, the solution of
the HJB equation is given by the solution of the algebraic Riccati equation (ARE)
which is known as linear-quadratic regulator (LQR). Since the value function
is quadratic in the LQR case, we select the basis set φ as the quadratic vector in
the state components as

φ(x) =
[
x2

1 x1x2 x1x3 x2
2 x2x3 x2

3

]T
(4.41)

we consider the following domain

Ω : −5 ≤x1 ≤ 5 (4.42)

−10 ≤x2 ≤ 10

−10 ≤x3 ≤ 10

with the mesh discretization 10 × 10 × 5. In fact, we generate totally 500
data points to train NN. We select the learning rate α = 0.001 and randomly choose
the initial values for the vector Ŵ as Fig.(4.4) shows. Fig.(4.4) shows how the NN’s
weights Ŵ = [Ŵ1, Ŵ2, ..., Ŵ6] converge to the optimal values W ∗ as,

W ∗ =
[
1.4245 2.3364 −0.2705 1.4350 −0.3002 0.4330

]T
(4.43)

we gain J = 9.3776 ∗ 10−5 at the convergence and the computational process
for 6000 iterations elapsed 39.133136 seconds being run on a 2.3 GHz Intel Core i5
processor. Using Equation (4.27) and estimated optimal weights W ∗, one can simply
find the optimal feedback control law in Equation (4.44). The estimated gains are
the same as the LQR gains computed by the build-in function in MATLAB. This
high accuracy validate the performance of the numerical solution for HJB equation.
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û = −1

2
R−1

0
0
1

T


2x1 0 0
x2 x1 0
x3 0 x1

0 2x2 0
0 x3 x2

0 0 2x3



T 
1.4245
2.3364
−0.2705
1.4350
−0.3002
0.4330

 (4.44)

= −0.1352x1 − 0.1501x2 + 0.4329x3

= uLQR
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Figure 4.4: Convergence of the estimated parameters Ŵ to the optimal values W ∗.

4.3.3.2 Nonlinear Systems with Known Value Function

In this section, we prove the efficiency and accuracy of our algorithm to solve
HJB equation for nonlinear systems. Let us consider the nonlinear system in [3].

ẋ = f(x) + g(x)u, x ∈ R2 (4.45)

where
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f(x) =

[
−x1 + x2

−0.5x1 − 0.5x2(1− (cos(2x1) + 2)2)

]
(4.46)

g(x) =

[
0

cos(2x1) + 2

]

we select Q =

[
1 0
0 1

]
and R = 1. Using the online reinforcement algorithm in [3],

the optimal value function is

V ∗(x) =
1

2
x2

1 + x2
2 (4.47)

and therefore, the optimal control signal is

u∗(x) = −(cos(2x1) + 2)x2 (4.48)

One selects the NN vector activation function as

φ(x) =
[
x2

1 x1x2 x2
2

]
(4.49)

we consider the following domain

Ω : −2 ≤x1 ≤ 2 (4.50)

−2 ≤x2 ≤ 2

with the mesh-grid 25×25 and therefore, totally 625 data points to train the network.
Setting the learning rate α = 0.005 and the initial weight vector Ŵ = [1, 1, 1]T , after
498 iterations we gain the cost function J = 5.9207 ∗ 10−10. The running time is
recorded as 2.052706 seconds on a 2.3 GHz Intel Core i5 processor. Figure 4.5 shows
the convergence of the estimated weights Ŵ = [W1,W2,W3]T to the optimal values
W ∗. Table 4.1 includes the optimal weights W ∗ in comparison with our estimation
Ŵ and estimated weighs WHJB by the online reinforcement learning approach by
Frank Lewis in [3].
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Table 4.1: The optimal weights W ∗ in comparison with our estimation Ŵ and
estimated weighs WHJB by the online reinforcement learning approach
by Frank Lewis in [3] for the known nonlinear system in Equation (4.45).

Term W ∗ WHJB Ŵ

x2
1 0.5 0.5017 0.49998

x1x2 0 -0.002 2.8946× 10−5

x2
2 1 1.0008 0.99973
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Figure 4.5: Convergence of the critic parameters W to the parameters of the
optimal critic W ∗.

So using the estimated optimal weights, we can simply compute the feedback
control law as,

û(x) = −1

2
R−1

[
0

cos(2x1) + 2

]2x1 0
x2 x1

0. 2x2

T  0.49998
2.8946 ∗ 10−5

0.99973

 (4.51)

Figure 4.6 shows the optimal value function. The identified value function
given by V̂ = Ŵφ(x) is virtually indistinguishable. In fact, Figure 4.7 shows the
3D plot of the difference between the approximated value function, by using the
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proposed algorithm, and the optimal one. This error is close to zero. Good approx-
imation of the actual value function is being evolved.

Finally Figure 4.8 shows the 3D plot of the difference between the approxi-
mated control, by using our algorithm, and the optimal one. This error is also close
to zero.

Figure 4.6: 3D plot of the estimated value function V̂ .
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Figure 4.7: Convergence of the critic parameters W to the parameters of the
optimal critic W ∗.

Figure 4.8: 3D plot of the approximation error for the feedback control law.
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4.3.4 Optimal Feedback Control for Rotary Flexible Manipulator Link
with Identified Model

In this section, we try to develop the optimal control design for rotary flexible
link by using our identified model in section 2.3. The identified model includes non-
linearities and accounts for high-dimensional problem in optimal control community.
Rewriting the motion equation in Equation (2.21) in the form of state-space as

x = [x1, x2, x3, x4]T = [θ, α, θ̇, α̇]T (4.52)

we select a quadratic value function V̂ with the basis function vector φ as,

φ(x) =
[
x2

1 x1x2 x1x3 x1x4 x2
2 x2x3 x2x4 x2

3 x3x4 x2
4

]
(4.53)

and we can generate data in the domain,

Ω : −5π ≤x1 ≤ 5π (4.54)

−0.25π ≤x2 ≤ 0.25π

−10 ≤x3 ≤ 10

−10 ≤x4 ≤ 10

with mesh-grid 3× 3× 3× 3 and therefore, totally 81 data points to train NN. To
design control, we select the same Q and R matrices proposed in the device’s manual
in [112] as,

Q =


121 0 0 0
0 1 0 0
0 0 1 0
0 0 0 5

 , R = 1 (4.55)

Setting the learning rate α = 0.001 and the initial weight as the vector of
ones, after 2.5106 iterations, the network parameters Ŵ converge to the optimal
W ∗ as Figure 4.9 shows the convergence of the network’s weight Ŵ to the optimal
values W ∗,
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Figure 4.9: The convergence of NN’s weights Ŵ to the optimal values W ∗ to
estimate HJB solution for optimal control design.

The optimal weight W ∗ is recorded by

W ∗ =

[
1.7057 0.3348 1.6758 0.7746 3.1157...

−1.5276 −0.7699 0.0589 0.0198 0.0069

]T
(4.56)

therefore, the optimal control for the nonlinear system can be computed in real-time
as

Vm = −1

2
R−1


0
0
Bθ

Bα


T



2x1 0 0 0
x2 x1 0 0
x3 0 x1 0
x4 0 0 x1

0 2x2 0 0
0 x3 x2 0
0 x4 0 x2

0 0 2x3 0
0 0 x4 x3

0 0 0 2x4



T 

1.7057
0.3348
1.6758
0.7746
3.1157
−1.5276
−0.7699
0.0589
0.0198
0.0069


(4.57)

= 11.344898 x1 − 7.640617 x2 + 2.264583 x3 − 0.060721 x4
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Figure 4.10 illustrates the dynamical response of the simulated rotary flexible
link with the data-deriven model to the optimal control computed in Equation (4.57)
to track a square signal reference. The results prove the efficiency of the nonlinear
optimal design for trajectory tracking and undesired vibration suppression.

Figure 4.10: The response by RFL dynamical systems to the optimal control de-
signed by the nonlinear identified model.

4.4 Conclusions

In this work, we develop two control design for the identified model with
nonlinearities to validate the sparse system identification method. The first tra-
jectory tracking control is designed by a sliding mode control and to overcome the
under-actuation in the system we suggest a flat output to be controlled. Moreover,
we prove the efficiency of our nonlinear model regarding the optimal control design.
A numerical algorithm is suggested to estimate the solution of HJB equation. The
control performance is validated by simulated system of RFL and popular simulated
nonlinear examples in the field of optimal control.
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Chapter 5

FUTURE WORKS

5.1 Conducting remarks

The present thesis mainly discusses how data-driven approach can be used to
identify the optimal model of nonlinear electro-mechanical systems with and without
time delay in the feedback control in time domain. The identification method in-
volves time series data analysis and regression, sparse identification, model selection
and cross validation from machine learning, the statistical concept of bootstrapping,
and algebraic method dealing with high-order derivative estimation and noise re-
moving. Comparing the common neural network training approach, the proposed
method is physics-informed and involves generality for unseen data inputs. More-
over, the approach gives an accurate parameters estimation and physical properties
of the system.

The result of identification can be employed by model-based control design
frameworks leading to efficient data-driven controllers. The identified model gives a
reliable prediction for trajectory tracking controller of nonlinear systems. Optimal
control as the main principle of modern controllers is studied in this thesis. A
physics-informed neural network approach is proposed to design the optimal control.
The algorithm does not depend on the persistent excitation conditions which is
hard to obtain it. We believe the data-driven methods and theories on system
identification and control design could be further developed in a bright future.

5.2 Future Work

5.2.1 Data-driven Modeling

For the future research in the field of system identification, the proposed
algorithm can be extended to multiple-input-multiple-output (MIMO) systems to
model more complicated dynamic systems. Furthermore, deep learning approach
can be investigated for more complex and history dependent dynamic systems. The
proposed technique in this thesis is off-line while intense research regarding the
online data driven estimation theories can be done. The online estimation can be
beneficial for time varying systems.

In the field of time-delayed nonlinear system, the identification techniques are
mostly analytical; therefore, there are great opportunities to investigate the data-
driven techniques to identify systems and estimate the time delay. Complicated
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case study of MIMO systems, history dependent dynamic systems, and complicated
nonlinear control design can be considered. Deep learning approach can be efficiently
employed for this purpose.

5.2.2 Data-driven Control Design

Optimal control solutions and reinforcement learning controllers has been
taken a great attention in the recent years. For more complex systems, deep and
complex neural networks can lead promising results, while the ”curse of dimension-
ality” is still challenging. Efficient methods of data selection can save the usage
of computational resources and improve the time processing. In addition to data
selection, efficient optimization techniques and training approach can be deeply in-
vestigated as the future work.
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[58] Gawthrop PJ, Nihtilä MT (1985) Identification of time delays using a poly-
nomial identification method. Systems & Control Letters 5(4), 267–271

[59] Ren XM, Rad AB, Chan PT, Lo WL (2005) Online identification of
continuous-time systems with unknown time delay. IEEE Transactions on Au-
tomatic Control 50(9), 1418–1422
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[86] Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of non-
linear systems: introductory theory and examples. International journal of
control 61(6), 1327–1361
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