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Abstract 
The drift diffusion model predicts that variability in response 
time (RT) is primarily due to the time required for evidence to 
stochastically accumulate to a response boundary. Total RT 
depends on both the quality of perceptual processing output 
(the mean rate of accumulation), and also the duration of 
perceptual processing (the delay from stimulus to start of 
accumulation). The activity of movement neurons in the 
frontal eye field (FEF) is associated with a stochastic 
accumulation; these cells initiate a saccade when activity 
reaches a fixed threshold. During saccade visual search, the 
onset of movement neuron activity correlates with RT, and 
increases when search is more difficult. This suggests that the 
duration of perceptual processing was increased. We 
simulated trajectories using various forms of the drift 
diffusion model and measured the onset with the same 
analyses used to detect the onset of neurophysiological 
activity. We found that varying the rate of accumulation 
resulted in large changes in the measured onset of model 
trajectories even when the start of the accumulation was 
fixed.  These results show that a correlation between the onset 
of neural activity and RT alone is not sufficient to conclude 
that changes in RT were due to changes in the duration, but 
not quality, of perceptual processing. 

 

Keywords: response time models; frontal eye field; eye 
movements. 

Neural and Mental Chronometry 
One hallmark approach of cognitive psychology is 
decomposing response time (RT) into distinguishable stages 
of processing (Meyer, Osman, Irwin, & Yantis, 1988) 
Consider an organism confronted with a stimulus relevant to 
two or more potential actions. Determining the relevance of 
object features to potential responses first requires a 
perceptual stage of processing. Perceptual output is 
interpreted by a response preparation stage which 
determines whether and when a response is made.  

Neurophysiological data recorded from sensorimotor 
structures in the primate brain have been used to test 
competing hypotheses about the flow of information 
between perceptual processing and response preparation. 
Different populations of neurons in the frontal eye field 
(FEF) and superior colliculus (SC) reflect visual 
information about object relevance versus explicit decisions 
about where and when to move the eyes. Visual neurons 
respond to a visual stimulus in their response field 
(Thompson, Hanes, Bichot, & Schall, 1996). Visual neuron 
activity evolves over time to select the location of a task-
relevant object. Movement neurons increase their activity  

 
before a saccade; the movement is executed when activity 
reaches a fixed threshold (Hanes & Schall, 1996). 
Neurophysiological (Lee, Helms, Augustine, & Hall, 1997) 
and modeling (Purcell, Heitz, Cohen, Logan, Schall, & 
Palmeri, 2007) work suggest a functional connection 
between visual and movement neurons in FEF and SC. 

Visual and movement neurons represent distinct 
perceptual and motor processes. During saccade visual 
search, the time when visual neurons select a target from 
among distractors is modulated by changes in target-
distractor similarity, but not response interference (Sato, 
Murthy, Thompson, & Schall, 2001). This time may 
indicate the conclusion of perceptual processing. A recent 
study asked whether movement neuron activity could be 
used to identify the start of response preparation (Woodman, 
Kang, Thompson, & Schall, 2008). They found that varying 
target-distractor similarity or set size modified the onset of 
movement neuron activity (when activity began increasing 
above baseline). The onset of movement neuron activity 
also correlated with RT within difficulty conditions, but the 
growth rate did not. These results suggest that both 
systematic and random variability in RT is due to delays in 
the start of response preparation.  

Movement neuron activity has been interpreted in terms 
of stochastic accumulator models. These models assume 
that perceptual evidence is integrated over time until it 
reaches a response boundary (Boucher et al, 2007). 
Evidence accumulation is preceded by perceptual 
processing time, Ter (Figure 1). The output of perceptual 
processing is the drift rate, v, which is the average rate of 
accumulation. Typically, these models predict that changing 
the difficulty of a perceptual discrimination should primarily 
affect the quality of the information (the drift rate), but not 
the duration of perceptual processing (Ter). If the onset of 
movement neuron activity corresponds to Ter, then this 
suggests that variability in RT is due to variability in the 
duration of perceptual processing. This contradicts a key 
assumption of the stochastic accumulator framework: 
manipulating the difficulty of a perceptual decision should 
primarily influence the drift rate. 

What can the onset of movement neuron activity tell us 
about the transmission of information from perceptual 
processing (visual neurons) to response preparation 
(movement neurons)? It seems intuitive that variations in 
the drift rate must lead to variations in the rate of stochastic 
growth and not the time when activity begins increasing. 
However, the onset of neurophysiological activity cannot be  
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‘read out’ as the Ter parameter can; rather, it must be 
measured. Information growth is stochastic, so the measured 
onset may not correspond to the start of the accumulation.   

The aim of this work was to determine whether a 
correlation between the onset of activity and RT necessarily 
indicates a change in the duration of perceptual processing.  
We measured the onset of activity in both FEF movement 
neurons and simulated diffusion model trajectories using the 
same analyses. We show that a diffusion model may predict 
correlations between the onset of activity and RT although 
the start of the accumulation is fixed. We conclude that 
correlations between the onset of neural activity and RT are 
consistent with both changes in the duration of perceptual 
processing (Ter) and changes in the quality of perceptual 
output (drift rate).  

 
 

Figure 1. Diffusion model illustration. 
 
 

Simulations 1:  
What Can Cause Variability in Onset? 

 
The drift diffusion model describes a mechanism in which 
stochastic samples of evidence accumulate toward one of 
two response boundaries (Ratcliff, 1978; Figure 1). The first 
boundary that is reached determines the response that is 
made and the time it takes to reach that boundary 
determines RT. The model also assumes some time for 
perceptual processes that precede the decision. Perceptual 
processing time varies across trials according to a uniform 
distribution with a mean, Ter, and range, st. Typically, Ter 
also includes time required for subsequent motor processes, 
but we will be modeling FEF movement neurons and can   

 
assume a short and relatively invariable motor delay 
(Scudder, Kaneko, & Fuchs, 2002). 

The output of perceptual processing is the drift rate, v, 
which is the mean rate of accumulation. Drift rate varies 
systematically across stimulus conditions; a higher drift rate 
indicates stronger evidence for a particular decision. 
Evidence is noisy and intratrial variability in the 
accumulation is distributed normally with a mean of 0 and a 
standard deviation, s, which can be set to 0.1 without loss of 
generality. Evidence begins accumulating from a starting 
point, z, and a decision is made when it reaches either the 
upper boundary, a, or the lower boundary at 0. The 
complete version of the drift diffusion model assumes 
across trial variability in the drift rate and starting point 
(Ratcliff & Rouder, 1998). Drift rate varies across trials 
according to a normal distribution with a standard deviation 
of η. Starting point varies according to a uniform 
distribution with range sz.  

Ratcliff and colleagues (2003) fitted the diffusion model 
to data obtained from non-human primates performing a 
two-alternative forced choice discrimination task. Macaque 
monkeys were trained to make a saccade to one of two 
targets positioned to the left and right of a fixation point. 
Each saccade target was associated with two possible 
categorizations of a centrally presented stimulus. The 
probability that an animal would be rewarded for making a 
saccade to the left target increased with the distance 
between the stimulus and the fixation point (maximum 10o). 
The probability of reward for a saccade to the right target 
varied inversely with the distance between the stimulus and 
fixation (minimum 2o). Both response probabilities and 
response time distributions for correct and error trials were 
fitted with the full drift diffusion model using standard 
techniques. Only the drift rate was free to vary between 
stimulus conditions (for a total of 6 free drift rates) and all 
other parameters were held constant across conditions. We 
used these parameters to begin exploring the conditions 
under which the diffusion model predicted a correlation 
between onset of accumulation and RT.  

Method 
Ratcliff et al. (2003) assumed several different drift rates for 
the stimulus conditions. To simplify matters, we only used 
the best-fitting drift rate parameters from two stimulus 
conditions, an easy condition (>8o separation, strong 
evidence for a leftward saccade) and a hard condition (6o 

  v 

Table 1: Diffusion model parameters.  

z st (s) sz 
    
s η Ter (s) a 

Ratcliff et al (2003): Easy 1.250 0.100 0.491 0.202 0.054 0.033 0.051 0.006 
 Hard 0.440 0.100 0.491 0.202 0.054 0.033 0.051 0.006 

Monkey F: Easy 0.470 0.100 0.000 0.127 0.067 0.033 0.000 0.000 
 Hard 0.125 0.100 0.000 0.127 0.067 0.033 0.000 0.000 
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separation, weak evidence for a leftward saccade). We were 
particularly interested in contrasting two variations of the 
diffusion model; a version that explicitly allowed variability 
in perceptual processing time (st > 0; the version that was 
originally fit) and a modified version that assumed no 
variability in perceptual processing time (st = 0).  

We simulated trajectories for the two variations of the 
diffusion model using a random-walk approximation (with 
step size τ = 0.001) (see Ratcliff & Tuerlinckx, 2002). Ter 
was appended to the beginning of each trajectory as a 
constant equal to the starting point for that trial (as pictured 
in Figure 1). As is the case with actual neurophysiological 
data, we analyzed the trajectory as if Ter was not known; 
rather, the onset (when activity first began increasing) 
needed to be estimated using a sliding window algorithm. If 
either model predicts a positive correlation between the 
measured onset of activity and RT, then we will have 
evidence that this is a viable model of FEF movement 
neuron activity. If only the model that assumes st > 0 
predicts a correlation with RT, then we will have evidence 
that the onset of model activation coincides with the 
conclusion of perceptual processing time 

The onset of activity for each simulated trajectory was 
calculated using the same backward sliding window 
algorithm that has been used to analyze neural data 
(Woodman et al., 2008). The window (t +/- 50 time-steps) 
was started at RT and moved backwards in single time-step 
increments. At each increment, a Spearman correlation 
coefficient was calculated. The onset was defined as the 
time point when the correlation remained nonsignificant for 
100 time steps. Only correct trials in which the process 
terminated at the positive boundary were analyzed, but this 
onset analysis could easily be extended to error trials by 
reversing the sign of the trajectory. 

For each simulated trial, we generated a diffusion model 
trajectory and predicted RT. We simulated 100 trials to 
mirror the average number of trials observed in a typical 
neurophysiological experiment. Trials were sorted by 
predicted RT and divided into deciles. The first and last 
deciles were dropped to minimize the influence of outliers 
on correlations. An onset was calculated for the last trial 
within each group, which mimicked the analysis of actual 
neurophysiology as will be explained shortly. The Pearson 
correlation coefficient was calculated between the onset of 
activity and RT for the remaining trajectories. We repeated 
this process 100 times and calculated the mean correlation 
and the percentage of significant correlations across those 
100 samples (α = 0.05). To contrast the predicted onset 
across difficulty condition, we calculated the mean onset 
time across deciles and samples for the easy and hard 
conditions.  

Results and Discussion 
The parameters from Ratcliff et al. (2003) that we used for 
the simulations are listed in the top row of Table 1. The first 
set of simulations used this full set of parameters as given. 

There was strong positive correlation between the onset of 
activity and RT for the vast majority of sampled simulated 
trials using both the easy (   = 0.854, 93.0% had p < 0.05) 
and hard (  = 0.862, 90.0% had p < 0.05) conditions.  

This result is not surprising. The mean perceptual 
processing time (Ter = 0.202 s) accounted for the bulk of the 
total RT for both conditions ( easy = 0.222 s; hard = 0.241 
s). More importantly, variability in perceptual processing 
time was relatively large (st = 0.051 s). Since Ter determines 
when the accumulation can begin, that variability directly 
affects the onset of activity. Variability is large, so the onset 
is highly likely to correlate with RT. For now, the 
association of measured onset with the end of perceptual 
processing seems justified. 

The next set of simulations eliminated all variability in 
Ter. While there was now only a weak correlation between 
the measured onset and RT for the easy condition (  = 
0.118, 5.0% had p < 0.05), the average correlation between 
the measured RT and predicted response time for the hard 
condition was fairly strong (  = 0.703, 73.0% had p < 0.05). 
Furthermore, the mean onset time was 16 ms longer for the 
hard condition than the easy condition, although there was 
no difference in Ter time across conditions. These results 
suggest that the onset time may not necessarily mark the 
conclusion of perceptual processing and the start of 
response preparation.  

 
 

Simulations 2:  
Comparing Neural and Simulated Onsets 

 
The first set of simulations showed that the diffusion model 
predicts a modest correlation between onset and RT even 
when there was no variability in the perceptual processing 
stage preceding the response selection stage. However, 
those analyses were limited in several respects. We did not 
have access to the neural data from the Ratcliff et al. (2003) 
study, so we cannot be certain that the movement neurons 
actually showed an onset shift in each condition.  
Furthermore, we removed variability in perceptual 
processing by forcing Ter and st to zero, but we cannot know 
if this model actually fits the behavior.  So it may be an 
implausible representation of the true accumulation process. 
The next set of simulations addressed these issues. 

Again, our primary goal was to see if onset would vary 
with RT when variability in perceptual processing was fixed 
within and across conditions. We analyzed behavioral and 
neurophysiological data from a subset of the data reported in 
Woodman et al. (2008). Data were collected from a 
Macaque monkey (Monkey F) that performed a saccade 
visual search task. The animal was trained to make a single 
saccade to an odd-ball target among seven distractors 
arranged equidistant from fixation in a circular array. The 
target was defined by color and difficulty was manipulated 
by varying the similarity between the target and distractors.  
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The easy search condition used a red target among green 
distractors and the hard condition used a yellow-green target 
among green distractors. RT was defined as the time when 
the animal’s eyes left fixation. During the search, neural 
activity was recorded from FEF. Recorded cells were 
classified as movement neurons if they showed an increase 
in activity prior to a saccade to their response field (Bruce & 
Goldberg, 1985). A total of 36 cells showed movement-
related activity. Trials were classified as correct if a single 
saccade was made to the target. Only correct trials in which 
the target was inside the movement field of the cell were 
analyzed. 

Method 
For each movement neuron, we determined the onset of 
activity for groups of trials and assessed the relationship 
between onset and RT. Each trial produced a neural spike 
train that was aligned on the appearance of the stimulus 
array. For each neuron, correct trials were sorted by RT. 
Trials were binned into groups of ten and a single spike 
density function was generated that represented the average 
neural activity over time (Sato et al, 2001). The same 
algorithm that was used to define the onset of model activity 
in the first set of simulations was used to identify the onset 
of neural activity. The size of the window for neural data 
was ±25 ms to reflect the time-scale of the neural activity. 
The correlation between measured onset for each RT bin 
and the mean RT of that bin was determined for every 
neuron. We computed the mean correlation and the 
percentage of significant correlations (α = 0.05) across cells 
to compare with model predictions. 

Behavioral data were fitted using a simplified version of 
the diffusion model. The EZ diffusion model assumes that 
drift rate, residual time, and boundary separation are the 
only model parameters and have no variability across trials 
(Wagenmakers, van der Maas, & Grasman, 2007) The 
starting point of the diffusion process is fixed at the mid-
point of the response boundaries and does not vary (i.e., z = 
a/2). Specifically, we used the EZ2 method to fit easy and 
hard conditions simultaneously (Grassman, Wagenmakers, 
& Van der Maas, 2009). Since easy and hard conditions 
were interleaved within recording sessions, we assumed that 
only drift rate, v, varied across conditions. Once these 
parameters were defined, we simulated the diffusion model 
trajectories using the same procedure described in the first 
set of simulations. Measures of onset and the relationship 
between onset of activity and RT were also quantified using 
the same methodology. 

Results and Discussion 
The onset of FEF movement neuron activity correlated 

positively and consistently with RT for both the easy (  = 
0.61, 63.9% with p<0.05) and hard conditions (  = 0.74, 
75.0% with p<0.05). The mean onset also significantly 
increased across conditions (easy mean onset = 0.109 s; 
hard mean onset = 0.148 s; paired t = 9.21, p < 0.05). These 
results agree with previous reports of a larger population of 
neurons from the same database (Woodman et al., 2008).  

The best fitting parameters for the EZ diffusion model to 
the behavioral data for the easy and hard search conditions 
are listed in Table 1. The model accounted reasonably well 
for the mean RT ( ) and RT variance (σ2) for both the 
easy ( obs = 0.192 s; prd = 0.194 s;σ2

obs = 0.002;σ2
prd = 

0.002) and hard ( obs = 0.236 s; prd = 0.235 s; σ2
obs = 

0.006; σ2
prd = 0.007) conditions. Notably, the model 

accounted for the data well when only drift rate (strength of 
perceptual evidence) was free to vary across conditions, 
although we did not evaluate alternative models. 

When the best fitting parameters were used to simulate 
diffusion model trajectories, the measured onset of activity 
correlated positively with RT for the vast majority of 
sampled easy trials (  = 0.852, 92.0% with p<0.05) as well 
as hard trials (  = 0.934, 99.0% with p<0.05). The 
correlations were stronger than observed in the neural data, 
but the general observation that onset correlates with RT is 
clear. Importantly, there was also an increase in the mean 
observed onset between difficulty conditions (easy mean 
onset = 0.171 s; hard mean onset = 0.220 s) conditions. 
Thus, the model predicted a difference in onset of 0.039 s 
although Ter was fixed across conditions; this difference 
simply emerges from the stochastic buildup of activity in 
the diffusion model, how those trajectories vary over time, 
and how onset is measured. We also note that the difference 
between the predicted onset of activity for hard and easy 
conditions (0.049 s) is relatively close to the difference 
observed in actual movement neurons (0.038 s), even 
though that quantity was not explicit in any of the model 
fits. 

To conclude, a positive correlation between onset of 
activity and RT within difficulty conditions and an increase 
in the mean onset across difficulty conditions was observed 
in neural activity and was also observed in a diffusion 
model that assumed no variability in the discrete processing 
stage preceding the decision-making stage. This questions 
the assumption that the onset of neural activity indicates the 

 

Table 2: Onset predictions from simulations 1 and 2. 
   

Easy Discrimination  Hard Discrimination 
 Mean r %Sig Mean onset   Mean r %Sig Mean onset 

Variable Ter:        
Ratcliff et al (2003): 0.854 93.0% 0.208  0.862 90.0% 0.225 

Constant Ter:        
Ratcliff et al (2003): 0.118 5.0% 0.007  0.703 73.0% 0.023 

Monkey F: 0.852 92.0% 0.171   0.934 99.0% 0.220 
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end of perceptual processing and the start of response 
preparation. 

Simulations 3: 
Parameter Exploration 

The first two sets of simulations provide converging 
evidence that a diffusion model that assumes no variability 
in perceptual processing can nonetheless predict a 
correlation between onset of response preparation and RT 
and an increase in the mean onset when perceptual difficulty 
is increased. Following Woodman et al. (2008), this model 
would incorrectly attribute variability in RT to variability in 
perceptual processing time, when in fact there was none. 
This result is rather surprising since only the drift rate (the 
mean rate of accumulate) varied across conditions and Ter 
(the actual start of the accumulation) was equivalent in all 
conditions.  

This final set of simulations aimed to characterize the 
conditions for producing a correlation between onset and 
RT in the diffusion model. In other words, what parameter 
values are likely to predict a correlation between onset and 
RT. For these simulations, we did not fit the diffusion model 
to data. Instead, we explored a range of parameter space for 
the diffusion model and the conditions under which there 
was a correlation between onset of activity and RT. 

Method 
Following Simulations 2, we assumed a version of the 
diffusion model with no parameter variability. We fixed Ter 
and explored how values of drift rate, v, and boundary, a, 
influenced the correlation between onset and RT. The 
centroid for our exploration of parameter space was the 
values providing the best fit to Monkey F’s behavioral data 
from simulation set 2 (table 2, row 3). We also explored the 
effect of systematic variations in drift rate when the 
response boundary is set arbitrarily high. Simulated 
trajectories and the measured relationship between onset and 
RT were calculated as described in previous simulations. 

Results and Discussion 
The response boundary, a, was varied across a range from 
0.01 to 0.2 in increments of 0.01 while all other values were 
fixed (Figure 3a). At the lowest levels of a, there was little 
or no correlation between the measured onset and response 
time. As a increased, a greater correlation between onset 
and RT was observed, but eventually reaches asymptote. 
The reason is as follows. When the distance between 
boundaries is small, the diffusion process terminates rapidly 
with little variability in RT. Since, variability in RT is so 
low, significant correlations are rarely observed. When the 
distance between bounds is large, predicted RT may vary 
across a larger range. However, further increases in the 
distance between bounds do not influence the relationship 
between onset and RT. This suggests that relatively wide 

decision boundaries are necessary, but not sufficient to 
predict a correlation between the onset of activity and RT.  

We also varied the drift rate parameter, v, across a range 
from 0.1 to 1.5 in increments of 0.1 (Figure 2). As drift rate 
increases, there is a clear decrease in the percentage of 
significant correlations between onset and RT. Recall that 
drift rate dictates the mean rate of the accumulation and that 
variability around that mean within a trial is normally 
distributed with a fixed standard deviation of 0.1. The ratio 
of drift rate to within-trial variability -- the signal-to-noise 
ratio -- is a primary determinant of the shape of the 
predicted diffusion trajectory. When the signal-to-noise ratio 
is very low, variability in RT is due primarily to the 
accumulation of noise. As the ratio increases, the shape of 
the trajectory is increasingly driven by the value of drift 
rate. This provides one insight into the source of the 
correlation between onset and RT. When drift rate is low, 
the trajectory of the diffusion is more likely to wander 
around the starting point of the accumulation prior to 
reaching a decision bound. The neural measures of onset 
will capture this as a shift in onset.  

 

 
Figure 2: Systematic exploration of the effect of drift rate 

and boundary distance on the correlation between onset and 
RT. 

General Discussion 
A fundamental question of cognitive psychology is how 
information flows through sequential stages of information 
processing. Discriminating between competing models has 
been notoriously difficult using behavioral data alone. 
Neurophysiology promises a window on the inner workings 
of information processing. 

Woodman et al. (2008) observed that variability in the 
onset of movement neuron activity is correlated with RT. 
This is consistent with a model in which increased 
perceptual processing time causes a delay in both the onset 
of response preparation and RT. In a series of simulations, 
we showed that a model with no variability in the perceptual 
processing stage readily produces a significant correlation 
between onset and RT and an increase in onset when 
perceptual difficulty is increased. Thus, observing this 
correlation is not a signature for a particular architecture of 
information processing. Our simulation results suggest that 
observed relationships between the onset of neural activity 
and RT alone are not sufficient to conclude whether the start 
of an accumulation was delayed. Rather, the results could be 
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explained equally well by assuming a model in which the 
strength of perceptual evidence was varied. 

In FEF, systematic changes in the time when visual 
neurons select the target suggests that the duration of 
perceptual processing may, in fact, increase with target-
distractor similarity (Sato et al., 2001).  Presumably, these 
visual neurons serve as the perceptual input for movement 
neuron activity (Purcell et al., 2008).  It is possible that 
some combination of delays in the duration and quality of 
perceptual processing in visual neurons contributes to the 
observed pattern of movement neuron activity. 

This raises the issue of whether information is 
transmitted from perceptual processing discretely, or 
whether there is temporal overlap.  The issue of information 
transmission is complex, and there are several ways in 
which a given stage can be considered discrete or 
continuous (Miller, 1988). These results cannot directly 
speak to the temporal relationship of the perceptual 
processing and response preparation because all diffusion 
models assumed serial stages of processing.  However, by 
showing that variability in the quality of perceptual 
processing mimics shifts in the onset of activation, this work 
opens the door to the possibility that visual neuron activity 
may be input to movement neurons in a truly cascaded 
fashion. 

More generally, these results demonstrate that applying 
identical analyses to both model dynamics and 
neurophysiological data can reveal counterintuitive 
predictions. In this case, one particular measure, the onset, 
was not adequate to draw strong conclusions. This work 
suggests that future efforts should focus on developing new 
analyses of neurophysiological data to distinguish 
alternative model architectures.  
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