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Abstract

Studying the reproductive strategies of insect species that transmit diseases to humans can identify 

new exploitable targets for the development of vector control methods. Here we describe shared 

characteristics and individual features of the reproductive biology of three major disease vectors: 

Anopheles gambiae, Aedes aegypti and Glossina morsitans. Current studies are identifying i) 

species-specific molecular cascades that determine female monandrous behavior, ii) core aspects 

of egg development that could be disrupted for controlling natural populations, and iii) the 

increasingly apparent role of resident microbiota in shaping reproductive success and disease 

transmission potential. The recent completion of multiple genome sequencing projects is allowing 

comparative genomics studies that not only increase our knowledge of reproductive processes but 

also facilitate the identification of novel targets for vector control.

Introduction

The global burden of diseases spread by the biting of insect vectors is a heavy one: more 

than 17% of all infectious diseases are transmitted by vectors, and it is estimated over half 

the world's population is at risk, with more than 1 million deaths every year (World Health 

Organization; URL: www.who.int). Blood feeding is necessary for insect vectors to obtain 

nutrients required for energy and reproduction, and various viruses and parasites have 

evolved to exploit this requirement as a way to move between hosts. Current vector control 

strategies heavily rely on insecticides, which are nevertheless thwarted by the spread of 

resistance alleles in insect populations. Studying the basic reproductive biology of insect 

vectors of human disease can identify broad-ranging or species-specific reproductive targets 
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that can be exploited for the development of novel control methods as alternatives or to 

complement the use of insecticides.

In this review, we will focus on recent findings concerning the reproductive biology of 

disease vectors from the genera Anopheles (malaria), Aedes (yellow fever, dengue fever, 

chikungunya), and Glossina (human African trypanosomiasis), which account for the vast 

majority of global vector-borne mortality. Crucial aspects of mating, egg development and 

symbiotic relationships will be discussed with the end goal to highlight possible weak links 

in these life cycles that can be exploited for disease control.

Mating strategies and post-mating behavior of insect vectors

Insect vectors show various mating strategies depending on species-specific behaviors and 

ecologies. Mosquitoes (sub-Order Nematocera) are distant relatives of the tsetse flies (sub-

Order Brachycera). Nevertheless, their mating behaviors bear some similarities (Table 1). 

Most Anopheles species mate in crepuscular swarms formed over particular markers on the 

ground [1-3], where males gather at dusk and attract females by as yet unknown 

mechanisms, likely based on visual and chemical cues. Aedes mosquitoes, although they 

may show swarming behavior, prefer instead to mate in proximity to the hosts on which they 

feed [3]. Similarly, tsetse flies mate in close proximity to their vertebrate hosts and utilize 

visual cues to identify mating partners. Mating begins once a contact-based pheromone on 

the female is detected by the male [4] and pairs must remain coupled for 1.5-2 hours for the 

pairing to be successful [5]. In contrast, mosquito matings are short (10-20 seconds).

Regardless of the mating strategy, in all three genera sperm transferred during mating are 

stored in a dedicated sperm storage organ: a single spermatheca in Anopheles, two in tsetse, 

and two spermathecae and a bursa inseminalis in Aedes. Males of most Anopheles species 

are exceptional in the coagulation of their seminal fluid to form a mating plug, a gelatinous 

rod rich in proteins, lipids and steroid hormones produced in the male accessory glands 

(MAGs) which upon sexual transfer is processed in the female reproductive tract [6-11]. In 

An. gambiae, the major malaria vector, transfer of the mating plug is linked to sperm 

storage, as females that do not receive a plug do not store sperm in their spermatheca [7]. 

Aedes seminal fluid is not coagulated but nevertheless contains a complex mix of bioactive 

peptides [12, 13].

Seminal fluids in Glossina are transferred to the female reproductive tract, where they 

coagulate into a structure called a spermatophore, which also contains the sperm bundle 

[14]. After mating, the spermatophore is broken down over 24 hours and sperm migrate to 

the spermathecae. The constituent proteins and chemical moieties associated with this 

structure remain however undefined. Despite wide evolutionary distance, Anopheles, Aedes 

and Glossina share a female monandrous behavior (i.e. the occurrence of a single mating 

event during the female's lifespan). This mating strategy could potentially be targeted using 

chemical analogs that mimic monandry-inducing factors, preventing virgin females from 

mating, thereby decreasing vector populations. The male triggers of monandry have been 

recently identified in An. gambiae: high titers of the steroid hormone 20-hydroxyecdysone 

(20E) transferred to the female atrium (uterus) within the mating plug contribute to 
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switching the female to a mated status, rendering her refractory to further copulation (among 

other physiological changes – see below)[10]. As discussed later, both 20E and its precursor 

ecdysone (E) are also produced by the female after a blood meal, where they are essential 

for egg development.

Conversely, the molecular basis of monandry is unknown in Aedes, although a number of 

early studies suggest a role for peptides synthesized in the MAGs [15]. MAG protein 

extracts were able to induce mating refractoriness and oviposition when injected into virgin 

female mosquitoes [16, 17]. Recent work aimed at molecularly characterizing components 

of Aedes seminal fluid has identified a number of male proteins that are transferred to the 

female, so that the specific factors required to induce monandry in these mosquitoes may be 

pinned down in the near future [12, 13].

Female tsetse flies also become refractory to further copulation after sex [18], a behavior 

that starts 24 hours after mating [19, 20]. Injection of MAG extracts can induce mating 

refractoriness [21], suggesting that factors produced by the male glands are the trigger of 

this behavior. Spermatophore digestion over 24 hours correlates with the initiation of 

refractoriness behavior in females, but the nature of the molecular triggers is not known.

Egg development is a conserved process in different vectors

Much of what we know of the molecular mechanisms of oogenesis comes from studies in 

Ae. aegypti. Here, egg development is triggered by both the nutritional status of the female 

and the taking of a blood meal (reviewed in [22]). After emergence, the sesquiterpene 

juvenile hormone (JH) is secreted by the corpora allata in the brain and coordinates the 

maturation of multiple tissues. As JH levels increase and peak over the first 2 days of 

adulthood, the multifunctional fat body, with roles in nutrient storage, detoxification and 

protein synthesis, undergoes structural remodeling and large JH-dependent changes in gene 

expression that render this tissue competent to respond to ecdysone produced by the ovary 

after blood feeding [23]. JH also causes the pre-vitellogenic development and maintenance 

of ovarian follicles, which accumulate lipids and transcripts for key proteins involved in 

uptake of yolk protein precursors (YPPs) [24, 25]. Moreover, JH delivered by Ae. aegypti 

males during mating [26] also increases female fecundity [17, 27] by directing available 

nutrient resources towards reproduction, enlarging ovarian follicles and preventing follicle 

resorption [28].

After taking a blood meal Aedes mosquitoes develop eggs over 2-3 days. The mosquito 

brain stops JH synthesis and releases the ovarian ecdysiotropic hormone (OEH)[29], 

triggering the ovaries to produce the steroid hormone ecdysone [30]. Ecdysone is 

hydroxylated in turn to 20E in the fat body. Through the 20E receptor EcR/USP and early-

acting genes E74, E75 and Broad [31-33], 20E stimulates the transcription of YPPs, such as 

vitellogenin and lipophorin, which are released into the hemolymph and taken up by the 

ovaries by receptor-mediated endocytosis [34-36]. Additionally, levels of extracellular 

amino acids released by blood meal digestion trigger YPP production via the TOR-signaling 

pathway [37].
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These oogenic processes are considered largely conserved in Anopheles as many of the 

molecular components are found in the genome [38], however published data confirming a 

role for JH and OEH is limited [39, 40]. In An. gambiae, fecundity is also augmented by 

mating, and the mating-induced trigger of egg development occurs via the interaction 

between sexually transferred 20E received in the mating plug and the atrial protein Mating-

Induced Stimulator of Oogenesis (MISO) [9]. The MISO-dependent increase in egg 

numbers is characterized by an enhanced expression of the YPP lipophorin after a blood 

meal, possibly suggesting that male 20E primes the fat body for the production of YPPs.

The fundamental biology behind oocyte development in tsetse is similar to that observed in 

other Diptera, yet is markedly reduced in scale; tsetse ovaries are significantly smaller and 

contain only two ovarioles per ovary for a total of four ovarioles. During each gonotrophic 

cycle a single oocyte develops at any given time, independently of mating. The remaining 

ovarioles are held in a state of arrest that is broken when oocyte development is complete 

and the oocyte is ovulated into the uterus. Flies utilize lipase-derived YPPs (similar to other 

Brachyceran flies) that are synthesized and secreted exclusively by the ovarian follicle cells, 

as opposed to mosquitoes that utilize vitellogenins secreted by the fat body [41]. Egg 

development processes in mosquitoes and tsetse are summarized in Figure 1.

After development in the ovary, oocytes are ovulated and fertilized as they move through the 

female's reproductive tract. In mosquitoes, fertilized embryos are laid seconds later on 

(Anopheles) or close to (Aedes) water, where they hatch into an aquatic larval life stage 

(Figure 2). As virgins can develop eggs but do not lay them, mating triggers ovulation and 

egg-laying behavior. In An. gambiae once again the male-transferred 20E has recently been 

identified as both a necessary and sufficient trigger of oviposition [10]: 38% of females that 

were mated to males with experimentally reduced 20E levels were not able to lay their eggs 

compared to 14% of females mated to control males; consistently, oviposition was 

stimulated in virgin blood-fed females by the injection of 20E in a dose-dependent manner 

[10]. 20E also regulates fertility over multiple blood feedings preserving sperm function by 

up-regulating a spermathecal detoxifying enzyme, the heme peroxidase HPX15, and 

possible other mechanisms [42]. No information is yet available on the identity of the 

triggers of oviposition in Aedes, although, again similar to Drosophila, small proteins and 

peptides produced by the MAGs are likely candidates.

In tsetse, the oocyte is ovulated and fertilized as it enters into the uterus. Ovulation in tsetse 

is dependent upon the mating and pregnancy status of the fly [18]. Like mosquitoes, 

unmated females develop oocytes but are unable to ovulate until after mating. MAG proteins 

do not appear to regulate ovulation as mechanical stimulation by intrauterine implantation of 

glass beads has the same effect as mating [21]. However, ovulation can be induced in virgin 

females by the injection of hemolymph from mated pregnant females, which indicates an 

ovulation factor is systemically released in response to mating and oogenic stimuli [5].

At this point tsetse's reproductive cycle veers dramatically from that of oviparous insects 

(Figure 2). The embryo is retained within the uterus and hatches into a larva, which grows 

within the mother for its entire 3 instar developmental cycle and is fed by nutrients 

generated by an adapted female accessory gland termed the milk gland. This is the defining 
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characteristic of obligate adenotrophic viviparity. The milk secretions generated by the 

mother consist of roughly 50% lipids and 50% protein. During lactation stored lipids are 

mobilized from the fat body to the milk gland, and this transfer is regulated by JH and 

insulin signaling [43]. Milk contains at least 12 proteins, 10 of which are specific to tsetse 

[44] and are partly regulated in a milk gland- and pregnancy-specific manner by a 

transcription factor called Ladybird late [45]. This factor/regulatory system appears 

conserved among the Brachyceran dipterans and may also regulate female accessory 

function in other vector species within the Nematocera.

Microbes influence the reproductive success of insect vector species

It has long been known that tsetse fly reproduction is strongly dependent upon its 

relationship with an obligate endosymbiont, Wigglesworthia [46]. Wigglesworthia live 

intracellularly in a specialized organ in the gut named the bacteriome, and extracellularly 

within the lumen of the milk gland, allowing bacteria to be vertically transmitted to the 

developing larva [47, 48]. These symbionts supplement tsetse's rich but nutritionally limited 

blood diet with essential nutrients and cofactors required for energy metabolism. The 

Wigglesworthia genome encodes the synthesis pathways for multiple B vitamins, one of 

which (vitamin B6) functions as a co-factor for proline biosynthesis in the fly [49]. Proline 

functions as tsetse's primary energy source and is required to maintain the energetic process 

of milk production during pregnancy. In addition to Wigglesworthia, laboratory strains of 

tsetse have endosymbiotic relationships with Sodalis and Wolbachia bacteria. Sodalis do not 

affect tsetse's reproductive physiology but are required for longevity and can reduce 

trypanosome infection intensity [50], while Wolbachia induce strong cytoplasmic 

incompatibility [51], a phenomenon discussed below. All three symbionts may be exploited 

in paratransgenic anti-pathogen strategies to create trypanosome-resistant tsetse populations 

[52].

In mosquitoes, antibiotic treatment does affect reproductive output, indirectly implying roles 

for microbiota in reproductive fitness [53, 54]. Well studied are the reproductive effects of 

Wolbachia, an endosymbiont which resides within the germlines of many arthopod species 

(including tsetse and some mosquitoes), and is vertically transmitted from the female parent 

to progeny. Initially characterized in Culex mosquitoes [55], Wolbachia can cause 

cytoplasmic incompatibility (CI - reviewed within [56]) whereby matings between 

uninfected females and infected males result in embryonic lethality in the progeny, while 

matings of infected females produce fertile progeny regardless of the infection status of the 

male. Wolbachia infection can cause additional reproductive phenotypes, including 

increased fecundity and hatching rates in Aedes albopictus [57, 58]. Because of these 

reproductive phenotypes, Wolbachia infections can rapidly spread through natural insect 

populations, and have been detected in Aedes [59], Glossina [51, 60] and more recently in 

Anopheles species from West Africa [61]. Additionally, Wolbachia infections have also 

been shown to block human pathogen transmission in Ae. aegypti [62, 63] and in An. 

stephensi [64, 65], prompting their current and proposed use in disease control programs 

[61, 66, 67] (Eliminate Dengue Program; URL: www.eliminatedengue.com). A specific 

effect of Wolbachia on trypanosome infection intensity or on tsetse fecundity has not yet 

been fully established.
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Comparative genomics to identify shared and species-specific 

reproductive pathways

Recent publication of the genomes of the major tsetse fly vector species G. morsitans 

morsitans [68] and 16 Anopheles species [69] has provided exceptional opportunity to study 

key biological questions of vector species. How do tsetse achieve their unusual reproductive 

biology? What are the individual and common determinants of reproductive success in 

anophelines? What species are likely to be targeted by particular reproductive control 

strategies? The anticipated genome release of the invasive mosquito species Ae. albopictus 

[70] and improvements to the assembly of the Ae. aegypti genome [71] will enable similar 

comparative analysis for Aedes mosquitoes.

The analysis of the tsetse genome has allowed a first insight into how reproduction diverged 

so significantly in these vectors [68]. The reduced capacity for oogenesis in tsetse may have 

resulted in the reduction in YPP genes; while close relatives of tsetse carry three or more 

YPPs, tsetse has only one, YP1. Conversely, the evolution of lactation has resulted in the 

expansions of families of milk protein genes, likely via a series of gene duplication events. 

Nine of these genes are clustered within a single 40 kb region of the genome and have no 

known orthologs in other Diptera. They are only expressed in the secretory cells of the milk 

gland and in coordination with the pregnancy status of the mother. Novel insights into the 

reproductive biology of Anopheles mosquitoes have been provided by the 16 genome 

sequencing project [69]. Previous work in the African vector An. gambiae had shown that 

formation of the mating plug depends on the crosslinking activity of a MAG-specific 

transglutaminase enzyme, AgTG3 [7, 72]. Phylogenetic analysis across 16 anophelines 

showed that AgTG3 is highly divergent and more rapidly evolving than the other two TGs 

present in the genome [69], possibly reflecting divergence in mating plug phenotypes. This 

hypothesis was confirmed by a phenotypic study where semen coagulation and 20E 

synthesis by the MAGs were determined in eight Anopheles species besides An. gambiae. 

While three anophelines (An. arabiensis, An. funestus and An. stephensi) had a fully 

coagulated plug and high 20E levels in the MAGs similar to An. gambiae, others (An. 

atroparvus, An. dirus, An. farauti, and An. sinensis) showed intermediate coagulation and 

hormone synthesis, while the New World species An. albimanus was the only species that 

completely lacked both plug formation and male 20E synthesis [11]. These findings indicate 

the occurrence of different reproductive strategies across the Anopheles genus. Ancestral 

state reconstruction analyses determined that plug coagulation and 20E synthesis in the 

MAGs are derived characters that have co-evolved in anophelines from a plugless and 20E-

less ancestor [11]. Given the role of 20E transfer in switching off the female receptivity to 

further mating and in inducing oviposition [10], these data suggest that strategies targeting 

this steroid hormone may be successful in preventing successful mating and reproduction in 

a number of malaria vectors, demonstrating the power of comparative genomics.

Conclusions

The 200 million years of divergence separating mosquitoes and tsetse flies is reflected in the 

remarkable differences in their reproductive biology. Control methods based on reducing the 
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reproductive output of these insect vectors of disease are likely to be highly specific 

compared to wide-spectrum insecticides, and less harmful to the native ecology. On the 

other hand, these species share a male-triggered monandrous behavior that suggests these 

species could all be vulnerable to control strategies that either mimic or disrupt key factors 

transferred at mating, such as the steroid hormone 20E in Anopheles. The slow, reduced rate 

and unusual method of reproduction in tsetse makes this species an especially attractive 

target for control strategies based on disrupting the reproductive cycle, perhaps by 

interfering with milk protein production in lactation or exploiting its obligate symbiotic 

relationships. The next steps are to translate these laboratory findings into effective 

strategies to control insect populations in disease-endemic areas, producing a significant 

impact on the global burden of vector-borne disease.
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Highlights

1. Targeting reproduction may lead to new ways to control vector-borne disease

2. Monandry is a weak link in the life cycles of disease vectors

3. Tsetse fly reproduction is unique and includes pregnancy and lactation

4. The microbiome can influence the reproductive success of disease vectors

5. Comparative genomics powerfully reveals shared and species-specific 

mechanisms
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Figure 1. Oogenesis in mosquitoes and tsetse flies
An Anopheles mosquito is shown on the left and a tsetse fly on the right. Eggs are shown 

within the ovaries. The spermathecae of the tsetse fly are not shown for clarity and a 3rd 

instar larva is shown within the uterus. Aedes mosquitoes have a similar reproductive tract 

structure to Anopheles, but have three sperm storage organs (two spermathecae and a bursa 

inseminalis).
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Figure 2. Life cycles of mosquitoes and tsetse flies
Life cycles are shown on the same circle, with mosquitoes on the outside and tsetse flies on 

the inside of the circle. Common events are labeled in gray, and species-specific events in 

orange. After blood feeding, mosquitoes develop multiple oocytes within the ovaries, which 

are ovulated and fertilized as they pass through the reproductive tract. The embryos are laid 

immediately on (Anopheles) or close to (Aedes) water and hatch into larvae. The larvae molt 

thought 4 instars and become pupae, before eclosing into adult mosquitoes. Tsetse flies 

begin egg development during the pupal stage and continue to develop oocytes after blood 

meals. A single oocyte is developed at one time and is ovulated into the uterus. The oocyte 

is fertilized and the embryo remains in the uterus, where it hatches into a larva. The larva is 

fed by nutrients from the milk gland and completes 3 further molts within the uterus. The 

female gives birth to a 3rd instar larva, which rapidly pupates, before eclosing into an adult.
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Table 1
Comparison of the mating biology of major disease vectors

Mating biology Anopheles Aedes Glossina

Mating in swarms Yes Possible No

Mating near host No Yes Yes

Mating duration 15-20 sec 10-15 sec 90-120 min

Coagulated seminal fluids (SF) Yes No Yes

Identified SF components 20E, TG3 JH None

Post-mating changes

Female monandry Yes Yes Yes

Fecundity increased Yes Yes No

Ovulation induced Yes Yes Yes

Sperm storage Yes Yes Yes
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