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Oral anticoagulants are a critical component of stroke prevention, but carry a risk of

brain hemorrhage. These hemorrhagic complications tend to occur in elderly individuals,

especially thosewith predisposing conditions such as cerebral amyloid angiopathy (CAA).

Clinical evidence suggests that non-vitamin K antagonist oral anticoagulants are safer

than traditional oral anticoagulants. We analyzed whether the anticoagulant dabigatran

produces cerebral microhemorrhage (the pathological substrate of MRI-demonstrable

cerebral microbleeds) or intracerebral hemorrhage in aged mice with and without

hemorrhage-predisposing angiopathy. We studied aged (22 months old) Tg2576 (a

model of CAA) and wild-type (WT) littermate mice. Mice received either dabigatran

etexilate (DE) (Tg N = 7; WT N = 10) or vehicle (Tg N = 9; WT N = 7) by gavage

for 4 weeks. Anticoagulation effects of DE were confirmed using thrombin time assay.

No mice experienced intracerebral hemorrhage. Cerebral microhemorrhage analysis,

performed using Prussian-blue and H&E staining, showed no significant change in

either number or size of cerebral microhemorrhage in DE-treated animals. Analysis of

biochemical parameters for endothelial activation (ICAM-1), blood-brain barrier disruption

(IgG, claudin-5, fibrinogen), microglial activation (Iba-1), or astrocyte activation (GFAP)

showed neither exacerbation nor protective effects of DE in either Tg2576 or WT mice.

Our study provides histological and biochemical evidence that aged mice, with or without

predisposing factors for brain hemorrhage, tolerate anticoagulation with dabigatran.

The absence of dabigatran-induced intracerebral hemorrhage or increased frequency

of acute microhemorrhage may provide some reassurance for its use in high-risk

patient populations.

Keywords: aging, cerebral amyloid angiopathy, cerebral microhemorrhage, dabigatran, direct thrombin inhibitor,

intracerebral hemorrhage
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INTRODUCTION

Dabigatran is a direct thrombin inhibitor and is indicated in
patients with non-valvular atrial fibrillation for prevention of
ischemic stroke (1–3). It is highly selective for thrombin, with
rapid and reversible inhibition (4), and has no interaction
with other enzymes involved in the coagulation cascade (5).
Dabigatran inhibits tissue factor-induced thrombin generation
and thrombin-induced platelet aggregation (4). Dabigatran has
also shown an anti-inflammatory effect after its long-term
treatment in a mouse model of Alzheimer’s disease (6). It is
not orally absorbed due to its polarity; dabigatran etexilate
(DE), the prodrug of dabigatran, can be used orally (5, 7). This
prodrug approach allows long-lasting anticoagulation (4) and has
no food-drug interactions, and hence does not require routine
monitoring (8).

Thrombin is a serine protease in the coagulation cascade
which mediates conversion of fibrinogen to fibrin. Thrombin has
been implicated in intracerebral hemorrhage (ICH) pathogenesis
and mediates inflammation by activating protease-associated
receptor-1 (PAR-1) (9, 10). Thrombin expression increases after
ICH (11), and upregulation occurs early following ICH. The
temporal pattern of thrombin expression is associated with brain
edema formation (12). Via PAR signaling, thrombin also affects a
wide variety of other disease entities (13), including cancer (14).

Aging and cerebral amyloid angiopathy (CAA) are two major
risk factors of ICH (15–19), both of which result in brain
microvessels susceptible to develop cerebral microhemorrhages
(CMH). CAA is a small vessel disease characterized by deposition
of β-amyloid in the cerebral vasculature (20). Spontaneous and
anticoagulant-induced CMH are common in both these settings,
and current research suggests a link between CMH and increased
risk of ICH (21–23).

Thrombin has a pleiotropic role, and selective inhibition
of thrombin may have beneficial effects in stroke prevention.
Hence, we designed the current study to determine the effects
of dabigatran on spontaneous CMH in aged Tg2576 transgenic
mice, a model of Alzheimer’s disease and CAA (24, 25), with
progressive age-related accumulation of Aβ plaques (26–28).
We hypothesized that given its anti-thrombin effect, dabigatran

does not increase the number or size of spontaneous CMH.
We used Tg2576 and wild-type (WT) littermate mice aged 22
months (comparable to humans aged 60–65 years) to mimic
the scenario of elderly patients with predisposing conditions on
anticoagulation therapy.

METHODS

Animals
All experimental procedures were approved by the University of
California, Irvine, Institutional Animal Care andUse Committee.
To study the effect of dabigatran on spontaneous CMH
development, we used an amyloid precursor protein transgenic
(Tg2576) mouse model that develops CAA and spontaneous
CMH and their wild type (WT) littermates. All mice used were
22 months old at the start of the experiment.

Pretreatment With Oral Anticoagulant
Dabigatran Etexilate
Dabigatran etexilate (BIBR1048MS, Boehringer Ingelheim,
Ingelheim am Rhein, Germany) suspension was freshly prepared
by dissolving in a vehicle solution of 0.5% hydroxyethyl cellulose
solution in distilled water and using a magnetic stirrer. Four
experimental groups were: (1) Tg2576 mice receiving DE (males
= 3, females = 4), (2) Tg2576 mice receiving vehicle (males =
7, females = 3), (3) WT mice receiving DE (males = 5, females
= 4), and (4) WT mice receiving vehicle (males = 2, females =
5). DE groups received DE doses of 45 mg/kg body weight twice
daily on Monday through Friday and a single dose of 60 mg/kg
via oral gavage on Saturday and Sunday, for 4 weeks. DE dosing
was adapted from previously published work (29). Control mice
received equal volume of vehicle solution. All the mice were
weighed before starting the oral dosing and were monitored
twice a week until the end of experiment.

Determination of Diluted Thrombin Time
and Plasma Concentration of Dabigatran
Plasma diluted thrombin time (dTT) and concentration of
dabigatran in the plasma were determined using Hemoclot
Thrombin Inhibitors (Aniara-Hyphen Biomed, West Chester,
OH) and a coagulometer (Thrombostat-2, Behnk Elektronik,
Norderstedt, Germany). Blood samples were obtained from a
subset of mice at different time points: at baseline (N = 6),
0.5 h (N = 5), and 1.5 h (N = 6) after DE oral dosing, and
1.5 h (N = 4) after vehicle oral dosing. After anesthetizing mice
with 3% isoflurane, blood samples (70 µl, 9 vol.) were collected
via retro orbital sinus using plain capillary tubes (Fisher brand,
Pittsburgh, PA), and were transferred to collection tubes with
3.2% sodium citrate (1 vol., prepared in distilled water). Blood
was then centrifuged for 20min at 2,000 rpm to separate plasma
for later use. Plasma dTT analysis was performed following
manufacturer’s instructions and results were plotted on a
calibration curve generated using the calibration plasma samples
from the same manufacturer (Aniara-Hyphen Biomed, West
Chester, OH). Corresponding dabigatran concentration for the
tested plasma was interpolated directly on the calibration curve.

Brain Preparation
Four weeks after the start of DE oral dosing, the mice were
anesthetized with a lethal dose of Euthasol (150 mg/kg, i.p.),
cardiac perfusion was performed using ice cold phosphate
buffered saline (PBS) for 5min and brains were harvested
immediately and processed for histochemical and biochemical
analysis. Right brain hemisphere was drop-fixed in 4%
paraformaldehyde (PFA) for 24 h and transferred to 15%
sucrose solution prepared in PBS. When the brains sank, they
were transferred to 30% sucrose solution with 0.01% sodium
azide until sectioning. Left hemisphere was flash frozen using
dry ice and stored at−80◦C for biochemical analysis.

Detection of Cerebral Microhemorrhage
Fixed right brain hemisphere was observed for surface
macrohemorrhages. The hemisphere was later sectioned
into 40µm thick coronal sections using a freezing microtome
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(Sliding microtome, Thermoscientific, Grand Island, NY) and
the sections were collected in PBS with 0.01% sodium azide.
Every 6th section was used for Prussian blue (PB) staining
and ∼30 sections were analyzed per brain. PB staining was
performed as described earlier (25, 30). Stained sections were
observed and each CMH was photographed (Olympus BX51
microscope, Infinity 2 Camera and INIFINITY ANALYZE, 6.5.0,
Lumera Corporation, ON, Canada). CMH were counted at a
×20 magnification by a blinded observer as a collection of red
blood cells (RBC) that appear red-orange using hematoxylin and
eosin (H&E) stain (≥5 RBC) and as clear purple-blue deposits
using PB, and total number and size of CMH were determined.
A size cut off (50 µm2) was used for considering the PB-stained
CMHs. Total CMH positive area was calculated as the sum of
the area of each CMH and expressed as a percentage of the
total area of the brain analyzed. To determine the total area
analyzed, PB-stained slides were scanned using Canon MP250
scanner (Canon, Tokyo, Japan) under 600 dots per inch (DPI),
and the area of each individual section was summed using NIH
ImageJ software. CMH count, CMH/section (total number of
CMH/number of sections), total CMH area, percentage CMH
area, and average CMH size were calculated by an observer
blinded to genotype and treatment group. Every 7th section
(∼30 sections/brain) was used for H&E staining as described
previously (30), and was performed by the research service core
at UCI Medical Center’s Department of Pathology & Laboratory
Medicine. Stained sections were observed and analyzed as
described above for PB staining.

Immunohistochemical Staining
Immunohistochemistry was performed for Iba-1
(microglial/macrophage marker), ICAM-1 (endothelial cell
activation marker), IgG (blood-brain barrier (BBB) injury
marker), and glial fibrillary acidic protein (GFAP, an astrocyte
marker), using one 40µm thick coronal section per mouse,
2–2.4mm posterior to bregma. Sections were incubated in
0.5% hydrogen peroxide in 0.1M PBS (pH 7.4) containing
0.3% Triton X-100 (PBST) for 30min at room temperature to

block endogenous peroxidase activity. After washing with PBST,
sections were incubated for 30min with PBST containing 2%
bovine serum albumin to block non-specific protein binding.
Sections were then incubated overnight at 4◦C with a rabbit
antibody against Iba-1 (1:200 dilution; Wako Chemicals USA,
Richmond, VA), rabbit monoclonal antibody against ICAM-1
(1:500 dilution Abcam, Cambridge, MA); rabbit anti-mouse
IgG antibody (1:200 dilution; Jackson ImmunoResearch, West
Grove, PA), or rabbit antibody against GFAP (1:2,000 dilution;
Abcam, Cambridge, MA). After washing with PBST, sections
were incubated at room temperature for 1 h with biotinylated
anti-rabbit IgG (1:500 dilution; Jackson ImmunoResearch, West
Grove, PA), followed by 1 h incubation at room temperature
with ABC complex, according to manufacturer instructions
(Vector Laboratories, Burlingame, CA). Sections were developed
with 3,3′-diaminobenzidine (Vector Laboratories, Burlingame,
CA). Sixteen images per brain section were acquired randomly
at ×20 magnification, and the total positive immunoreactive
area (expressed as % of the total area analyzed) was quantified
using NIH ImageJ software by an observer blinded to the
experimental groups.

Western Blotting
Claudin-5 and fibrinogen were quantified using Western blot.
Briefly, frozen left cerebral hemispheres were pulverized, the
powder was homogenized in T-PER buffer (Thermo Fisher
Scientific, Waltham,MA) with protease inhibitor cocktail (Roche
Applied Science, Indianapolis, IN), and soluble fraction was
collected after 100,000 g centrifugation for 1 h at 4◦C. Protein
concentrations for Western blot analysis were determined using
the Bradford protein assay, and ∼50 µg of protein was
resolved on SDS-PAGE 4–12% gel (Invitrogen, Carlsbad, CA).
Primary antibodies for claudin-5 (tight junction protein; Abcam,
Cambridge, MA) and fibrinogen (a marker of BBB permeability;
US Biological, Salem,MA) were used at 1:2,000 dilution, followed
by HRP-conjugated donkey anti-rabbit secondary antibody
(Jackson Immuno Research, West Grove, PA). NIH ImageJ
software was used to quantify Western blot band intensities.

FIGURE 1 | Diluted thrombin time (in seconds) in Tg2576 mice and WT littermates. Increase in diluted thrombin time at 0.5 and 1.5 h time points, compared with the

baseline value in DE-treated Tg2576 mice and WT littermates. Statistical tests: Kruskal-Wallis test followed by Dunn’s multiple comparison tests. Individual data points

are presented with mean and SEM error bars. **Indicates significant difference between means, p < 0.01.
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Control protein glyceraldehyde 3-phosphate dehydrogenase
(GAPDH, Santa Cruz Biotechnology, Dallas, TX) was used to
adjust band intensity measurements.

Statistical Analysis
Data are presented as mean± SEM. Kruskal-Wallis test followed
by Dunn’s multiple comparison tests was used for comparison
of means. Two-sided p < 0.05 was considered statistically
significant. Statistical analyses were performed using GraphPad
Prism 7.

RESULTS

Survival
We observed high survival rate after DE gavage administration;
all mice survived except one mouse from WT DE group, which
was euthanized because it demonstrated symptoms of distress.
No animals developed ICH.

Diluted Thrombin Time and Plasma
Concentration of Dabigatran
In a subset of DE-treated mice analyzed for dTT, an average
of 344 ± 38 ng dabigatran/ml (dTT: 76.8 ± 5.2 sec) and an
average of 207 ± 29 ng dabigatran/ml (dTT: 57.9 ± 3.9 sec)
were detected after 0.5 h (N = 5) and 1.5 h (N = 6) respectively;
this was significantly higher compared with the baseline (N =

6) dTT measurements (25.9 ± 0.7 sec, Figure 1). In a subset of
vehicle-treated mice analyzed, an average dTT of 24.5 ± 0.9 sec
was measured 1.5 h (N = 4) after the gavage.

Sub-acute Parenchymal Cerebral
Microhemorrhages
Representative examples of PB-positive CMH from vehicle/DE-
treated WT/Tg mice are shown in Figure 2. As expected, mean

number of CMH (referred as mean CMH) is greater in Tg-
vehicle vs. WT-vehicle mice vehicle (14.1 ± 5.5 vs. 4.7 ± 0.9,
p = 0.3, Figure 3). DE increased mean CMH by <20% in both
Tg and WT mice (16.4 ± 4.0 vs. 14.1 ± 5.5, p > 0.99 in Tg
and 5.3 ± 2.2 vs. 4.7 ± 0.9, p > 0.99 in WT). A total of 115
and 141 CMH were analyzed from Tg DE (N = 7) and Tg
vehicle (N = 10) groups, respectively. In Tg mice, other analyzed
parameters showed no significant difference in means between
theDE-treated and vehicle groups (Figure 3): CMH/section (0.51
± 0.12 vs. 0.48 ± 0.19, p > 0.99), total CMH area (17,835 ±

6,351 µm2 vs. 11,292 ± 4,839 µm2, p > 0.99), %CMH-positive
area (0.0025± 0.0009 vs. 0.0017± 0.0006, p > 0.99), and average
CMH size (962± 193 µm2 vs. 668± 119 µm2, p > 0.99). In WT
DE (N = 9) and WT vehicle (N = 7) groups, 48 and 33 CMH
were analyzed, respectively. Similar to Tg2576 mice, WT mice
showed no significant difference between the DE and vehicle
groups in any of the following analyzed parameters (Figure 3):
CMH/section (0.16 ± 0.064 vs. 0.16 ± 0.027, p > 0.99), total
CMH area (1,298 ± 524 µm2 vs. 2,855 ± 835 µm2, p = 0.58),
%CMH-positive area (0.0002 ± 0.0001 vs. 0.0004 ± 0.0001, p
= 0.62), and average CMH size (321 ± 51 µm2 vs. 610 ± 105
µm2, p = 0.31). CMH were present in cortical, sub-cortical and
cerebellar regions, with cortex having more CMH than other
areas across all treatment groups; the exception was WT DE
group, in which there was no visible difference among the three
regions (One way ANOVA on total CMH present in cortex, sub-
cortex and cerebellum: Tg DE: p= 0.002; Tg vehicle: p < 0.0001;
WT DE: p > 0.8; WT vehicle: p= 0.009).

Acute Parenchymal Cerebral
Microhemorrhages
H&E-positive stained acute CMH were relatively few within
various groups. None of the 9 WT DE mice and only one

FIGURE 2 | Representative images of Prussian blue-positive CMH areas from Tg2576 mice and WT littermates with or without DE treatment. Inset shows magnified

(40x) image of the respective CMH.
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FIGURE 3 | Prussian blue-positive CMH in Tg2576 and WT mice with/without DE. Significant difference in all the CMH parameters [(A) Total number of CMH, (B)

Number of CMH per section, (C) Total CMH area, (D) CMH positive area (%), and (E) Average CMH size] of DE-treated Tg2576 mice vs. WT littermates. Statistical

tests: Kruskal-Wallis test followed by Dunn’s multiple comparison tests. Individual data points are presented with mean and SEM error bars. *Indicates significant

difference between means, p < 0.05. **Indicates significant difference between means, p < 0.01.

of the 7 WT vehicle mice displayed H&E-positive CMH. In
Tg2576 mice, three of seven Tg DE mice and six of 10 Tg
vehicle mice had H&E-positive CMH. The mean number of
CMH did not differ statistically between the DE- and vehicle-
treated Tg2576 mice (1.1 ± 0.8 vs. 2.2 ± 0.7, p > 0.9)
and DE- and vehicle-treated WT littermates (0 vs. 0.2 ± 0.2,
p > 0.9).

Endothelial Activation, Neuroinflammation,
and Blood-Brain Barrier
Immunohistochemical analysis of brains revealed no significant
difference in the immunoreactivity of brain endothelial activation
marker ICAM-1 between the DE- and vehicle-treated Tg2576
mice (0.5 ± 0.2% vs. 0.7 ± 0.1%) nor in their WT littermates
(0.3 ± 0.1% vs. 0.4 ± 0.1%). Similarly, there was no significant
difference in the total GFAP- and Iba-1-reactive areas of DE-
and vehicle-treated groups of Tg (GFAP: 3.1 ± 0.5% vs. 2.0 ±

0.5%, Iba-1: 1.8 ± 0.2% vs. 2.1 ± 0.2%) and WT mice (GFAP:
1.1 ± 0.2% vs. 1.4 ± 0.2%, Iba-1: 0.8 ± 0.1% vs. 1.1 ± 0.2%).
Neuroinflammatory marker Iba-1 demonstrated a significant
difference between the treated and vehicle groups of Tg2576
mice and their WT littermates; astrocyte marker GFAP was
significantly different between the treated groups (Figure 4).
BBB structure and function assessed by immunohistochemical
analysis of IgG and Western blot analysis of fibrinogen and
claudin-5 showed no significant difference between DE- and
vehicle-treated groups of both Tg (IgG: 1.3± 0.3% vs. 2.3± 0.3%,
fibrinogen: 0.7 ± 0.2 vs. 0.8 ± 0.3, claudin-5: 0.5 ± 0.1 vs. 0.7 ±
0.1) andWTmice (IgG: 1.2± 0.2% vs. 1.5± 0.2%, fibrinogen: 0.6
± 0.2 vs. 0.4± 0.1, claudin-5: 0.5± 0.1 vs. 0.4± 0.1, Figure 4).

DISCUSSION

The major finding of the current study is that dabigatran does
not induce ICH, and neither induces nor enlarges spontaneous
CMH in aged Tg2576mice or theirWT littermates. Tg2576mice,
a well-characterized model of Alzheimer’s disease and CAA,
progressively accumulate CMH with aging (25). In our Tg2576
mice after DE administration for 4 weeks, the mean number and
size of CMH did not differ significantly between the treatment
and control groups. WT mice also showed no significant
effect of DE treatment on CMH formation. As expected,
CMH development differed between the Tg2576 mice and WT
littermates, as did the Iba-1 and GFAP immunohistochemical
parameters. There was no significant difference in various
markers for microglial, astrocyte and endothelial activation or
BBB integrity between treated and control mice, indicating that
inflammation was not induced and that BBB function remained
unaltered after DE administration.

Our findings are consistent with prior published work.
A cell culture-based study (31) reported a protective effect
of dabigatran, inhibiting thrombin-mediated increased
permeability of murine brain endothelial cells. We observed no
significant increase in size of CMH in our animal models with
DE treatment, suggesting a lack of increased vascular disruption
with dabigatran. An MRI study (32) found that dabigatran
does not promote the formation of cerebral microbleeds
(the MRI signature of CMH) and does not induce ICH in
APP23 mice (another mouse model of CAA) following 3–4
months of anticoagulation with DE. Our study is consistent
with these findings and provides histological evidence for the
MRI observations.
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FIGURE 4 | Immunohistochemical (A–D) and Western blot analysis (E–F) of endothelial activation (A), blood-brain barrier structure and function (B,E,F), and

neuroinflammation (C,D) in Tg2576 and WT mice with/without DE. Significant difference in Iba-1- (C) and GFAP-positive (D) area of DE-treated Tg2576 mice and WT

littermates and in Iba-1-positive area of vehicle-treated Tg2576 mice and WT littermates. Statistical tests: Kruskal-Wallis test followed by Dunn’s multiple comparison

tests. Individual data points are presented with mean and SEM error bars. *Indicates significant difference between means, p < 0.05. **Indicates significant difference

between means, p < 0.01.

Our study has several limitations. PB staining, used to
elucidate CMH development, characterizes CMH accumulated
over the lifetime of mice, rather than simply during the
1 month treatment period. As a consequence, PB-stained
microhemorrhages do not necessarily indicate lesions that
developed during the course of treatment with DE. Thus, H&E
stained microhemorrhages may be more meaningful in the
context of this study, and it is noteworthy that there was
no indication of increased number of H&E-stained lesions
associated with DE treatment among either Tg or WT mice.
Second, our group sizes were relatively small, and the study
was thus not powered to detect some inter-group differences
of potential interest. Our study lacked a positive control, i.e.,
we did not include use of an agent that may be more likely
to have hemorrhagic consequences. Note, however, that prior
work using warfarin as a positive control has reported findings
similar to our own (32). In Marinescu et al., warfarin and
dabigatran were administered through drinking water and chow,
respectively, which enabled a longer-term treatment compared
with our study, in which dabigatran was administered for a
shorter period of 1 month via oral gavage. Finally, we did not
attempt to distinguish primary microhemorrhages (i.e., due to
an initial disruption of microvessel integrity) from secondary
hemorrhages (i.e., occurring as a consequence of ischemic injury)
(33), a distinction relevant in patients subject to cardiogenic
stroke and hemorrhagic transformation (3).

In conclusion, we found no evidence that anticoagulation
with dabigatran induces either ICH or CMH in mouse models
of aging and CAA. Findings from this study and prior
work may provide some reassurance for use of dabigatran in
high risk populations. Further in vivo studies are needed to
determine whether dabigatran may offer a protective effect
against brain hemorrhage.
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