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This paper studies competition for shelf space in a multi-supplier retail point. We consider a retailer that

seeks to allocate her shelf space to maximize her profit. Because products associated with larger profit

margin are granted more shelf space, suppliers can offer the retailer financial incentives to obtain larger space

allocations. We analyze the competitive dynamics arising from the scarcity of space, and show existence and

uniqueness of equilibrium. We then demonstrate that the inefficiencies from decentralizing decision-making

are limited to 6% with wholesale-price contracts, and that full coordination can be achieved with pay-to-stay

fee contracts. We finally investigate how competition is distorted under the practice of category management.
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1. Introduction

Product proliferation has not only increased the complexity of manufacturing and distribution, it

has also created new incentive issues in shelf space allocation. To cope with fiercer competition,

manufacturers provide retailers with financial incentives to secure shelf space for their products.

Consumer good manufacturers have indeed been reported to spend 15% of their revenue to pay

stores to stock their products, totaling $100 billion per year in the United States (Forster 2002). The

practice of these transfer payments remains nevertheless obscure, and its competitive nature and

value to the end-consumer are highly debated. For instance, Hewlett-Packard Co. has recently been

criticized for offering chain stores incentives to stop selling store-brand inkjet printer cartridges, in

order to increase HP’s cartridge’s market share by reducing consumer choice (Hamm 2007). The

Federal Trade Commission is in fact investigating whether paying for shelf space is anticompetitive,

after small companies complained they were shut out of stores (FTC Report 2001).

In this paper, we analyze the shelf space allocation problem to understand how much pressure

suppliers face to obtain shelf space. We define shelf space in a generic sense, including, among

others, shelf space in a grocery store, parking spots at a car dealer, screens in a movie theater, and

advertising space on a website. We assume that suppliers can obtain more shelf space from the

retailer by conceding her larger profit margins, i.e., by lowering their wholesale prices. We model
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the capacity allocation as a game, demonstrate existence and uniqueness of a Nash equilibrium,

and study its sensitivity to parameter changes. We also show that the inefficiencies created by the

allocation mechanism are no greater than 6%, if the retail pricing decisions are exogenous, but can

be up to 27% (specifically, 1− 2/e) otherwise. Finally, we discuss how the competitive outcome is

affected under the following retailing practices: pay-to-stay fees, manufacturer’s offering of an entire

product category, introduction of store-brand products, and category management. Our simple

model sheds light onto the potential benefits and pitfalls of various competitive strategies.

We assume that the number of products in the assortment is given, and we model the space

allocated to each Stock Keeping Unit (SKU) as a continuous variable. For a review of assortment

and shelf space models, see Kök et al. (2006). A key assumption of our model, first postulated by

Lee (1961) and experimentally validated by Curhan (1973) and Dreze at al. (1994), is that, as shelf

space is increased, unit sales increase at a decreasing rate. Under this assumption, Anderson (1979)

and Corstjens and Doyle (1981, 1983) proposed a model for optimizing shelf space allocation across

product categories, and solved it with geometric programming. Bultez and Naert (1988) developed

a method for optimizing shelf space allocation among products within the same category, using an

attraction model, and reported a 12% profit increase in a Belgian grocery store. If the capacity

units are discrete, the shelf space allocation problem can be modeled as an integer optimization

problem (Armstrong et al. 1982). Because these geometric and integer problems are complex to

solve, especially with assortment decisions (Borin at al. 1995), meta-heuristics have been tailored

to the shelf space allocation problem (e.g., Yang 2001 and Lim et al. 2004). Our demand model

is a simplified version of the one proposed by Corstjens and Doyle (1981), to keep the analysis

tractable, but maintains the same level of practicality: all parameters can easily be estimated with

experimentation (e.g., Bultez and Naert 1988, Dreze et al. 1994) or cross-sectional methods of data

collection (Corstjens and Doyle 1983, Van Dijk et al. 2004).

Building on this demand model, we focus on the pricing game among suppliers, taken the cus-

tomer prices as fixed. With a similar model, Mart́ın-Herrán et al. (2006) characterized the wholesale

prices and shelf spaces in equilibrium with two competing suppliers. We complement their results

by analyzing a case with an arbitrary number of suppliers and quantify the inefficiencies in the retail

chain. Moreover, we provide proofs of their numerical observations and discuss the implications of

alternative retail practices.

Among these widespread retail practices, we first consider pay-to-stay fees, which are a “rent”

charged by retailers to suppliers in exchange for retailing space. We show that this mechanism

improves supply chain efficiency, while reducing the suppliers’ profits, refining a proposal made
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by Cairns (1962). Another notable type of slotting fee, which we do not consider in this paper, is

the slotting allowance. Slotting allowances are lump-sum, up-front payment from a manufacturer

to a retailer to have a new SKU carried on the retailer’s shelves. Lariviere and Padmanabhan

(1997) interpreted the slotting allowances as a signaling instrument about the potential sales of a

new product. In contrast, pay-to-stay fees are charged for existing products to ensure continued

presence on the shelf, and are therefore used more to cope with increased competition (through

product proliferation, see Sullivan 1997) than to reduce demand uncertainty through signaling.

We then analyze supply chain integration, with a particular emphasis on category management.

Under category management, the retailer delegates the category space allocation decision to one

of the suppliers, typically the main player in category. The practice of category management is

at the very least controversial and raises antitrust concerns (e.g., Steiner 2001, Bush and Gelb

2005). Zenor (1994) and Kurtuluş and Toktay (2005) compared the performance of a channel with

and without category management, when demand is sensitive to prices but not to shelf space. In

contrast, we assume that demand is sensitive to shelf space, consistently with Lee’s observation,

and consider the retail prices as exogenous. Zenor concluded from a case study and simulations

that the benefits of category management can be substantial (as high as 30%) and are larger with

more competition. Kurtuluş and Toktay analytically showed that category management improves

customers’ satisfaction, increases the retailer’s profit, leaves the category captain indifferent, and

decreases the other manufacturers’ profit. Basuroy et al. (2001) derived similar results in a multi-

brand, multi-retailer Cournot competitive model. Our model analysis corroborates their results,

by showing that they hold even in the absence of pricing decisions.

Our work also relates to the abundant literature on supply chain coordination through supply

contracts. With simple wholesale-price contracts, inventory decisions are typically not coordinated

across the supply chain, a manifestation of the double-marginalization phenomenon (Spengler

1950). The limited performance of these contracts in the presence of stochastic demand was first

investigated in two-stage supply chains by Lariviere and Porteus (2001) and Cachon and Lariviere

(2001), then in more complex supply chains (see Cachon 2003 for a review). To improve coordina-

tion in supply chains, various alternative contracts have been proposed: buyback, revenue sharing,

quantity flexibility, sales rebate, and quantity discount contracts (see the reviews by Cachon 2003

and Lariviere 1999). Compared to the large body of research on vertical interactions (through

supply contracts) among supply chain partners, horizontal competition has received only limited

attention. Under stochastic demand, horizontal competition has been studied in single-product



Mart́ınez-de-Albéniz and Roels: Competing for Shelf Space
4 Article submitted to ; manuscript no.

distribution networks (e.g., Wang and Gerchak 2001 and Cachon 2003), multiple-product distribu-

tion networks (e.g., Bernstein and Federgruen 2005). Carr and Karmarkar (2005) and Kök (2006)

analyzed assembly networks with a deterministic, price-quantity linear relationship and no capac-

ity constraints, respectively focusing on supply network design and coordination mechanisms with

supply contracts. In contrast to these papers, we explicitly model capacity constraints with multi-

ple products, and show that inefficiencies arise even when retail prices are exogenous (and demand

is deterministic).

To quantify supply chain efficiency, we use the Price of Anarchy (PoA), which measures the

worst-case ratio of the profit of the integrated supply chain to the profit of the decentralized supply

chain. The concept of PoA was introduced by Koutsoupias and Papadimitriou (1999), and has

since then been extensively used in transportation networks, network resource allocation games,

network pricing games, and supply chain games (see Mart́ınez-de-Albéniz and Simchi-Levi 2003,

Perakis and Roels 2007, and the references therein).

The remainder of the paper is organized as follows. In §2, we describe the model. We analyze

the suppliers’ game in §3. In particular, after showing existence and uniqueness of equilibrium, we

quantify the inefficiencies created in the space allocation process and explore alternative modeling

assumptions. We then discuss the impact of pay-to-stay fees and supply chain integration in §4
and conclude in §5. All the proofs are contained in the Appendix.

2. The Model

Consider a profit-maximizing retailer who seeks to allocate her shelf space capacity to n products.

We are interested in characterizing the wholesale prices that will be quoted by the suppliers. Lower

wholesale prices lead to larger shelf space but reduce the suppliers’ unit profit margins. We model

this situation as a sequential game, in which the suppliers play the role of leaders and the retailer

plays the role of the follower. The timing of the game is the following: first, the suppliers set

their wholesale prices, simultaneously, and then, the retailer chooses the shelf space allocation. We

assume that all relevant cost and demand information is common knowledge. We solve the game

backwards, by first solving the retailer’s shelf space allocation problem and then analyzing the

suppliers’ decisions.

2.1. Demand Model

Let si be the amount of shelf space allocated to product i. Similarly to Corstjens and Doyle (1981),

we assume that the demand for product i is an increasing concave function of the number of

displays of product i. More products on the shelf lead to more demand, but the marginal returns

of displaying a product are decreasing.
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To highlight the effects of competition for shelf space, we assume that the demand for product i

depends only on its shelf space si. We initially ignore the effects of marketing tactics such as retailer

pricing and supplier advertising in our basic model, but investigate the impact of retail prices in

§3.4. We also ignore the impact of the precise location on the shelf (e.g., products positioned at

eye level seem to generate larger sales, see Dreze et al. 1994), and only consider the total space

allocated to the product.

We assume, for simplicity, that all products share the same elasticity to shelf space. This assump-

tion is not too restrictive if we consider products within the same category. In addition, most our

results (existence and uniqueness of equilibrium) hold when products have different elasticities. We

also ignore cross-elasticities among products, i.e., the dependency of the sales of product j from

product i shelf space, as they are often referred to as “secondary effects” (Dreze et al. 1994).

Under these assumptions, demand for product i can be modeled as ais
b
i , where ai > 0 is a scale

parameter (depending on the brand of supplier i, its advertising policy, etc.) and b, 0 < b < 1, is

the shelf space elasticity. When b≈ 0, demand is insensitive to shelf space; in contrast, when b≈ 1,

sales are directly proportional to space.

2.2. The Retailer’s Allocation of Shelf Space

We model the retailer’s problem as follows. We assume (without loss of generality) that the retailer

has 1 unit of capacity that she seeks to allocate among n different products to maximize her profits.

Let si be the amount of shelf space granted to product i. Hence,
n∑

i=1

si ≤ 1. For tractability, we

assume that si is a continuous variable.

Because shelf space allocation is a strategic decision (assortments are changed unfrequently

and planograms are usually revised at most every couple of months), we consider a single-period

model. Our model also ignores operational issues, such as day-to-day inventory replenishment. (In

fact, store replenishment decisions are often made by suppliers, e.g., through Vendor-Managed

Inventories, and have therefore limited impact on the retailer’s allocation decision.) We finally

neglect constraints on product availability, or required minimum or maximum shelf space allo-

cations (Corstjens and Doyle 1983). While these constraints can easily be incorporated into our

model, they unnecessarily complicate the analysis.

We then assume that the only relevant costs for the retailer are the products’ gross profit margin.

For simplicity, we assume linear costs; hence the profit margin for product i can be expressed as

ri−wi, where ri is the unit retail selling price, minus the inventory and handling costs, and wi is

the unit wholesale price for product i. Under these assumptions, the retailer seeks to allocate her

shelf space so as to maximize her profits, that is,
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max ΠR =
n∑

i=1

(ri−wi)ais
b
i

s. t.
n∑

i=1

si ≤ 1,

si ≥ 0, ∀i.

(1)

Define, for i = 1, . . . , n, the gross margin of product i, i.e., the maximum profit that the retailer

can obtain with product i:

mi := ai(ri−wi). (2)

The optimal space allocation is such that

si =
m

1
1−b
i

n∑
j=1

m
1

1−b
j

. (3)

Under this allocation scheme, all products are somewhat complementary. Indeed, given the

limited shelf space, the (continuous) solution for b < 1 is always to provide some space for each

product. Only when b≈ 1, i.e., when demand is strongly sensitive to the number of displays, will

the retailer allocate the entire shelf space to the product with the highest margin mi.

Interestingly, Equation (3) yields that

si

sj

=
(

mi

mj

) 1
1−b

(4)

which implies that the relative space for supplier i over supplier j depends only on the net margin

ratio
mi

mj

=
ai(ri−wi)
aj(rj −wj)

.

2.3. Suppliers’ Pricing Strategies

Each product is procured from a distinct vendor. While the retailer maximizes profits over the

entire product category, suppliers are only concerned about the profit from their own products.

The pricing decision is strategic, because it affects the retailer’s shelf space allocation. We therefore

ignore short-term inventory considerations (e.g., quantity discounts) in our model, because of their

limited impact on the allocation decision. With linear production costs ci and with a wholesale-price

contract wi, supplier i’s gross profit margin equals wi− ci.

The suppliers’ pricing decisions need to take into account the competitors’ prices, because they

influence the space allocation. Specifically, since we model the retailer as a follower, each supplier

anticipates the retailer’s space allocation given the competitors’ wholesale prices. Hence, supplier

i’s problem can be formally stated as

maxΠSi = (wi− ci)ai

[
si(w1, . . . ,wn)

]b

. (5)
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The demand function for supplier i, ai

[
si(w1, . . . ,wn)

]b

, is decreasing with wi, and increasing

with wj, j 6= i, which is a standard condition for substitute products. It does not, however, have

increasing differences, in contrast to most competitive demand models (such as separable demand

functions). The increasing difference property means that decreasing the price of any product

results in a greater increase in the demand for that product for lower levels of the price of any other

product (Topkis 1998). It is easy to show that the demand for supplier i has decreasing differences

when si ≤ 50% and increasing differences otherwise. Hence, with n = 2, when supplier 2 has the

largest shelf space share, the increase in supplier 1’s demand resulting from a decrease in w1 is

larger when w2 is higher, and not when w2 is lower, as most models typically assume.

2.4. The Supply Chain Perspective

Let us consider the supply chain total profit,

ΠSC := ΠR +
n∑

i=1

ΠSi =
n∑

i=1

ai(ri− ci)
[
si(w1, . . . ,wn)

]b

(6)

When suppliers quote (w1, . . . ,wn), the allocation of space may be suboptimal for the supply

chain. Indeed, the concentration of the shelf-space allocation in the hands of the retailer, coupled

with the competition among suppliers, creates a negative externality, because the resulting space

allocation may not maximize the total profit of the supply chain.

We consider as a benchmark the centralized (or integrated) supply chain, as if there were a single

decision-maker operating the entire supply chain. We denote the maximum supply chain profit

associated with product i by

m∗
i := ai(ri− ci), (7)

and the supply-chain optimal allocation of space is

s∗i =
(m∗

i )
1

1−b

n∑
j=1

(
m∗

j

) 1
1−b

. (8)

The corresponding supply chain profit is equal to

Π∗
SC =

n∑
i=1

(ri− ci)ai

(
s∗i

)b

=

[
n∑

i=1

(m∗
i )

1
1−b

]1−b

. (9)

In the sequel, we measure supply chain efficiency as the ratio of the integrated supply chain

profit to the decentralized supply chain profit, that is,

Π∗
SC

ΠSC

=

[
n∑

i=1

(m∗
i )

1
1−b

]1−b [
n∑

i=1

m
1

1−b
i

]b

n∑
i=1

m∗
i m

b
1−b
i

. (10)
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In particular, we use the Price of Anarchy (PoA), defined as the maximum (or supremum) ratio of

profits between the centralized supply chain and the decentralized supply chain, among all possible

problem instances, i.e., parameters, {ai}i,{ri}i,{ci}i, and b. Because global optimization dominates

sequential optimization, PoA is always greater than or equal to one.

3. Space Allocations in Equilibrium
In this section, we characterize the Nash equilibrium wholesale prices and space allocation, i.e., the

pure strategy (we
1, . . . ,w

e
n) from which no supplier has incentive to unilaterally deviate. We study

the sensitivity of the results to the model parameters, and quantify supply chain efficiency.

3.1. Existence and Uniqueness of Equilibrium

We first show that there exists a unique equilibrium to the decentralized game.

Theorem 1. The game with n players has a unique pure strategy Nash equilibrium (we
1, . . . ,w

e
n),

characterized by the following conditions: for i = 1, . . . , n,

ri−wi

ri− ci

=
b− bsi

1− bsi

. (11)

In particular, with two suppliers, the unique Nash equilibrium (we
1,w

e
2) is defined by the following

conditions:

r1−w1

r1− c1

=
bs2

1− bs1

, (12)

r2−w2

r2− c2

=
bs1

1− bs2

. (13)

Thus, the percentage of the total margin captured by supplier i, (ri−wi)/(ri− ci), should be set

equal to a function of the space, bsj/(1− bsi). As a result, the best response function of supplier i,

wb.r.
i (wj), is increasing in wj.

A side result of the theorem is that the shelf space allocation tends to be more even in the

decentralized channel than in the integrated channel.

Proposition 1. s∗i ≥ s∗j if and only if se
i ≥ se

j. In addition, if s∗i ≥ s∗j then 1≤ se
i

se
j

≤ s∗i
s∗j

; otherwise,

1≥ se
i

se
j

≥ s∗i
s∗j

.

Therefore, suppliers’ competition distorts the value of the wholesale prices, relative to the value

of the unit production costs, resulting in a suboptimal shelf space allocation. Specifically, the least

attractive products are given too much space, to the detriment of the most attractive products.

Nevertheless, the order of shelf space allocations is preserved under decentralized decision-making,

i.e., se
i ≥ se

j when s∗i ≥ s∗j .
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3.2. Sensitivity Analysis

We next investigate how wholesale prices, shelf space allocations, and profits for the suppliers, the

retailer, and the whole supply chain vary when the problem parameters change.

Proposition 2. The equilibrium wholesale prices, allocated space and profits are such that

(a) we
i is increasing with ci, ri and ai;

(b) we
j , j 6= i, is increasing with ci and decreasing with ri and ai;

(c) se
i is decreasing with ci and increasing with ri and ai;

(d) se
j, j 6= i, is increasing with ci and decreasing with ri and ai;

(e) Πe
Si is decreasing with ci and increasing with ri and ai;

(f) Πe
Sj, j 6= i, is increasing with ci and decreasing with ri and ai;

(g) Πe
R is decreasing with ci and increasing with ri and ai;

(h) and Πe
SC is quasi-convex (increasing or decreasing) in ci, ri and ai.

Wholesale prices always increase with costs. The supplier who suffers from the cost increase

therefore obtains smaller space allocation and lower profits. In contrast, the competing suppliers

take advantage of their dominant position by obtaining larger shelf space while charging higher

wholesale prices. As a result, the retailer’s profit decreases with the suppliers’ costs. It is therefore

in the retailer’s interest to participate to cost-reduction programs at its suppliers (e.g., Wal-Mart

Stores, Inc. has invested a lot of efforts to cut packaging waste at its suppliers, see Kabel 2007),

because it leads to a reduction in wholesale prices, not only from the suppliers involved in the

program, but also from their competitors.

Also, the suppliers’ wholesale prices, allocated spaces, and profits increase with the final price of

their products ri and decrease with the prices of their competitors’ products rj, j 6= i. On the other

hand, the retailer’s profit always increases after a retail price rise. Similarly, when the market size

of a given supplier ai increases, its wholesale price, allocated space and profits increase, while they

decrease for the competing suppliers, and the retailer’s profit increases. Thus, suppliers’ marketing

efforts for increasing the brand awareness of their products, allowing them to increase the retail

prices of their products or to expand the size of their market, not only benefit them, as well as

the retailer, but also harm their competitors. Despite the decreasing marginal returns of space on

demand, competition for shelf space can almost be seen as a zero-sum game, where any gain by

one supplier is counterbalanced by a loss by the other suppliers.

Interestingly, the retailer also benefits from strengthened brand names. Therefore, supply chain-

wide efforts can be devoted to increasing the strength of a brand, as all parties may gain from the
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resulting increase in revenue. In particular, retailers have become extremely powerful at helping

build strong brand names (mindspace) with their advertising, promotions, and displays (shelfs-

pace). As proposed by Corstjens and Corstjens (1995), “Shelfspace and mindspace are linked and

complementary. If a product has achieved considerable mindspace–if it is present and liked in

many consumer minds–this in itself will be a powerful incentive for the distribution to stock it. On

the other hand, shelfspace is a powerful generator of mindspace. Seeing a product regularly helps

increase its presence in the consumer’s mind, and improves its image by suggesting it is popular.”

From (h), the supply chain profit is quasi-convex in the cost, selling price, and market size.

Hence, a cost increase may create a positive externality on the supply chain, when the cost is large.

Intuitively, the supply chain profits improve when the supplier who experiences the cost increase is

also the most expensive. From Proposition 1, this supplier receives a larger space allocation than

what would have be optimal for the integrated supply chain. This above-optimal shelf space share

exerts pressure puts the other suppliers under pressure, and results in an increase in the supply

chain total profit. Alternatively, a cost reduction program may not always be beneficial to the

entire supply chain. Similarly to the effects of changes in costs, an increase in the selling price ri

or the market size ai may induce a negative externality on the supply chain profits.

Finally, for completeness, we investigate the impact of the sales elasticity with respect to shelf

space, that is, b, on the wholesale prices, shelf space allocation, and profits. In contrast to the

changes in unit production costs, selling prices and market sizes, changes in elasticity lead to

non-monotonic effects. Specifically, wholesale prices are non-monotonic functions of the sales space

elasticity, leading to non-monotonic behavior of the profit functions. Figure 1 illustrates the non-

monotonic behavior of wholesale prices and profits as a function of elasticity b.

The next proposition characterizes how the shelf space allocation changes with b. When demand

becomes more sensitive to the number of displays, the most attractive products (from the retailer’s

standpoint) receive more facings, to the detriment of the least attractive products.

Proposition 3. Without loss of generality, assume that s∗1 ≥ . . . ≥ s∗n. Then, there exists k ∈
[1, . . . , n] such that, for i≤ k,

dse
i

db
≥ 0 and for i > k,

dse
i

db
≤ 0.

For n = 2, Proposition 3 implies that the supplier with the larger s∗i captures more shelf space as

b increases, to the expense of the supplier with the lower s∗i .

3.3. Supply Chain Efficiency

In this section, we characterize the loss of efficiency resulting from decentralizing the decision

making in the supply chain. We first analyze the basic model introduced in §2 and then consider
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Figure 1 Comparative statics with changes in elasticity
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from Proposition 1).

what happens when the retailer can make pricing decisions as well (§3.4), and when the retailer

pursues different objectives than profit maximization (§3.5). We use PoA to measure supply chain

efficiency, defined as the maximum ratio (10) over all problem instances.

Theorem 2. With n suppliers, the Price of Anarchy is equal to the following maximum

PoAn = max
s1,...,sn≥0,0≤b≤1

[
n∑

i=1

si

(
1− bsi

1− si

) 1
1−b

]1−b

n∑
i=1

si

(
1− bsi

1− si

) subject to
n∑

i=1

si = 1. (14)

Corollary 1. The Price of Anarchy is increasing in n, i.e., PoAn+1 ≥ PoAn.

Corollary 1 follows from (14), where, for the case of n+1 suppliers, we set sn+1 = 0. As a result

the PoA with n + 1 suppliers must be greater than or equal to that with n. Given that PoAn is

increasing in n, we can solve the optimization problem for n = 2 and n =∞, to provide bounds.

In addition, Lemma 1 in appendix demonstrates that, for any given n, the n-variable optimization

problem in the right-hand side of (14) can be simplified into a two-variable optimization problem.

Therefore, the PoA can be computed numerically, by solving a two-variable optimization problem.
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The next two propositions show that that the PoA is relatively low and insensitive to the number

of suppliers.

Proposition 4. The Price of Anarchy for n = 2 is PoA2 ∈ [1.051,1.052].

Proposition 5. The Price of Anarchy for n =∞ is PoA∞ ∈ [1.055,1.056].

A loss of efficiency of 5-6% might seem low, especially when compared to the PoA bounds derived

in supply games with stochastic demand (i.e., 4/3 in supply games with option contracts, see

Mart́ınez-de-Albéniz and Simchi-Levi 2003; and e− 1 with wholesale-price contracts, see Perakis

and Roels 2007). This small level of inefficiency can be explained by the presence of an alternative

use of capacity. In traditional supply games, unused capacity is lost, and the reservation profit

of the follower in those games is often set to zero (with the exception of Lariviere and Porteus

2001 and Bernstein and Marx 2006). In contrast, in the shelf-space allocation game, all capacity

is utilized, softening the impact of suboptimal decisions. Nevertheless, profit margins are thin in

retail, and a 5% increase in efficiency can make a real impact on the bottom line.

3.4. When the Retailer Takes Pricing Decisions

We now investigate the impact of letting the retailer choose the selling prices to the end-consumers.

Somewhat surprisingly, supply chain efficiency decreases, despite the fact that the retailer has now

more levers to coordinate the channel. In fact, the retailer can make sub-optimal decisions (from

a supply chain standpoint) not only in shelf space allocation, but also in pricing.

For this purpose we consider a variant of Mart́ın-Herrán et al. (2006), where the customer demand

for i is equal to air
−µ
i sb

i , with µ≥ 1. The demand for product i is thus a decreasing convex function

of the retail prices ri, and all products share the same price elasticity µ. A price increase of product

i has no direct effect on the demand of other products, but indirectly influences the shelf space

allocation.

If the supply chain were integrated, the optimal pricing scheme is ri(ci) = µci/(µ− 1) (with a

slight abuse of notation, by defining ri(.) as a function). In a decentralized channel however, prices

are set equal to ri(wi) = µwi/(µ−1) and are therefore larger. The retailer’s optimal space allocation

follows (3) with mi = ai(ri(wi)−wi) (ri(wi))
−µ = (µ−1)µ−1/µµaiw

−(µ−1)
i . The shelf space allocated

to product i is therefore decreasing with wi, similarly to the basic model introduced in §2. We

derive an equilibrium result, analogous to Theorem 1.

Theorem 3. When the retailer sets the prices ri in addition to allocating the space si, then the
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game with n players has a unique pure strategy Nash equilibrium (w1, . . . ,wn), characterized by the

following conditions: for i = 1, . . . , n,

wi

ci

= 1+
1− b

(µ− 1)(1− bsi)
. (15)

The next Proposition quantifies the PoA when pricing decisions are endogenous and strikingly

contrasts with Propositions 4 and 5.

Proposition 6. When the retailer sets prices optimally, PoA = e/2, where e is the exponential

number, i.e., e = 2.7182....

Consequently, the decentralized supply chain may be very inefficient when pricing decisions are

endogenous. Intuitively, the supply chain is inefficient because of double marginalization (Spen-

gler 1950), not because of competition for shelf space. In fact, the worst-case problem instance

characterizing the PoA bound, used in the proof of Proposition 6, is independent of the space

allocation.

The bound e/2 is remarkably close to the bounds derived previously, in other double-

marginalization games: 4/3 with option contracts (Mart́ınez-de-Albéniz and Simchi-Levi 2003),

and e− 1 with wholesale-price contracts (Perakis and Roels 2007). Based on this observation, we

conjecture that double marginalization can generate about 25-40% inefficiencies in the presence

of decreasing marginal returns (either through a concave demand-price relationship or through a

demand probability distribution). Larger bounds can obviously be derived when marginal returns

are nondecreasing, such as Cournot-based competition models.

Comparing Proposition 6 with Propositions 4 and 5 also reveals that the inefficiencies arising from

shelf space competition much smaller than those arising from double marginalization. Nevertheless,

shelf space competition generates inefficiencies on its own, and is a significant issue given the thin

margins in retail.

3.5. Other Space Allocation Rules

So far, we have assumed that the retailer allocated her limited shelf space to maximize her gross

profits. In particular, the optimal shelf space allocation was assumed to be based on the gross profit

margin contribution mi = ai(ri−wi) of each supplier.

Many commercial software programs are however based on different allocation rules, such as

sales, sales per square foot, gross profit margin per square foot, or stocking expense (see Curhan

1973 and Corstjens and Doyle 1983 for a review). These alternate objectives are not necessarily
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irrational or suboptimal, because many practical issues (e.g., generating store traffic) are ignored in

our idealized model. It is therefore critical to understand whether supply chain efficiency improves

or deteriorates under these alternate objectives.

Allocation based on gross profit margin per square foot. When the retailer allocates the shelf space

proportionally to the products’ profit margins per square foot, supply chain efficiency decreases.

Indeed, based on this rule, the shelf space allocation satisfies

si =
ai(ri−wi)

n∑
j=1

aj(rj −wj)

Anticipating this allocation rule, the suppliers will set their wholesale prices to maximize their

profits. The next proposition characterizes the Price of Anarchy in this case.

Proposition 7. When the retailer bases the shelf-space allocation on gross profit margin per

square foot instead of gross profit margin, the Price of Anarchy is larger.

Therefore, by committing to a suboptimal allocation rule, the retailer worsens the efficiency of

the channel. As a matter of fact, we find that PoA
$/sqft
2 ∈ [1.298,1.299].

Allocation based on sales. When the retailer allocates the shelf space proportionally to sales or

revenue, possibly divided by the square footage, the allocation decision is independent from the

wholesale prices. In this case, the supplier profit functions are increasing with their respective

wholesale prices, and it is optimal for them to charge the highest possible wholesale price, i.e.,

wi = ri for all i. As a result, the retailer’s profit is equal to zero. Supply chain efficiency might

however increase, depending on the value of the parameters.

4. Retailing Practices: Towards a More Efficient Supply Chain?

In this section, we analyze different retailing practices and discuss their impact on the shelf allo-

cation game. In particular, we are interested in whether they help improve supply chain efficiency.

We first discuss the potential of pay-to-stay fees, a rent that retailers charge manufacturers for

space. We show that these contracts can coordinate the channel. Second, we analyze the impact

of horizontal integration (i.e., when a manufacturer owns several brands) and vertical integration

(e.g., when a retailer sells private-label brands). Vertical integration can also be viewed as the

widespread—and controversial—practice of category management, according to which the retailer

delegates the management of the category to one of the suppliers, called the category captain.
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4.1. Pay-to-Stay Fees

Suppliers often pay fees to ensure the continued presence of their product on the shelf for some

period (commonly one year). These fees are usually called pay-to-stay fees. We show that pay-

to-stay fee contracts always increase the retailer’s profit, in comparison to a situation where only

wholesale prices are contractible. Interestingly, these fees are never profitable to the suppliers.

Thus, we assume that the shelf space is contractible, and that it is sold through an auction. At

equilibrium, all suppliers pay the same amount per unit of shelf space, denoted by f , and the sum

of requested shelf spaces equals the total shelf capacity. The retailer’s profit is then equal to the

sum of the profit from sales and the additional revenue from the pay-to-stay fee collection, that is,

ΠR =
n∑

i=1

(ri−wPTS
i )ai

(
sPTS

i

)b

+ f,

where superscript PTS refers to “pay-to-stay” fees. Here, sPTS
i is determined by the suppliers,

that pay for each unit of space a price f . In contrast to the model introduced in §2, the retailer

does not make any decision here since both the pay-to-stay fee and the shelf space allocation are

negotiated among the suppliers.

The suppliers’ revenue is the profit from sales less the pay-to-stay fee. For a given fee f , all

suppliers need to decide their wholesale prices and the amount of shelf space capacity they want

to be allocated. The equilibrium fee f then balances supply with demand: if supplier i requests

sPTS
i units of capacity, the equilibrium fee f is such that

∑n

i=1 sPTS
i = 1. Plugging this equilibrium

condition into the suppliers’ profit functions leads to the following game:

max
wi,si

ΠSi(wi, si) = (wi− ci)ais
b
i − fsi, ∀i.

The first-order optimality conditions for each supplier i, which are necessary and sufficient

(because the profit functions are concave), are given by

∂ΠSi

∂wi

= ais
b
i > 0,

∂ΠSi

∂si

= (wi− ci)bsb−1
i ai− f = 0.

It is thus optimal to set wPTS
i = ri, and to allocate the shelf space capacity so that f = ai(ri −

ci)b (sPTS
i )b−1 for all i. The latter condition implies that sPTS

i = s∗i for all i; consequently, the shelf

space allocation with pay-to-stay fees is supply-chain optimal, and because the total supply chain

profits only depend on the shelf space allocation, PoAPTS = 1. The equilibrium pay-to-stay fee

equals

f =
bm∗

i(
s∗i

)1−b
= b

[
n∑

k=1

(
m∗

k

) 1
1−b

]1−b

.
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The next proposition compares the profits with and without pay-to-stay fees. While the supply

chain is globally efficient in the presence of these fees, no supplier earns additional profits. Because

only the retailer benefits from this contractual arrangement, it is likely that the initiative of impos-

ing pay-to-stay fees and transferring all the profit margin from sales to the suppliers will originate

from the retailer in practice.

Proposition 8. By switching from wholesale-price contracts to pay-to-stay fees, (a) all the

suppliers earn lower profits, and (b) the retailer earns higher profits.

With pay-to-stay fees, the retailer’s total profit comes from the fees, and not from the sales

revenue. Therefore, under this contract, the retailer is only rewarded for her core capability of

warehousing and shelf-space leaser. Brown and Tucker (1961) and Cairns (1962) already suggested

that suppliers should pay retailers for their desired shelf space, and that these payments should

exceed the retailers’ opportunity costs for using such space. Interestingly, Cairns (1962) proposed

that the price offered by a supplier for a unit of shelf space should be equal to the product of the

retailer’s unit profit margin with the ratio of sales to space. In comparison, our model suggests

that the price f should be equal to the supply chain’s unit profit margin ri− ci, multiplied by the

ratio of sales to space, ai (s∗i )
b−1, and weighted by the sales-space elasticity b. Hence, our model is

consistent with Cairns’ argument, but refines his proposal by considering the entire supply chain’s,

instead of the retailer’s, profit margin.

In practice, however, retailers are more than shelf-space leasers, because of their ability to influ-

ence the sales of particular product (e.g., through advertising) and they should be rewarded for

this function as well. In fact, retailers have recently become more powerful, by exploiting the value

of their contact with the consumer and realizing the importance of the marketing variables (price,

display, promotion) under their control. Shelf-space lease is certainly an important operational

lever for retailers, but it needs to be aligned with their strategy for influencing consumer choice

and gaining mindspace (Corstjens and Corstjens 1995).

4.2. Integrating the Supply Chain

Horizontal Integration. If suppliers are horizontally integrated, i.e., one supplier owns all the

products in the shelf, full efficiency can be achieved as follows. The supplier, acting as a leader,

sets the wholesale prices equal to the retail prices. Because she earns zero margin, the retailer is

indifferent about the shelf space allocation and can be encouraged to choose the allocation that

maximizes the supply chain total profits (possibly by being offered wholesale prices slightly below
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the retail prices). Therefore, the incentive misalignment disappears as soon as the suppliers are

horizontally integrated.

This result sheds light on the brand strategy of large consumer good producers such as Procter &

Gamble or Unilever: even if the products are competing for the same shelf space, and are somehow

cannibalizing the sales of each other, they give the consumer-good producer enough power to

control the shelf-space allocation and capture at the same time significant profit margins.

Vertical Integration. We now analyze a model of vertical integration, where the retailer is verti-

cally integrated with one of the suppliers. This model has two different interpretations.

There is vertical integration when a retailer owns one of the brands, i.e., when one of the

products is a private-label brand. The effects of vertical integration are becoming more important

as brands introduced by retailers (such as Wal-Mart Stores, Inc. and Target Corporation) knock

many second-tier brands off the shelves, reducing the product category to a few brands next to

their own private-label brands (Jubak 2005).

This model of vertical integration is also representative of category management. Category man-

agement is a marketing initiative that recommends centrally managing the entire product category

instead of managing each brand in a decentralized fashion. Ideally, category management should

be adopted by all supply chain partners, i.e., both the retailers and suppliers, to make globally

optimal decisions and obtain superior profits. In practice however, the retailer appoints one of

her suppliers, called the “category captain,” to manage the entire product category on her behalf.

Indeed, suppliers have typically more information than the retailers about product costs, planned

promotions and new product introductions, as well as the end-consumer demand (since they have

an aggregated view of the market). However, as we shall see, the category captain is also biased

towards increasing the sales of his own product, and will be tempted to push his product to the

detriment of the other suppliers’ products.

Let us assume that supplier 1 is the category captain. To keep the analysis general, we do not

model the specific terms of agreement between the retailer and the category captain. Indeed, mutual

trust is generally considered as a prerequisite to the success of category management, see Steiner

(2001). Instead, we consider the retailer and the category captain as being integrated into a single

firm. Using the same game as in the decentralized setting, we assume that suppliers i, i = 2, . . . , n,

first decide their wholesale prices wCM
i (where superscript CM refers to category management),

and then the retailer and supplier 1 jointly decide the shelf space allocation. Formally, we let

wCM
1 = c1. The retailer’s problem is therefore to choose the shelf space allocation sCM

1 , . . . , sCM
n
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that maximizes the joint profit (r1 − c1)a1s
b
1 +

n∑
i=2

(ri −wCM
i )ais

b
i . Similar to the games analyzed

before, it is optimal to allocate space following Equation (3).

The next proposition analyzes the changes in supplier i’s wholesale price and profit, i = 2, . . . , n,

as well as the total supply chain profit, with category management.

Proposition 9. With category management, for i = 2, . . . , n,

(a) wCM
i ≤we

i ;

(b) sCM
i ≤ se

i ;

(c) ΠCM
Si ≤Πe

Si;

(d) and ΠCM
S1 +ΠCM

R ≥Πe
S1 +Πe

R.

Therefore, vertical integration always hurts the suppliers who are not the category captain, even

though they still act as Stackelberg leaders. In particular, suppliers excluded from the coalition

are allocated less shelf space despite their lower wholesale prices. Using a different model, in which

demand is insensitive to shelf space and the retailer chooses the selling prices, Kurtuluş and Toktay

(2005) also find that category management is beneficial to the retailer and the category captain,

and harmful to the excluded suppliers. Our model therefore corroborates their conclusions when

retail prices are fixed.

In fact, the collusion might be so harmful to the excluded suppliers that the total supply chain

efficiency might even decrease. The next proposition computes the Price of Anarchy of a vertically

integrated supply chain, and shows that it is larger than the PoA of a completely decentralized

channel (Proposition 4).

Proposition 10. With category management and n = 2, PoACM
2 ∈ [1.079,1.080].

In fact, the Price of Anarchy is maximized when m∗
1 = m∗

2, i.e., a1(r1− c1) = a2(r2− c2). At this

point, not only s∗1 = s∗2, but also se
1 = se

2 in the basic model (from Proposition 1). Hence, the same

shelf space allocation can achieve full efficiency of a completely decentralized supply chain, while

at the same time be associated with the worst efficiency of a vertically integrated chain under

category management. Moreover, vertical integration is the least effective at improving channel

efficiency when the two products have comparable profit rates.

The worst-case performance of vertical integration, relative to that of a decentralized supply

chain, sheds light on one of the main pitfalls of category management. The goal of category man-

agement is to improve channel efficiency, by centrally managing the product category, so that each

partner is better off. In reality, category management raises antitrust concerns because it leads to
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noncompetitive coalitions, favoring one supplier over another (Steiner 2001, Bush and Gelb 2005).

Our model of vertical integration shows that if one of the partners is left aside from the coalition,

her margins and sales will plummet, as well as her profit, while channel efficiency might be even

worse than without category management. As an illustration, a manager reported in a Federal

Trade Commission workshop panel that “the competitor was able to reduce my shelf space to I call

it unlivable living conditions and unlivable space” (FTC Report 2001). Consequently, the antitrust

concerns about category management are well grounded, especially given that the practice worsens

the overall supply chain efficiency (without mentioning the detrimental impact it might have on

the end-consumer through higher prices and reduced variety).

5. Conclusions

This paper introduces a model of supply chain competition for shelf space. Our model builds

on the shelf space allocation model by Corstjens and Doyle (1983) to analyze the competitive

pressure on suppliers to obtain shelf space. When the retailer allocates her shelf space so as to

maximize her profit (or the gross margin per square foot), suppliers can increase their space share

by reducing their wholesale prices. We show the existence and uniqueness of an equilibrium in the

wholesale pricing game between suppliers. The equilibrium prices of all suppliers are increasing

with any supplier’s cost; they are increasing on the corresponding selling price, but decreasing on

a competitor’s selling price.

We also characterize the loss of efficiency in the decentralized supply chain, using the Price

of Anarchy. In particular, we demonstrate that the inefficiencies created in the space allocation

process are minimal, less than 6%, with wholesale price contracts, and that full coordination is

achieved with pay-to-stay fee contracts. On the other hand, coordination of retail prices is very

necessary, as double marginalization may lead to a 30% loss of efficiency.

Finally, we examine the impact of some retailing practices on the space allocation decision, with

a particular attention to category management. Specifically, we show that category management

benefits the retailer and the category captain, and hurts the other suppliers, even when pricing

decisions are exogenous, formalizing and quantifying the antitrust concerns against the practice.

The current model can be extended in several directions. First, one could consider the assortment

size to be endogenous. In the current model, supply chain profits always improve as n increases.

However, restricting the number of SKUs intensifies competition between suppliers, potentially

leading to larger retailer’s profits. Thus, if the assortment decision is made by the retailer, the

optimal assortment size will result from the trade-off between the increase in supply chain profit
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(the size of the pie) and the pressure put on the suppliers (the share for the retailer). Another

promising extension would be to model inventory decisions with stochastic demand. Conceivably,

the performance of supply contracts (e.g., wholesale-price, buyback, quantity discount) is signifi-

cantly affected by competition for shelf space, and it would be interesting to assess how the previous

conclusions about their coordination potential (see Cachon 2003) carry over in a multiple product

environment.

Appendix

Proof of Theorem 1

Proof. The first derivative of supplier i’s profit function is equal to

dΠSi

dwi

= ais
b
i + ai(wi− ci)bsb−1

i

dsi

dwi

=
ais

b
i(wi− ci)
ri−wi

(
ri−wi

wi− ci

+
b(ri−wi)

si

dsi

dwi

)
.

Noting that
1
si

dsi

dwi

=− 1− si

(1− b)(ri−wi)
,

ri−wi

wi− ci

+
b(ri−wi)

si

dsi

dwi

is decreasing with wi, and thus ΠSi is quasi-concave in wi. The best-response function

is thus well-defined by
ri−wi

wi− ci

=
b(1− si)

1− b
or equivalently

ri−wi

ri− ci

=
b(1− si)
1− bsi

.

Because each supplier’s profit function is continuous quasi-concave in wi, and that the strategy space is the

compact convex interval [c1, r1]× . . .× [cn, rn], there exists a Nash equilibrium.

We now prove that the Nash equilibrium is unique. Using (11), the best-response function mb.r.
i (m−i) can

be expressed as
mb.r.

i

m∗
i

=
b(1− si)
1− bsi

.

We can log-differentiate implicitly with respect to mj , and use that
1
si

dsi

dmi

=
1− si

(1− b)mi

and
1
si

dsi

dmj

=

−sj

(1− b)mj

to obtain

dmb.r.
i

dmj

=− (1− b)mi

(1− si)(1− bsi)

(
dsi

dmj

+
dsi

dmi

dmb.r.
i

dmj

)
=

sisjmi

(1− si)
[
1+ (1− b)si

]
mj

≥ 0. (A-1)

Suppose that there are two equilibria weq1 and weq2. Without loss of generality, assume that weq1
1 ≤weq2

1 .

From Equation (A-1), for all i, we must have weq1
i ≤weq2

i . Equation (11) imply that seq1
i ≥ seq2

i . As
n∑

i=1

si = 1,

all the inequalities are in fact equalities and hence weq1 = weq2.
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Proof of Proposition 1

Proof. Dividing the first-order optimality conditions (11) for i and j, it follows that

ri−wi

rj −wj

rj − cj

ri− ci

=
1− si

1− sj

1− bsj

1− bsi

. (A-2)

If se
i ≥ se

j , the above equality implies that
ri−wi

rj −wj

rj − cj

ri− ci

≤ 1, and hence 1≤ se
i

se
j

≤ s∗i
s∗j

. The inequalities are

reversed if se
i ≤ se

j .

Thus, s∗1 ≥ . . .≥ s∗n if and only if se
1 ≥ . . .≥ se

n. Any of the two statements implies that
se
1

s∗1
≤ . . .≤ se

n

s∗n
.

Proof of Proposition 2

Proof. The results are shown using the implicit function theorem and the chain rule. For this purpose, we

consider then optimality equation (11), expressed through mj ,m
∗
j , i.e.,

me
j

m∗
j

=
b− bse

j

1− bse
j

.

We take the log-derivative with respect to m∗
i = ai(ri− ci),

1
me

i

dme
i

dm∗
i

− 1
m∗

i

=− 1− b

(1− se
i )(1− bse

i )
dse

i

dm∗
i

=− 1− b

(1− se
i )(1− bse

i )

(
n∑

k=1

dsi

dmk

dme
k

dm∗
i

)
,

and for j 6= i,

1
me

j

dme
j

dm∗
i

=− 1− b

(1− se
j)(1− bse

j)
dse

j

dm∗
i

=− 1− b

(1− se
j)(1− bse

j)

(
n∑

k=1

dsj

dmk

dme
k

dm∗
i

)
. (A-3)

Since
dsi

dmi

=
si(1− si)
(1− b)mi

and
dsi

dmj

=
−sisj

(1− b)mj

, we have

1
me

i

dme
i

dm∗
i

=
1

m∗
i

− se
i

(1− se
i )(1− bse

i )

(
n∑

k=1

−se
k

me
k

dme
k

dm∗
i

+
1

me
i

dme
i

dm∗
i

)

=

(1− se
i )(1− bse

i )
m∗

i

+ se
i

(
n∑

k=1

se
k

me
k

dme
k

dm∗
i

)

(1− se
i )(1− bse

i )+ se
i

,

and for j 6= i,
1

me
j

dme
j

dm∗
i

= − se
j

(1− se
j)(1− bse

j)

(
n∑

k=1

−se
k

me
k

dme
k

dm∗
i

+
1

me
j

dme
j

dm∗
i

)

=

se
j

(
n∑

k=1

se
k

me
k

dme
k

dm∗
i

)

(1− se
j)(1− bse

j)+ se
j

.

(A-4)

A linear combination of the equations above yields that

n∑
k=1

se
k

me
k

dme
k

dm∗
i

=

se
i (1− se

i )(1− bse
i )

m∗
i

[
(1− se

i )(1− bse
i )+ se

i

]

1−
n∑

k=1

(
se

k

)2

(1− se
k)(1− bse

k)+ se
k

≥ 0 (A-5)

and thus for all j,
dme

j

dm∗
i

≥ 0. (A-6)
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In addition,
me

j

m∗
j

=
b− bse

j

1− bse
j

yields that for j 6= i,

dse
j

dm∗
i

≤ 0 and hence
dse

i

dm∗
i

≥ 0. (A-7)

Interestingly, this implies that
1

me
i

dme
i

dm∗
i

− 1
m∗

i

≤ 0 and hence

0≤ dme
i

dm∗
i

≤ me
i

m∗
i

=
b− bse

i

1− bse
i

≤ b≤ 1. (A-8)

Noting that Πe
Sj = (m∗

j −me
j)

(
se

j

)b

and Πe
R =

n∑
k=1

me
k

(
se

k

)b

=

[
n∑

k=1

(
me

k

) 1
1−b

]1−b

,

dΠe
Si

dm∗
i

=
(

1− dme
i

dm∗
i

)[
se

i

]b

+(m∗
i −me

i )b
[
se

i

]b−1
(

dse
i

dm∗
i

)
≥ 0, (A-9)

for j 6= i,
dΠe

Sj

dm∗
i

=−
(

dme

dm∗
i

)[
se

j

]b

+ (m∗
j −me

j)b
[
se

j

]b−1
(

dse
j

dm∗
i

)
≤ 0, (A-10)

and
dΠe

R

dm∗
i

≥ 0. (A-11)

Finally, since
∑
k 6=i

dsk

dm∗
i

=− dsi

dm∗
i

and that
(

si

sk

)1−b

=
mi

mk

, and Equation (11), Πe
SC =

n∑
k=1

m∗
k

(
se

k

)b

yields

that
dΠe

SC

dm∗
i

=
(
se

i

)b

+ b

n∑
k=1

m∗
k(

se
k

)1−b

(
dse

k

dm∗
i

)

=
(
se

i

)b

+ b

n∑
k=1


 m∗

km
e
i

me
k

(
se

i

)1−b




(
dse

k

dm∗
i

)

=
(
se

i

)b

+ b
∑
k 6=i


 m∗

km
e
i

me
k

(
se

i

)1−b
− m∗

i(
se

i

)1−b




(
dse

k

dm∗
i

)

=
(
se

i

)b−1
[
se

i + bm∗
i

∑
k 6=i

(
m∗

km
e
i

me
km

∗
i

− 1
)(

dse
k

dm∗
i

)]

=
(
se

i

)b−1
[
se

i + bm∗
i

∑
k 6=i

(
1− bse

k

1− se
k

1− se
i

1− bse
i

− 1
)(

dse
k

dm∗
i

)]
.

(A-12)

Let zk =
se

k(1− se
k)(1− bse

k)
se

k + (1− se
k)(1− bse

k)
. Observing that

1−
n∑

j=1

(
se

j

)2

(1− se
j)(1− bse

j)+ se
j

=
n∑

j=1


se

j −

(
se

j

)2

(1− se
j)(1− bse

j)+ se
j


 =

n∑
j=1

zj ,

and using Equations (A-3), (A-4) and (A-5), we have for k 6= i,

dse
k

dm∗
i

= − (1− se
k)(1− bse

k)
(1− b)

1
me

k

dme
k

dm∗
i

=− zizk

(1− b)m∗
i

n∑
j=1

zj

.
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Thus,
dΠe

SC

dm∗
i

=
(
se

i

)b−1
[
se

i −
bzi

1− b

∑
k 6=i

(
1− bse

k

1− se
k

1− se
i

1− bse
i

− 1
)(

zk∑n

j=1 zj

)]

=
zi(1− se

i )
(
se

i

)b−1

(1− bse
i )

[
se

i

zi

1− bse
i

1− se
i

− b

1− b

n∑
k=1

(
1− bse

k

1− se
k

− 1− bse
i

1− se
i

)(
zk∑n

j=1 zj

)]

=
zi(1− se

i )
(
bse

i

)b−1

(1− bse
i )

[
se

i

bzi

1− bse
i

1− se
i

+
n∑

k=1

(
1

1− se
i

− 1
1− se

k

)(
zk∑n

j=1 zj

)]
.

We observe that
d

dsi

(
se

i

bzi

1− bse
i

1− se
i

)
≥ 0

so it also increases with m∗
i . In addition, let θk =

1
1− se

i

− 1
1− se

k

and sort the suppliers so that se
1 ≥ . . .≥ se

n.

Thus, θ1 ≤ . . .≤ θn.

d

dm∗
i




n∑
k=1

θkzk

n∑
k=1

zk



≥

n∑
k=1

n∑
j=1

(
− 1

(1− se
k)2

)
dse

k

dm∗
i

zjzk + θk

(
dzk

dse
k

dse
k

dm∗
i

zj − zk

dzj

dse
j

dse
j

dm∗
i

)

(
n∑

k=1

zk

)2

=

zi

n∑
k=1

n∑
j=1

[(
θk − 1

1− se
i

)2

zjz
2
k − θkzjzk

(
dzk

dse
k

− dzj

dse
j

)]

(1− b)m∗
i

(
n∑

k=1

zk

)3

=

zi

n∑
k=1

n∑
j=k+1

zjzk

[
zk

(
θk − 1

1− se
i

)2

+ zj

(
θj − 1

1− se
i

)2

+(θj − θk)
(

dzk

dse
k

− dzj

dse
j

)]

(1− b)m∗
i

(
n∑

k=1

zk

)3

where the inequality follows from discarding the partial derivatives of θk with respect to se
i , equal to (1−

se
i )
−2 ≥ 0, and the corresponding terms

dse
i

dm∗
i

, which are positive by (A-7).

The weighted sum of squares between brackets is minimized for
1

1− se
i

=
zkθk + zjθj

zk + zj

and hence the term

in brackets is bounded from below by (θj − θk)
(

(θj − θk)
zkzj

zk + zj

+
dzk

dse
k

− dzj

dse
j

)
. We have:

(θj − θk)
zkzj

zk + zj

+
dzk

dse
k

− dzj

dse
j

=
se

ks
e
j(1− bse

k)(1− bse
j)(se

k − se
j)

G(se
j , s

e
k)

where G(se
j , s

e
k) is a cubic function of se

j and se
k. The numerator is nonnegative for any se

j , s
e
k, such that

0≤ se
j ≤ se

k ≤ 1 and se
j + se

k ≤ 1. Moreover, one can check that G(se
j , s

e
j)≥ 0, G(se

j ,1− se
j)≥ 0, and dG(se

j ,1−
se

j)/dse
k ≤ 0, which, together with the fact that the cubic coefficient of se

k is nonnegative, proves that G(se
j , s

e
k)

is nonnegative when se
k ∈ [se

j ,1− se
j ], and se

j ∈ [0,0.5].

Thus,
se

i

bzi

1− bse
i

1− se
i

+
n∑

k=1

(
1

1− se
i

− 1
1− se

k

)(
zk∑n

j=1 zj

)

is increasing and Πe
SC is quasi-convex in m∗

i .
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In fact, Πe
SC may be increasing or decreasing in m∗

i . Suppose that m∗
i ≥m∗

k for all k; then, se
i ≥ se

k for all

k (from Proposition 1). In that case,

n∑
k=1

(
1

1− se
k

)(
zk∑n

j=1 zj

)
≤ 1

1− se
i

,

and thus Πe
SC is increasing in m∗

i . Suppose on the other hand that m∗
i = 0; then se

i = 0 and
se

i

zi

= 1, so that

n∑
k=1

(
1

1− se
k

)(
zk∑n

j=1 zj

)
≥ 1

n− 1

∑
k 6=i

(
1

1− se
k

)
≥ 1+

1
n− 2

.

In addition, suppose that n = 2. In that case, 1 +
1

n− 2
≥ 1+

1
b
, and hence Πe

SC is decreasing.

Since m∗
i = ai(ri− ci) and mi = ai(ri−wi), we have the following:

(a) Equation (A-6) implies that we
i is increasing with ci; wi = ri− mi(ri− ci)

m∗
i

= ri− b(1− si)(ri− ci)
1− bsi

and

Equation (A-7) imply that we
i is increasing with ri and ai.

(b) Equation (A-6) implies that for j 6= i, we
j is increasing with ci and decreasing with ri and ai.

(c) Equation (A-7) implies that se
i is decreasing with ci and increasing with ri and ai.

(d) Equation (A-7) implies that, for j 6= i, se
j is increasing with ci and decreasing with ri and ai.

(e) Equation (A-9) implies that Πe
Si is decreasing with ci and increasing with ri and ai.

(f) Equation (A-10) implies that, for j 6= i, Πe
Sj is increasing with ci and decreasing with ri and ai.

(g) Equation (A-11) implies that Πe
R is decreasing with ci and increasing with ri and ai.

(h) Since Πe
SC is quasi-convex in m∗

i , it is quasi-convex in ci, ri and ai.

Proof of Proposition 3

Proof. Similarly to the previous proof, differentiating implicitly Equation (11) yields

1
me

i

dme
i

db
=

1
b(1− bse

i )
− (1− b)

(1− se
i )(1− bse

i )

(
dse

i

db

)
. (A-13)

We have from Equation (3) that

1
si

∂si

∂b
=

log(mi)
(1− b)2

− si

[
n∑

k=1

log(mk)
(1− b)2

(
mk

mi

) 1
1−b

]
=

n∑
k=1

log(mi)sk

(1− b)2
− si

[
n∑

k=1

log(mk)
(1− b)2

sk

si

]

=
n∑

k=1

sk log
(

mi

mk

)

(1− b)2
=

n∑
k=1

sk log
(

si

sk

)

1− b
=

log(si)
1− b

−
n∑

k=1

sk log(sk)
1− b

and hence
1
se

i

dse
i

db
=

log(se
i )

1− b
−

n∑
k=1

se
k log(se

k)
1− b

+
1

(1− b)me
i

dme
i

db
−

n∑
k=1

se
k

(1− b)me
k

dme
k

db
.

Substituting Equation (A-13) above yields
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1
se

i

dse
i

db
=

log(se
i )

1− b
−

n∑
k=1

se
k log(se

k)
1− b

+
1

b(1− b)(1− bse
i )
− 1

(1− se
i )(1− bse

i )
dse

i

db

−
n∑

k=1

se
k

b(1− b)(1− bse
k)
−

n∑
k=1

se
k

(1− se
k)(1− bse

k)
dse

k

db

=
log(se

i )

1−b
+ 1

b(1−b)(1−bse
i
)
−∑n

k=1

se
k log(se

k)

1−b
−∑n

k=1

se
k

b(1−b)(1−bse
k
)
−∑n

k=1

se
k

(1−se
k
)(1−bse

k
)

dse
k

db

1+
se

i

(1− se
i )(1− bse

i )
and hence,

(1− b)se
i

(1− se
i )(1− bse

i )
dse

i

db
=




(
se

i

)2

se
i +(1− se

i )(1− bse
i )




×
(

log(se
i )+

1
b(1− bse

i )
−

n∑
k=1

se
k log(se

k)−
n∑

k=1

se
k

b(1− bse
k)
−

n∑
k=1

(1− b)se
k

(1− se
k)(1− bse

k)
dse

k

db

)

Letting zk =

(
se

k

)2

se
k +(1− se

k)(1− bse
k)

+ se
k, summing these identities for i = 1, ..., n yields

n∑
k=1

(1− b)se
k

(1− se
k)(1− bse

k)
dse

k

db
=




n∑
k=1

(zk − se
k) log(se

k)+
zk − se

k

b(1− bse
k)

−
(

n∑
k=1

(zk − se
k)

)(
n∑

k=1

se
k log(se

k)+
se

k

b(1− bse
k)

)


×




1

1+
n∑

k=1

(zk − se
k)




.

Thus,

(1− b)se
i

(zi− se
i )(1− se

i )(1− bse
i )

dse
i

db
= log(se

i ) +
1

b(1− bse
i )
−

n∑
k=1

zk

(
log(se

k)+
1

b(1− bse
k)

)

n∑
k=1

zk

,

which gives rise to

dse
i

db
=

(
2se

i − zi

b(1− b)

)



b log(se
i )+

1
1− bse

i

−

n∑
k=1

zk

(
b log(se

k)+
1

1− bse
k

)

n∑
k=1

zk




.

Hence,
dse

i

db
≥ 0 if and only if

b log(se
i )+

1
1− bse

i

−

n∑
k=1

zk

(
b log(se

k)+
1

1− bse
k

)

n∑
k=1

zk

≥ 0.

This implies that if se
i ≥ se

j and
dse

j

db
≥ 0, then

dse
i

db
≥ 0. Thus, as we increase b, the items with highest se

i gain

space, while the others lose it. In addition, if supplier 1 receives the largest space allocation se
1,

dse
1

db
≥ 0, and

if supplier n receives the smallest space allocation, se
n,

dse
n

db
≤ 0.

Let θk = b log(se
k)+

1
1− bse

k

and sort the suppliers so that se
1 ≥ . . .≥ se

n. Thus, θ1 ≥ . . .≥ θn. When
dse

i

db
= 0,

we know that
dse

k

db
≥ 0 for k < i and

dse
k

db
≤ 0 for k > i.
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Proof of Theorem 2

Proof. Putting together the equilibrium equations of Theorem 1 with Equation (3) implies that in equilib-

rium, m∗
i = Ks1−b

i

(
1− bsi

b− bsi

)
, and mi = Ks1−b

i , where K is the same for all i. Equation (10) yields that the

Price of Anarchy is the maximum over all instances of
[

n∑
i=1

si

(
1− bsi

b− bsi

) 1
1−b

]1−b [
n∑

i=1

si

]b

n∑
i=1

si

(
1− bsi

b− bsi

) =

[
n∑

i=1

si

(
1− bsi

1− si

) 1
1−b

]1−b

n∑
i=1

si

(
1− bsi

1− si

) .

Supporting Lemma

Lemma 1. The Price of Anarchy is given by s2 = . . . = sn =
z

n− 1
and s1 = 1− z. Thus,

PoAn = max
0≤z≤n−1

n
,0≤b≤1


z

(
b+

1− b

1− z
n−1

) 1
1−b

+(1− z)
(

b +
1− b

z

) 1
1−b




1−b

b+(1− b)

(
z

1− z
n−1

+
1
z
− 1

) .

Proof. We can express the objective function in (14) as follows:



n−1∑
i=1

si

(
b +

1− b

1− si

) 1
1−b

+

(
1−

n−1∑
i=1

si

)(
b+

1− b∑n−1
i=1 si

) 1
1−b




1−b

b +(1− b)

[
n−1∑
i=1

si

(
1

1− si

)
+

(
1−

n−1∑
i=1

si

)(
1∑n−1

i=1 si

)] .=
A1−b

B

where A corresponds to the term in brackets in the numerator of the objective function of (14) and B

corresponds to the term in the denominator.

For i≤ n− 1, the first-order condition with respect to si (log-derivative) is equivalent to

f(si)− f(sn)
g(si)− g(sn)

=
A

B
,

where

f(s) =
(

b +
1− b

1− s

) 1
1−b

(
1+

s

(1− s)(1− bs)

)
, and g(s) =

(
1

1− s

)2

.

Suppose (s1, ..., sn) satisfies the first-order optimality conditions. Hence any si and sj , j 6= i, satisfy

[f(sn)− f(sj)]g(si)− [g(sn)− g(sj)]+ g(sn)f(sj)− f(sn)g(sj) = 0.

Fix sj and sn, and denote by F (si) the left-hand side of the above equation. It is easy to see that F (si) has

only one stationary point. Hence, it has at most two roots. In fact, it has exactly two roots, namely sj and

sn. As a result, every optimal solution (s1, ..., sn), in the interior of the domain, has k components equal to s
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and (n−k) components equal to (1−ks)/(n−k), for some feasible s. Without loss of generality, we assume

that s≥ (1− ks)/(n− k), i.e., s≥ 1/n.

The problem of finding PoAn, (14), can therefore be reformulated as follows:

PoAn = max
1
n
≤s≤1,0≤b≤1,k∈{1,...,n−1}


ks

(
b +

1− b

1− s

) 1
1−b

+(1− ks)

(
b +

1− b

1− 1−ks
n−k

) 1
1−b




1−b

[
ks

(
b +

1− b

1− s

)
+(1− ks)

(
b+

1− b

1− 1−ks
n−k

)] .

When s≥ 1/n, the term (b+(1− b)/(1− (1− ks/(n− k)))) is decreasing in k, as well as the multiplicative

coefficient (1− ks). Thus, PoAn is maximized when k = 1, i.e., when s2 = . . . = sn. Substituting s by 1− z

leads to the lemma statement. From this formulation, it is easy to see that PoAn is in fact strictly increasing

with n, confirming a posteriori that a non-interior solution, (s1, ..., sn) with si = 0 for some i, will never be

optimal.

Proof of Theorem 3

Proof. The profit function of supplier i is

(wi− ci)ai

(
ri(wi)

)−µ

sb
i =

(
µ

µ− 1

)−µ

ai(wi− ci)w
−µ
i

(
aiw

−(µ−1)
i

) b
1−b

[
n∑

j=1

(
ajw

−(µ−1)
j

) 1
1−b

]b

This is a quasi-concave function of wi, and the optimal wholesale price is such that (log-differentiation)

1
wi− ci

− µ

wi

− (µ− 1)b(1− si)
wi(1− b)

= 0,

which is equivalent to Equation (15).

One can restrict the strategy space to a compact space, which, together with the quasiconcavity of the

profit function, yields existence of a pure-strategy Nash equilibrium. Also, it is easy to see that
dwb.r.

i

dwj

≥ 0

for j 6= i. An argument similar to the one of Theorem 1 yields uniqueness.

Proof of Proposition 6

Proof. When the retailer decides the selling prices, m∗
i = ai(ri(ci)− ci)ri(ci)−µ = aic

−(µ−1)
i (µ− 1)µ−1/µµ,

and mi = ai(ri(wi)−wi)ri(wi)−µ = aiw
−(µ−1)
i (µ− 1)µ−1/µµ. Hence, m∗

i = mi

(
wi

ci

)µ−1

. From Equation (3),

mi = Ks1−b
i and hence m∗

i = Ks1−b
i

(
wi

ci

)µ−1

, where K is the same for all i. Furthermore, from Equation

(15), we have m∗
i = Ks1−b

i

(
1+

1− b

(µ− 1)(1− bsi)

)µ−1

.

From Equation (9), the profit of the integrated supply chain equals

Π∗
SC = K

[
n∑

i=1

si

(
1+

1− b

(µ− 1)(1− bsi)

)µ−1
1−b

]1−b

,
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and the profit of the decentralized supply chain equals

ΠSC =
n∑

i=1

sb
i (mi +(wi− ci)airi(wi)−µ) =

n∑
i=1

sb
imi

(
1+

wi− ci

ri(wi)−wi

)
= K

n∑
i=1

si

(
1+

1− b
1−b
µ−1

+ 1− bsi

)
.

The Price of Anarchy is the maximum ratio Π∗
SC/ΠSC over all problem instances, i.e., over all feasible b, µ,

and s1, ..., sn−1, sn subject to
n∑

i=1

si = 1):

max

[
n∑

i=1

si

(
1+

1− b

(µ− 1)(1− bsi)

)µ−1
1−b

]1−b

n∑
i=1

si

(
1 +

1− b
1−b
µ−1

+1− bsi

) .

Consider n = 2. Solving the 3-variable optimization problem yields PoA2 = e/2, where e is the exponential

number. The maximum is reached in the limit, when b = 0 and µ→∞. Indeed, when b = 0, PoA2 simplifies

to

PoA2 = max
µ≥1

(
1+

1
µ− 1

)µ−1

2− 1
µ

=
e

2
.

Because the bound is attained for any space allocation, we conclude that PoAn is independent of n.

Proof of Proposition 7

Proof. Similarly to Theorem 1, there exists a unique Nash equilibrium in the game, given by the following

conditions

ri−wi

ri− ci

=
b− bsi

1+ b− bsi

.

Similarly to the proof of Theorem 2, m∗
i =

Ksi

b

(
b +

1
1− si

)
and mi = Ksi yields

PoA$/sqft
n = max

s1,...,sn,b





[
n∑

i=1

s
1

1−b

i

(
b+

1
1− si

) 1
1−b

]1−b

n∑
i=1

s1+b
i

(
b+

1
1− si

)





,

such that
∑n

i=1 si = 1, s1, ..., sn ≥ 0, and 0≤ b≤ 1.

We can easily show that the Price of Anarchy is reached with s1 = . . . = sn−1 =
z

n− 1
and sn = 1−z, hence

PoA$/sqft
n = max

0≤z≤n−1
n

,0≤b≤1






(n− 1)

−b
1−b z

1
1−b

(
b +

1
1− z

n−1

) 1
1−b

+ (1− z)
1

1−b

(
b+

1
z

) 1
1−b




1−b

(n− 1)−bz1+b

(
b +

1
1− z

n−1

)
+ (1− z)1+b

(
b+

1
z

)





.
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This is increasing with n. For n = 2, we obtain a lower bound:

PoA$/sqft
2 = max

0≤z≤ 1
2 ,0≤b≤1





[
z

1
1−b

(
b+

1
1− z

) 1
1−b

+(1− z)
1

1−b

(
b+

1
z

) 1
1−b

]1−b

z1+b

(
b+

1
1− z

)
+(1− z)1+b

(
b +

1
z

)





.

PoA$/sqft
2 is reached (maximized) with b = 1, and we find numerically that PoA$/sqft

2 ∈ [1.298,1.299].

Proof of Proposition 8

Let us denote with a PTS superscript the equilibrium profits associated with pay-to-stay fee contracts.

We have that

ΠPTS
Si = (ri− ci)ai

(
s∗i

)b

− fs∗i = m∗
i

(
s∗i

)b

− b

[
n∑

j=1

(
m∗

j

) 1
1−b

]1−b

s∗i = (1− b)m∗
i

(
s∗i

)b

,

while the equilibrium profit without pay-to-stay fees was Πe
Si = (we

i − ci)ai

(
se

i

)b

. Using the optimality con-

dition (11), we can express

Πe
Si =

(
m∗

i −me
i

)(
se

i

)b

= m∗
i

(
1− b

1− bse
i

)(
se

i

)b

.

Hence, ΠPTS
Si ≤Πe

Si if and only if
(
s∗i

)b

≤

(
se

i

)b

1− bse
i

. (A-14)

From Equation (11), m∗
i = me

i

(
1− bse

i

b− bse
i

)
. Moreover, from Equation (3), we can express me

i as K
(
se

i

)1−b

,

where K is the same for all i. Therefore,
n∑

j=1

(
m∗

j

) 1
1−b

=
n∑

j=1

(
me

j

) 1
1−b

(
1− bse

j

b− bse
j

) 1
1−b

=
(

K

b

) 1
1−b

n∑
j=1

se
j

(
1− bse

j

1− se
j

) 1
1−b

=

(
n∑

j=1

(
me

j

) 1
1−b

)
b
−1
1−b

n∑
j=1

se
j

(
1− bse

j

1− se
j

) 1
1−b

.

This identity, together with Equations (3) and (11), yields
(
s∗i

)1−b

=
m∗

i(
n∑

j=1

(
m∗

j

) 1
1−b

)1−b

=
(

1− bse
i

b− bse
i

) me
i b

(
n∑

j=1

se
j

(
1− bse

j

1− se
j

) 1
1−b

)−(1−b)

(
n∑

j=1

(
me

j

) 1
1−b

)1−b

=
(

1− bse
i

1− se
i

)(
se

i

)1−b

(
n∑

j=1

se
j

(
1− bse

j

1− se
j

) 1
1−b

)−(1−b)

.
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For a given se
i ,

n∑
j=1

se
j

(
1− bse

j

1− se
j

) 1
1−b

is minimized when se
j = (1− se

i )/(n− 1), for j 6= i, and when n→∞.

Thus,
n∑

j=1

se
j

(
1− bse

j

1− se
j

) 1
1−b

≥ se
i

(
1− bse

i

1− se
i

) 1
1−b

+(1− se
i ).

Accordingly,

(
s∗i

)b

≤
(

1− bse
i

1− se
i

) b
1−b (

se
i

)b

(
se

i

(
1− bse

i

1− se
i

) 1
1−b

+(1− se
i )

)−b

.

One can check that (1−bse
i )

(
se

i +(1− se
i )

(
1− se

i

1− bse
i

) 1
1−b

)−b

≤ 1 for any se
i and b between 0 and 1, thereby

proving inequality (A-14) and thus that ΠPTS
i ≤ Πe

i for all i. Because the profits of all suppliers decrease,

and the supply chain total profit increases, we must have that ΠPTS
R ≥Πe

R.

Proof of Proposition 9

Since wCM
1 = c1 and wb.r

i (w−i) is increasing in w−i by (A-1), then in the category management equilibrium,

wCM
i ≤we

i . In addition, from Equation (11), we have that sCM
i ≤ se

i for i = 2, ..., n, and therefore sCM
1 ≥ se

1.

This implies that ΠCM
Si ≤Πe

Si for i = 2, ..., n.

Since ΠCM
S1 + ΠCM

R = max
si

{
(r1− c1)a1s

b
1 +

n∑
i=2

(ri−wCM
i )ais

b
i

}
, wCM

i ≤ we
i and Πe

S1 + Πe
R ≤

max
si

{
(r1− c1)a1s

b
1 +

n∑
i=2

(ri−we
i )ais

b
i

}
, then clearly ΠCM

S1 +ΠCM
R ≥Πe

S1 +Πe
R.

Proof of Proposition 10

Proof. Let, without loss of generality, m∗
1 = 1. From (3), we have that

sCM
2 =

(
mCM

2

) 1
1−b

1+
(
mCM

2

) 1
1−b

,

hence mCM
2 =

(
sCM
2

1− sCM
2

)1−b

. On the other hand, Equation (11) yields mCM
2 = m∗

2

b(1− sCM
2 )

1− bsCM
2

. The equilib-

rium space allocation thus satisfies
(

sCM
2

1− sCM
2

)1−b

= m∗
2

b(1− sCM
2 )

1− bsCM
2

.

The PoA is equal to the maximum profit ratio over all problem instances, that is the maximum of

ΠCM
SC

Π∗
SC

=

(
1− sCM

2

)b

+ m∗
2

(
sCM
2

)b

(
1− s∗2

)b

+ m∗
2

(
s∗2

)b
=

(
1− sCM

2

)b

+ m∗
2

(
sCM
2

)b

(
1+

(
m∗

2

) 1
1−b

)1−b

over all problem instances. Expressing m∗
2 as a function of sCM

2 simplifies the problem to a two-variable

optimization problem. Solving the resulting maximization problem over all feasible values of s2 and b (between

0 and 1) yields that PoACM
2 ∈ [1.079,1.080].
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