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Abstract

Covariance matrix estimation and variable selection in high dimension

by

Mu Cai

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Peter J. Bickel , Chair

First part of the thesis focuses on sparse covariance matrices estimation under the sce-
nario of large dimension p and small sample size n. In particular, we consider a class of
covariance matrices which are approximately block diagonal under unknown permutations.
We propose a block recovery estimator and show it achieves minimax optimal convergence
rate for the class, which is the same as if the permutation were known. The problem is
also related to sparse PCA and k-densest subgraphs, where the spike model is a special case
of their intersection. Simulations of the spike model and multiple block model, together
with a real world application, confirm that the proposed estimator is both statistically and
computationally efficient.

Second part of the thesis focuses on variable selection in linear regression, also under
the high dimensional scenario of large p and small n. We propose a general framework
to search variables based on their covariance structures, with a specific variable selection
algorithm called kForward which iteratively fits local/small linear models among relatively
highly correlated variables. For simulation experiments and a real world data set, we compare
kForward to other popular methods including the Lasso, ElasticNet, SCAD, MC+, FoBa
for both variable selection and prediction.
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Chapter 1

Notations

• Define [n] = {1, 2, ..., n}.

• For L = {l1, l2, ..., ln}, denote Li = li for i = 1, ..., n.

• Denote In×n the n by n identity matrix.

• Denote S+
p the set of p× p positive definite matrices.

• Denote Πp the set of all permutations of [p].

• For vector v ∈ Rn,

– lq norm for q ≥ 1: ‖v‖q = (
∑n

i=1 |vi|q)
1
q

– l0 norm: ‖v‖0 =
∑n

i=1 I(vi 6= 0)

– l∞ norm: ‖v‖∞ = maxni=1 |vi|
– v̄ = 1

n

∑n
i=1 vi

– vL = (vi)i∈L ∈ R|L| for ∀L ⊂ [n]

– The support of v: supp(v) = {i : I(vi 6= 0)}

• For matrix A ∈ Rn×p, vector v ∈ Rn,

– λmax(A): largest eigenvalue of A

– λmin(A): minimal eigenvalue of A

– lq operator norm for q ≥ 1: ‖A‖q = maxv 6=0
‖Av‖q
‖v‖q

– Spectral norm for square A with n = p: ‖A‖ = ‖A‖2 =
√
λmax(AtA)

– l1 norm: ‖A‖1 = max1≤j≤p
∑n

i=1 |Aij|
– l∞ norm: ‖A‖∞ = max1≤i≤n

∑p
j=1 |Aij|
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– Frobenius norm: ‖A‖F =
√∑n

i=1

∑p
j=1 |Aij|2

– Aj ∈ Rn×1 is the jth column of A

– A(i) ∈ R1×p is the ith row of A

– For i0 ∈ [n], j0 ∈ [p], L ⊂ [n], J ⊂ [p], B ⊂ [p]× [p],

∗ AL,J = (Aij)i∈L,j∈J ∈ R|L|×|J |

∗ AJ = (Aij)1≤i≤n,j∈J ∈ Rn×|J |

∗ A(L) = (Aij)i∈L,1≤j≤p ∈ R|L|×p

∗ Ai0J = (Ai0j)j∈J ∈ R1×|J |

∗ ALj0 = (Aij0)i∈L ∈ R|L|×1

∗ AB = (AijI((i, j) ∈ B))1≤i,j≤p

∗ vtABv =
∑p

(i,j)∈B vivjAij

– Ā = (Āj)1≤j≤p ∈ R1×p.
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Part I

High dimensional covariance matrix
estimation
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Chapter 2

Introduction

Covariance estimation plays a central role in many statistical methodologies including re-
gression analysis, principal component analysis (PCA), linear and quadratic discriminant
analysis (LDA, QDA). Suppose X ∈ Rn×p is observed. The rows X(1), ..., X(n) ∈ R1×p

are i.i.d. p-variate random variables with covariance matrix Σ = (Σij)1≤i,j≤p. The goal
is to construct an estimator Σ̃ that is close to the population Σ. There are many met-
rics for measurements. For example element-wise estimation corresponds to minimizing
maxi,j |Σ̃ij − Σij|, while techniques like PCA and LDA require estimation of eigenvalues,
eigenvectors of Σ, and measurement of Σ̃− Σ with errors measured by the Frobenius norm
‖.‖F or spectral norm ‖.‖. A classical approach is to estimate Σ by the empirical covari-
ance matrix Σ̂ = 1

n−1

∑n
i=1(X(i)− X̄)T (X(i)− X̄). Nowadays many applications involve high

dimensional data with p > n or p = O(n). This poses many new challenges to classical
statistics and extensive research has been done in this area. As an example, although Σ̂ still

performs well for element-wise estimation with a convergence rate of
√

1
n
, it is well known it

does not work for estimation of eigenvalues, eigenvectors for matrices Σ such as the identity,
which are of high rank, and not approximable in the spectral norm by matrices of bounded
rank.

However following work by various authors, Bickel and Levina (BL2008a-1) (BL2008b-1),
T. Cai et al (CZZ2010-1) (CZ2012-1) , El Karoui (EK2007-1), it has been shown that if popu-
lation matrices can be approximated in the spectral norm by structured matrices with sparse
structure, then estimates of these matrices converging at reasonable rates can be construct-
ed even if p > n. Such matrices arise naturally if there is a metric on the variables such
that high distance between the variables is associated with local covariance. For instance, if
X(1) = (X1t1 , ..., X1tp), where the tj correspond to times in a given year, such a metric is the
usual Euclidean metric ρ(X1ta , X1tb) = |ta− tb|. More complicated structures can arise from
spatial fields. The natural approximation here are Σ̃ of the form:

Σ̃(δ) = ΣijI(ρ(X1i, X1j) ≤ δ) (2.1)

Another possibility, see Furrer and Bengtsson (FB2007-1), is to replace the indicators by a
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monotone tapering function σ(ρ(X1ta , X1tb)) which is monotone decreasing to 0 and

(σ(ρ(X1ta , X1tb)))1≤a,b≤p

is a positive definite matrix.
In examples such as we have given above, the metric is known and the approximating

matrices can be readily constructed. However suppose there is a reason to believe that a
metric of this type is present but not known in advance. For instance, suppose the variables
are expression of genes in a biochemical pathway. The metric which is unknown, is roughly
geodesic distance in the graph representing the pathway. We are then faced with approxi-
mating a given covariance matrix by a matrix which, after an unknown permutation of the
variables, is of the given structure. That is the topic of the first part of the thesis.

We note that similar problems in which we assume that the approximating class has
restrictions only on the member of zeros of the matrix, but not their position have been
treated. El Karoui (EK2007-1) proposed and analyzed a class of covariance matrices with β-
sparsity, which requires the number of walks of length k on the graph with adjacency matrix
induced by the population covariance matrix is bounded by O(pβ(k−1)+1). He proposed an
entry-wise thresholding estimator and showed that it is consistent in operator norm. Bickel
and Levina (BL2008a-1) (BL2008b-1) proposed and analyzed approximately bandable class
and classes with lq ball constraint on each row. They also provided upper bound on spectral
norm for corresponding thresholding and banding estimator. Another focus has been on
approximating covariance matrices for particular purpose such as PCA, CCA, some of which
assume structured sparse approximation, Amini and Wainwright (AW2009-1), Johnstone
(J2001-1), and others does not, d’Aspermont et al(DA2007-1), Zou, Hastie and Tibshirani
(ZHT2006-1), Joliffe et al (J2003-1). Another direction involves estimation of Σ−1. For
structured situations, the results of Bickel and Lindner (BL2010-1) suggest quite generally
that inverting estimates of Σ taking advantage of the assumed structure works as well as
possible. Also Bickel and Levina (BL2008a-1) (BL2008b-1) give methods for estimating Σ−1

directly in structurally approximable cases, and see graphical Lasso Friedman, Hastie and
Tibshirani (FHT2008-1), Rothman et al (R2008-1) for unstructured sparse cases. We begin
by reviewing some of this work.

2.1 Related Work

Following Bickel and Levina (BL2008a-1) (BL2008b-1), define classes of lq sparse covariance
matrices as:

Ut(q, k0,M0) = {Σ : Σii < M0,

p∑
j=1

|Σij|q ≤ k0, for ∀i} (2.2)

The classes of approximately bandable covariance matrices is defined as:

Ub(α,C,M) = {Σ : max
j

∑
i

{|Σij| : |i− j| > k} ≤ Ck−α, λmax(Σ) < M} (2.3)
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Define thresholding estimator:

Th(Σ̂) = (Σ̂ijI(|Σ̂ij| > h))1≤i,j≤p (2.4)

Define banded estimator:

Bk(Σ̂) = (Σ̂ijI(|i− j| ≤ k))1≤i,j≤p (2.5)

In a series of work by T. Cai et al (CZZ2010-1) (CL2011-1) (CY2012-1) (CZ2012-1) , minimax
convergence rates in various norms and adaptive estimators were developed for similar classes
of sparse covariance matrices. Their main results showed

inf
Σ̃

sup
Σ∈Ut(q,k0,M0)

E‖Σ̃− Σ‖2 � k2
0(

log p

n
)1−q (2.6)

and

inf
Σ̃

sup
Σ∈Ub(α,C,M)

E‖Σ̃− Σ‖2 � n−
2α

2α+1 +
log p

n
(2.7)

The thresholding estimator Th(Σ̂) with threshold h = O(
√

log p
n

) achieves the optimal con-

vergence rate for class Ut(q, k0,M0), and banded estimator Bk(Σ̂) with bandwidth k =
O(n1/(2α+1)) achieves optimal convergence rate for class Ub(α,C,M). Both estimators can
be made adaptable.

Results from T. Cai et al (CZZ2010-1) (CZ2012-1) showed convergence rates of approx-
imately bandable classes are in general faster than the rates of classes with lq constraints
on rows. To do this, they showed that the banded estimator would behave as the empirical
estimator for small blocks with size equivalent to the bandwidth. This suggests a natural
question: suppose the population covariance matrix is not originally bandable, however un-
der certain unknown permutation of its indices, it could be permuted into a approximately
bandable structure, is it possible to obtain the same convergence rate as if the permutation
were known? The answer is yes for some classes. We are particularly interested in those
approximately block diagonal after permutation. Denote the class in consideration as F .
Our goal is to construct and analyze an estimator Σ̃∗ with spectral norm convergence rate
minimax optimal:

sup
Σ∈F

E‖Σ̃∗ − Σ‖2 � inf
Σ̃

sup
Σ∈F

E‖Σ̃− Σ‖2 (2.8)

The idea is to recover the unknown permutation to construct approximately block diagonal
empirical covariance matrices. Then as with banding, we will show estimates keeping entries
within blocks and ignoring others would achieve the optimal rates.

The problem, as we pose it, is to recover unknown blocks of variables with relatively higher
correlations among themselves than outside. There are several closely related problems that
have been extensively studied in the literatures. For example, sparse PCA considers the
following NP hard problem

v̂ = arg max
‖v‖0≤k, ‖v‖=1

vtΣ̂v (2.9)
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The goal is to estimate the first principal component (eigenvector of Σ̂ corresponding to
largest eigenvalue) under the assumption that the eigenvector has at most k nonzero en-
tries. Using the Lasso by Tibshirani (T1996-1), Jolliffe et al (J2003-1) proposed SCoTLass
algorithm which replaces the constraint on l0 norm by l1 norm. Zou, Hastie and Tibshirani
(ZHT2006-1) proposed the SPCA algorithm which derives sparse principal components by
solving self-constrained regression regularized by l1 norm. d’Aspremont et al (DA2007-1)
proposed the DSPCA algorithm which relaxes the l0 constraint and transform the original
problem to a semi-definite program(SDP):

V̂ = arg max
V�0, tr(V )=1

tr(Σ̂V )− ρn
∑
i,j

|Vij| (2.10)

Amini and Wainwright (AW2009-1) analyzed the statistical properties of this method over
a class of spike models

Eβ = {Σ : Σ = βzzt +

[
Ik×k 0

0 Γp−k

]
, λmax(Γp−k) ≤ 1, zi = ± 1√

k
} (2.11)

They showed that, under some mild assumptions, and if the solution of 2.10 is rank 1, then it
agrees with the solution of the exact problem and achieves the global optima. Furthermore,
if the sample size n = ck log p for sufficiently large constant c, block can be recovered
with probability going to 1 for any block size k ≥ c′ log p. However, as we have shown
in simulation, the essential existence of rank 1 solution is usually not satisfied, and the
SDP approach is not rate optimal. Xiaotong Yuan and Tong Zhang (YZ2011-1) proposed
a truncated power method called TPower and analyzed its property with more general
assumptions on covariance matrices. Their method is very similar to our algorithm FB
and FBRec defined in Chapter 3, except that we do not re-weight the solution and we use
different input matrix other than using the empirical covariance matrix directly. As the
goals and analysis are quite different, our results are not directly comparable. Their goal
is to recover largest sparse eigenvector and the analysis requires conditions on eigen-gap
between the largest and second largest eigenvalue. We consider a different multiple block
model and do not require any eigen-gap or rank conditions.

In Chapter 3, we formally setup the problem and define the appropriate class of co-
variance matrices, then propose corresponding estimator and algorithms. Our main re-
sults are in Chapter 4, where we analyze the statistical and computational properties of
the proposed estimator and algorithms. We show that under some regularity conditions,
if k = O(log p), n ≥ O(k2), and most entries within blocks have signal strength at least

O( 1√
n
), which is weaker comparing to O(

√
log p
n

) signal strength required by thresholding,

then our algorithm is rate optimal for support recovery, and the induced estimator achieves
minimax optimal convergence rate in spectral norm. We also upper bound the worst case
computational complexity of the algorithm with high probability. In Chapter 5, we show
by simulations of the spike model and multiple block model to confirm that the proposed
estimator is both statistically and computationally efficient.
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Chapter 3

Method

3.1 Problem Setup

Recall that we are particularly interested in a class, denote as F , of covariance matrices
approximately block diagonal after unknown permutation. Our goal is to construct and
analyze an estimator Σ̃∗ with spectral norm convergence rate minimax optimal:

sup
Σ∈F

E‖Σ̃∗ − Σ‖2 � inf
Σ̃

sup
Σ∈F

E‖Σ̃− Σ‖2 (3.1)

The idea is to recover the unknown permutation to construct approximately block diagonal
empirical covariance matrices. Then as with banding, we will show estimates keeping entries
within blocks and ignoring others would achieve the optimal rates.

Next we define exactly the class F of covariance matrices approximately block diagonal
after unknown permutation. Denote the set of indices as [p] = {1, 2, ..., p}. A block B is a
set of pair indices if ∃J ⊂ [p] s.t. B = J × J = {(i, j) : i, j ∈ J}. Define the support of
any set of pair indices B as J(B) = {i : ∃j s.t. (i, j) ∈ B or (j, i) ∈ B}. Let I(.) denote the
indicator function. B is an approximate block if B ∈ B(k,M, ε) :

B(k,M, ε) = {B : Mk ≥ |J(B)| ≥ k,
∑
j∈J(B)

I((i, j) 6∈ B) ≤ εk for ∀i ∈ J(B)} (3.2)

k is the order of sizes of blocks and will grow with dimension p. M and ε are parameters and
considered constants. ε is a measurement of proximity of B to a block. If ε is close to 0, then
most (i, j) ∈ J(B)× J(B) are in B, and B is close to a block. M is a constraint so that all
blocks are at the same order. A set of approximate blocks {Bl}ml=1 are approximately block
diagonal if {Bl}ml=1 ∈ B(k,M, ε, δ) :

B(k,M, ε, δ) = {{Bl}ml=1 : Bl ∈ B(k,M, ε), |J(Bl) ∩ (∪i 6=lJ(Bi))| ≤ δk (3.3)

∃ partition L1 t L2 = [m] s.t. Bi ∩Bj = ∅ for ∀(i, j) ∈ (L1 × L1) ∪ (L2 × L2)} (3.4)
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where δ is similar to ε and is a measurement of overlaps among blocks. If δ is close to 0,
then the blocks have little overlap and are close to block diagonal. The condition

∃ partition L1 t L2 = [m] s.t. Bi ∩Bj = ∅ for ∀(i, j) ∈ (L1 × L1) ∪ (L2 × L2)

could be relaxed to that ∃ constant q uniformly for all (n, p, k) in consideration,

∃ partition tqi=1 Li = [m] s.t. Bi ∩Bj = ∅ for ∀(i, j) ∈ ∪qi=1(Li × Li)

This condition is to regularize the way blocks intersecting each other, for example, it excludes
counter example proposed by El Karoui (EK2007-1) that Σ being diagonal with all other
non-zero entries 1√

p
only in the first row and the first column. We will describe how the

ranges of M , ε and δ affect the estimator in Chapter 4. Recall that S+
p is the set of p × p

positive definite matrices, and Πp is the set of all permutations of [p]. The class of covariance
matrices we are interested in is defined as follows:

F(λ, k,m,M, ε, δ) = {Σ ∈ S+
p : ∃π ∈ Πp,∃{Bl}ml=1 ∈ B(k,M, ε, δ) (3.5)

s.t. Σπ(i)π(j) = aijI((i, j) ∈ ∪ml=1Bl) with |aij| > λ for i 6= j,Σii = 1} (3.6)

It requires that under unknown permutation π, Σ can be permuted to approximately block
diagonal with small overlaps among the blocks, and most entries within blocks are of signal
strength at least λ. WLOG, we also assume Σii = 1 for all i. Recall our goal is to construct
an estimator Σ̃∗ with minimax optimal convergence rate in spectral norm:

sup
Σ∈F(λ,m,k,M,ε,δ)

E‖Σ̃∗ − Σ‖2 � inf
Σ̃

sup
Σ∈F(λ,m,k,M,ε,δ)

E‖Σ̃− Σ‖2 (3.7)

The key parameter is the signal strength λ, since the larger λ the easier the problem. An

extreme case would be λ = O(
√

log p
n

). In this case if λ = c
√

log p
n

with a large enough

constant c, the thresholding estimator Th(Σ̂) with threshold h = O(
√

log p
n

), see El Karoui

(EK2007-1), Bickel and Levina (BL2008a-1)(BL2008b-1), achieves the optimal convergence
rate. Our main result pushes to λ = O( 1√

n
) but for more specific classes with underlying

block structures.

3.2 Estimator

In this section we construct a block recovery estimator with corresponding algorithms. In-
spired by the analysis of banding, see T. Cai et al (CZZ2010-1), one way to estimate ap-
proximately block diagonal Σ at fastest rate would be keeping empirical estimates inside the
blocks and ignore the remaining entries. Specifically, our estimator Σ̃∗ of Σ is constructed
as follows:

Σ̃∗ij = Σ̂ijI((i, j) ∈ ∪ml=1B̂l) with B̂l = Ĵl × Ĵl (3.8)
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where Σ̂ is the the empirical covariance matrix, and {Ĵl}ml=1 are our estimate for the support
of the blocks. Since permutation π is unknown, the main difficulty is to construct good
estimates Ĵl of Jl for short of J(Bl). Note that the estimator is invariant under any particular
labeling as long as {B̂l}ml=1 = {Jl × Jl}ml=1. We construct estimates for supports for l =
1, 2, ...,m recursively,

Ĵ(Bl) = Ĵl(θ1, θ2, t) = arg max
J
{|J | ≥ k :

1

|J |
∑
j∈J

I(|Σ̂ij| < t) ≤ θ1 for ∀i ∈ J, |J∩(∪l−1
i=1Ĵi)| ≤ θ2k}

(3.9)
where θ1, θ2, t are input parameters and their values depend on λ and max(ε, δ). The choices
of θ1, θ2, t depend on k and λ, and the specific form is given in Theorem 4.2.1.

The main issue for support recovery is computational cost. One may recognize that it
looks similar to the hidden-clique recovery problem and k-densest subgraph problem, which
are NP-hard in general. Indeed, consider the graph G(V , E) induced by empirical covariance
matrix with vertices V = [p] and edges E = {(i, j) : |Σ̂ij| > h} for some threshold h. Denote
Eh the corresponding adjacency matrix:

Eh = (I((i, j) ∈ E))1≤i,j≤p = (I(|Σ̂ij| > h))1≤i,j≤p (3.10)

As will be shown later, then support recovery problem (3.9) for a single block is equivalent
to

Ĵ1 = arg max
J :|J |=|J(B1)|

∑
i,j∈J

(Eh)ij (3.11)

In general, if E is adjacency matrix of an arbitrary graph, this is the densest k subgraph prob-
lem and computationally intractable. However, G here is induced by thresholding empirical
covariance matrix and not completely arbitrary.

3.3 Algorithm

For given threshold h, consider two matrices as potential inputs for algorithms:

Eh = (I(|Σ̂ij| > h))1≤i,j≤p (3.12)

and
Wh = (|Σ̂ij|I(|Σ̂ij > h| and i 6= j))1≤i,j≤p (3.13)

Let A denote the generic input matrix. Our main results in Chapter 4 are based on input
A = Eh. However, as shown in simulated experiments in Chapter 5, input A = Wh is
better in simulation. Specifically, algorithm FBRec is proposed to recover a single block,
and FBAll recovers multiple blocks by repeatedly applying FBRec. The pseudo code is as
follows:
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FB(A, J, k, t)

p← dimension of A
for i = 1 to t do
Rl ←

∑
j∈J Ajl for l = 1, ..., p

J ′ ← indices of the top k largest elements of {Rl}pl=1

if J == J ′ then
break

else
J ← J ′

end if
end for
return J

FBS(A, J, θb, θr, t)

J ′ ← FB(A, J, |J |+ 1, t)
while mini∈J ′

1
|J ′|
∑

j∈J ′ Aij > θr and 1
|J ′|2

∑
i,j∈J ′ Aij > θb do

J ← J ′

J ′ ← FB(A, J, |J |+ 1, t)
end while
return J

FBRec(A,L, J, k, s, θb, θr, t)

if s > 0 then
for l = 1 to |L| do

(J0, L
′, b)← FBRec(A, {j ∈ L : ALlj 6= 0}, J ∪ {Ll}, k, s− 1, θb, θr, t)

if b > θb and mini∈J0
1
|J0|
∑

j∈J0 Aij > θr and |J0| ≥ k then
BREAK

end if
end for

else
b← 0
for l = 1 to |L| do
J ′ ← FB(A,Ll ∪ J, k, t)
if 1
|J ′|2

∑
i,j∈J ′ Aij > b then

b← 1
|J ′|2

∑
i,j∈J ′ Aij

J0 ← J ′

if b > θb and mini∈J0
1
|J0|
∑

j∈J0 Aij > θr then

J0 ← FBS(A, J0, θb, θr, t)
break

end if
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end if
end for

end if
L← {Lj}j>l
return (J0, L, b)

Remark: For more efficient computation, the above step

J ′ ← FB(A,Ll ∪ J, k, t)
could be replaced by:

J ′ ← FB(AL∪J,L∪J , Ll ∪ J, θ|J |r k, t)

The proof of algorithm correctness with this replacement would follow from the proof of The-
orem 4.4.1 but more technical. For simplicity, Theorem 4.4.1 proves algorithm correctness
without this replacement.

FBAll(A, k, s, θb, θr, t)

p← dimension of A
L← [p]
l← 0
while |L| ≥ k do

(J0, L, b)← FBRec(A,L, ∅, k, s, θb, θr, t)
if b > θb and mini∈J0

1
|J0|
∑

j∈J0 Aij > θr and J0 6∈ {Bj}lj=1 then
l← l + 1
Bl ← J0

L← L\J0

end if
end while

The idea for FBRec(A, [p], ∅, k, s, θb, θr, t) is to exhaustively search over all |J | = s + 1
satisfying

Aij 6= 0 for ∀i, j ∈ J (3.14)

and FB(A, J, k, t) is called for each such J . As shown in Theorem 4.4.1, in order for FBRec()
to success with high probability, s = ηk is required with η > 0 uniformly, i.e. s = O(k).
When s = 0, FBRec() is very similar to TPower by X.T. Yuan and T. Zhang (YZ2011-1)
with special initialization for the spike model in 2.11. FB() iteratively updates J by top k
largest row sum Rl over J . As it does not necessarily converge, t upper bounds the number
of iterations. As we will show in Theorem 4.4.1, if start with J a subset of some block Jl
and |J | = s + 1 is sufficiently large, which always happens at some step of FBRec(), then
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with high probability the algorithm FB() converges in 1 iteration and recovers |J0| = k with
J0 a subset of Jl. Hence t could be set to small O(1) constant. Recall k is the lower bound
for block size. Given J0 found by FB() is a subset of a correct block, FBS(A, J0, θr, θs, t)
recovers the full size of the block with high probability, where parameters θr, θb are chosen
in Theorem 4.4.1. Finally FBAll() repeatedly calls FBRec() to recover all the blocks. In
Theorem 4.4.1, we also provide an upper bound on worst case computational complexity of
FBAll(). In general the algorithm takes exponential time. However, for a reasonable range
of p being several thousands, the algorithm runs efficiently This is also verified by simulation
in Chapter 5.
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Chapter 4

Analysis

4.1 Distributional Assumptions

In this chapter we present our main results regarding convergence rates and computational
complexity of proposed estimators and algorithms. Suppose X ∈ Rn×p is observed, where
the rows X1, X2, ..., Xn ∈ R1×p are i.i.d. mean 0 p-variate random variable with covariance
matrix Σ. Throughout this chapter, denote Σ̂ = XTX

n
, which is the dominant component of

the empirical covariance matrix. In addition to the assumptions that Σ ∈ F(λ, k,m,M, ε, δ),
we make two distributional assumptions about Xi for ∀i:

• Assumption 1. E[Xi] = 0, ∃ρ1 s.t. for ∀t > 0, ∀v ∈ Rp with ‖v‖2 = 1

P (|Xiv| > t) ≤ e−ρ1t
2

(4.1)

• Assumption 2. ∃ρ2, d2 > 0 s.t. for ∀t < d2, ∀v, w ∈ Rp with ‖w‖2 = ‖v‖2 = 1,
∀B ⊂ [p]× [p],

P (|wT ((XT
i Xi)B − ΣB)v| > t) < e−ρ2t

2

(4.2)

Note Assumption 1 is the standard sub-Gaussian assumption with restriction on the largest
eigenvalue of Σ being bounded above by constant. Assumption 2 is similar to sub-exponential
assumption but slightly stronger. A fact is that if X follows a Gaussian distribution, then
Assumption 2 is implied by Assumption 1. As a special case, the only condition for Gaussian
distribution would be the largest eigenvalue of Σ being bounded above by constant. These
distributional assumptions are made due to development of technical convergence rates.
Similar methods and techniques could be applied to other classes of distributions to obtain
different convergence rates.
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4.2 Optimal Support Recovery

Theorem 4.2.1. Suppose i.i.d mean 0 p-variate sub-Gaussian X1, ..., Xn satisfying Assump-
tion 1 and Assumption 2, with covariance matrix Σ ∈ F(λ, k,m,M, ε, δ).

• Upper Bound: If uniformly for all (k, n, p), k ≥ log p, λ = C√
n
, n
k2
> 1+log 2

ρ2d22
, and

max(ε, δ) +
8(2 + log 2)

ρC2
+

4
√

1 + log 2

C
√
ρ2

+
(M + 1)2(max(ε, δ) + 8(2+log 2)

ρC2 )2

(M + 1)(max(ε, δ) + 8(2+log 2)
ρC2 )− δ

< 1

(4.3)

where ρ from Lemma 4.2.2 depends on ρ1. Then ∃γ1, γ2, α s.t.

P ({Ĵl(γ1, δ,
λ

2
)}ml=1 = {Jl}ml=1) < e−[ρC2(γ1−max(δ,ε))/8−log 2−2]k + e−[ρ2C2(γ2− α2

α−δ )2/16−log 2−1]k2

(4.4)

→ 1 as (k, n, p)→∞ (4.5)

• Lower Bound: On the other hand, if

n

log p
<

1 + kλ

kλ2
(4.6)

then the probability of error of any method is at least 1
2
.

• Optimal case: If k = O(log p), λ = O( 1√
n
), n

k2
≥ O(1), then {Ĵl(γ1, δ,

λ
2
)}ml=1 is rate

optimal, i.e. if k = c1 log p with c1 ≥ 1, λ = c2√
n
, n
k2
≥ c3, then ∃c4 < c5 s.t.

c2 > c5 ⇒ P ({Ĵl(γ1, δ,
λ

2
)}ml=1 = {Jl}ml=1)→ 1 as (k, n, p)→∞ (4.7)

c2 < c4 ⇒ P (error of any method) >
1

2
(4.8)

Let us introduce some lemma before the proof of Theorem 4.2.1.

Lemma 4.2.2. Let ei = (0, ..., 0, 1, 0, ..., 0)T ∈ Rp with 1 in the i-th entry. Suppose X

satisfies Assumption 1. Suppose E[XT
i Xi] = Σ, Σ̂ = XTX

n
. Then ∃ ρ, d uniform for all

n, p, v with ‖v‖2 = 1, and for ∀ i ∈ [p], ∀J ⊂ [p], ∀t < d

P (|eTi (Σ̂iJ − ΣiJ)v| > t) < e−ρnt
2

(4.9)
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Proof. eTi Σ̂iJv = eTi
(XTX)iJ

n
v = 1

n
Xi(
∑

j∈J vjXj). Since Xi and
∑

j∈J vjXj are sub-Gaussian
with O(1) variance by assumption, and

V ar(eTi (XT
(1)X(1))iJv) ≤ E[X4

1i] + E[(
∑
j∈J

vjX1j)
4] = O(1) (4.10)

This implies eTi Σ̂iJv is sub-exponential with variance O( 1
n
), which completes the proof.

Lemma 4.2.3. Same assumptions in Lemma 4.2.2, for ∀i ∈ [p],∀J ⊂ [p], denote

Ci(t, J) =
1

|J |
∑
j∈J

I(|Σ̂ij − Σij| > t) (4.11)

then for ∀γ ∈ (0, 1) and ∀t < d√
γ|J |/2

,

P (Ci(t, J) > γ) < 2|J |e−ρnγ|J |t
2/2 (4.12)

Proof. Ci(t, J) > γ implies that ∃L ⊆ J with |L| = 1
2
γ|J | s.t.

|
∑
j∈L

(Σ̂ij − Σij)| > |L|t (4.13)

By union bound, and apply Lemma 4.2.2 to v = ( 1√
|L|

)j∈L, i.e. vj = 1√
|L|

for j ∈ L and

vj = 0 for j /∈ L, we have for ∀t < d√
|L|

= d√
γ|J |/2

,

P (Ci(t, J) > γ) ≤ P (∪L:|L|=γ|J |/2{
1√
|L|
|
∑
j∈L

(Σ̂ij − Σij)| >
|L|t√
|L|
}) (4.14)

≤
(
|J |
|L|

)
P (

1√
|L|
|
∑
j∈L

(Σ̂ij − Σij)| >
√
|L|t) (4.15)

≤ 2|J |e−ρn|L|t
2

(4.16)

≤ 2|J |e−ρnγ|J |t
2/2 (4.17)

Lemma 4.2.4. Suppose X satisfies Assumption 1 with covariance matrix Σ,

Σ ∈ F(λ, k,m,M, ε, δ)

Recall that {J(Bl)}ml=1 are support of the blocks, denote Jl = J(Bl) for short. For t ∈ (0, λ),
let

H1(t, γ) = {∃Jl,∃i /∈ Jl s.t.
1

|Jl|
∑
j∈Jl

I(|Σ̂ij| > t) > γ} (4.18)
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H2(t, γ) = {∃Jl,∃i ∈ Jl s.t.
1

|Jl|
∑
j∈Jl

I(|Σ̂ij| < t) > γ} (4.19)

if γ > max(δ, ε), t ∈ (max(0, λ− d√
(γ−ε)k/2

),min(λ, d√
(γ−δ)k/2

)),

P (H1(t, γ) ∪H2(t, γ)) ≤
m∑
l=1

p2|Jl|e−ρn(γ|Jl|−max(δ,ε)k) min(t2,(λ−t)2)/2 (4.20)

if ρnγmin(t2, (λ− t)2)/2 > log 2,

P (H1(t, γ) ∪H2(t, γ)) < mpe−(ρn(γ−max(δ,ε)) min(t2,(λ−t)2)/2−log 2)k (4.21)

Proof. Σ ∈ F(λ, k,m,M, ε, δ) implies∑
j∈Jl

I(|Σij| 6= 0) ≤ δk for ∀i 6∈ Jl (4.22)

∑
j∈Jl

I(|Σij| = 0) ≤ εk for ∀i ∈ Jl (4.23)

H1 implies ∃Jl, ∃i 6∈ Jl s.t.

Ci(t, Jl) =
1

|Jl|
∑
j∈Jl

I(|Σ̂ij − Σij| > t) > γ − δk

|Jl|
(4.24)

Lemma 4.2.3 implies for ∀t < d√
(γ|Jl|−δk)/2

≤ d√
(γ−δ)k/2

P (H1(t, γ)) ≤
m∑
l=1

∑
i/∈Jl

P (Ci(t, Jl) > γ − δk

|Jl|
) (4.25)

≤
m∑
l=1

(p− |Jl|)2|Jl|e−ρn(γ|Jl|−δk)t2/2 (4.26)

Similarly, H2 implies ∃Jl, ∃i ∈ Jl s.t.

Ci(λ− t, Jl) =
1

|Jl|
∑
j∈Jl

I(|Σ̂ij − Σij| > λ− t) > γ − εk

|Jl|
(4.27)

Lemma 4.2.3 implies that if λ− t < d√
(γ|Jl|−εk)/2

≤ d√
(γ−ε)k/2

,

P (H2(t, γ)) ≤
m∑
l=1

∑
i∈Jl

P (Ci(λ− t, Jl) > γ − εk

|Jl|
) (4.28)

≤
m∑
l=1

|Jl|2|Jl|e−ρn(γ|Jl|−εk)(λ−t)2/2 (4.29)
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Combine the results, if γ > max(δ, ε) and t ∈ (max(0, λ− d√
(γ−ε)k/2

),min(λ, d√
(γ−δ)k/2

)),

P (H1(t, γ) ∪H2(t, γ)) ≤
m∑
l=1

p2|Jl|e−ρn(γ|Jl|−max(δ,ε)k) min(t2,(λ−t)2)/2 (4.30)

Lemma 4.2.5. Suppose X satisfies Assumption 1 and Assumption 2 with covariance matrix
Σ ∈ F(λ, k,m,M, ε, δ). For ∀α ∈ (δ, 1), let

Jα = {J ⊂ [p] : k ≤ |J |, |J ∩ Jl|
|J |

< α for l = 1, 2, ...,m} (4.31)

Let

gγ(t, J) = { 1

|J |2
∑

(i,j)∈J×J

I(|Σ̂ij| > t) > γ} (4.32)

Let Gα(t, γ) = ∪J∈Jαgγ(t, J), for ∀t < 2d2

(γ− α2

α−δ )k
,

P (Gα(t, γ)) ≤
p∑

|J |=k

p|J |2|J |
2

e−ρ2n(γ− α2

α−δ )2|J |2t2/4 (4.33)

if ρ2n(γ − α2

α−δ )
2t2/4 > 1 + log 2 and k ≥ log p,

P (Gα(t, γ)) ≤ e−(ρ2n(γ− α2

α−δ )2t2/4−log 2−1)k2 (4.34)

Proof. For ∀J ∈ Jα, there are at most |J |
α|J |−δk many Jl having non-empty intersection with

J , and the cardinalities of these non-empty intersections are upper bounded by α2|J |2, which
implies ∑

(i,j)∈J×J

I(Σij 6= 0) ≤ |J |
α|J | − δk

α2|J |2 ≤ 1

α− δ
α2|J |2 (4.35)

Gα(t, γ) implies ∃J ∈ Jα s.t. gγ(t, J) happens, which implies there exist at least γ|J |2 −
α2

α−δ |J |
2 many (i, j) ∈ J × J s.t. Σij = 0 and |Σ̂ij| > t. Thus ∃L ⊆ J × J with

|L| = 1
2
(γ − α2

α−δ )|J |
2

s.t.
|
∑

(i,j)∈L

(Σ̂ij − Σij)| > t|L| (4.36)
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Apply Assumption 2 to v = ( 1√
|J |

)Tj∈J , then for ∀t < d2|J |
|L| = 2d2

(γ− α2

α−δ )|J |
≤ 2d2

(γ− α2

α−δ )k
,

P (gγ(t, J)) ≤
(
|J |2

|L|

)
P (

1

|J |
|
∑

(i,j)∈L

(Σ̂ij − Σij)| >
t|L|
|J |

) (4.37)

= 2|J |
2

P (|vT (Σ̂L − ΣL)v| > t|L|
|J |

) (4.38)

≤ 2|J |
2

e−ρ2n(
t|L|
|J| )2 (4.39)

= 2|J |
2

e−ρ2n(γ− α2

α−δ )2|J |2t2/4 (4.40)

By union bound

P (Gα(t, γ)) ≤
∑
J∈Jα

P (gγ(t, J)) (4.41)

≤
p∑

|J |=k

(
p

|J |

)
2|J |

2

e−ρ2n(γ− α2

α−δ )2|J |2t2/4 (4.42)

≤
p∑

|J |=k

p|J |2|J |
2

e−ρ2n(γ− α2

α−δ )2|J |2t2/4 (4.43)

(4.44)

Lemma 4.2.6. Suppose X satisfies Assumption 1 and Assumption 2 with covariance matrix
Σ ∈ F(λ, k,m,M, ε, δ). Recall that the estimator {Ĵl}ml=1 for {J(Bl)}ml=1 ({Jl}ml=1 for short)
are constructed for l = 1, ...,m recursively:

Ĵl(θ1, θ2, t) = arg max
J
{|J | ≥ k :

1

|J |
∑
j∈J

I(|Σ̂ij| < t) ≤ θ1 for ∀i ∈ J, |J ∩ (∪l−1
i=1Ĵi)| ≤ θ2k}

(4.45)
Let θ1 = γ, θ2 = δ, α ∈ (δ, 1), γ1 <

α
M+1

and γ2 < 1− γ1, then

P ({Ĵl(γ1, δ, t)}ml=1 = {Jl}ml=1) > 1− P (H1(t, γ1) ∪H2(t, γ1) ∪Gα(t, γ2)) (4.46)

Proof. Suppose H1(t, γ1)c ∩H2(t, γ1)c ∩Gα(t, γ2)c happens. Recall

H1(t, γ1) = {∃Jl,∃i /∈ Jl s.t.
1

|Jl|
∑
j∈Jl

I(|Σ̂ij| > t) > γ1} (4.47)

H2(t, γ1) = {∃Jl,∃i ∈ Jl s.t.
1

|Jl|
∑
j∈Jl

I(|Σ̂ij| < t) > γ1} (4.48)
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Gα(t, γ2) = {∃J ∈ Jα s.t.
1

|J |2
∑
i,j∈J

I(|Σ̂ij| > t) > γ2} (4.49)

θ1 = γ1, θ2 = δ andH2(t, γ1)c imply that for l = 1, 2, ...,m and for ∀i ∈ Jl, 1
|Jl|
∑

j∈Jl I(|Σ̂ij| <
t) ≤ θ1, and |Jl ∩ (∪s 6=lJs)| ≤ θ2k. This implies that ∃{Ĵl}ml=1 satisfying equation 4.45 s.t.

Jl ⊂ Ĵl for l = 1, 2, ...,m. Now it remains to show that {Jl}ml=1 is indeed the unique solution
of 4.45:

Suppose ∃{Ĵl}ml=1 satisfying 4.45 different from {Jl}ml=1, then ∃Ĵ ∈ {Ĵl}ml=1 s.t. Ĵ 6= Jl for
∀l, thus one of following two cases must hold:

Case 1: ∃l s.t. |Jl ∩ Ĵ | ≥ α|Ĵ |, which contradicts H1(t, γ1)c if

α|Ĵ | − γ1|Jl| > θ1|Ĵ | (4.50)

Case 2: For ∀l, |Jl ∩ Ĵ | < α|Ĵ |, which contradicts Gα(t, γ2)c if

γ2|Ĵ |2 < (1− θ1)|Ĵ |2 (4.51)

If θ1 = γ, θ2 = δ, then conditions in Case 1 and Case 2 can be deduced to

γ1 <
α

M + 1
and γ2 < 1− γ1 (4.52)

Hence if condition 4.52 is satisfied, the event that ∃{Ĵl}ml=1 different from {Jl}ml=1 implies
contradiction, i.e. H1(t, γ1)c ∩H2(t, γ1)c ∩Gα(t, γ2)c implies that {Ĵl(γ1, δ, t)}ml=1 = {Jl}ml=1 is
the unique solution of 4.45.

Lemma 4.2.7. (Amini and Wainwright (AW2009-1)) Consider the spike model Eβ defined
in 2.11. If

n

k log(p− k)
<

1 + β

β2
(4.53)

Then the probability of error of any method is at least 1
2
.

Proof. Refer to Amini and Wainwright (AW2009-1) Theorem 3.

Proof of Theorem 4.2.1:

Proof. Combine Lemma 4.2.4, Lemma 4.2.5, Lemma 4.2.6, if α ∈ (δ, 1), k ≥ log p, and
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γ1 <
α

M + 1
(4.54)

γ2 < 1− γ1 (4.55)

t ∈ (max(0, λ− d√
(γ1 − ε)k/2

),min(λ,
d√

(γ1 − δ)k/2
)) (4.56)

t <
2d2

(γ2 − α2

α−δ )k
(4.57)

2 + log 2 < ρn(γ1 −max(δ, ε)) min(t2, (λ− t)2)/2 (4.58)

1 + log 2 < ρ2n(γ2 −
α2

α− δ
)2t2/4 (4.59)

then

P ({Ĵl(γ1, δ, t)}ml=1 6= {Jl}ml=1) ≤ P (H1(t, γ1) ∪H2(t, γ1)) + P (Gα(t, γ2)) (4.60)

≤ mpe−[ρn(γ1−max(δ,ε)) min(t2,(λ−t)2)/2−log 2]k (4.61)

+ e−[ρ2n(γ2− α2

α−δ )2t2/4−log 2−1]k2 (4.62)

≤ e−[ρn(γ1−max(δ,ε)) min(t2,(λ−t)2)/2−log 2−2]k (4.63)

+ e−[ρ2n(γ2− α2

α−δ )2t2/4−log 2−1]k2 (4.64)

If t = λ
2

= C
2
√
n
, and n

k2
> C0 uniformly for all (n, k), then condition 4.57 is asymptotically

stronger than 4.56, i.e. 4.57 implies 4.56 for (n, k) big enough. Now conditions 4.54 – 4.59
can be simplified as

1 > γ1 + γ2 (4.65)

α

M + 1
> γ1 > max(ε, δ) +

8(2 + log 2)

ρC2
(4.66)

α2

α− δ
+

4d2

√
n

Ck
> γ2 >

α2

α− δ
+

4
√

1 + log 2

C
√
ρ2

(4.67)

Hence ∃γ1, γ2 satisfying 4.65 – 4.67 if ∃α ∈ (δ, 1) s.t.

1 > max(ε, δ) +
8(2 + log 2)

ρC2
+

4
√

1 + log 2

C
√
ρ2

+
α2

α− δ
= A+

α2

α− δ
(4.68)

α > (M + 1)(max(ε, δ) +
8(2 + log 2)

ρC2
) = B (4.69)

4d2

√
n

Ck
>

4
√

1 + log 2

C
√
ρ2

(4.70)



CHAPTER 4. ANALYSIS 22

Note that M ≥ 1 and B ≥ 2δ. Since d
dα

( α2

α−δ ) = (α−2δ)α
(α−δ)2 > 0 for ∀α > 2δ, hence if

A+ B2

B−δ < 1, then ∃α ∈ (δ, 1) satisfying 4.68 and 4.69.

Thus if uniformly for all (k, n, p), k ≥ log p, λ = C√
n
, n
k2
> C0, and if

1 > A+
B2

B − δ
= max(ε, δ) +

8(2 + log 2)

ρC2
+

4
√

1 + log 2

C
√
ρ2

(4.71)

+
(M + 1)2(max(ε, δ) + 8(2+log 2)

ρC2 )2

(M + 1)(max(ε, δ) + 8(2+log 2)
ρC2 )− δ

(4.72)

d2
2n

k2
>

1 + log 2

ρ2

(4.73)

then ∃γ1, γ2, α s.t. as (k, n, p)→∞,

P ({Ĵl(γ1, δ,
λ

2
)}ml=1 = {Jl}ml=1)→ 1 (4.74)

This completes the proof of Upper Bound in Theorem 4.2.1.
Note that Eβ with Γp−k = Ip−k×p−k is a subset of F(λ, k,m,M, ε, δ) with λ = β

k
,m =

1,M = 1, ε = 0, δ = 0. Hence Lemma 4.2.7 with λ = β
k

implies the Lower Bound in Theorem
4.2.1.

Lemma 4.2.7 also suggests that n
k log p

> 1+kλ
k2λ2

must hold in order to get perfect support

recovery. If 1+kλ
k2λ2

converges, one of following three cases must hold:

• 1+kλ
k2λ2
→∞:

This implies kλ→ 0. Thus n
k log p

> 1+kλ
k2λ2

if and only if λ2 = C2

n
> log p

kn
. {Ĵl(γ1, δ,

λ
2
)}ml=1

is rate optimal if k = O(log p) and n
k2
→∞.

• 1+kλ
k2λ2
→ O(1):

This implies kλ→ O(1). It is rate optimal if k = O(log p) and n = O(k2).

• 1+kλ
k2λ2
→ 0:

This implies kλ→∞, contradicting n
k2
> 1+log 2

ρ2d22
. Hence no optimal rate is achieved.

4.3 Minimax Optimal Covariance Estimation

Theorem 4.2.1 shows that the support recovery estimator {Ĵl(γ1, δ,
λ
2
)}ml=1 is rate optimal for

the specified range of parameters. After the block structure is recovered, we can estimate Σ
with Σ̃∗ induced by {Ĵl}ml=1 = {Ĵl(γ1, δ,

λ
2
)}ml=1:

Σ̃∗ij = Σ̂ijI((i, j) ∈ ∪ml=1Ĵl × Ĵl) (4.75)
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Next theorem shows Σ̃∗ is minimax optimal in spectral norm for class F(λ, k,m,M, ε, δ) with
parameters in the specified range.

Theorem 4.3.1. Suppose i.i.d mean 0 p-variate sub-Gaussian X1, ..., Xn satisfy Assumption
1 and Assumption 2, with covariance matrix Σ ∈ F(λ, k,m,M, ε, δ).

If k = O(log p), λ = C√
n
, n
k2
> 1+log 2

ρ2d22
, and

max(ε, δ) +
8(2 + log 2)

ρC2
+

4
√

1 + log 2

C
√
ρ2

+
(M + 1)2(max(ε, δ) + 8(2+log 2)

ρC2 )2

(M + 1)(max(ε, δ) + 8(2+log 2)
ρC2 )− δ

< 1 (4.76)

Then

inf
Σ̃

sup
Σ∈F(λ,k,m,M,ε,δ)

E‖ Σ̃− Σ‖2 � k

n
(4.77)

Proof. The proof of Theorem 4.3.1 consists of two parts: Lemma 4.3.3 shows the upper
bound, and Lemma 4.3.5 shows the lower bound.

Following are lemmas relevant to the proof of Theorem 4.3.1.

Lemma 4.3.2. (T. Cai et al (CZZ2010-1)) For any k dimensional sub-Gaussian r.v. with
covariance matrix Σk with largest eigenvalue upper bounded uniformly for all k, ∃ρ3 s.t. for
∀t < ρ3,

P (‖Σ̂k − Σk‖ > t) < 5ke−ρ3nt
2

(4.78)

Proof. Refer to T. Cai et al (CZZ2010-1) Lemma 3.

Lemma 4.3.3. Suppose all assumptions in Theorem 4.3.1 hold. Recall Σ̃∗ is induced by
{Ĵl}ml=1:

Σ̃∗ij = Σ̂ijI((i, j) ∈ ∪ml=1Ĵl × Ĵl) (4.79)

Then ∃C0, C1 > 0 s.t. if k > C0 log p, then

sup
Σ∈F(λ,k,m,M,ε,δ)

E[‖Σ̃∗ − Σ‖2] ≤ C1
Mk

n
(4.80)

Proof. Denote A = {{Ĵl}ml=1 = {Jl}ml=1},

E[‖Σ̃∗ − Σ‖2] = E[‖Σ̃∗ − Σ‖2(IA + IAc)] (4.81)

Recall that by construction of the blocks, ∃ partition L1 t L2 = [m] s.t. Ji ∩ Jj = ∅ for
∀(i, j) ∈ (L1 × L1) ∪ (L2 × L2), this implies

‖Σ̃∗ − Σ‖IA ≤ ‖
∑
l∈L1

Σ̂Jl×Jl − ΣJl×Jl‖+ ‖
∑
l∈L2

Σ̂Jl×Jl − ΣJl×Jl‖ (4.82)

≤ max
l∈L1

‖Σ̂Jl×Jl − ΣJl×Jl‖+ max
l∈L2

‖Σ̂Jl×Jl − ΣJl×Jl‖ (4.83)

≤ 2 max
l=1,...,m

‖Σ̂Jl×Jl − ΣJl×Jl‖ (4.84)



CHAPTER 4. ANALYSIS 24

Denote N (m) = maxl=1,...,m ‖Σ̂Jl×Jl − ΣJl×Jl‖. Let B = {N (m) > t}. Lemma 4.3.2 implies

P (B) = P ( max
l=1,...,m

‖Σ̂Jl×Jl − ΣJl×Jl‖ > t) (4.85)

≤ m max
l=1,...,m

P (‖Σ̂Jl×Jl − ΣJl×Jl‖ > t) (4.86)

< m5Mke−ρ3nt
2

(4.87)

Let t = c1

√
Mk
n

with
c21
2
> log 5

ρ3
, then ∃c2 > 0 s.t.

E[‖Σ̃∗ − Σ‖2IA] ≤ 4E[(N (m))2(IB + IBc)] (4.88)

≤ 4E[t2 + (N (m))2IB] (4.89)

≤ 4(t2 +
√
E[(N (m))4]P (B)) (4.90)

≤ 4(t2 + (Mk)2m5Mke−ρ3nt
2/2) (4.91)

≤ c2
Mk

n
(4.92)

Recall that Theorem 4.2.1 implies if assumptions in Theorem 4.3.1 hold, then ∃c3 > 0 s.t.
P (A) < e−c3k. Thus if C0 >

4
c3

and k ≥ C0 log p,

E[‖Σ̃∗ − Σ‖2IAc ] ≤
√
E[‖Σ̃∗ − Σ‖4]P (Ac) (4.93)

≤ p4e−c3k (4.94)

≤ p−(C0c3−4) (4.95)

Combine the results, ∃C0, C1 s.t. if k > C0 log p, then

E[‖Σ̃∗ − Σ‖2] = E[‖Σ̃∗ − Σ‖2(IA + IAc)] (4.96)

≤ c2
Mk

n
+ p−(C0c3−4) (4.97)

≤ C1
Mk

n
(4.98)

Lemma 4.3.4. (Generalized Fano’s Lemma, B. Yu (Y1997-1)) Let Mr ⊂ P contains r
probability measures such that for all i 6= j with i, j ≤ r

d(θ(Pi), θ(Pj)) ≥ αr (4.99)

and
D(Pi‖Pj) ≤ βr (4.100)
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where D(Pi‖Pj) denotes the Kullback-Leibler(K-L) divergence of Pj from Pi,

D(Pi‖Pj) =

∫
ln(

dPi
dPj

)dPi (4.101)

Then

max
i
EPi [d(θ̂, θ(Pi))] ≥

αr
2

(1− βr + log 2

log r
) (4.102)

Proof. Refer to Assouad, Fano, and Le Cam by Bin Yu (Y1997-1).

Lemma 4.3.5. If λ = C√
n

with C <
√

log p
2k

, then

inf
Σ̃

sup
Σ∈F(λ,k,m,M,ε,δ)

E[‖Σ̃− Σ‖2] ≥ C2Mk

16n
(4.103)

Proof. Let r =
(
p
k

)
, denote the set of all subsets of {1, ..., p} with k elements by

S = {Li ⊂ {1, ..., p} : |Li| = k for i = 1, ..., r} (4.104)

Denote Bi ∈ Rp×p a block matrix with block index Li,

(Bi)jl = I(j, l ∈ Li, j 6= l) (4.105)

and Di ∈ Rp×p a diagonal block matrix,

(Di)jl = I(j, l ∈ Li, j = l) (4.106)

Consider Pi the join distribution of n i.i.d. p−dimensional Gaussian with covariance matrix
Ip×p + λBi

Mr = {Pi : Σ(Pi) = Ip×p + λBi for i = 1, ..., r} (4.107)

Denote Σi = Σ(Pi), consider d = ‖.‖ the operator norm, then for ∀i 6= j

d(Σi,Σj) = ‖Σi − Σj‖ ≥ λ
√
k − 1 (4.108)

We have αr = λ
√
k − 1.

Now we derive an upper bound for the KL divergence

D(Pj‖Pi) =
n

2
[tr(ΣjΣ

−1
i )− log det(ΣjΣ

−1
i )− p] (4.109)

Note det(Σi) = det(Σj) since Σi is just a reordering of Σj. Thus log det(ΣjΣ
−1
i ) = 0. Also

note Σ−1
i = Ip×p − yBi + (x− 1)Di with

x =
1 + λ(k − 2)

1 + λ(k − 2)− λ2(k − 1)
(4.110)
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y =
λ

1 + λ(k − 2)− λ2(k − 1)
(4.111)

Now suppose |Bi ∩Bj| = s, we have

tr(ΣjΣ
−1
i ) = x(k − s) + (x− λy(s− 1))s+ k − s+ p− (2k − s) (4.112)

= p− k + xk − λys(s− 1) (4.113)

≤ p+ k(x− 1) (4.114)

Hence

D(Pj‖Pi) ≤
n

2
k(x− 1) (4.115)

=
nλ2k(k − 1)

2(1 + λ(k − 2)− λ2(k − 1))
(4.116)

= βr (4.117)

By the generalized Fano’s Lemma

max
i
EPi [d(θ̂, θ(Pi))] ≥

αr
2

(1− βr + log 2

log r
) (4.118)

=
λ
√
k − 1

2
(1−

nλ2k(k−1)
2(1+λ(k−2)−λ2(k−1))

+ log 2

log
(
p
k

) ) (4.119)

≥ λ
√
k

2
(1− c′ nλ2k2

(1 + λk − λ2k)k log p
) (4.120)

Note 1
1+λk−λ2k < 1. λ = C√

n
implies

nλ2k

(1 + λk − λ2k) log p
≤ C2k

log p
(4.121)

E[‖.‖2] ≥ E[‖.‖]2 and the block size is upper bounded by Mk implies that if C <
√

log p
2k

,

then

inf
Σ̃

sup
Σ∈F(λ,k,m,M,ε,δ)

E[‖Σ̃− Σ‖2] ≥ (
λ
√
Mk

4
)2 ≥ C2Mk

16n
(4.122)

4.4 Algorithm Correctness and Computational

Complexity

The last theorem of this chapter analyzes success probability and computational complexity
of algorithm FBAll().
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Theorem 4.4.1. Suppose X satisfies Assumption 1 and Assumption 2, with covariance
matrix Σ ∈ F(λ, k,m,M, ε, δ). If λ = C√

n
, k ≥ log p, n

k2
> 4

ρ2d22
, and if

M <
1− 3 max(ε, δ)

2 max(ε, δ)
(4.123)

C > max(
8

√
ρ2((1−δ

2
)2 − ε

2
)
, 4(M + 1)

√
log 2

(1− δ)ρ
) (4.124)

then there exists γ1, γ2, η s.t. FBAll(A, k, s = ηk − 1, θb = 1 − ε − γ2, θr = 1 − γ1, t) with
input matrix A = (I(|Σ̂ij| > λ

2
))1≤i,j≤p has output {Ĵl}m

′

l=1 satisfying

P ({Ĵl}m
′

l=1 6= {Jl}ml=1) ≤ mpe−[ρn(γ1η−max(δ,ε))λ2/8−log 2(η+M)]k (4.125)

+ p2e−[(ρ2nγ22λ
2/16−log 2)k−2 log p]k (4.126)

→ 0 (4.127)

Furthermore, for probability at least

1− 2

p− 1
→ 1 (4.128)

the worst case computational complexity of the algorithm FBAll() is

O(2s(s log p)s/2kps+2e−(ρC2/8−log 2)s(s+1)/4)

with s = ηk − 1.

Remark: In general η is a constant, and s = ηk = O(log p). This makes the algorithm
running in exponential time asymptotically. However the constant C has to be large enough
to make the problem statistically identifiable, and that makes the algorithm very efficient in
practice for a reasonably large range of p. For p equal to several thousands, s is usually 0 or
1. For the case s = 0, the computation complexity is essentially O(p2k). We will illustrate
this point in simulation experiments in next chapter.

Lemma 4.4.2. Suppose X satisfies Assumption 1 with covariance matrix Σ,

Σ ∈ F(λ, k,m,M, ε, δ)

For t ∈ (0, λ), let

H1(t, γ, η) = {∃Jl,∃i /∈ Jl,∃J ⊂ Jl s.t. |J | ≥ ηk,
1

|J |
∑
j∈J

I(|Σ̂ij| > t) > γ} (4.129)

H2(t, γ, η) = {∃Jl,∃i ∈ Jl,∃J ⊂ Jl s.t. |J | ≥ ηk,
1

|J |
∑
j∈J

I(|Σ̂ij| < t) > γ} (4.130)
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if γη > max(δ, ε), t ∈ (max(0, λ− d√
(γη−ε)k/2

),min(λ, d√
(γη−δ)k/2

)),

P (H1(t, γ, η) ∪H2(t, γ, η)) ≤
m∑
l=1

p2|Jl|max
J⊂Jl

2|J |e−ρn(γ|J |−max(δ,ε)k) min(t2,(λ−t)2)/2 (4.131)

and if η
η+M

ρnγmin(t2, (λ− t)2)/2 > log 2,

P (H1(t, γ, η) ∪H2(t, γ, η)) < mpe−[ρn(γη−max(δ,ε)) min(t2,(λ−t)2)/2−log 2(η+M)]k (4.132)

Proof. Similar to the proof of Lemma 4.2.4, for ∀t < d√
(γ|J |−δk)/2

≤ d√
(γη−δ)k/2

P (H1(t, γ, η)) ≤
m∑
l=1

∑
i/∈Jl

∑
J⊂Jl

P (Ci(t, J) > γ − δk

|J |
) (4.133)

≤
m∑
l=1

(p− |Jl|)2|Jl|max
J⊂Jl

2|J |e−ρn(γ|J |−δk)t2/2 (4.134)

and if λ− t < d√
(γ|J |−εk)/2

≤ d√
(γη−ε)k/2

,

P (H2(t, γ, η)) ≤
m∑
l=1

∑
i∈Jl

∑
J⊂Jl

P (Ci(λ− t, J) > γ − εk

|J |
) (4.135)

≤
m∑
l=1

|Jl|2|Jl|max
J⊂Jl

2|J |e−ρn(γ|J |−εk)(λ−t)2/2 (4.136)

Thus if γη > max(δ, ε), t ∈ (max(0, λ− d√
(γη−ε)k/2

),min(λ, d√
(γη−δ)k/2

)),

P (H1(t, γ, η) ∪H2(t, γ, η)) ≤
m∑
l=1

p2|Jl|max
J⊂Jl

2|J |e−ρn(γ|J |−max(δ,ε)k) min(t2,(λ−t)2)/2 (4.137)

if ρnγmin(t2, (λ− t)2)/2 > log 2η+M
η

,

P (H1(t, γ, η) ∪H2(t, γ, η)) < mpe−[ρn(γη−max(δ,ε)) min(t2,(λ−t)2)/2−log 2(η+M)]k (4.138)

Lemma 4.4.3. Suppose X satisfies Assumption 1 and Assumption 2 with covariance matrix
Σ ∈ F(λ, k,m,M, ε, δ). Let

G(t, γ, s, w) = {∃J, L s.t. |J | ≥ s, |L| ≥ w,
1

|J ||L|
∑

j∈J,l∈L

I(|Σ̂jl − Σjl| > t) > γ} (4.139)

if (ρ2nγ
2t2/4− log 2) min(s, w) > 2 log p, for ∀t < 2d2

γ
√
|J ||L|

,

P (G(t, γ, s, w)) ≤ p2e−[(ρ2nγ2t2/4−log 2) min(s,w)−2 log p] max(s,w) (4.140)
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Proof. Similar to the proof of Lemma 4.2.5, if

(ρ2nγ
2t2/4− log 2) min(s, w) > 2 log p

for ∀t < 2d2

γ
√
|J ||L|

,

P (G(t, γ, s, w)) ≤
p∑
|J |=s

p∑
|L|=w

(
p

|J |

)(
p

|L|

)
P (

1√
|J ||L|

∑
j∈J,l∈L

I(|Σ̂jl − Σjl| > t) > γ
√
|J ||L|)

(4.141)

≤
p∑
|J |=s

p∑
|L|=w

p|J |+|L|2|J ||L|e−ρ2n|J ||L|γ
2t2/4 (4.142)

≤ p2e−[(ρ2nγ2t2/4−log 2) min(s,w)−2 log p] max(s,w) (4.143)

Lemma 4.4.4. Define: A zero-mean random variable Y is sub-exponential if ∃d > 0 s.t.

E[etY ] ≤ ∞ for ∀|t| ≤ d (4.144)

Claim: Y is sub-exponential if and only if ∃ρ′, d′ s.t. E[exp(tY )] ≤ exp( t
2ρ′

2
) for ∀|t| < d′.

Proof. For t close to 0,

E[etY ] = 1 +
t2E[Y 2]

2
+ o(t2) (4.145)

e
t2ρ′
2 = 1 +

t2ρ′

2
+ o(t2) (4.146)

Hence if ρ′ > E[Y 2], then ∃d′ s.t. E[exp(tY )] ≤ exp( t
2ρ′

2
) for ∀|t| < d′.

Lemma 4.4.5. Suppose X satisfies Assumption 1 and Assumption 2. Let

D(t, J, L) =
1

|J |
∑
j∈J

∏
i∈L

I(|Σ̂ij − Σij| > t) (4.147)

Then ∃d3 > 0 s.t. for ∀|t′| < d3,

P (|D(t, J, L)− E[D(t, J, L)]| > t′) < 2e−
t′2
2
e(ρnt

2/2−log 2)|L|
(4.148)

Furthermore, let

G(t′, t, s) = {∃L s.t. |L| = s, |D(t, [p], L)− E[D(t, [p], L)]| > t′} (4.149)

then

P (G(t′, t, s)) < 2pse−
t′2
2
e(ρnt

2/2−log 2)s

(4.150)
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Proof. For ∀t <
√

2d√
|L|

, Assumption 1 implies

E[D(t, J, L)] ≤ max
j∈J

E[
∏
i∈L

I(|Σ̂ij − Σij| > t)] (4.151)

= max
j∈J

P (
∑
i∈L

|Σ̂ij − Σij| > |L|t) (4.152)

< e−(ρnt2/2−log 2)|L| (4.153)

Similarly

E[D(t, J, L)2] < max
j1,j2∈J

E[
∏
i∈L

I(|Σ̂ij1 − Σij1| > t)
∏
i∈L

I(|Σ̂ij2 − Σij2 | > t)] (4.154)

= max
j∈J

P (
∑
i∈L

|Σ̂ij − Σij| > |L|t) (4.155)

< e−(ρnt2/2−log 2)|L| (4.156)

Let Y = D(t, J, L)− E[D(t, J, L)]. Generalization of Hölder’s inequality implies

E[exp(τY )] = E[exp(τD(t, J, L)− τE[D(t, J, L)])] (4.157)

= exp(−τE[D(t, J, L)])E[exp(τD(t, J, L))] (4.158)

≤ E[
∏
j=J

exp(
τ

|J |
∏
i∈L

I(|Σ̂ij − Σij| > t))] (4.159)

≤
∏
j∈J

E[exp(τ
∏
i∈L

I(|Σ̂ij − Σij| > t))]
1
|J| (4.160)

≤ max
j∈J

eτP (
∑
i∈L

|Σ̂ij − Σij| > |L|t) + 1 (4.161)

<∞ (4.162)

Hence Y is sub-exponential and E[Y 2] < E[D(t, J, L)2] < e−(ρnt2/2−log 2)|L|, Lemma 4.4.4
implies that ∃d3 > 0 s.t. for ∀|t′| < d3,

P (|D(t, J, L)− E[D(t, J, L)]| > t′) = P (|Y | > t′) < 2e−
t′2
2
e(ρnt

2/2−log 2)|L|
(4.163)

Union bound implies the upper bound of P (G(t′, t, s)).

Proof of Theorem 4.4.1:

Proof. Suppose H1(λ
2
, γ1, η)c∩H2(λ

2
, γ1, η)c∩G(λ

2
, γ2, k, k)c happens with γ1, γ2 to be chosen

later. Recall the input matrix A = (I(|Σ̂ij| > λ
2
))1≤i,j≤p. Denote {Ĵl}m

′

l=1 the output of
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algorithm FBAll(A, k, s, θb, θr, t). Each Ĵl is an output of FBRec(A,L, ∅, k, s, θb, θr, t) with
L = [p] initially. By construction of the algorithm, Ĵl satisfies

|Ĵl| ≥ k (4.164)

1

|Ĵl|

∑
j∈Ĵl

Aij ≥ θr for ∀i ∈ Ĵl (4.165)

1

|Ĵl|2
∑
i,j∈Ĵl

Aij ≥ θb (4.166)

Similar to the proof of Lemma 4.2.6, if following holds:

1− δ
2
−Mγ1 ≥ (1− θr) (4.167)

2(
1− δ

2
)2 − γ2 ≥ 1− θb (4.168)

1− γ1 ≥ θr (4.169)

max(1− γ1, 1− ε− γ2) ≥ θb (4.170)

then H1(λ
2
, γ1, η)c ∩ H2(λ

2
, γ1, η)c ∩ G(λ

2
, γ2, k, k)c implies that there exists some l′ s.t. Ĵl ⊂

Jl′ = J(Bl′). Thus if

θr = 1− γ1 (4.171)

θb = max(1− γ1, 1− ε− γ2) (4.172)

γ1 ≤
1− δ

2(M + 1)
(4.173)

γ2 ≤ max((
1− δ

2
)2 − ε

2
, 2(

1− δ
2

)2 − γ1) (4.174)

then FBRec() does not recover any wrong block and always recovers correct sub-blocks. It
remains to show that it indeed finds all the blocks with full size.

Calling FBAll(A, k, s, θb, θr, t) would eventually call FB(A, J, k, t) with |J | = s + 1.
Suppose J ⊂ Jl = J(Bl) for some l, and J ∩ ∪i 6=lJi = ∅, which at some step always happens
if s < (1− δ)k − 1 and since FBAll() exhaustively search over all J satisfying

Aij 6= 0 for ∀i 6= j ∈ J (4.175)

If s+ 1 ≥ ηk, then H1(λ
2
, γ1, η)c ∩H2(λ

2
, γ1, η)c implies that∑

j∈J

I(|Σ̂ij| >
λ

2
) > (1− γ1)|J | for ∀i ∈ J (4.176)

∑
j∈J

I(|Σ̂ij| >
λ

2
) < γ1|J | for ∀i 6∈ J (4.177)
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If γ1 <
1
2
, then the output J0 of FB(A, J, k, t) satisfies |J0| = k and J0 ⊂ Jl. By the same

reasoning, FBS(A, J0, θb, θr, t) recovers the full size of Jl with θr, θb defined in 4.171 and
4.172. This shows the correctness of the algorithm if event H1(λ

2
, γ1, η)c ∩ H2(λ

2
, γ1, η)c ∩

G(λ
2
, γ2, k, k)c happens.

To bound the error probability of FBAll(), Lemma 4.4.2 and Lemma 4.4.3 implies that
if

γ1η > max(δ, ε) (4.178)

λ

2
∈ (max(0, λ− d√

(γ1η − ε)k/2
),min(λ,

d√
(γ1η − δ)k/2

)) (4.179)

log 2 <
η

η +M
ρnγ1λ

2/8 (4.180)

log p

k
< ρ2nγ

2
2λ

2/32− log 2/2 (4.181)

λ

2
<

2d2

γ2k
(4.182)

then

P (H1(
λ

2
, γ1, η) ∪H2(

λ

2
, γ1, η) ∪G(

λ

2
, γ2, k, k)) ≤ mpe−[ρn(γ1η−max(δ,ε))λ2/8−log 2(η+M)]k

(4.183)

+ p2e−[(ρ2nγ22λ
2/16−log 2)k−2 log p]k (4.184)

→ 0 (4.185)

Combining 4.171 – 4.174 and 4.178 – 4.182, and λ = C√
n
, k ≥ log p, we have

θr = 1− γ1 (4.186)

θb = max(1− γ1, 1− ε− γ2) (4.187)

max(
max(ε, δ)

η
,
8 log 2(η +M)

ρC2η
) < γ1 ≤

1− δ
2(M + 1)

(4.188)

8
√
ρ2C

< γ2 ≤ min(
4d2

√
n

Ck
, (

1− δ
2

)2 − ε

2
) (4.189)

where 4.188 and 4.189 are equivalent to

η >
2(M + 1) max(ε, δ)

1− δ
(4.190)

η >
M(M + 1)16 log 2

ρC2(1− δ)− (M + 1)16 log 2
(4.191)

√
n

k
>

2

d2
√
ρ2

(4.192)

C >
8

√
ρ2((1−δ

2
)2 − ε

2
)

(4.193)
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Thus if λ = C√
n
, k ≥ log p, n

k2
> 4

ρ2d22
, and if

M <
1− 3 max(ε, δ)

2 max(ε, δ)
(4.194)

C > max(
8

√
ρ2((1−δ

2
)2 − ε

2
)
, 4(M + 1)

√
log 2

(1− δ)ρ
) (4.195)

then there exists γ1, γ2, η s.t. FBAll(A, k, s = ηk−1, θb = 1− ε−γ2, θr = 1−γ1, t) perfectly
recovers {Jl}ml=1 with probability going to 1.

Next we calculate the computation complexity of FBRec(). Suppose ∩si=1G(t′i,
λ
2
, i)c

happens with t′i satisfying

t′i = 2
√
i log pe−(ρnλ2/8−log 2)i/2 (4.196)

= 2
√
i log p∆i (4.197)

where ∆ = e−(ρnλ2/8−log 2)/2. Recall that FBAll() searches over all J ∈ J (s+ 1) defined as

J (s+ 1) = {J : |J | = s+ 1, Aij 6= 0 for ∀i 6= j ∈ J} (4.198)

For each J , FB() takes O(pk). Hence FBAll() takes O(|J (s+ 1)|pk) with

|J (s+ 1)| = p
s∏
i=1

(pt′i) (4.199)

≤ 2s(s log p)s/2ps+1∆s(s+1)/2 (4.200)

Hence the overall worst case computational complexity for FBAll() is

O(2s(s log p)s/2kps+2∆s(s+1)/2)

For the case s = 0, the dominant term is O(kp2). Furthermore, this is true with probability
at least

P (∩si=1G(t′i,
λ

2
, i)c) ≥ 1− 2

s∑
i=1

pie−
t′2i
2
e(ρnt

2/2−log 2)i

(4.201)

≥ 1− 2
s∑
i=1

p−i (4.202)

≥ 1− 2

p− 1
→ 1 (4.203)
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Chapter 5

Experiment

5.1 Single Block Spike model

Block Recovery

In this section we simulate experiment for single block recovery. Suppose X ∈ Rn×p with
i.i.d. X(i) ∼ N(0,Σ) are observed. After unknown permutation of indices, Σ belongs to Eβ,k:

Eβ,k = {Σ : Σ = βzzt +

[
k−1
k
Ik 0

0 Ip−k

]
, zi = ± 1√

k
} (5.1)

Note that Eβ,k ⊂ F(β
k
, 1, k, 1, 0, 0), i.e. it is a single block special case of our multiple block

model. Also notice that it is slightly different from the spike model Eβ in 2.11 used in Amini
and Wainwright (AW2009-1). Besides this difference, we follow their experiment setting: for
each given p, fix β = 3 to be constant, let k = 3 log p, and let n scales with the signal to
noise ratio n

k log p
, which increases from 1 to 5.

Suppose k and λ = β
k

are known, the goal is to recover supp(z). The metric of evaluation
is recovery proportion(RP):

RP =
number of correct variables recovered

k
(5.2)

= 1− Hamming distance between estimator and supp(z)

k
(5.3)

RP = 1 is perfect recovery and RP = 0 is the worst possible. Given threshold h = β
2k

, two
input matrices A = Eh and A = Wh for FBRec() are used,

Eh = (I(|Σ̂ij| > h))1≤i,j≤p (5.4)

Wh = (|Σ̂ij|I(|Σ̂ij > h| and i 6= j))1≤i,j≤p (5.5)

Performances of following 3 algorithms are compared based on simulation:
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Figure 5.1: DSPCA: 20 iterations average RP with input matrix Σ̂

• DSPCA: Use Σ̂ as input matrix. Take eigen-decomposition of the output matrix of
DSPCA, pick top k largest entries in absolute value of the eigenvector corresponding
to the largest eigenvalue.

• FBRec(0): s = 0. Use A = Eh or Wh as input matrix. Let L = [p], J = ∅, k is given,
θr, θb as chosen in Theorem 4.4.1, t = 10.

• FBRec(1): s = 1. Use A = Eh or Wh as input matrix. Let L = [p], J = ∅, k is given,
θr, θb as chosen in Theorem 4.4.1, t = 10.

Note that FBRec(0) with s = 0 is similar to TPower by X.T. Yuan and T. Zhang (YZ2011-1).
For dimension p = 500, 1000, 1500, 2000, average RP over 20 iterations are reported in Fig-
ure 5.1, Figure 5.2, Figure 5.3. As shown by the result, input Wh indeed is better than
input Eh for both FBRec(0) and FBRec(1), while FBRec(0) is more sensitive to dimension
increment. The average running time for various algorithm is reported in Table 5.1. As the
running time for DSPCA does not depend on the signal to noise ratio(SNR) n

k log p
, for each

dimension p the average running time over all SNR is reported. Notice that the running
time for both FBRec(0) and FBRec(1) heavily depends on SNR, i.e. for fixed dimension p,
FBRec() runs faster for larger SNR.

Covariance Estimation

As in previous section, suppose the same data X is observed with known k and β. Next
goal is covariance estimation in spectral norm. Denote Σ̃ as the generic estimator, the
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Figure 5.2: FBRec(0): 20 iterations average RP with s = 0, input matrix Wh and Eh

Figure 5.3: FBRec(1): 20 iterations average RP with s = 1, input matrix Wh and Eh
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p n
k log p

DSPCA FBRec(0) FBRec(1)

500 1 16.6 0.0217 0.0805
500 2 16.6 0.0055 0.0112
500 3 16.6 0.0037 0.0045
500 4 16.6 0.0022 0.0023
500 5 16.6 0.0020 0.0020
1000 1 106.9 0.3048 0.6123
1000 2 106.9 0.0328 0.0558
1000 3 106.9 0.0153 0.0187
1000 4 106.9 0.0079 0.0080
1000 5 106.9 0.0059 0.0058
1500 1 331.1 1.2577 1.7902
1500 2 331.1 0.1038 0.1365
1500 3 331.1 0.0364 0.0383
1500 4 331.1 0.0167 0.0176
1500 5 331.1 0.0122 0.0122
2000 1 899.2 3.9335 4.4427
2000 2 899.2 0.2647 0.4375
2000 3 899.2 0.0788 0.0875
2000 4 899.2 0.0354 0.0465
2000 5 899.2 0.0199 0.0191

Table 5.1: Average run time in seconds over 20 iterations

performances is evaluated based on the spectral norm of the difference between the truth Σ
and the estimator Σ̃:

‖∆‖ = ‖Σ̃− Σ‖

Following 3 estimators are compared:

• Oracle: As if the permutation is known, keep entries of Σ̂ within the block and on the
diagonal, and make all the other entries 0.

• Block estimate: Use FBRec() to recover the block, keep entries of Σ̂ within the esti-
mated block and on the diagonal, make every other entries 0.

• Threshold: Pick threshold h that minimizes ‖∆‖, then estimate Σ by Th(Σ̂).

For dimension p = 500, 1000, 1500, 2000, average ‖∆‖ over 20 iterations for above estimators
are reported in Figure 5.4.
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Figure 5.4: 20 iteration average ‖∆‖: spectral norm of difference between the population
and the estimator
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p� n
k log p

2 3 4 5

500 9.71 4.92 5.19 5.24
1000 41.69 27.89 29.41 30.44
1500 147.21 112.25 75.02 78.40
2000 248.43 156.84 158.38 165.79

Table 5.2: FBAll(): 30 iteration average run time in seconds. SNR scale n
k log p

.

5.2 Multiple Block Model

In this section we simulate experiments for multiple blocks recovery and covariance estima-
tion. Suppose X ∈ Rn×p with i.i.d. X(i) ∼ N(0,Σ) are observed. Σ ∈ F(λ, k,m,M, ε, δ).
Same as previously, consider p = 500, 1000, 1500, 2000. For each given p, let k = 3 log p, λ =
3
k
,M = 2,m = p/(Mk), ε = δ = 0.1, and n scales with n

k log p
which increases from 2 to 5. The

size of each block is uniformly random from [k,Mk] = [k, 2k]. Given estimator {Ĵl}m
′

l=1 of the
true blocks {Jl}ml=1, the performance of support recovery is evaluated by multiple recovery
proportion(MRP):

MRP =
1

m+m′
(
m∑
l=1

m′

max
i=1

|Jl ∩ Ĵi|
|Jl|

+
m′∑
i=1

m
max
l=1

|Jl ∩ Ĵi|
|Ĵi|

) (5.6)

MRP can be considered as average RP over all {Jl}ml=1 and {Ĵl}m
′

l=1. MRP = 1 if and
only if perfect recovery {Jl}ml=1 = {Ĵl}m

′

l=1 with m = m′. MRP = 0 is the worst possible.
FBAll(A, k, s, θb, θr, t) is used for support recovery, where A = Wh with h = λ

2
= 3

2k
, k

is given, s = 1, θb, θr as in Theorem 4.4.1, t = 10. 30 iteration average MRP is reported
in Figure 5.5. The average running time for FBAll() is reported in Table 5.2. Same as
previous section, the three estimators: oracle, block estimate and threshold are compared in
terms of spectral norm of the difference to the truth. 30 iteration average ‖∆‖ for the three
estimators are reported in Figure 5.7.

Next we use different SNR scale, i.e. for each given p, let n = 3k log p = 9(log p)2, λ = C√
n

with C increasing from 2 to 5, and keep everything else unchange. Again use FBAll() for
support recovery, with Wh and h = λ

2
= C

2
√
n
, and keep all other setting the same. Use

the same three estimators to estimate Σ. 30 iteration average MRP for support recovery is
reported in Figure 5.6. Average running time for FBAll() is reported in Table 5.3. And
30 iteration average ‖∆‖ is reported in Figure 5.8. As shown by both experiments, perfect
block recovery implies that the block estimate agrees with the oracle for large enough signal
strength.
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p �C 2 3 4 5

500 12.53 5.31 5.41 6.37
1000 73.83 27.81 29.85 34.78
1500 182.81 74.65 77.66 81.14
2000 284.54 153.46 156.37 160.53

Table 5.3: FBAll(): 30 iteration average run time in seconds. SNR scale C = λ
√
n.

Figure 5.5: 30 iteration average MRP for FBAll with input matrix Wh. SNR scale n
k log p

.

Figure 5.6: 30 iteration average MRP for FBAll with input matrix Wh. SNR scale C = λ
√
n.
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Figure 5.7: 30 iteration average ‖∆‖: spectral norm of difference between the population
and the estimator. SNR scale n

k log p
.
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Figure 5.8: 30 iteration average ‖∆‖: spectral norm of difference between the population
and the estimator. SNR scale C = λ

√
n.
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5.3 Application

In this section we apply the block recovery algorithm to the so called entity resolution
problem to identify whether data objects from different sources represent the same entity.
This problem is also known as record matching (P2002-1) (F2009-1), record linkage (N1959-1)
(F1969-1) (B2004-1), or deduplication (B2003-1) (BG2004-1). Given data B ∈ Rn×p, each
object is represented by a sparse n vector and there are p objects. Bij ≥ 0 for all i, j. The
cosine similarity A ∈ Rp×p is defined as

Aij =
Bt
iBj√

‖Bi‖2‖Bj‖2

(5.7)

This is following the setup in L.C. Shu et al (S2011-1).The goal is to partition indices of A
into blocks such that similarity Aij is large for i, j within the same block, and Aij is small
for i, j from different blocks. This type of data is not what we have studied up to now, but
our algorithm is directly applicable. We compare following two algorithms:

• SPAN proposed by L.C. Shu et al (S2011-1): The idea is to use spectral clustering
to recursively bi-partition the indices and stop while Newman-Girvan modularity is
negative.

• FB: Run FBAll(A, k, s, θb, θr, t) with parameters k = 10, s = 0, θb = 0.5, θr = 0.4.

We apply these two algorithms to a data set from Alcatel Lucent with A ∈ Rp×p for p = 3000.
This is a randomly picked subset of the data used in L.C. Shu et al (S2011-1). The original
similarity matrix is plotted in Figure 5.9. The similarity matrix permuted by SPAN is plotted
in Figure 5.10. The similarity matrix permuted by FB is plotted in Figure 5.11. Figure 5.12,
Figure 5.13 and Figure 5.14 are a closer look to sub-matrices of similarity matrix permuted
by FB.
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Figure 5.9: Original similarity matrix, each entry multiplied by 60

Figure 5.10: Similarity matrix permuted by SPAN, each entry multiplied by 60
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Figure 5.11: Similarity matrix permuted by FB, each entry multiplied by 60

Figure 5.12: Sub-matrix of similarity matrix permuted by FB, each entry multiplied by 60
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Figure 5.13: Sub-matrix of similarity matrix permuted by FB, each entry multiplied by 60

Figure 5.14: Sub-matrix of similarity matrix permuted by FB, each entry multiplied by 60
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Part II

High dimensional variable selection in
linear model
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Chapter 6

Introduction

The linear model is widely used in many applications. Its simplest version is the following:
consider Y ∈ Rn, µ ∈ Rn, random noise ε ∼ N(0, σ2In×n),

Y = µ̃+ ε (6.1)

Classically µ̃ belongs to a p dimensional column space with p ≤ n,

µ̃ = Xβ∗ (6.2)

with Gram matrix Σ and normalized Gram matrix Σn:

Σ = X tX , Σn =
X tX

n
(6.3)

where X ∈ Rn×p, n is the number of samples and p is the number of variables. X is fixed
and known, but can depend on n. Y is known but random. ε is unknown and random. The
goal is to estimate the unknown but fixed β∗. The assumption of ε being i.i.d. Gaussian can
be weakened in many ways. In some of the results which deal only with algorithms, as we
will point out, ε can be an arbitrary vector. We will also point out where the assumption of
i.i.d. Gaussianity or weaker assumptions, for example sub-Gaussianity, are needed.

Currently one observes many high dimensional data sets with p > n. In that case, β∗ is
unidentifiable and we need to assume further restrictions on β∗. The way out proposed by
many authors, see for example, Donoho et al (D1992-1) and Chen, Donoho and Saunders
(CDS1998-1), and others is to assume β∗ is sparse, i.e. there is a unique β∗ whose l0 norm
is upper bounded by k with k < n. This implies β∗ is the unique solution satisfying

β∗ = arg min
‖β‖0≤k

Eε[‖Y −Xβ‖2
2] (6.4)

Equivalently, there exists λ s.t.

β∗ = arg min
β
Eε[‖Y −Xβ‖2

2] + λ‖β‖0 (6.5)
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Given (X, Y ) observed and under the sparsity assumption, our goal is to recover supp(β∗)
and estimate β∗.

For the classical case of p < n with rank(X) = p, β∗ could be estimated by the solution
of ordinary least square(OLS):

β̂OLS = arg min
β
‖Y −Xβ‖2

2 (6.6)

Here β̂OLS = (X tX)−1X tY . For the case of n < p, β̂OLS is not unique. Even if p < n, as
is well known, estimation accuracy is poor in the presence of too many predictors which are
close to co-linearity, i.e. the minimal eigenvalue of the Gram matrix λmin(Σ) is close to 0.
An even more subtle and serious difficulty appears in the choice of which variable or group
of variables are important for prediction. This difficulty is intrinsic if β∗ is not unique. We
will discuss this further in Chapter 10.

Under the sparsity assumption that ‖β∗‖0 ≤ k < n, consider

β̂SET = arg min
‖β‖0≤k

‖Y −Xβ‖2
2 (6.7)

Suppose the following assumption holds:

Assumption 1: there exists c >
√

2 s.t. for ∀L ⊂ [p] with |L| ≤ 2k,

λmin((Σn)L,L) = λmin(
ΣL,L

n
) >

2cσ

n

√
2k log p

n
(6.8)

Then by Gaussian concentration inequality on the noise ε,

P (supp(β̂set) = supp(β∗)) > 1− p−(c2/2−1) (6.9)

Assumption 1 is a very mild condition, and we assume it holds throughout the discussion.
Thus to recover β∗ is equivalent to solving β̂set with high probability. Unfortunately, this
problem is well known to be NP -hard and exact solution is intractable. Many algorithms
have been proposed to solve it approximately. Lasso (T1996-1) or equivalently Basis Pursuit
(CDS1998-1) are most famous and widely used in many applications. They solve a convex
relaxation of the original problem

β̂lassoλ = arg min
β
‖Y −Xβ‖2

2 + λ‖β‖1 (6.10)

Meinshausen and Buhlmann (MB2006-1), Zhao and Yu (ZY2006-1) and Wainwright (W2006-1)
proved that the Lasso is variable selection consistent under some regularity conditions and
the strong irrepresentable condition which requires ‖(Σn)[p]\L,L‖∞ to be uniformly bounded
by 1 for ∀|L| ≤ k. Candès and Tao (CT2007-1) proposed a similar l1 regularized Dantzig
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selector β̂D and provided an upper bound for ‖β̂D − β∗‖2 under the restricted isometry
property(RIP) condition: ∃δk s.t. for ∀|L| ≤ k and ∀v,

(1− δk)‖v‖2
2 ≤
‖XLv‖2

2

n
≤ (1 + δk)‖v‖2

2 (6.11)

Bickel, Ritov and Tsybakov (BRT2009-1) showed that the Lasso and Dantzig selector are
equivalent and provided oracle inequalities for both methods under the weakest known re-
stricted eigenvalue(RE) condition:

min
L⊂[p],|L|≤k

min
‖vLc‖1≤c0‖vL‖1

‖Xv‖2√
n‖vL‖2

> 0 uniformly for all (n, p, k) (6.12)

Many other algorithms based on l1-like regularization have been proposed. The Elastic Net
by Zou and Hastie (ZH2005-1) can be considered as a general version of Lasso. It penalizes
β by both l1 and l2 norm. The advantage is to fix unsatisfactory property of Lasso that only
picks a single variable among highly correlated variables. Zou (Z2006-1) proposed adaptive
Lasso to run a second stage lasso with penalization parameter adjusted by the coefficients
obtained by a first stage Lasso. The advantage of this method is that the second stage Lasso
removes part of the bias by penalizing less large coefficients in the first stage Lasso. A disad-
vantage is that if the first stage Lasso misses important variables, so does the second stage.
Based on the same idea of removing bias, SCAD by J. Fan and R. Li (FL2001-1) (FL2002-1)
and MC+ by C.H. Zhang (Z2010-1) are similar algorithms with non-concave penalties to
penalize more confident or large coefficients less. T. Zhang proposed an iterative algorithm
called adaptive forward backward selection(FoBa) (Z2011-1) and showed it behaves similarly
to the Lasso.

However, real world data sets often exhibit complex covariance structures and may violate
these conditions. Consider a toy counter example which is hard to detect by Lasso and other
similar algorithms. Suppose

|cor(Y,X1)|, |cor(Y,X2)| >> |cor(Y,X3)|, |cor(Y,X4)| (6.13)

however
V ar(Y |X3, X4) << V ar(Y |X1, X2) (6.14)

If the solution is restricted to ‖β‖0 ≤ 2, in view of the bias of ‖.‖1, Lasso type methods
would pick {X1, X2} instead of optimal {X3, X4}. Theoretically, this difference can be made
arbitrarily large for both variable selection and prediction. We will illustrate this point by
simulation in Chapter 9. Similar phenomena could potentially appear in many situations
for high dimensional data. In the following chapters, we will study some such situations and
provide some appropriate algorithms.

In Chapter 7, we propose a general framework to search variables based on their covari-
ance structures. The idea is to iteratively fit small/local linear models among relatively high-
ly correlated variables, with the fitting method potentially could be of Lasso type methods,
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forward backward selection, or as simple as OLS. For simplicity, we construct the kForward
algorithm using OLS as the fitting step. Graphlet Screening (GS) by Jiashun Jin et al
(J2012-1) and Covariance Assisted Screening and Estimation (CASE) by Tracy Ke, Jiashun
Jin and Jianqing Fan (K2012-1) are similar methods which also take covariance structure
into consideration, with quite different approach from ours. Their methods first screen the
Gram matrix into small connected components, pick those with at least one signal variable
by χ2-test, then re-investigate each picked component with penalized MLE to remove false
positives.

In Chapter 8, we analyze sufficient condition for consistent support recovery for the
kForward algorithm. We also show that under mild conditions, if kForward initially starts
with or at any step reaches the population truth supp(β∗), then the final outcome is indeed
supp(β∗), i.e. the algorithm does not diverge from the truth once reaches it. Thus we can
check if an initial procedure has identified supp(β∗) correctly with high probability. We also
propose a toy block model for the Gram matrix Σ. We show that initially start with ∅, and
Σ is from the block model, kForward successfully recovers supp(β∗) under mild conditions
which are strictly weaker than the RE condition.

In Chapter 9, we simulate a special case of the block model such that it violates the RE
condition with extreme model parameters. For these artificially designed cases, we show by
simulation that kForward outperforms other methods including Lasso, Elastic Net, SCAD,
MC+, FoBa. We also compare fitting and prediction performance of these algorithms in an
application to US equity daily data.

In Chapter 10, we consider a different scenario where multiple mutually co-linear sets,
so called minimal contexts, co-exist. Assuming an oracle algorithm exists to recover one
minimal context, we construct an algorithm to systematically knock out variables from the
recovered minimal contexts and call the oracle on the remaining variables. The algorithm
recovers a new minimal context or guarantees there is no more such minimal context after
at most k calls of the oracle, where k is the size of the minimal context. Finally we show by
simulation that the algorithm works as intended.
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Chapter 7

Method

7.1 General framework

Suppose Y ∈ Rn, X ∈ Rn×p are observed,

Y = Xβ∗ + ε (7.1)

with ε ∼ N(0, σ2In×n). WLOG, suppose ‖Xj√
n
‖2 = 1 and X̄j =

∑n
i=1Xij = 0 for each column

Xj. Denote the Gram matrix Σ = X tX and normalized Gram matrix Σn = XtX
n

. Our
goal is to recover supp(β∗) and estimate β∗. Suppose Assumption 1 (6.8) holds, then it is
equivalent to solve

β̂SET = arg min
‖β‖0≤k

‖Y −Xβ‖2
2 (7.2)

For any J, L ⊂ [p] = {1, ..., p} with |J ∪ L| ≤ 2k and s ≤ 2k, define

β̂ols(J) = β̂ols(X, Y, J) = arg min
β:supp(β)=J

‖Y −Xβ‖2
2 ∈ Rp (7.3)

β̂set(J, s) = arg min
β:‖β‖0≤s,supp(β)⊂J

‖Y −Xβ‖2
2 ∈ Rp (7.4)

β̂thresh(J, s) = (β̂ols(J)iI(|β̂ols(J)i| is one of the top s largest ))1≤i≤p ∈ Rp (7.5)

gsetJ (L, s) = supp(β̂set(J ∪ L, s)) ⊂ [p] with cardinality s (7.6)

gthreshJ (L, s) = supp(β̂thresh(J ∪ L, s)) ⊂ [p] with cardinality s (7.7)

where β̂ols(J) is just OLS with constraint on J . gsetJ (L, s) is the size s subset of columns of

XJ∪L that best fit Y , and β̂set(J ∪ L, s) are the corresponding coefficients. gthreshJ (L, s) is

the set of top s largest entries of |β̂ols(J ∪ L)|, and β̂thresh(J ∪ L, s) are the corresponding
coefficients.

Recall that under Assumption 1 (6.8), supp(β∗) is the unique fixed point of gsetJ (., k)
for ∀|J | ≤ k, i.e. gsetJ (supp(β∗), k) = supp(β∗). Under conditions specified in Theorem
8.1.2 later, supp(β∗) is the unique fixed point of gthreshJ (., k) over all |J | ≤ k. The tradeoff
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is that gthreshJ (., k) is computationally much more efficient than gsetJ (., k). Hence if we can

construct β̂ s.t. supp(β̂) is a fixed point of gsetJ (., k) or gthreshJ (., k) for any |J | ≤ k, then

supp(β̂) = supp(β∗) with high probability. Of course this problem is not any easier than the
original NP -hard problem. Our approach is to relax ∀|J | ≤ k to ∀J ⊂ G with G satisfying:

1. G is reasonable to construct so that computation is feasible.

2. Under reasonable conditions, a fixed point of gsetJ (., k) for ∀|J | ≤ k is equal or close to
the fixed point of gsetJ (., k) for ∀J ∈ G.

Our approach is to search the space of variables following their covariance structures, i.e.
search variables with high covariances/correlations jointly. Consider G = Gs,h defined as:

Gs,h = {Ji(s, h)}pi=1 (7.8)

Ji(s, h) = {j : |{l : |X t
iXj| > |X t

iXl|}| ≥ p− s and |X t
iXj| > h} (7.9)

Recall that we have set ‖Xj√
n
‖2 = 1 and X̄j = 0 for each column Xj. Ji(s, h) is just the size s

set of variables having correlation with Xi at least h (in absolute value). If there are more
than s such variables, Ji(s, h) consists of the top s ones having largest correlation (with Xi

in absolute value). In many situations multiple Ji(s, h) can overlap and coincide with each
other, and |Gs,h| can be much smaller than p. For example, if after thresholding at O( 1√

n
),

Σn can be arranged to block diagonal with block sizes approximately equal to s, then |Gs,h|
is approximately p

s
. Define the set of all size s subsets of [p],

Ω(s, p) = {J ⊂ [p] : |J | = s} (7.10)

Given generic initial starting point f0 ⊂ [p] and generic fitting step:

f(., .) : Ω(s, p)× (∪pi=0Ω(i, p))→ Ω(k, p) (7.11)

our general framework to recover β∗ is as follows: for s = O(k),

• Standardize X, Y s.t. Y and columns of X are zero-mean and unit-variance.

• L← f0

• while L is not a fix point of f(J, .) for all J ∈ Gs,h do
for each J ∈ Gs,h do
L← f(J, L)

end for
end while
return β̂ols(L) = arg minsupp(β)=L ‖Y −Xβ‖2
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Under this general framework, there are many branches of algorithms based on initial starting
point and specific fitting step. For example, f0 could be support of solution of any variable
selection algorithm including Lasso type of methods, or simply variables most correlated
with Y , or even empty set. The generic fitting step f(., .) could be all subset regression with
f(J, L) = gsetJ (L, k), or top k largest entries of OLS with f(J, L) = gthreshJ (L, k), or Lasso
with f(J, L) being the support of size k solution on the solution path of Lasso fitted on
XJ∪L. Potentially f(J, L) could be the support of size k solution of any variable selection
algorithm fitted on XJ∪L.

7.2 Algorithm

Specifically, if the fitting step f(J, .) = gthreshJ (., k), i.e. the top k largest entries in absolute
value of OLS on XJ , the kForward algorithm is constructed as follows:

kForward(X, Y, k, s, h,M)

(X, Y )← standardize (X, Y ) to be zero-mean and unit-variance
L0 ← solution of Lasso or similar methods, or largest k entries of |Y tX|, or ∅
for i = 1 to p do
Ji(s, h)← as defined in (7.9)

end for
for iter = 1 to M do
L1 ← L0

for i = 1 to p do
L← L0 ∪ Ji(s, h)
L0 ← gthreshJi(s,h)(L0) or equivalently supp(β̂thresh(L)): the top k largest entries of |β̂ols(L)|

end for
if L1 == L0 then

break
end if

end for
return β̂kF = β̂ols(L0) = arg minsupp(β)=L0 ‖Y −Xβ‖2

2

If the underlying model is not sparse or does not satisfy sufficient conditions stated later
in Chapter 8, kForward may not necessarily converge or may converge to local optima even
worse than the initial starting point. If gaJ(k, L), all subset regression on J ∪ L, is used and
could be efficiently computed, then the algorithm is greedy and is guaranteed to converge
to a local optimum no worse than the initial starting point. However, usually s is at least
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O(k) or even bigger and gaJ(k, L) is computationally expensive. Using Lasso type of methods
as a fitting step could deal with larger s, but essentially would have the same convergence
problem as gtJ(k, .). For better practical usage of the algorithm, the step in kForward:

L0 ← top k largest entries of |β̂|
could be replaced by:

L2 ← top k largest entries of |β̂|
if ‖Y −Xβ̂(L2)‖2 < ‖Y −Xβ̂(L0)‖2 then
L0 ← L2

end if

In other words, only update L0 by L2 if the later is a better OLS fit. Thus the resulting
algorithm is greedy and guaranteed to converge to a local optimum at least as good as the
initial starting point. For the sake of simplicity, our analysis in Chapter 8 is based on the
original kForward algorithm without this greedy step. However, in practice this step should
be included as as to check the sufficient conditions in Chapter 8 if possible although it is NP
hard.
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Chapter 8

Analysis

8.1 Support Recovery

In this section we discuss sufficient conditions for the kForward algorithm to recover the
support of β∗. Throughout this Chapter: suppose Y = Xβ∗ + ε, Y ∈ Rn and X ∈ Rn×p
are known, εRn is unknown, ‖Xj‖2 = 1 and X̄j =

∑n
i=1Xij = 0 for each column Xj, denote

Σ = X tX, Σn = XtX
n

, L∗ = supp(β∗). Suppose ‖β∗‖0 = |supp(β∗)| = |L∗| = k < n.

Theorem 8.1.1. Suppose ε ∈ Rn is fixed. Given L0 and J with |J | = s, define:

L = L0 ∪ J (8.1)

U = L∗\L (8.2)

V = L ∩ L∗ (8.3)

W = L\L∗ (8.4)

β′ = β̂ols(X,XUβ
∗
U + ε,W ∪ V ) (8.5)

r = XUβ
∗
U + ε−XW∪V β

′ (8.6)

where r ⊥ span(XW∪V ). Recall vL = (vi)i∈L ∈ R|L|, i.e.

β′L = β′W∪V = Σ−1
W∪V,W∪VX

t
W∪V (XUβ

∗
U + ε) (8.7)

Suppose ∃s, h such that any (k + s)× (k + s) diagonal sub-matrix of Σ is invertible, and for
∀|L0| = k, ∀J ∈ Gs,h, following holds:

min
i∈V
|β∗i + β′i| ≥ max

j∈W
|β′j| (8.8)

Then the algorithm kForward(X, Y, k, s, h, 1) successfully recovers L∗, i.e. supp(β̂kF ) =
supp(β∗).
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Proof. At each step of kForward, L = L0 ∪ J for some J ∈ Gs,h and |L0| = k. Consider

β0 = β̂ols(L) (8.9)

β0
L = β0

W∪V = (X t
W∪VXW∪V )−1X t

W∪V Y (8.10)

Schur complement implies

β0
L =

(
β0

W

β0
V

)
=

(
X t
WXW X t

WXV

X t
VXW X t

VXV

)−1(
X t
W

X t
V

)
(XV β

∗
V +XUβ

∗
U + ε) (8.11)

=

(
A−1B(XUβ

∗
U + ε)

β∗V + (Σ−1
V,VX

t
V − Σ−1

V,V ΣV,WA
−1B)(XUβ

∗
U + ε)

)
(8.12)

where

A = ΣW,W − ΣW,V Σ−1
V,V ΣV,W (8.13)

B = X t
W − ΣW,V Σ−1

V,VX
t
V (8.14)

Thus by definition of β′,

β0
L =

(
β0
W

β0
V

)
=

(
β′W

β∗V + β′V

)
(8.15)

Hence if

min
i∈V
|β∗i + β′i| ≥ max

j∈W
β′j (8.16)

V will always be selected since kForward picks the top k largest entries of |β0
L|. And since

Gs,h = {Ji(s, h)}pi=1 contains all variables, kForward recovers supp(β∗) after searching over
Gs,h once.

Under much milder condition than those of Theorem 8.1.1, if kForward initially starts
with the correct solution β∗, say obtained by some other method like Lasso, then the output
is still the correct solution, i.e. supp(β̂kF ) = supp(β∗), kForward will not diverge from
β∗. Since the proposed various algorithms may converge to an incorrect solution, kForward
could be used as a check on correctness. We have,

Theorem 8.1.2. With the same notations as in Theorem 8.1.1. Suppose ε ∈ Rn i.i.d.
mean-zero sub-Gaussian with parameter ρ: for ∀t > 0,∀‖v‖2 = 1,

P (|vtε| > t) < e−ρt
2

(8.17)

For example, ε ∼ N(0, σ2In×n), ρ = 1
2σ2 .

Furthermore, suppose ∃s, h, ∃c > 1 s.t. for ∀J ∈ Gs,h,

λmin(
ΣJ∪L∗,J∪L∗

n
) min
i∈L∗
|β∗i | > 2c

√
s log p+ k log k

ρn
(8.18)
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If we start with or at any step L0 = L∗ = supp(β∗), then kForward recovers L∗ with
probability at least

P (supp(β̂kF ) = supp(β∗)) ≥ 1− p−(c2−1) − k−(c2−1) (8.19)

Remark: Notice that if s ≤ k, mini∈L∗ |β∗i | = O(1) and s log p+k log k
n

→ 0, then condition
(8.18) is strictly weaker than the restricted eigenvalue (RE) condition (6.12).

Proof. Recall that for J ∈ Gs,h, L = J ∪ L0 = J ∪ L∗, U = ∅, V = L∗, W = L\L∗ and

β0 = β̂ols(L).

β0
L =

(
0
β∗L∗

)
+ r (8.20)

where r = β̂ols(X, ε,W ∪ L∗) with

rW∪L∗ = Σ−1
W∪L∗,W∪L∗X

t
W∪L∗ε (8.21)

ε i.i.d. sub-Gaussian implies that

P (|X
t
i ε

n
| > t) < e−nρt

2

(8.22)

Let t = c
√

log p
ρn
, t′ = c

√
log k
ρn

with c > 1,

P (∃i s.t. |X
t
i ε

n
| > t) < pe−nρt

2

= p−(c2−1) (8.23)

P (∃i in L∗ s.t. |X
t
i ε

n
| > t′) < |L∗|e−nρt′2 = k−(c2−1) (8.24)

Thus with probability going to 1 for big enough c and (p, k) → ∞, X t
i ε < c

√
n log p/ρ for

∀i, and X t
i ε < c

√
n log k/ρ for ∀i ∈ L∗,

‖r‖2 ≤ λmax(Σ−1
W∪L∗,W∪L∗)‖X

t
W∪L∗ε‖2 (8.25)

≤ (λmin(ΣW∪L∗,W∪L∗))
−1c
√

(|W | log p+ |L∗| log k)n/ρ (8.26)

= (λmin(ΣW∪L∗,W∪L∗))
−1c
√

(s log p+ k log k)n/ρ (8.27)

Hence if

λmin(
ΣW∪L∗,W∪L∗

n
) min
i∈L∗
|β∗i | > 2c

√
s log p+ k log k

ρn
(8.28)

then 2 maxj |rj| ≤ 2‖r‖2 < mini∈L∗ |β∗i |. If start with initial L0 = L∗, or at any step L0 = L∗,
then kForward selects L∗ at each step afterwards.
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Corollary 8.1.3. Suppose ε i.i.d. sub-Gaussian with parameter ρ as in (8.17). Suppose
L∗ = supp(β∗) is successfully recovered, and we fit OLS with constraint to L∗:

β̂ols(L∗) = arg min
supp(β)=L∗

‖Y −Xβ‖2
2 = Σ−1

L∗,L∗XL∗Y (8.29)

Then for ∀c > 1

P (‖β̂ols(L∗)− β∗‖2 ≤ c(λmin(
ΣL∗,L∗

n
))−1

√
k log k

ρn
) ≥ 1− k−(c2−1) (8.30)

Proof. Use the upper bound of ‖r‖2 given by (8.25) – (8.27).

8.2 Special Block Model

From Theorem 8.1.1, it can be deduced that kForward recovers supp(β∗) if Σ = X tX is of
some special forms. One case would be that Σ is partially block diagonal, i.e. supp(L∗) is a
subset of union of small blocks of Σ. Specifically, consider Σ ∈ Fh,s(L∗),

Fh,s(L
∗) = {Σ : for ∀i ∈ L∗,∃Bi ⊂ [p] with i ∈ Bi and |Bi| ≤ s (8.31)

s.t. |Σjl| > h if and only if (j, l) ∈ Bi ×Bi} (8.32)

This is to require each important variable i ∈ L∗ is contained in a block Bi with size at
most s, such that variables within Bi are highly correlated with correlation at least h, while
correlation between variables inside and outside Bi are small and upper bounded by h.
This is a strong sufficient requirement, while the algorithm actually works for much more
general situations as shown in the simulation and application in Chapter 9. Also notice that
Fh,s(L

∗) is similar to the class of sparsifiable Gram matrices proposed in CASE by Ke et
al (K2012-1). Next theorem shows that if Σ ∈ Fh,s(L∗), kForward fully recovers supp(β∗)
under mild conditions.

Theorem 8.2.1. With the same notations as in Theorem 8.1.2. Suppose ε i.i.d. sub-
Gaussian with parameter ρ as in (8.17). Suppose the Gram matrix Σ ∈ Fh,s(L∗), ∃c > 1 s.t.
for ∀L ⊂ [p] with |L| ≤ s+ k,

λmin(
ΣL,L

n
) min
i∈L∗
|β∗i | > 2c

√
s log p+ k log k

ρn
+
h

n

√
k(s+ k)‖β∗‖2 (8.33)

Then if we start with L0 = ∅, kForward(X, Y, k, s, h, 1) recovers L∗ with probability at least

P (supp(β̂kF ) = supp(β∗)) ≥ 1− p−(c2−1) − k−(c2−1) (8.34)
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Proof. Suppose kForward starts with L0 = ∅. At any step, for J ∈ Gs,h, if L = L0 ∪ J, U =

L∗\L, V = L ∪ L∗,W = L\L∗, β0 = β̂ols(L), Theorem 8.1.1 implies

β0
L = β0

W∪V =

(
0
β∗V

)
+ rU + rε (8.35)

where rU = β̂ols(X,XUβ
∗
U ,W ∪ V ) and rε = β̂ols(X, ε,W ∪ V ),

rUW∪V = Σ−1
W∪V,W∪VX

t
W∪VXUβ

∗
U (8.36)

rεW∪V = Σ−1
W∪V,W∪VX

t
W∪V ε (8.37)

Σ ∈ Fh,s(L∗) and the construction of Fh,s(L
∗) imply

|Σjl| ≤ h for ∀(j, l) ∈ (W ∪ V )× U (8.38)

Hence

‖rU‖2 ≤ λmax(Σ−1
W∪V,W∪V )‖ΣW∪V,Uβ

∗
U‖2 (8.39)

≤ (λmin(ΣW∪V,W∪V ))−1h
√
|U ||W ∪ V |‖β∗U‖2 (8.40)

≤ (λmin(ΣW∪V,W∪V ))−1h
√
k(s+ k)‖β∗‖2 (8.41)

Similar to Theorem 8.1.2, for ∀c > 1, with probability at least 1− p−(c2−1) − k−(c2−1),

‖rε‖2 ≤ (λmin(ΣW∪V,W∪V ))−1c
√

(s log p+ k log k)n/ρ (8.42)

Hence if ∃c > 1 s.t.

λmin(
ΣW∪V,W∪V

n
) min
j∈L∗
|β∗j | > 2c

√
s log p+ k log k

ρn
+
h

n

√
k(s+ k)‖β∗‖2 (8.43)

then
2 max

j
|(rU + rε)j| ≤ 2‖rU + rε‖2 < min

j∈V
|β∗j |

This implies kForward always includes V . Since Gs,h = {Ji(s, h)}pi=1 contains all variables,
kForward recovers supp(β∗) after searching over Gs,h once.
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Chapter 9

Experiment

9.1 Simulation

In this section we compare support recovery and prediction performances of kForward to
other popular algorithms including Lasso(T1996-1), Elastic Net (ZH2005-1), SCAD (FL2001-1),
FoBa (Z2011-1), MC+ (Z2010-1). We construct a special case of Fh,s(L

∗) such that, for ex-
treme model parameters, it violates the RE condition: L∗ belong to m = k

s
blocks of size s,

but the minimal eigenvalue of each block goes to 0. This example is unrealistic, but illus-
trates theoretically what extreme cases could lead to. This type of example was suggested
to us by Boaz Nadler and Ya’acov Ritov.

Specifically, for w ∈ Rm, ε ∼ N(0, σ2In×n), let

Z = (Z1, Z2, ..., Zms) ∈ Rn×ms i.i.d. N(0, In×n) (9.1)

Zj =

js∑
i=(j−1)s+1

Zi for j = 1, ...,m (9.2)

Xi = wj(Zi −
Zt
iZj
‖Zj‖2

2

Zj) + Zj for i = (j − 1)s+ 1, ..., js, j = 1, ...,m (9.3)

Xi =
Xi√
XtiXi/n

for i = 1, ...,ms (9.4)

Xi ∼ N(0, In×n) for i = ms+ 1, ..., p (9.5)

Y = s
m∑
j=1

Zj + ε (9.6)

where w is a parameter controlling difficulty of support recovery. Specifically, for p =
1000, n = 100, k = 9,m = s = 3, σ = 1, i.e. supp(β∗) is contained in 3 small blocks of
size 3. By a simulation of 1000 iterations, some empirical statistics for relevant parameters
are shown in Table 9.1. Some immediate observations:
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w |cor(X1, Y )| |cor(X1, X2)| P (Σ ∈ Fh,k) λmin(
Σ[s],[s]

n
) λmin(

Σ[s],[s]

n
) mini∈[k] |β∗i |

1 0.51±0.06 0.72±0.09 1 0.21±0.05 0.38±0.09
2 0.42±0.05 0.29±0.16 0.23 0.56±0.11 1.27±0.25
3 0.33±0.05 0.07±0.11 0 0.79±0.12 2.28±0.37
4 0.27±0.04 0.17±0.17 0 0.59±0.13 2.10±0.45
5 0.22±0.03 0.27±0.16 0.02 0.41±0.09 1.71±0.37
7 0.17±0.03 0.37±0.15 0.50 0.22±0.05 1.27±0.30
10 0.12±0.02 0.43±0.15 0.87 0.11±0.03 0.91±0.22

1000 0.07±0.04 0.49±0.15 0.97 1.2e-5±3.1e-6 0.009±0.002

Table 9.1: p = 1000, n = 100, k = 9,m = s = 3, σ = 1

• |cor(X1, Y )| converges to 0 as w grows. This suggests the signal from a single variable
goes to 0. In some sense, the difficulty of the problem grows with w.

• λmin(
Σ[s],[s]

n
) converges to 0 as w grows. Hence for moderately small w, the RE condition

is satisfied and Lasso type of methods are expected to work well.

• For big w, P (Σ ∈ Fh,k) is converging to 1. This is the part of sufficient conditions for
kForward to work well.

• For small w, λmin(
Σ[s],[s]

n
) mini∈[k] |β∗i | are relatively big. This is also a part of sufficient

conditions for kForward to work well. However, it converges to 0 as w grows, which
violates the condition for big w.

(Xπ, Y ) are observed, where the columns Xπ
i = Xπ(i) with π being a random permutation

of [p]. Following algorithms are compared:

1 Lasso: Pick solution containing k variables from the solution path.

2 elastic net: Use cross validation to choose the weight between l1 and l2 penalties. For
each given weight, pick solution with k variables from the solution path.

3 FoBa: Use cross validation to choose algorithm parameter. For given parameter, pick
solution with k variables from the solution path.

4 SCAD: Use cross validation to choose algorithm parameter. For given parameter, pick
solution with k variables from the solution path.

5 MC+: Use cross validation to choose algorithm parameter. For given parameter, pick
solution with k variables from the solution path.
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6 kF c: Run kForward algorithm with Gk,0 and initially start with k variables that most
correlated with Y .

7 kF l: Run kForward algorithm with Gk,0 and initially start with k variables picked by
Lasso.

8 kF o: Between the solutions of kF c and kF l, choose the one with better training R2.

Cases p = 1000, 2000, 3000 are simulated, with n = 100, k = 9,m = s = 3, σ = 1 fixed. Both
training set and test set consists of 100 samples. Run each algorithm on the training set to
recover k variables, say |β̂| = k. The performance is evaluated by two criteria: the Hamming
distance and the test R2. The Hamming distance between supp(β∗) and supp(β̂) is defined
as |supp(β∗)\supp(β̂)|. The test R2 is obtained by applying training OLS fit on supp(β̂)
to the test set. The test R2 is used because in many experiments in previous literature,
differences in variable selection are well shown, but not simultaneously about prediction.
We want to show that in this artificial case, there are huge differences for both variable
selection and prediction. The result for Hamming distance is reported in Figure 9.1, and the
result for test R2 is reported in Figure 9.2. Instead of Gaussian, the case of X,Z, ε following
Laplace distribution is also simulated. The corresponding results are reported in Figure 9.3
and Figure 9.4. Notice that the results are very similar to each other.

9.2 Application

Although not as extreme as the results of previous artificial example, in this section we show
that there are indeed significant differences among algorithms for a real world example. As
there is no correct answer but only sparse approximation for the real world data, the only
comparison criteria is fitted R2.

Consider US equity daily data consisting of 2316 stocks and 47 ETFs from 2007 January
1st to 2012 December 31st. For each day and for each ETF, 6 algorithms as in previous
section, i.e. Lasso (T1996-1), Elastic Net(ZH2005-1), FoBa (Z2011-1), SCAD (FL2001-1),
kF c and kF l, are used to select k stocks using 100 samples consisting of past 50 days’
open and close prices. Then OLS is fitted on the picked k stocks and corresponding R2 is
calculated. For k = 5, average R2 over 6 years are reported in Table 9.2. Since there are
stocks having correlations with ETFs higher than 0.98, each algorithm works well and pretty
much similarly for k as small as 5. We increase the difficulty of the problem by requiring
that only weak signals are allowed in the model, i.e. only stocks having correlation with the
response ETF lower than a certain threshold are included in the model. In an experiment,
correlation threshold 0.1, 0.2, 0.3, 0.4 and k = 5, 10, 15 are used. The results are reported
in Table 9.3, Table 9.4, Table 9.5, Figure 9.5 and Figure 9.6. As shown by the result, the
improvement of kForward is most clear for the most difficult cases, i.e. k is small and
correlation threshold is small.
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Figure 9.1: log(w) v.s. average Hamming distance between supp(β∗) and supp(β̂). X,Z, ε
follows Gaussian distribution
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Figure 9.2: log(w) v.s. average test R2. X,Z, ε follows Gaussian distribution
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Figure 9.3: log(w) v.s. average Hamming distance between supp(β∗) and supp(β̂). X,Z, ε
follows Laplace distribution
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Figure 9.4: log(w) v.s. average test R2. X,Z, ε follows Laplace distribution
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Lasso elastic net FoBa SCAD kF c kF l

R2 0.968 0.972 0.973 0.967 0.986 986

Table 9.2: average R2 for k = 5, no correlation threshold

correlation threshold Lasso elastic net FoBa SCAD kF c kF l

0.1 0.30 0.36 0.30 0.21 0.49 0.50
0.2 0.62 0.65 0.62 0.47 0.79 0.80
0.3 0.76 0.80 0.81 0.63 0.90 0.89
0.4 0.82 0.86 0.87 0.72 0.93 0.93

Table 9.3: average R2 for k = 5

correlation threshold Lasso elastic net FoBa SCAD kF c kF l

0.1 0.52 0.59 0.57 0.50 0.74 0.75
0.2 0.79 0.82 0.85 0.76 0.93 0.93
0.3 0.88 0.90 0.93 0.87 0.96 0.96
0.4 0.91 0.93 0.95 0.90 0.98 0.98

Table 9.4: average R2 for k = 10

correlation threshold Lasso elastic net FoBa SCAD kF c kF l

0.1 0.69 0.73 0.73 0.70 0.85 0.85
0.2 0.88 0.88 0.92 0.88 0.97 0.96
0.3 0.94 0.94 0.96 0.94 0.98 0.98
0.4 0.95 0.95 0.97 0.95 0.99 0.99

Table 9.5: average R2 for k = 15
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Figure 9.5: correlation threshold v.s. average R2 for k = 5, 10, 15
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Figure 9.6: k v.s. average R2 for correlation threshold = 0.1, 0.2, 0.3, 0.4
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Chapter 10

Minimal Context

10.1 A Different Framework1

Suppose X = (Z, Y ), Z = (Z1, . . . , Zp)
T , and we have a sample (Zi, Yi), i = 1, . . . , n, and

µ(Z) ≡ E(Y |Z) unknown. We typically approximate µ by

µN(Z) ≡
N∑
j=1

βjNgj(Z) + β0N

where g0 ≡ 1, g1, . . . , gN , . . . is a basis for L2(Z) and

µN(Z) ≡ arg min ‖Y −
N∑
j=0

βjgj(Z)‖2

For simplicity, we take µN ≡ µ with the understanding that N changes with n. The
selection of variables question informally is, “Which factors Zj are important?” The gj are,
typically, functions of several variables bringing in a major complication. We consider only
the simple case gj(Z) = Zj, N = p which illustrates the issues we raise. It is reasonable
to measure effectiveness of a set S of factors by its predictive power in relation to optimal
prediction. Formally, we define,

r(S) ≡ 1−
{‖Y − µ(Z, S)‖2 − ‖Y − µ(Z)‖2

Var(Y )

}
=
‖µ(Z)− µ(Z, S)‖2

σ2 + ‖µ(Z)‖2

1Chapter 10.1 and 10.3 are from ”Discussion of Sara van de Geer: generic chaining and
the L1 penalty”, Peter Bickel and Mu Cai, submitted to Journal of Statistical Planning and
Inference.
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where σ2 ≡ ‖Y − µ(Z)‖2, and

µ(Z, S) = β0 +
∑
{βj(S)Zj : Zj ∈ S}

where β0 is the intercept, and β(S) are determined by

µ(Z, S) = arg min ‖Y − β0 −
p∑
j=1

βjZj : Zj ∈ S}‖2

Remarks: 1) βj(S) depend on S unless Zj ⊥ Zk all j 6= k. From this point of view (B2011-1)
the importance of a factor depends on its context the other variables that are in the set S of
Z’s being considered as predictors.

2) It is entirely possible in the case of collinearity to have r(S1) = r(S2) = 1, S1 6= S2

and, in general, to have a class of sets Sε,m with r(S) ≥ 1− ε for S ∈ Sε,m and |S| ≤ m for
m(ε) sufficiently large

We define the relative contribution of Zj to the predictive power of S by

(a) c(Zj, S) =
‖µ(Z, S−j)− µ(Z, S)‖2

‖µ(Z)‖2

where S−j = {Zk : k ∈ S, k 6= j}.
This leads us to the following approach to the importance of a variable Zj in a context

S.

(i) We want the context to have high predictive power, r(S) ≥ 1− ε

(ii) We want the context as small as possible for interpretability, |S| ≤ s0

(iii) We want the contribution of Zj, c(Zj, S) to the predictive power of the context be
high.

Next we note that by orthogonality,

(b) c(Zj, S) =
β2
j (S)

‖µ(Z)‖2
E
(
Zj − Π(Zj|[S−j])

)2

= (Y, Zj − Ẑj)2/‖µ(Z)‖2‖Zj − Ẑj‖2

where Π(·|L) is L2 projection onto a linear space, [S] ≡ Linear span of S, and

Ẑj ≡ Π(Zj|[S−j]) .

We can also write

c) c(Zj, S) =
(
1 +

σ2

‖µ(Z)‖2

)
corr2

(
Y, Zj − Ẑj

)
.
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We introduce two more concepts. S is ε minimal if r(S) ≥ 1− ε and r(S−j) ≤ 1− 2ε for
all j ∈ S.

Finally Zj is δ important in minimal ε context S iff c(Zj, S) ≥ 1− δ.
Our goal is, having chosen δ, ε to find all (δ, ε) relevant factors, as above.
If p is small we know how to solve the problem using all subsets regression. What if p is

large? We assume

A0: There is a sparse representation, i.e. For S, |S| ≤ m0 <∞ independent of p, n

E
(
Y − ZT (S)β(S)

)2
= arg minE(Y − ZTβ)2 .

A1: For any ε minimal context, |S| ≤ s0(ε) ≤ m0.

A2: The set of all ε minimal contexts, C(ε), has

|C(ε)| ≤M0

A3: The minimal eigenvalues of all Gram matrices of minimal contexts is ≥ τ > 0.

A4: The distribution of Y is subGaussian, for all t > 0

EetY ≤ exp{t
2λ2

2
}

where λ2 ≡ Var(Y )

A5: |Zj| ≤M all j = 1, . . . , p.

Essentially we are ruling out situations where good prediction is achieved by combining
a large number of factors each contributing negligibly – not because we do not believe such
situations exist but because we cannot usefully distinguish what factors are important in
such cases.

Proposition 10.1.1. If we ignore computational considerations then under A1-A5, even if
p, n → ∞ we can identify all ε minimal contexts and δ important factors within them if
log p
n
→ 0.

Proof. Since by (A1) the size of all ε minimum contexts is bounded by s0, it suffices to show
that we can find a consistent estimate t̂ of the minimal prediction error t and then, among all
subset of factors of cardinality ≤ m0, find those sets with empirical predictive error ≥ (1−ε)t̂
and then among those, identify the δ important factors. Suppose we have t̂. We claim that
it is then enough to show that for any S, |S| ≤ s0,

P
[
β̂(S)− β(S) ≥ ε

]
≤ Ce−ε

2nγ (10.1)
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for c, γ independent of s0. We can then examine all
(
p
m

)
, m ≤ s0 regressions of Y on m

factors, m ≤ s0. The union sum inequality applied to (1) and the condition of the proposition
ensures that the minimum empirical MSE of regressions based on ≤ m0 factors converges to
the population MSE. We need only slightly refine the results of Fu and Knight (FK2000-1)
for p fixed, EZ = 0. Write

Σ̂ =
1

n

n∑
i=1

ZiZ
T
i (S)− Z̄Z̄T (S)

where Zi(S) ≡ {Zij : j ∈ S}s0×1.

Σ(S) = EZ1Z
T
1 (S) .

By definition,

1

n
[Z̃S]Y =

1

n
[Z̃S][Z̃S]T β̂(S)

EZ1(S)Y = Σ(S)β(S)

Y ≡ (Y1, . . . , Yn)T

[ZS] ≡ [Z1(S), . . . ,Zn(S)]s0×n

[Z̃S] ≡ [ZS]−
(
Z̄(S), . . . , Z̄(S)

)
By assumptions A4, A5

P
[∣∣ [Z̃S]Y

n
− EZ̃(S)Y

∣∣ ≥ t
]
≤ 2e−

t2n
2M2λ2 (10.2)

since
Eet(ZijYi−EZijYi) ≤ et

2M2λ2/2

where λ2 = VarY .
Also,

1

n
[Z̃S][Z̃S]T = Σ̂(S) .

We can apply Oliveira’s (O2010-1) inequality to obtain

P
[ 1

n
‖

n∑
i=1

(
ZiZ

T
i (S)− Σ(S)

)
‖ ≥ t

]
≤ s0 exp{− nt2

(8 + 4t)s0M2
} (10.3)

since E|Zi(S)|2 ≤ s0M
2.

Finally,

P
[
‖Z̄Z̄T (S)‖2 ≥ t

]
= P

[
|Z̄|2(S) ≥ t

]
≤ s0P

[
|Z̄1| ≥

√
t

s0

]
≤ 2s0e

− tn

2M2s20 . (10.4)
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By A3, (10.3) and (10.4),

P
[
‖Σ̂−1(S)− Σ−1(S)‖ ≥ ε

]
≤ ce−nδε

2/2 (10.5)

for suitable c and δ. Then combining (10.2) and (10.5) the proposition follows given a
consistent estimate of t. However, since we know there is a sparse representation with
≤ m0 factors, we can, in principle, compute µ̂(Z) the LSE for the regression minimizing the
empirical LSE on all sets of m0 predictors. Then ‖Y − µ̂(Z)‖2

n gives us t̂. We can argue for
consistency as we did for (10.3)-(10.5).

Note that we could let s0 tend to∞ but this is of little interest. The major open question
is formulating conditions under which,

(1) σ2 (or ‖µ(Z)‖2) is consistently estimable

(2) C(ε) can be identified in less than O(pm0) operations.

We consider a data matrix (Zn×p,Yn×1) and the usual linear model

Y = Zβp×1 + e

with E(e|Z) = 0. We assume that there is a sparse representation. We seek the set of all
minimal contexts C(ε). We assume we are given an algorithm `(Z, Y,m0) which returns m0

columns indices of Z, S = {i1, . . . , im0} such that

β̂(S) = arg min
{
‖Y − Z(S)β‖2

n : βm0×1

}
.

β̂(S), an LSE of β, will lead to an asymptoticallly sparse representation of Zβ.
We sketch an algorithm for finding all minimal contexts given access to oracle β̂set(k)

which returns k column indices of X corresponding to k variables that have best R2 to fit Y :

β̂set(k) = arg min
‖β‖0≤k

‖Y −Xβ‖2
2 (10.6)

In reality, as we do not have access to the oracle, let MC(X, Y, k) denote a generic method
which generates a single minimum context of size k and with it an estimate of the best
R2. This could be the Lasso (T1996-1), Elastic Net (ZH2005-1), SCAD (FL2001-1), MC+
(Z2010-1), FoBa (Z2011-1), or kFoward proposed in Chapter 7.

Given MC() we construct by an iterative method AMC(X, Y, k, θr) a maximal collection
of minimal contexts of size k with R2 ≥ θr, such that no context is contained in the union
of all other contexts. The method scales as O(kN(k)|MC(k)|), where N(k) is the number
of minimum contexts, and |MC(k)| is the computation cost of MC(X, Y, k) for short.
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10.2 Algorithm

Given MC(X, Y, k), consider following algorithm to recover all minimum contexts with R2 ≥
θr:

FC(D)

if ∃j0 s.t.
∑

iDij0 = m then
return j0

else
j0 ← any index s.t.

∑
iDij0 6= 0

I1 ← {i : Dij0 6= 0}
I2 ← {1, ...,m} − I1

I3 ← {j :
∑

i∈I1 Dij 6= 0}
Dij ← 0 for ∀i ∈ I2 and ∀j ∈ I3

D′ ← D(I2)

L← FC(D′)
return {j0} ∪ L

end if

AMC(X, Y, k, θr)

J1 ←MC(X, Y, k)
r ← R2 (R square) of β̂ols(X, Y, J1)
m← 1
while r > θr do
A← ∪mi=1Ji
Construct D ∈ {0, 1}m×|A| s.t. Dij = 1 if and only if jth element of A is in Ji.
for s = 1 to k do
Ls ← FC(D)
Dij ← 0 for ∀i and ∀j ∈ Ls
I ← Ac ∪ (A\Ls)
J ←MC(XI , Y, k)
r ← R2 of β̂ols(X, Y, J)
if r > θr then
m← m+ 1
Jm ← J
break for

end if
end for

end while
return {Ji}mi=1
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For m = 0, 1, ... iteratively, suppose m minimum contexts {Ji}mi=1 have been recovered, the
goal is to recover the (m+ 1)th minimum context Jm+1, assuming that there is at least one
variable of Jm+1 is outside the support of previous minimum contexts A = ∪mi=1Ji. The idea
is to find a set of sets of indices C0 = {Ls}, with the property that Ls ∩ Ji 6= ∅ for all s and
i, and for all possible Jm+1 6⊂ A, there exists Ls0 ∈ C0 s.t. Jm+1 ⊂ [p]\Ls0 . If |C0| is small,
then apply MC(X[p]\Ls , Y, k) for all Ls ∈ C0 would guarantee to recover minimum context
Jm+1, or we can conclude there is no more size k minimal context with R2 > θr. Since none
of Ji for i ≤ m is included in [p]\Ls for all Ls, any solution other than Jm+1 would yield a
significantly worse R2 by the definition of minimum context. Now the problem boils down
to find C0 with small size efficiently. Not surprisingly, there exists such C0 with size exactly
k. One way to find it would be for s = 1, 2, ..., k, recursively find Ls s.t. Ls ∩ (∪s−1

l=1Ll) = ∅
and ∑

j∈Ls

m∑
i=1

I(j ∈ Ji) = m (10.7)

For details see algorithm FC(D) above.

10.3 Simulation

We simulate a multi-context toy model designed so that in the presence of large p methods
based on screening single variables fail. This is similar to the simulation experiment in
Chapter 9. This type of example was suggested to us by Boaz Nadler and Ya’acov Ritov.
Construct standardized predictors X ∈ Rn×p and response Y ∈ Rn as follows. Denote
Xi ∈ Rn the ith column of X. Let Z1, Z2, ... be i.i.d. n dimensional standard Gaussian
with identity covariance matrix. We construct m minimum contexts of size k with common
intersection of size s, where k � p and s < k. For w ∈ Rm, for each j = 1, ...,m, for
i = (j − 1)(k − s) + 1, ..., j(k − s), for Y0 defined immediately later, let

Uj =

j(k−s)∑
l=(j−1)(k−s)+1

Zl (10.8)

Vi = wj(Zi −
ZT
i Uj
‖Uj‖2

2

Uj) + Y0 (10.9)

Xi =
Vi√

V ar(Vi)
(10.10)
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Next let Xm(k−s)+1, ..., Xp be entry-wise i.i.d. standard Gaussian, and let

Y0 =

(m+1)(k−s)∑
l=m(k−s)+1

Zl (10.11)

Y1 =

m(k−s)+s∑
l=m(k−s)+1

Xl (10.12)

Y = SNR(Y0 + Y1) + ε (10.13)

where SNR is signal to noise ratio, ε ∈ Rn is entry-wise i.i.d standard Gaussian independent
of X. We have constructed m minimum contexts of size k with a common intersection of
size s < k, where the jth minimum context is of the form:

XJj = {Xi : i ∈ Jj} (10.14)

Jj = {(j − 1)(k − s) + 1, ..., j(k − s)} ∪ {m(k − s) + 1, ...,m(k − s) + s} (10.15)

w is a parameter controlling difficulty of recovery of minimum context: if Xi ∈ Jj is con-
structed with associate wj, then cor(Xi, Y ) approximately scales as k−s√

(k−s+w2
j )k

, i.e. the

larger wj is, the weaker correlation between Xi and Y . For small w which is relatively
easy to recover, every method performs more or less the same. However for bigger w, clear
distinctions among methods are observed.

Next we run AMC(X, Y, k, θr) with MC(X, Y, k). Different versions of MC include
glmnet(Lasso (T1996-1) and Elastic Net (ZH2005-1)), SCAD (FL2001-1), MC+ (Z2010-1),
FoBa (Z2011-1) and kForward proposed in Chapter 7. All methods are used as described
in Chapter 9 Section 9.1.

Specifically, an experiment is simulated for 4 minimum contexts each of size 6 with a
common intersection of size 2, signal to noise ratio SNR = 1, sample size n = 150 and
dimension p = 1000, 2000, 3000. In this case k = 4, s = 2,m = 4. As mentioned above,
w ∈ Rm is a measurement of recovery difficulty of individual minimum context. Three choices
of w are used in the simulation: w = (5, 5, 5, 5), w = (10, 10, 10, 10) and w = (15, 15, 15, 15).
For Xi constructed using w, the mean and sd of cor(Xi, Y ) are reported in Table 10.1. For
20 iterations, the mean and sd of number of minimum contexts(out of 4) recovered by each
method are reported in Table 10.2, Figure 10.1, Figure 10.2 and Figure 10.3.
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w Mean(cor(Xi, Y )) SD(cor(Xi, Y ))
5 0.316 0.077
10 0.171 0.078
15 0.122 0.082

Table 10.1: Mean and SD of cor(Xi, Y ) for Xi with associated w

w p kFoward SCAD MC+ FoBa glmnet(Lasso)
5 1000 4/0 4/0 3.5/0.51 3.15/0.75 3.4/1.47
5 2000 3.9/0.31 3.95/0.22 3.3/0.73 2.75/0.79 3.6/1.23
5 3000 3.9/0.31 3.65/0.67 3.15/0.93 2.95/0.89 2.5/1.91
10 1000 4/0 3.8/0.62 2.7/1.08 3.5/0.51 3/1.59
10 2000 4/0 3.4/0.88 1.65/1.35 2.8/1.11 2/1.65
10 3000 4/0 2.8/1.06 0.95/1.19 1.6/1.43 0.15/0.67
15 1000 4/0 1.65/1.28 0/0 1.85/0.97 0/0
15 2000 4/0 0.8/0.73 0/0 0.5/0.76 0/0
15 3000 4/0 0.2/0.62 0/0 0/0 0/0

Table 10.2: Mean/SD of number of recovered minimum contexts (out of 4) for 20 iterations
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Figure 10.1: Average number of minimum contexts recovered for w = (5, 5, 5, 5).
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Figure 10.2: Average number of minimum contexts recovered for w = (10, 10, 10, 10).
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