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ABSTRACT OF THE DISSERTATION

Robust GPS-INS Outlier Accommodation
in

Nonlinear Bayesian Optimal Estimation

by

Paul F. Roysdon

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2017

Professor Jay A. Farrell, Chairperson

Many highway vehicle applications require reliable, high precision navigation (er-

ror less than meter level) while using low-cost consumer-grade inertial and global navigation

satellite systems (GNSS). The application environment causes numerous GNSS measure-

ment outliers. Common implementations use a single epoch Extended Kalman Filter (EKF)

combined with the Receiver Autonomous Integrity Monitoring (RAIM) for GNSS outlier

detection. However, if the linearization point of the EKF is incorrect or if the number of

residuals is too low, the outlier detection decisions may be incorrect. False alarms result in

good information not being incorporated into the state and covariance estimates. Missed

detections result in incorrect information being incorporated into the state and covariance

estimates. Either case can cause subsequent incorrect decisions, possibly causing diver-

gence, due to the state and covariance now being incorrect. This dissertation formulates

a sliding-window estimator containing multiple GNSS epochs, and solves the full-nonlinear

Maximum A Posteriori estimate in real-time. By leveraging the resulting window of residu-
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als, an improved fault detection and removal strategy is implemented. Experimental sensor

data is used to demonstrate the interval RAIM (iRAIM) performance improvement.
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Chapter 1

Introduction

1.1 Background & Perspective

The past decades have seen the rapid rise and adoption of ubiquitous navigation

systems. This has been driven by the availability of low cost sensors (e.g., GNSS and

cameras), inertial instruments, and computation. With sensor fusion, these systems can

exhibit very good accuracy (e.g. sub-meter error). However, further improvements in the

reliability and continuity of this accuracy are required to fully support autonomous vehicle

operations, especially in urban environments, where variations in the operating conditions

can have critical effects. In GNSS applications such outlier measurements can be caused

by multi-path, non-line of sight signals, or foliage (see Fig. 1.1). In the design of a reliable,

high-performance system, it is critical to remove the effects of outlier measurements before

they degrade performance.

RAIM is a set of techniques designed to detect and remove with GNSS receiver

1



Figure 1.1: The “Urban Canyon”. (Modified image from [9].)

outlier measurements [16, 17, 51, 91]. Successful accommodation requires measurement re-

dundancy [16]. Many RAIM implementations assume that only a single outlier occurs in

any epoch. Multiple outlier detection has also been well developed [3, 17, 51]. The authors

of [48] included an inertial measurement unit (IMU) and a Kalman filter to “extend” the

RAIM capabilities. Their method is called eRAIM. Both RAIM and eRAIM are based on

measurements from a single epoch, limiting data redundancy. Furthermore, the residual

generation algorithm in RAIM and eRAIM assumes a linear system.

Data redundancy, quantified by the number of degrees-of-freedom (DOFs), is crit-

ical to successful outlier accommodation. Redundancy can be enhanced both by adding

additional sensors or by solving the estimation problem using all sensor data within a

sliding temporal window. Herein we consider the sliding window approach. We build on

theoretical and computational methods developed within the control [52], robotics [73],

2



simultaneous localization and mapping (SLAM) [22, 24, 55], and receding horizon estima-

tion [46,69,75,106] literatures. The resulting full nonlinear Maximum A Posteriori (MAP)

estimator, without outlier accommodation, is presented in [105]. This dissertation ex-

tends [105] with two methods to accommodate outlier measurements within the temporal

window. The first method builds on traditional residual space methods which also form

the basis for RAIM and eRAIM. An earlier version of the residual space method was pre-

sented in [91, 101–103]. The second method is motivated by the Least Soft-thresholded

Squares (LSS) approach, building on l1-regularization, that was recently presented in the

computer vision literature [71,97,104]. An earlier version of the LSS approach was presented

in [50, 79]. The contributions of this dissertation relative to [3, 104] and [49] are multiple

outlier accommodation using an iterated nonlinear optimal estimator with a multi-epoch

sliding window.

The theoretical approach presented in Chapters 4–7 is general. It applies to any set

of aiding sensors (e.g., cameras, GNSS, Radar, LiDAR) combined with kinematic integration

for high-bandwidth based on data from an IMU or encoders. The focus on GNSS and INS

herein should be thought of as a particular example, both to demonstrate the application

of the theory and to allow experimental analysis of performance. Both theoretical and

computational trade-off’s are discussed. Both estimators are evaluated using both simulated

data and real-world experimental data involving urban canyons and overhead foliage.

3



1.2 Main Contributions

1. The first literature report comparing window length (of a sliding-window nonlinear

optimal estimator for a tightly coupled DGPS-INS) versus position and attitude per-

formance, and contrasts to both the extended Kalman filter (EKF) and the iterated

extended Kalman filter (IEKF).

2. The first literature report of a sliding-window nonlinear optimal estimator for a tightly

coupled DGPS-INS, using Residual Space for measurement outlier accommodation in

a GPS-challenged urban environment.

3. The first literature report of a sliding-window nonlinear optimal estimator for a tightly

coupled DGPS-INS, using l1-regularization for measurement outlier accommodation

in a GPS-challenged urban environment.

4



Chapter 2

Sensors

This chapter introduces the practical and theoretical background on the sensors

used in this dissertation. An IMU, discussed in Section 2.2, is used for short-term navigation

and full state propagation, while a GPS receiver, discussed in Section 2.3, is used for long-

term navigation and state correction.

2.1 Preliminary Notation

The primary references for this section are [25, 43, 66]. Conventions and symbols

are provided in Table 2.1. The following list defines the notation and equations used in this

dissertation:

• pab ∈ R3 denotes the translation from the origin of frame a to that of frame b.

• vab ∈ R3 denotes the relative velocity of frame b with respect to frame a.

• ωab ∈ R3 denotes the relative rate of rotation of frame b with respect to frame a.

5



• The superscript indicates the frame of reference, e.g., pcab denotes pab represented in

frame c.

• Rb
a ∈ SO(3)1 denotes the rotation matrix transforming vectors from frame b to frame

a, e.g., pbab = Rb
ap

a
ab. The rotation matrix has the following properties: |Rb

a| = 1 and

(Rb
a)
ᵀRb

a = I3.

• Let ω = [ω1,ω2,ω3]
ᵀ, then

[ω×] ,


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3)2,

denotes the skew-symmetric matrix associated to ω. A skew-symmetric matrix has

the property [ω×]ᵀ = −[ω×].

• For the angular rate ωbab, it is often defined that Ωb
ab , [ωbab×].

• The derivative of the rotation matrix Rb
a has the following relation with the angular

rate ωab (and then Ωab),

Ṙb
a(t) = Rb

a(t)Ω
a
ab = −Ωb

abR
b
a(t). (2.1)

• Suppose that the rotation from frame a to frame b is an infinitesimal rotation denoted

by δθ = [δθ1, δθ2, δθ3]
ᵀ, then the rotation matrix from frame a to frame b can be

approximated as

Rb
a = I3 − δΘ, (2.2)

where δΘ , [δθ×].

1SO(3) = {R ∈ R3×3|RᵀR = I, det(R) = +1} denotes the group of special orthogonal matrix, see [66].
2so(3) = {[ω×] ∈ R3×3|ω ∈ R3} denotes the space of all skew-symmetric matrices, see [66].
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• Let θ ∈ [−π, π] be an angle, in this dissertation the following notation is used for

simplicity: sθ , sin(θ), cθ , cos θ and tθ , tan θ.

Table 2.1: Notational conventions.

x non-bold face variables denote scalars
x boldface lower-case denotes vector quantities
X boldface upper-case denotes matrix quantities
x true value of x
x̂ calculated or estimated value of x
x̃ measured value of x
δx error x− x̂
Rb
a transformation matrix from reference frames a to b

xa vector x represented with respect to frame a
R,R+,Rn real numbers, reals greater than 0, n-tuples of reals

N natural numbers {0, 1, 2, . . .}
C complex numbers
Z integer numbers

(a .. b), [a .. b] open interval, closed interval
〈. . .〉 sequence (a list in which order matters)
{. . .} set (a list in which order does not matter)
xi,j row i and column j entry of matrix X

0n×m or 0 zero matrix
In×n or I identity matrix
|X| determinant of matrix X
R,N range space, null space

R∞, N∞ generalized range space and null space
N Normal or Gaussian random variable
L Laplace random variable

2.2 IMU Background and Theory

2.2.1 IMU Background

Common industry terms place IMUs into four major categories which stem from

US military requirements: Strategic, Tactical, Industrial and Consumer. Strategic typically
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refers to systems which are designed for free-inertial navigation, with stability that maintain

system accuracy for weeks to months. These are typically used on ships and submarines, but

also apply to inter-continental ballistic missiles (ICBMs). Tactical systems are also designed

for free-inertial (unaided) navigation, but operate on the order of seconds to minutes, and

are typically used on missiles, and unmanned aerial vehicles (UAVs). Industrial systems

span the range above and below the ability to sense Earth rate (∼ 15 deg/hr), and are

typically used in a variety of robotics applications. Below Earth rate, it is possible to use a

gyro for detecting true heading, without the aid of a magnetometer or GPS. However the

in-run bias stability must be significantly below 15 deg/hr to make a good estimation of

Earth rate, typically < 0.1 deg/hr will suffice. Above 40 deg/hr is considered consumer or

automotive grade, and consists of rate gyros which cannot be used to determine heading or

roll/pitch angles, but are sufficient to measure angular velocity such as yaw-rate.

2.2.2 IMU General Measurement Model

The IMU is a triad (i.e. three orthogonal axes) angular rate sensor (gyroscope) and

a triad linear specific force sensor (accelerometer), thus providing measurements in body

frame related to six degree-of-freedom (6DOF) three-dimensional (3D) spatial behavior.

The INS will integrate those measurements through the kinematic equations to compute

the attitude, velocity, and position of the IMU (see Chapter 3).

A typical IMU contains integrated electronics for calibration, compensation and

digital signal processing, as shown in Fig. 2.1.
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Figure 2.1: Typical IMU with signal processing front-end. [5]

When evaluating an IMU for a specific INS application, one must consider a few

key IMU parameters which have an effect on the system-level position, velocity and attitude

accuracy. The general form of the equation which represents a single axis sensor (e.g. single-

axis gyro), is

y(t) = (1 + εk) · [u(t) + b(t) + ω(t) + ηMA + ηQ + ηRRW + ηRR + · · · ] (2.3)

where y(t) is the result of input u(t), which is multiplied by some scale factor εk, and

summed with an in-run bias b(t) and additive stochastic error ω(t), as well as other errors

like misalignment ηMA, quantization noise ηQ, rate random walk ηRRW , rate ramp ηRR,

etc. [25].

A simplified model of eqn. (2.3) is

ỹ(t) = u(t) + b(t) + n(t),

where ỹ(t) is the real-time measurement y(t). Errors like scale factor and misalignment

are fixed, given by the manufacturer, and are typically calibrated by the manufacturer and

compensated to the extent possible in the signal processing front-end. Whereas, random
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walk and bias instability (both are contained in n(t)) are random, will cause errors to

accumulate over time, and thus need to be characterized and modeled. While some residual

calibration errors can also be addressed through on-line optimal estimation, those terms are

not within the scope of this dissertation.

2.2.3 IMU Measurement Model for Aided INS

In this dissertation, an IMU is integrated within a GPS-aided INS, and employs

some form of optimal estimation (e.g. Extended Kalman Filter (EKF), Maximum A Pos-

teriori (MAP) [35]). For aided INS, the IMU measurement models for the accelerometer

ỹa ∈ R3 and gyro ỹg ∈ R3 are,

ỹa = f bib + ba + na, (2.4)

ỹg = ωbib + bg + ng, (2.5)

where f bib ∈ R3 is the specific force of the body b-frame with respect to the i-frame resolved

in the b-frame, ωbib ∈ R3 is the angular rate of the body b-frame with respect to the i-frame

resolved in the b-frame, ba, bg ∈ R3 are bias vectors, and na, ng ∈ R3 are noise vectors. It

is common to assume that na and ng are white Gaussian processes and

na ∼ N (0, σ2aI), ng ∼ N (0, σ2gI).

Furthermore, the bias ba and bg are often modeled with random walks as

ḃa = νa,
˙̂
ba = 0, (2.6)

ḃg = νg,
˙̂
bg = 0, (2.7)
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where the driving noise νa and νg are also assumed white Gaussian,

νa ∼ N (0, σ2baI), νg ∼ N (0, σ2bgI).

Thus, with the IMU measurements and the estimated bias vectors, the specific

force and the angular rate can be evaluated as

f̂ bib = ỹa − b̂a, (2.8)

ω̂bib = ỹg − b̂g. (2.9)

2.3 GPS/DGPS Background and Theory

This section provides the background on GPS and DGPS, as well as the measure-

ment models which are used in later sections of this dissertation.

2.3.1 GPS Background

The United States Global Positioning System is the most widely applied Global

Navigation Satellite System, providing global Positioning-Velocity-Timing (PVT) services.

Modern inexpensive GPS receivers with ceramic patch antennas typically achieve 3-8 meter

positioning accuracy with the Standard Positioning Service (SPS) [10].

There are four GPS segments:

• Space Segment: the constellation of GPS satellites.

• Control Segment: run by the U.S. Air Force and responsible for the monitoring and

operation of the Space Segment.
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• User Segment: the user hardware and processing software for positioning, navigation,

and timing.

• Ground Segment: the civilian tracking networks that provide the User Segment with

reference stations, precise ephemerids, and real time services for differential GPS.

The satellite constellation is designed to have at least four satellites in view at

all times. Therefore there are 24 satellites distributed on 6 orbital (elliptical) planes, with

a semi-major axis (largest radius) of 26, 600 km, inclination angle of 55o to the equator,

and orbital period approximately 11 hr. 58 min.. The signals from the GPS satellites are

driven by an atomic clock (typically cesium which has the best long-term stability), with a

fundamental frequency of 10.23 MHz, from which two carrier signals are generated. The

L1 channel (frequency = 1575.42 MHz; wavelength = 19.0 cm) multiplies the fundamental

frequency by 154, while the L2 channel (frequency = 1227.60 MHz; wavelength = 24.4 cm)

multiplies the frequency by 120. The second signal is designed for self-calibration of the

signal delay due to the Earth’s ionosphere. There are three types of information in the

carrier signals:

• The Coarse Acquisition (C/A) code.

• The Precise (P) code.

• The Navigation Message.

The C/A code, on the L1 channel, which repeats every 1 ms, is a pseudo-random

code generated by a known algorithm. The carrier can transmit the C/A code at 1.023 Mbps

(million bits per second). The “chip length”, or physical distance between binary transitions
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(between digits +1 and -1), is 293 meters. The C/A code contains the satellite clock time

at which the signal was transmitted (with an ambiguity of 1 ms).

The P code, identical on both the L1 and L2 channels, which repeats every 267

days, is transmitted at 10.23 Mbps, with a chip length of 29.3 meters. Like the C/A code,

the P code contains the satellite clock time at which the signal was transmitted, except

with ten times the resolution. Unlike the C/A code, the P code is encrypted by a process

known as “anti-spoofing”.

The Navigation Message on the L1 channel, is transmitted at 50 bps on the L1

channel. This message is a 1500 bit sequence, and therefore takes 30 seconds to transmit.

The Navigation Message includes information on the Broadcast Ephemeris (satellite orbital

parameters), satellite clock corrections, almanac data (a crude ephemeris for all satellites),

ionosphere information, and satellite health status. Obtaining the Broadcast Ephemeris

for the entire visible constellation takes 12 minutes. The Broadcast Ephemeris is updated

every two hours by the Control Segment, and the Ephemeris message contains a sub-message

indicating the time at which the Ephemeris parameters are valid.

2.3.2 GPS Measurement Models

GPS measurements are made through estimating the travel time of the electro-

magnetic signals broadcast from the satellite vehicle antenna to the rover antenna.

2.3.2.1 Pseudorange Observable

To calculate user position, the range to each satellite must be determined. How-

ever, due to atmospheric effects and clock errors, a pseudorange is modeled. The L1 and
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L2 pseudorange measurements for the i-th satellite at time t can be modeled as

ρ̃ir1(t) = ‖pr(t)− pi(t)‖2 + cδtr(t) +
f2
f1
Iir(t) + T ir(t) +M i

ρ1(t) + niρ1(t), (2.10)

ρ̃ir2(t) = ‖pr(t)− pi(t)‖2 + cδtr(t) +
f1
f2
Iir(t) + T ir(t) +M i

ρ2(t) + niρ2(t), (2.11)

where

• ‖pr − pi‖2 is the geometric distance between the rover position pr ∈ R3 and the i-th

satellite vehicle position pi ∈ R3,

• c = 2.99792458× 108 m/s is the speed of light,

• δtr ∈ R is the receiver clock bias which is identical to all channels of the receiver,

• f1 = 1575.42MHz is the L1 carrier frequency,

• f2 = 1227.60MHz is the L2 carrier frequency,

• Iir is the Ionospheric error due to dispersive atmospheric effects in the layer of the

atmosphere with altitude between 50 and 1000 km,

• T ir is the Tropospheric error due to non-dispersive atmospheric effects in the lower

part of the atmosphere extending from the surface to 50 km above the surface of the

planet,

• M i
ρ1 and M i

ρ2 are the pseudorange multipath errors caused by signal reflections,

• niρ1 , n
i
ρ2 ∼ N (0, σiρ

2
) are the (non-common mode) pseudorange measurement noise.

In practice, the position of the satellite vehicle is estimated from the orbital data

which is broadcast continuously, and updated every two hours, in a data format called
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Ephemeris. Updated orbital information, is valid for two hours, and is uplinked to each

GPS satellite at 1783.74MHz by the U.S. Air Force Control Center at Schriever Air Force

Base, Colorado Springs, USA. Based on the Ephemeris data, the satellite orbit can be fit

through the Kepler model [4]. Small fit errors of each satellite orbit is unavoidable, and

called ephemeris error Ei. The clock on the satellite is also estimated with error. Thus, the

true range between the satellite vehicle and the rover can be represented as

‖pr − pi‖2 = ‖pr − p̂i‖2 + Ei + cδti, (2.12)

where p̂i is the estimated satellite vehicle position from the ephemeris and δti is the residual

satellite clock error after performing the correction by model coefficients contained in the

Ephemeris message.

The various errors in eqns. (2.10) and (2.11) can be divided into two categories:

common mode and non-common mode. The satellite related errors Ei and cδti are common

to all receivers using the same ephemeris. The atmospheric errors Iir and T ir are common to

spatial nearby (<15-20km) receivers. The multipath errors (M i
ρ1 , M i

ρ2) and receiver noise

(niρ1 , niρ2) depending on the local electromagnetic environment are not common between

different receivers. Rewriting the common mode error for the i-th satellite as

Eicm1 , E
i + cδti +

f2
f1
Iir + T ir , (2.13)

Eicm2 , E
i + cδti +

f1
f2
Iir + T ir , (2.14)
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eqns. (2.10) and (2.11) can be simplified as

ρ̃ir1(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + Eicm1(t) +M i
ρ1(t) + niρ1(t), (2.15)

ρ̃ir2(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + Eicm2(t) +M i
ρ2(t) + niρ2(t). (2.16)

Table 2.3.2.1 from [25] indicates the magnitude of the above errors and their re-

spective time correlation.

Table 2.2: User Range Error (URE) standard deviation & time correlation [25].

Common Mode Errors L1, σ Time correlation

Ionosphere 7-10 m > 6 hr.
Troposphere 1 m > 6 hr.

Sv Clock 2 m 2 hr.
Sv Ephemeris 2 m 2 hr.

Non-common Mode Errors

Multipath 0.1-3.0 m 3-10 min.
Receiver Noise 0.1-0.7 m < 1 min.

2.3.2.2 Carrier Phase Observable

The GPS carrier phase or phase is simply an angle of rotation, which is in units

of cycles, and is directly related to the frequency, which is expressed in units of cycles per

second.

The L1 and L2 carrier phase measurements ϕ̃ir1 and ϕ̃ir2 for the i-th satellite at

time t can be modeled as

λ1ϕ̃
i
r1(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + λ1N

i
1(t) + Eicm3(t) +M i

ϕ1
(t) + niϕ1

(t), (2.17)

λ2ϕ̃
i
r2(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + λ2N

i
2(t) + Eicm4(t) +M i

ϕ2
(t) + niϕ2

(t), (2.18)
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where

• λ1 and λ2 are the wavelength of the corresponding carrier signals,

• N i is the ambiguous integers representing the unknown number of whole cycles,

• Eicm3 and Eicm4 are common mode errors similar to Eicm1 and Eicm2 detailed in Section

2.3.2.1, defined as

Eicm3 = Ei + cδti − f2
f1
Iir + T ir , (2.19)

Eicm4 = Ei + cδti − f1
f2
Iir + T ir , (2.20)

• M i
ϕ1

, niϕ1
, M i

ϕ2
, niϕ2

are non-common mode errors similar to those of pseudorange

measurements.

The magnitude of M i
ϕ1

, niϕ1
, M i

ϕ2
, niϕ2

are typically less than 1% of the magnitude of

the respective errors in pseudorange measurements [25]. When common mode errors can

be mitigated, the carrier phase measurements allow position estimation at the centimeter

level. While carrier phase measurements have much lower noise level, they are biased by

the unknown (usually large) integer ambiguity {N i}, because there is no direct measure of

the total number phase cycles of the incoming GPS signal. If the GPS receiver looses count

of the oscillations (because of signal obstruction or excessive noise), then a new integer

parameter must be introduced to the model. This integer discontinuity in phase data is

called cycle-slip.

It is important to note that the integer value N i(t) ≡ N i and is constant when the

Phase-Lock-Loop (PLL) of the receiver for the corresponding channel of the i-th satellite is

maintained (i.e., no cycle-slip). Thus, if N i is estimated in previous epoch and no cycle-slip
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occurs, the estimated integer should be used for current and later epochs. In practice, the

GPS receiver reports the lock status of the PLL.

The noise niϕ ∼ N (0, σiϕ
2
) introduces centimeter (10−2m) level range errors.

2.3.2.3 Delta Pseudorange Observable

The Delta Pseudorange observable, often referred to as the Doppler observable,

is actually a quantity of subsequent pseudorange measurements over a consecutive time

interval.

The Doppler frequency can be expressed as a function of the frequency received

by a user fr to the rate of change of the range between the receiver and the transmitter:

fr = fT

(
1− Ṙ

c

)
(2.21)

where fT is the transmitted frequency, and Ṙ is the geometric range between the user and

the transmitter, and the Doppler shift is defined as fr − fT = fT
Ṙ
c .

The delta pseudorange measurement is

∆ρ(τr(t)) = ρsr(τr(t))− ρsr(τr(t)− T ) (2.22)

where T ≤ 1.0. Eqn. (2.22) defined over the time interval τr ∈ [τr(t)− T, τr(t)] is

∆ρ(τr(t)) =

∫ ρsr(τr(t))

ρsr(τr(t)−T )
ρ̇sr(q)dq. (2.23)

If Eqn. (2.22) is divided by T , then the quantity defines an average rate of change of the

pseudorange over the interval τr

The Doppler observable can be defined as the rate of change of the pseudorange at

the midpoint of the interval τr ∈ [τr(t)− T, τr(t)]. For the Doppler observable to be valid,
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the receiver must maintain phase lock over the interval, wherein the Doppler observable can

be computed as

∆ρ(τr(t)) = λ
(
φir(τr(t))− φir(τr(t)− T )

)
. (2.24)

The measurement of the Doppler shift (in Hz) at the receiver is

D(τr(t)) =
∆ρ(τr(t))

λT
. (2.25)

The Doppler measurement model is

λTDs
r(τr(t)) = (ρsr(τr(t))− ρsr(τr(t)− T ))− c∆ṫi + ε(τr(t)). (2.26)

Temporal differences for Ei, Iir, and T ir are small relative to other terms, and therefore

neglected. The measurement error due to multipath and receiver noise is ε(τr(t)). The

(uncorrected) satellite clock drift rate is ∆ṫi = ∆ti(τr) − ∆ti(τr − T ), where ∆ṫi is the

correction of the Doppler measurement accounting for satellite clock drift rate (see Section

C.1 of [25]). A linearized model for the Doppler measurement is

λDi
r = hᵀ(vr − vi) + c∆ṫr − c∆ṫi + ε. (2.27)

where hᵀ is the line-of-sight vector from the satellite to the user position, vr is the velocity

of the receiver, vi is the i-th satellite velocity (see Section C.4 of [25]).

2.3.3 DGPS Background

To achieve reliable high precision positioning, DGPS may be employed, using either

satellite-based corrections via the Wide Area Augmentation Service (WAAS) transmitted

on the L1 channel by civilian geo-stationary satellites [11], or ground-based corrections

19



via publicly available correction service, e.g. Continuously Operating Reference Station

(CORS) [88], and Nationwide Differential Global Positioning System (NDGPS) [33].

The DGPS technique removes (most of) the spatial-common errors between the

rover receiver and the base receiver. Standard DGPS requires that the global position of

the base station is well-surveyed such that the spatial-common errors can be calculated

precisely. With a base station in the range of a few tens of kilometers, DGPS accuracy is

on the order of 1m (1σ), growing at the rate of 1m per 150km of separation [57].

To transmit the differential GNSS message, a non-proprietary and efficient protocol

was defined by the Special Committee 104 on DGNSS of the Radio Technical Commission

for Maritime Services (RTCM) [83]. This standard is referred as the RTCM standard, and

the current version is 3.2.

“Networked Transport of RTCM via Internet Protocol” (NTRIP) [34] is an application-

level protocol on the Transmission Control Protocol/Internet Protocol (TCP/IP) stack,

which is used to stream GNSS data over the Internet. NTRIP is a generic, stateless pro-

tocol based on the Hypertext Transfer Protocol (HTTP/1.1) and the Real Time Streaming

Protocol (RTSP). NTRIP is designed for disseminating differential correction data (e.g. in

RTCM format) or other kinds of GNSS streaming data, to stationary or mobile users, over

the Internet.

NTRIP consists of three system software components: clients, servers, and casters.

An implementation of an NTRIP system includes the NTRIP servers which transmit the

RTCM message, generated from base station receivers, to the NTRIP Caster. The rover

NTRIP Clients, with valid authorizations, request single or multiple NTRIP streams from

the NTRIP Caster. By parsing the RTCM message in the NTRIP stream, the differential
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information (e.g. base station GNSS receiver measurements or corrections) can be obtained.

As the mobile communication networks (4G LTE or WiFi) become readily available, the

DGPS technique can be used in various scenarios.

While this dissertation will focus on CORS DGPS via NTRIP, a robust system

should employ both WAAS and CORS data, if the mobile communication data-link is

unavailable.

2.3.4 DGPS Measurement Models

This section reviews the differential GPS technique, where single-differencing (SD)

removes user-range errors, double-differencing (DD) removes GPS receiver clock bias, and

triple-differencing (or other more efficient methods e.g. [19, 20, 92]) remove the integer am-

biguity from the carrier phase measurement.

2.3.4.1 DGPS Single Differencing

In this section and the two sections that follow, the SD pseudorange measurement

is presented to demonstrate the DGPS method, while the SD phase measurement is pre-

sented to identify methods with which to resolve the integer ambiguity. Note that the SD

technique applies to Doppler measurements, with appropriate modifications, however only

the SD pseudorange and phase measurements are presented herein.

In DGPS, it is assumed that there exists a nearby (within 15-20km) stationary (i.e.,

pb(t) ≡ pb ∈ R3 ) base station that can provide GPS measurements from the base station

receiver to the rover. The following pseudorange and phase measurements are available to

the rover,
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ρ̃ib1(t) = ‖pb − p̂i(t)‖2 + cδtb(t) + Eibcm1(t) +M ib
ρ1(t) + nibρ1(t), (2.28)

ρ̃ib2(t) = ‖pb − p̂i(t)‖2 + cδtb(t) + Eibcm2(t) +M ib
ρ2(t) + nibρ2(t), (2.29)

λ1ϕ̃
i
b1(t) = ‖pb − p̂i(t)‖2 + cδtb(t) + λ1N

ib
1 (t) + Eibcm3(t) +M ib

ϕ1
(t) + nibϕ1

(t), (2.30)

λ2ϕ̃
i
b2(t) = ‖pb − p̂i(t)‖2 + cδtb(t) + λ2N

ib
2 (t) + Eibcm4(t) +M ib

ϕ2
(t) + nibϕ2

(t). (2.31)

Base stations should be established in a good electromagnetic environment (e.g. on the

top of the hill or high building with open sky, no multipath effects), such that it is valid

to assume that M ib
ρ1 = M ib

ρ2 = M ib
ϕ1

= M ib
ϕ2
≡ 0. Furthermore, the base position pb should

be well surveyed with respect to the global frame, such that with the differential tech-

nique, more precise global positioning can be realized. If the base station is close to the

rover, the following identity is valid Eicm1(t) = Eibcm1(t), Eicm2(t) = Eibcm2(t), Eicm3(t) =

Eibcm3(t), Eicm4(t) = Eibcm4(t). Since the satellite related errors Ei and cδti are common

to all receivers at the same epoch, only the atmospheric errors Iir and T ir depend on the

locations.

With the known base station position pb, the SD L1 pseudorange and phase models

are defined as

∆ρ̃i1(t) = ρ̃ir1(t)− ρ̃ib1(t)

= (‖pr(t)− p̂i(t)‖2 − ‖pb − p̂i(t)‖2) + (cδtr(t)− cδtb(t))

+ (Eicm1(t)− Eibcm1(t)) + (M i
ρ1(t)−M ib

ρ1(t))

+ (niρ1(t)− nibρ1(t))

= ∆R(p(t), p̂i(t)) + c∆δt(t) + ∆T i(t)− f2
f1

∆Ii(t) + ∆M i
ρ1(t) + ∆niρ1(t) (2.32)
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λ1∆ϕ̃
i
1(t) = ϕ̃ir1(t)− ϕ̃ib1(t)

= (‖pr(t)− p̂i(t)‖2 − ‖pb − p̂i(t)‖2) + (cδtr(t)− cδtb(t))

+ (λ1N
i
1(t)− λ1N ib

1 (t)) + (Eicm3(t)− Eibcm3(t))

+ (M i
ϕ1

(t)−M ib
ϕ1

(t)) + (niϕ1
(t)− nibϕ1

(t))

= ∆R(p(t), p̂i(t)) + c∆δt(t) + λ1∆N
i
1(t) + ∆T i(t)

− f2
f1

∆Ii(t) + ∆M i
ϕ1

(t) + ∆niϕ1
(t) (2.33)

where the function R(p(t), p̂i(t)) = ‖pr(t)− p̂i(t)‖2. The ∆ symbol is a mnemonic device

to emphasize that the difference is made between two points on the ground for the same

satellite i. The SD L2 pseudorange and phase models are similarly defined. An example of

the single difference geometry is shown in Fig. 2.2.

Satellite i Satellite j

��
�

��
�

Rover (r)
Base Station (b)

Figure 2.2: Single difference geometry. (Combined image from [6–8].)
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While the difference in transmission time of the satellite to each base station can

be as much as a few milli-seconds: over a milli-second (10−3 sec.) the satellite clock error

will differ by 10−12 sec., which translates to a distance error of 10−12c, or 0.3 mm. Differ-

ential troposphere can be ignored for horizontal separations less than 30 km, however the

differences in height should be modeled. Differential ionosphere can be ignored for sepa-

rations less than 30 km, depending on ionospheric conditions, however it is recommended

to calibrate the ionospheric uncertainty using a dual-frequency receiver for separation dis-

tances larger than a few kilometers. While the SD method reduces or eliminates many of

the error sources, only a relative position can be calculated. Furthermore, the receiver clock

bias is still unknown.

2.3.4.2 DGPS Double Differencing

The double difference is used to remove GPS receiver clock bias. The SD obser-

vations for two receivers, r and b, observing satellites, i and j, forms the DD measurement

models such that

∇∆ρ̃ij1 (t) = ∆ρ̃i1(t)−∆ρ̃j1(t)

= (∆R(p(t), p̂i(t))−∆R(p(t), p̂j(t))) + (c∆δt(t)− c∆δt(t))

+ (∆T i(t)−∆T j(t))− (
f2
f1

∆Ii(t)− f2
f1

∆Ij(t))

+ (∆M i
ρ1(t)−∆M j

ρ1(t)) + (∆niρ1(t)−∆njρ1(t))

= ∇∆R(p(t), p̂i(t)) +∇∆T ij(t)− f2
f1
∇∆Iij(t)

+∇∆M ij
ρ1(t) +∇∆nijρ1(t) (2.34)
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λ1∇∆ϕ̃i1(t) = λ1∆ϕ̃
i
1(t)− λ1∆ϕ̃

j
1(t)

= (∆R(p(t), p̂i(t))−∆R(p(t), p̂j(t))) + (c∆δt(t)− c∆δt(t))

+ (λ1∆N
i
1(t)− λ1∆N

j
1 (t))

+ (∆T i(t)−∆T j(t))− (
f2
f1

∆Ii(t)− f2
f1

∆Ij(t))

+ (∆M i
ϕ1

(t)−∆M j
ϕ1

(t)) + (∆niϕ1
(t)−∆njϕ1

(t))

= ∇∆R(p(t), p̂ij(t)) + λ1∇∆N ij
1 (t) +∇∆T ij(t)− f2

f1
∇∆Iij(t)

+∇∆M ij
ϕ1

(t) +∇∆nijϕ1
(t) (2.35)

The double-superscript denotes the quantities identified with two satellites, and the symbol

∇ is a mnemonic device to emphasize that the difference is made between two points in the

sky. The DD L2 pseudorange and phase models are similarly defined. An example of the

DD geometry is shown in Fig. 2.3.

Satellite i Satellite j

��
�

��
� ��

�

��
�

Rover (r)
Base Station (b)

Figure 2.3: Double difference geometry. (Combined image from [6–8].)
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While the receiver clock error, c∆δt(t), is eliminated to first-order, the residual

effect due to time tag bias on the computation of the range term does not completely cancel.

Also, any systematic effects due to un-modeled atmospheric errors are increased slightly by

double differencing. Similarly, random errors due to noise or multipath are increased.

Note, DD reduces the phase ambiguity to an integer value represented as λ1∇∆N ij
1 (t).

While the sign of λ1∇∆N ij
1 (t) is not important, the partial derivative must have a consistent

sign.

2.3.4.3 DGPS Triple Differencing

The triple difference (TD) is used to remove the integer ambiguity, thus a TD

pseudorange model is ignored. The TD phase model is

δ(tk, tk+1)λ1∇∆ϕ̃ij1 = λ1∇∆ϕ̃ij1 (tk)− λ1∇∆ϕ̃ij1 (tk+1)

= (∇∆R(p(tk), p̂
ij(tk))−∇∆R(p(tk+1), p̂

ij(tk+1)))

+ (λ1∇∆N ij
1 (tk)− λ1∇∆N ij

1 (tk+1))

+ (∇∆T ij(tk)−∇∆T ij(tk+1)

− (
f2
f1
∇∆Iij(tk)−

f2
f1
∇∆Iij(tk+1)

+ (∇∆M ij
ϕ1

(tk)−∇∆M ij
ϕ1

(tk+1))

+ (∇∆nijϕ1
(tk)−∇∆nijϕ1

(tk+1))

= δ(tk, tk+1)∇∆R(p, p̂ij)

+ δ(tk, tk+1)∇∆T ij − δ(tk, tk+1)
f2
f1
∇∆Iij

+ δ(tk, tk+1)∇∆M ij
ϕ1

+ δ(tk, tk+1)∇∆nijϕ1
(2.36)
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The δ(tk, tk+1) denotes the quantities identified two epochs. An example of the TD geometry

is shown in Fig. 2.4, where the DD observations for two receivers, r and b, observing

satellites, i and j, over two successive epochs (k,k + 1), are used.

Satellite i,

Epoch k

Satellite i,

Epoch k+1

Satellite j,

Epoch k

Satellite j,

Epoch k+1

��
� ����

��
� ����	�

�

�
����	�

�

�
����

Rover (r) Base Station (b)

Figure 2.4: Triple difference geometry. (Combined image from [6–8].)

Note that TD only removes the integer ambiguity if the integer has not changed

during the time interval between epochs. Any cycle-slips will appear as outliers. While TD

introduces time correlations between observations, it is useful for determining the ambiguous

integer for DD processing.

Efficient methods for solving the integer ambiguity are presented in [19], [20],

and [92]. This dissertation uses [20] because of theoretical similarities to the nonlinear

optimization framework presented in Chapter 4. Solving the integer ambiguity is necessary

to achieve centimeter-level ground truth accuracy for navigation performance analysis [96].
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Chapter 3

Aided Inertial Navigation System

In this chapter, the background and notation for a Global Positioning System

(GPS) aided inertial navigation system (INS) [25] is reviewed. To make this dissertation

self-contained, this chapter first reviews the INS notation and mechanization. To improve

the accuracy and reliability of the INS, aiding is performed using an optimal estimator. It is

common to perform optimal estimation using an EKF framework, thus an introduction to

the EKF is presented in Section 3.7. Additional accuracy and reliability is achieved through

the nonlinear MAP optimization based INS, which is presented in Chapter 4.

3.1 Aided Inertial Navigation

Let x ∈ Rns denote the rover state vector, where

x(t) = [pᵀ(t),vᵀ(t),qᵀ(t),bᵀa(t),b
ᵀ
g(t)]

ᵀ ∈ Rns ,

where p, v, ba, bg each in R3 represent the position, velocity, accelerometer bias and gyro

bias vectors, respectively, and q ∈ R4 represents the attitude quaternion (ns = 16), each at
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time t.

The kinematic equations for the rover state are

ẋ(t) = f(x(t),u(t)), (3.1)

where f : Rns × R6 7→ Rns represents the kinematic model, and u ∈ R6 is the vector of

specific forces and angular rates. The function f is accurately known (see eqns. 11.31-

11.33 in [25], derivations specific to this dissertation are provided in Section 3.3). The user

applies forces and torques causing accelerations and angular rates which determine u(t).

The kinematic integration of u(t) through eqn. (3.1) determines x(t).

Let τi denote the time instants of the ith IMU measurements of u. The IMU

measurements are modeled as

ũ(τi) = u(τi)− b(τi)− ωu(τi), (3.2)

with stochastic errors ωu(τi) ∼ N (0,Qd) and b = [bᵀa,b
ᵀ
g]ᵀ.

Given the initial condition x(t0) ∼ N (x0,P0) and measurements ũ, an inertial

navigation system propagates an estimate of the vehicle state as the solution of

˙̂x(t) = f(x̂(t), ũ(t)), (3.3)

where x̂(t) denotes the real-time estimate of x(t), and x̂(0) = x0.

Let xi and ui denote x(τi) and u(τi). The solution of eqn. (3.3) over the interval

t ∈ [τi−1, τi] from the initial condition x̂i−1 is x̂i
.
= φ(x̂i−1, ûi−1), where ûi−1

.
= ũi−1− b̂i−1

and

φ(xi−1,ui−1) = xi−1 +

∫ τi

τi−1

f(x(τ),u(τ))dτ. (3.4)
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In this dissertation, the equality symbol ‘=’ will be used in its normal sense. The symbol

‘
.
=’ will be used to indicate computations that are implemented in software.

Define Uk−1 = {ũ(τi) for τi ∈ [tk−1, tk]}. The integral operator in (3.4) can be

iterated for all IMU measurements in Uk−1 to propagate the state from tk−1 to tk. Denote

this iterative application of eqn. (3.4) as x̂k
.
= Φ(x̂k−1,Uk−1).

3.2 GPS/DGPS Aiding

Let tk = kT denote the time instants at which GPS measurements are valid, and

xk denote the state x(kT ) at tk. It is typically the case that there are numerous IMU

measurements available between GPS epochs: T � [τi − τi−1].

For (m+1) satellites, yk represents the double-differenced code (pseudorange) and

Doppler measurement vector, as defined in Section 8.8 of [25]. For notational simplicity,

it is assumed that the double difference approach removes all common-mode errors (e.g.,

ionosphere, troposphere, satellite clock and ephemeris errors), as well as the receiver clock

biases. The double-differenced measurement vector at tk is modeled as

yk = hk(xk) + ηy,k + sk (3.5)

where ηy,k = [ηρ,k,ηd,k], and yk, ηy,k ∈ R2m. The symbol ηρ,k ∼ N (0,Rρ,k) represents

the pseudorange measurement noise, and ηd,k ∼ N (0,Rd,k) represents the Doppler mea-

surement noise. Depending on receiver design, environmental factors and the performance

of multipath mitigation techniques, the noise level Rρ and Rd can vary for each available

satellite. The measurement noise covariance R = blkdiag(Rρ,Rd) ∈ R2m×2m.
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The symbol sk = [sᵀρ,k, s
ᵀ
d,k]
ᵀ ∈ R2m represents the error due to outliers, where

sρ,k = [sρ,1, . . . , sρ,m]ᵀ and sd,k = [sd,1, . . . , sd,m]ᵀ. Throughout this dissertation, the ability

to accommodate outliers will be considered from different perspectives. In Chapter 4,

the estimation approach is presented in the ideal case where sk = 0. In Chapter 6, the

ability to detect and remove outliers is considered from the hypothesis testing point-of-

view. Alternatively, in Chapter 7, the outliers will be directly accommodated from the

Least Soft-thresholded Squares (LSS) perspective.

Using the state estimate, the GPS measurements at tk are predicted to be ŷk
.
=

hk(x̂k). The GPS measurement residual vector is computed as δyk
.
= yk − ŷk.

3.3 INS Temporal Propagation

3.3.1 Problem Formulation

While many reference frames may be used, the Earth-centered Earth-fixed (ECEF)

reference frame is a convenient reference frame for GPS-aided INS. One reason for this choice

is that satellite navigation solutions are resolved in the ECEF reference frame. Another is

that the ECEF frame works globally, not yielding singularities in the polar regions.

Define the e-frame as the ECEF-frame (or Earth-frame), and the i-frame as

the Earth-Centered-Inertial (ECI) frame (or inertial-frame). The direction cosine matrix

(DCM), or rotation matrix, from body-frame to Earth-frame is Re
b. The position of the

body b-frame with respect to the Earth e-frame resolved in the e-frame is reeb. Similarly

the velocity of the b-frame with respect to the e-frame resolved in the e-frame is veeb. The

rotation matrix from b-frame to e-frame is Re
b.

31



Expanding eqn. (3.1), the INS kinematic equations defining f(x(t),u(t)) in the

ECEF frame (see Section 11.2.2 of [25]) are

ṙeeb = veeb (3.6)

v̇eeb = Re
bf
b
ib + geb − 2Ωe

iev
e
eb (3.7)

Ṙe
b = Re

b(Ω
e
ib −Ωe

ie). (3.8)

The inputs u, are specific force f bib and angular rate [ωbib×] = Ωb
ib, with respect to the

inertial-frame i. The local gravity vector is ge, and the Earth-rotation rate is [ωeie×] = Ωe
ie.

The notation [a×] represents the skew-symmetric matrix corresponding to the vector a.

Fig. 3.1 is a block diagram showing how the angular-rate and specific-force mea-

surements, of an Inertial Measurement Unit (IMU), are used to update the Earth-referenced

attitude, velocity, and position states at ti.

Figure 3.1: Block diagram of the ECEF referenced INS equations.
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3.3.2 INS Time Propagation Equations

3.3.2.1 Attitude Update

Using eqn. (2.54) in [25], the time derivative of the rotation matrix Re
b is

Ṙe
b = Re

bΩ
b
eb, (3.9)

where Ωb
eb = [ωbeb×].

Let the attitude increment over the IMU measurement interval τi be defined as

αbib = ωbibτi. Appendix A.1 shows that the discrete-time rotation matrix update that is

equivalent to eqn. (3.9) can be computed as

Re
b(ti+1) = Re

b(ti)R
b(t+τi)
b(t) −Ωb

ieR
e
b(ti)τi + Re

b(ti). (3.10)

The integrating factor R
b(t+τi)
b(t) represents the effect of the angle rotation corresponding to

Ωb
ib over the interval [t, t+ τi], and Re

b(ti) and Re
b(ti+1) are the prior and updated rotation

matrix, respectively.

Attitude Increment

The IMU angular rate has two components ωbib and ωbie. The body rate portion ωbib

can be large and change rapidly, which is the reason its portion of the attitude increment

receives special treatment.

By eqn. (2.62) of [25],

R
b(t+τi)
b(t) = Rb+

b− = exp[αbib×]. (3.11)

The power-series expansion of the matrix exponential is

exp[αbib×] =

∞∑
r=0

[αbib×]r

r!
. (3.12)
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As shown in eqns. (2.66) and (2.67) of [25], the odd and even powers of the attitude

increment skew-symmetric matrix are,

[αbib×]2r+1 = (−1)r||αbib||r[αbib×] (3.13)

[αbib×]2r = (−1)r||αbib||2r[αbib×]2, (3.14)

where r = 1, 2, 3, · · · . Expanding eqn. (3.11) using eqns. (3.12)-(3.14),

Rb+
b− = I3 +

( ∞∑
r=0

(−1)r
||αbib||2r

(2r + 1)!

)
[αbib×] +

( ∞∑
r=0

(−1)r
||αbib||2r

(2r + 2)!

)
[αbib×]2. (3.15)

Eqn. (3.15) is equivalent to (see eqn. (2.69) of [25], and [85,86]),

Rb+
b− = I3 +

sin(||αbib||)
||αbib||

[αbib×] +
1− cos(||αbib||)
||αbib||2

[αbib×]2. (3.16)

When the CPU requires tradeoffs related to implementation, computation of trigonometric

functions can be prohibitive. In these cases, the Taylor series expansions may be truncated.

For example, the fourth-order approximation of eqn. (3.15) is

Rb+
b− = I3 +

(
1−
||αbib||2

6

)
[αbib×] +

(
1

2
−
||αbib||2

24

)
[αbib×]2. (3.17)

Such tradeoffs should be thoroughly evaluated in simulation.

3.3.2.2 Velocity Update

Neglecting acceleration in the ECEF frame, assume the ECI frame instantaneously

coincides with the ECEF frame, such that r̈eib = r̈eeb, ṙeib = ṙeeb, and reib = reeb. The velocity

update in the ECEF frame is

veeb(ti+1) = veeb(ti) + (f eib + geb(r
e
eb(ti))− 2Ωe

iev
e
eb(ti)) τi (3.18)
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where reeb(ti) and veeb(ti) are the prior position and velocity, respectively, and veeb(ti+1) is

the updated velocity for the IMU interval τi.

Specific-Force Frame Transformation

The frame transformation of specific-force takes the form

f eib = Re
bf
b
ib. (3.19)

Incorporating the updated rotation matrix Re
b(ti+1) from eqn. (3.10), the specific force

transformation is

f eib = Re
b(ti+1)f

b
ib. (3.20)

3.3.2.3 Position Update

Using eqn. (3.6), the position update is derived as follows:

reeb(ti+1) = reeb(ti) + (veeb(ti) + veeb(ti+1))
τi
2
, (3.21)

= reeb(ti) + veeb(ti)τi + (f eib + ge(reeb(ti))− 2Ωe
iev

e
eb(ti))

τ2i
2
. (3.22)

where reeb(ti) and reeb(ti+1) are the prior and updated positions, respectively.

3.3.2.4 Gravity Model

A precise gravity model [98] formulated in the ECEF frame, is defined as

γeib = − µ

||reeb||3
×


reeb +

3

2
J2

R2
0

||reeb||2


(1− 5(reeb,z)

2/||reeb||)reeb,x

(1− 5(reeb,z)
2/||reeb||)reeb,y

(3− 5(reeb,z)
2/||reeb||)reeb,z




, (3.23)
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where the Earth’s second gravitational constant J2 = 1.082627E−3 (m3/s2), the Equatorial

radius is R0 = 6.378137E+6 (m), the gravitational constant µ = 3.986004418E+14 (m3/s2),

and the Earth-rotation rate is ωie = 7.292115E−5 (rad/s).

3.4 State Correction

3.4.1 Problem Formulation

Let x̂ ∈ Rns denote the estimate of the rover state vector:

x̂(t) = [p̂ᵀ(t), v̂ᵀ(t), q̂ᵀ(t), b̂ᵀa(t), b̂
ᵀ
g(t)]

ᵀ ∈ Rns .

The error between x(t) and x̂(t) is denoted as δx. The error vector is

δx = [δpᵀ, δvᵀ,ρᵀ, δbᵀa, δb
ᵀ
g]
ᵀ ∈ Rne ,

where δp and δv, each in R3, represent the error between the true and computed position

and velocity, respectively. The small-angle error state, denoted as ρ ∈ R3×1, is defined in

Section 2.5.5 of [25], and discussed in Section 3.4.3. The errors δba and δbg, each in R3,

represent the accelerometer bias, and gyro bias errors, respectively. Therefore δx ∈ R15

(i.e. ne = 15). The fact that ns = 16 and ne = 15 is discussed in Section 3.4.3.

Let δx̂ denote an estimate of δx. The state correction to the state vector x̂ is

denoted as

x̂+ = x̂− ⊕ δx̂.

The symbol (−) denotes the prior estimate, whereas (+) is the updated estimate. The

symbol ⊕ is discussed in Sections 3.4.2 and 3.4.3
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3.4.2 Position, Velocity, and Bias Updates

Position, velocity, accelerometer bias and gyro bias, each have corrections which

are additive. The state correction step is

p̂+ = p̂− + δp

v̂+ = v̂− + δv

b̂+
a = b̂−a + δba

b̂+
g = b̂−g + δbg.

3.4.3 Attitude Update

When the attitude error is sufficiently small (see Section 2.5.5 of [25]), the atti-

tude can be represented as a set of small-angle planar rotations {ρx, ρy, ρz} about three

orthogonal axes {x, y, z}, thus the attitude error can be defined in R3.

3.4.3.1 Rotation Matrix

Let Rn
b ∈ R3×3 represent the true rotation from body-frame (b) to navigation-

frame (n) that is equivalent to q(t) (see eqn. D.13 in [25]). Let R̂n
b ∈ R3×3 represent the

computed rotation that is equivalent to q̂(t). The error between the true and computed

rotation is

Rn
n̂ = (Rn

b )(R̂b
n),

where Rn
n̂ represents the rotation matrix from the computed to actual navigation frame.

When the error between the true and computed rotation is zero, then Rn
n̂ = I. Otherwise,
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as discussed in Section 2.6.1 of [25],

Rn
n̂ = [I−P]

where P = [ρ×], and ρ = [ρx, ρy, ρz]
ᵀ ∈ R3 (see eqn. 10.28 of [25]).

Using this notation, the attitude update (as defined in eqn. 10.29 of [25]) is

(Rn
b )+ = [I−P](R̂n

b )−.

Note that the attitude correction is multiplicative.

3.4.3.2 Quaternion

A similar approach to Section 3.4.3.1 is valid when the attitude error is represented

by a quaternion. Let qnb represent the true quaternion from b-frame to n-frame. Let q̂nb

represent the computed quaternion. The error may be represented as

qnn̂ = qnb ⊗ q̂bn

where qnn̂ represents the quaternion from the computed to actual navigation frame. The

symbol ⊗ represents the quaternion multiplication operation defined in Section D of [25].

When the error between the true and computed rotation is zero, then qnn̂ = [1, 0, 0, 0]ᵀ,

otherwise qnn̂ may be represented as

qnn̂ =

 q̂s

q̂v

 =


√

1−
∥∥1
2ρ
∥∥2
2

1
2ρ

 u

 1

1
2ρ

 , (3.24)

where the scalar part of the quaternion is q̂s = 1, and the vector part is q̂v = ρ. The

approximation on the right-hand side of eqn. (3.24) is derived in Appendix A.2.
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Using this notation, the multiplicative quaternion update is

q̂n +
b = qnn̂ ⊗ q̂n −b .

Quaternion operations are defined in Section D of [25].

3.5 INS Error Model

Due to initial condition errors, system calibration errors, and measurement noise,

estimation error develops over time such that x(t) are not equal x̂(t) The error state vector

is

δx = [δpᵀ, δvᵀ, δθᵀ, δba
ᵀ, δbg

ᵀ]ᵀ ∈ Rne ,

where δp, δv, δθ, δba, and δbg each in R3 are the position, velocity, attitude, accelerometer

bias and gyro bias error vectors, respectively.

The error state δx(t) is related to x(t) and x̂(t) by δx(t) = x(t)	x̂(t). The symbol

‘	’, which is similar to the discussion in Section 3.4, represents the subtraction operation

for position, velocity and bias states, and the multiplication operation of the attitude states.

The fact that ns = 16 and ne = 15 is discussed in Section 3.4. The dynamics and stochastic

properties of this estimation error vector are well understood, and can be found in Section

11.4 of [25]. The derivation and definitions of linear state transition error model is presented

in Section 3.6.
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3.6 INS Noise Propagation

3.6.1 Problem Formulation

Let xv(t) = [pᵀ(t),vᵀ(t),qᵀ(t)]ᵀ ∈ R10 represent the vehicle state comprised

of position, velocity and attitude. Let xc(t) = [bᵀa(t),b
ᵀ
g(t)]ᵀ ∈ R6 represent the IMU

calibration terms: accelerometer bias and gyro bias. Then x(t) can be represented as

x(t) = [xᵀv(t),x
ᵀ
c(t)]ᵀ.

Let τi denote the time instants of the ith IMU measurements of u, as defined in

Section 3.1. Let xi = x(τi) and ui = u(τi).

Let the state estimate time propagation be represented as

x̂i+1
.
= φ(x̂i, ũi),

where the vehicle state estimate is x̂v,i+1
.
= φv(x̂v,i, ũi).

Let the true state time propagation be represented as

xi+1 = φ(xi,ui),

and the true vehicle state as xv,i+1 = φv(xv,i,ui).

Define the state error as

δxi = xi 	 x̂i ∈ Rne ,

where the symbol ‘	’ is discussed in Section 3.5. Let δxv,i ∈ R9 represent the vehicle

state error for position, velocity and attitude. Let δxc,i ∈ R6 represent the error in the

IMU calibration terms: accelerometer bias and gyro bias. Then δxi can be represented as

δxi = [δxᵀv,i, δx
ᵀ
c,i]
ᵀ.
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Let the IMU measurement be defined as

ũ(τi) , u(τi)− b(τi)− ωu(τi) ∈ R6,

with additive stochastic errors ωu(τi) ∼ N (0,Qd) and b = [bᵀa,b
ᵀ
g]ᵀ. The sensor bias b

represents time correlated measurement errors, and ωu(τi) represents the white measure-

ment errors. Let the estimate ûi , ũi+ b̂i, where b̂i is the estimate of bi (i.e. x̂c,i). Let the

measurements ũ(τi) be defined for IMU measurement times i, between aiding measurement

times k, such that τi ∈ [tk−1, tk].

Define

δui , ui − ûi

= ui − ũi − b̂i

= ui − (ui − bi − ωu,i)− b̂i

= δbi + ωu,i,

where δbi , bi − b̂i, and δbi (i.e. δbi = δxc,i) is a state calibration term.

Linearization of the state error, using Taylor series to first order, yields

δxv,i+1 = φv(xv,i,ui)− φv(x̂v,i, ûi)

= φv(x̂v,i, ûi) +
∂φv
∂xv,i

∣∣∣∣
x̂v,i

δxv,i +
∂φv
∂ui

∣∣∣∣
ûi

δui − φv(x̂v,i, ûi)

=
∂φv
∂xv,i

∣∣∣∣
x̂v,i

δxv,i +
∂φv
∂ui

∣∣∣∣
ûi

δui

= Aiδxv,i + Biδui

= Aiδxv,i + Biδbi + Biωu,i, (3.25)

where Ai = ∂φv
∂xv,i

∣∣
x̂v,i,ûi

∈ R9×9, and Bi = ∂φv
∂ui

∣∣
x̂v,i,ûi

∈ R9×6.
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Let the model of the sensor bias be defined as a first-order Gauss-Markov process

δbi+1 = Fbδbi + ν, (3.26)

where Fb ∈ R6×6 is selected such that the bias errors are modeled as either random constants

or random walk plus constants (see eqns. 11.106 and 11.107 of [25]), and ν ∼ N (0, σνI).

Rewriting eqns. (3.25) and (3.26) in matrix form:δxv,i+1

δxc,i+1

=

Ai Bi

0 Fb


δxv,i
δbi

+

Bi 0

0 I


ωu,i
ν

 . (3.27)

For analysis, in the following section let Fb = I.

3.6.2 Propagation of State Error

This section analyzes the error accumulation over the time interval t ∈ [k − 1, k]

using superposition.

3.6.2.1 Propagation of Initial State Error

Consider eqn. (3.27) over the interval t ∈ [k − 1, k], where ωu,i−1 = 0 and ν = 0.

Without loss of generality let k = 1, such that t ∈ [0, 1]. For each time instant, eqn. (3.27)
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can be represented in terms of Ai, and Bi, with initial condition errors δxv,0, and δb0:

δx1 =

A0 B0

0 I


δxv,0
δb0



δx2 =

A1 B1

0 I


δxv,1
δb1



=

A1 B1

0 I


A0 B0

0 I


δxv,0
δb0



=

A1A0 A1B0 + B1

0 I


δxv,0
δb0



δx3 =

A2 B2

0 I


δxv,2
δb2



=

A2 B2

0 I


A1A0 A1B0 + B1

0 I


δxv,0
δb0



=

A2A1A0 A2A1B0+A2B1+B2

0 I


δxv,0
δb0

 . (3.28)

Define Fs as the sample frequency of the sensor (e.g. IMU). Let Uk = {ũ(τi) for τi ∈

[tk−1, tk]}. Let Xk = [x(tk−L)ᵀ, . . . ,x(tk)
ᵀ]ᵀ ∈ Rns(L+1) denote the vehicle trajectory over a

sliding time window that contains L one second GPS measurement epochs: [yk−L+1, . . . ,yk].
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After Fs IMU time steps (i.e. Fs,k=1)

δxFs =


Fs∏
i=1

 Ai Bi

0 I



δxv,0
δb0

 (3.29)

= Υ(X̂k,Uk)[δxv,0, δb0]
ᵀ, (3.30)

where the operator Υ(X̂k,Uk) in eqn. (3.30) represents the product operation in eqn.

(3.29), and X̂k is the estimate of Xk. The product operation in eqn. (3.29) must follow the

order of multiplications shown in eqn. (3.28).

3.6.2.2 Noise Propagation

Again consider eqn. (3.27) over the interval t ∈ [k − 1, k]. Now analyze the effect

of the noise terms ωu and ν, with δxv,0 and δb0 both zero.

To simplify notation, let

Ci ,

Ai Bi

0 I

 , Di ,

Bi 0

0 I

 ,
and

δxi ,

δxv,i
δxc,i

 , ni ,

ωu,i
ν

 .
Defining eqn. (3.27) using the terms above,

δxi+1 = Ciδxi + Dini. (3.31)
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Performing operations on eqn. (3.31) (similar to the operations leading up to eqn.

(3.28)),

δx1 = C0δx0 + D0n0

δx2 = C1δx1 + D1n1

= C1(C0δx0 + D0n0) + D1n1

= C1C0δx0 + C1D0n0 + D1n1

δx3 = C2δx2 + D2n2

= C2(C1C0δx0 + C1D0n0 + D1n1) + D2n2

= C2C1C0δx0+C2C1D0n0+C2D1n1+D2n2. (3.32)

For i = Fs, and δx0 = 0, the terms in eqn. (3.32) can be defined as

wk−1 =


Fs−2∑
i=0

 Fs−1∏
j=i+1

Cj

Dini

+ DFs−1nFs−1 (3.33)

= Γη.

Let the product of Cj in eqn. (3.33) be defined as

Cp
j ,


∏p
j=q Cj = Cp · · ·Cq−1Cq for q 6= p

Cq for q = p

(3.34)

where product operation in eqn. (3.34) must follow the order of operations shown in eqn.

(3.32). Let Γ and η be defined as

Γ ,
[
CFs−1

1 D0,C
Fs−1
2 D1, . . . ,C

Fs−1
Fs−1DFs−2,DFs−1

]
η , [n0,n1, . . . ,nFs−1] .
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3.6.2.3 Summary

Combining the results from Sections 3.6.2.1 and 3.6.2.2, the linear state transition

error model over t ∈ [tk−1, tk] is

δxk = Υk−1δxk−1 + wk−1. (3.35)

with

QD = Cov(wk−1) ∈ Rne×ne

= E 〈ΓηηᵀΓᵀ〉

= E

〈
Γ



η0

η1

...

ηFs−1


[η0 η1 · · · ηFs−1] Γᵀ

〉

= Γ


Qd,0

. . .

Qd,Fs−1

Γᵀ, (3.36)

where Qd,i = ηiη
ᵀ
i . The stochastic properties of eqn. (3.36) are well understood, and can

be found in Sections 4.7 and 7.2.5.2 of [25].

3.7 Extended Kalman Filtering for GPS-aided INS

When GPS aiding measurements of the form (repeating eqn. (3.5) for clarity)

ỹ(t) = h(x(t)) + ηy(t), ηy ∼ N (0,Ry), (3.37)
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are available, various methods use the initial state, inertial measurements, and aiding mea-

surement information to estimate the vehicle state vector [18,25,59]. The Extended Kalman

Filter (EKF) is a widely used method in aided INS, due to its implementation simplicity

and real-time efficiency [26].

The standard EKF can be reformulated in Weighted Least Square (WLS) form

[25,26,48]. Given the INS prior and the aiding measurements at time step tk,

x̂−k = xk + δx−k , δx−k ∼ N (0,P−k ), (3.38)

ỹk = hk(xk) + ηk, ηk ∼ N (0,Rk), (3.39)

where the process noise wk and the measurement noise nk [18, 25, 59] are assumed White-

Gaussian-Noise (WGN). A Maximum Likelihood estimation of the state correction δxk at

tk can be formulated as

δx+
k = arg max

δxk

{
pδx−

k
(δxk)pnk(ỹk −Hkx̂

−
k −Hkδxk)

}
, (3.40)

where Hk = ∂hk
∂x

∣∣
x=x̂−

k
is the Jacobian matrix of the measurement model evaluated at the

INS prior x̂−k .

A Least Square problem can be derived by evaluating the negative log-likelihood

of the right hand side of eqn. (3.40),

δx+
k = arg min

δxk

{
‖δxk‖2P−

k

+ ‖δyk −Hkδxk‖2Rk

}
, (3.41)

where δyk , ỹk − Hkx̂
−
k is the measurement residual (i.e. innovation) and the notation

‖x‖2C , xᵀC−1x is defined as the squared Mahalanobis distance.
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Let

Ak =

 I

Hk

 , Ck =

P−k 0

0 Rk

 and δYk =

 0

δyk

 ,
the Kalman Filter measurement update can be derived by solving a Weighted Least Square

problem:

min
δx
‖δYk −Akδx‖Ck . (3.42)

The solution of eqn. (3.42) is

δx+
k =

(
AᵀkC

−1
k Ak

)−1
AᵀkC

−1
k δYk, (3.43)

and the corresponding covariance of δx+
k is P+

k =
(
AᵀkC

−1
k Ak

)−1
. With δx+

k , the INS state

is updated as

x̂+
k = x̂−k ⊕ δx

+
k ,

where the ⊕ operator is discussed in Section 3.4, and the Kalman gain is

Kk =
(
AᵀkC

−1
k Ak

)−1
AᵀkC

−1
k

= P−k Hᵀk
(
Rk + HkP

−
k Hᵀk

)
, (3.44)

where eqn. (3.44) is derived by expanding
(
AᵀkC

−1
k Ak

)−1
AᵀkC

−1
k .

The EKF works well for many aided INS applications, e.g. GPS-INS [25], Underwater-

INS [72], Vision-Inertial-Odometry (VIO) [60–63]. However, the performance of the EKF

depends on initial conditions and nonlinearities (see [22]), and prior EKF linearization

points cannot be corrected at later times.

Two test cases are provided in Figs. 3.2 and 3.3, wherein the EKF divergence

due to incorrect yaw initialization is shown. In both cases the EKF uses double-differenced
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GPS pseudorange and Doppler measurements and a consumer-grade IMU. Both Figs. 3.2

and 3.3 display norm of the position, velocity and attitude error, where error is defined as

ground-truth minus the estimate. In the experiment, the vehicle is level and at t = 20sec.

accelerates (from stationary) with a heading of North. In Case 1, Fig. 3.2, the INS is

initialized with 45◦ yaw error. While the EKF is able to remove most of the yaw error

within a few GPS epochs, both position and velocity errors are large, and never recover.

In Case 2, Fig. 3.3, the INS is initialized with 180◦ yaw error (worst-case). Here the

EKF position, velocity, and attitude estimates diverge (oscillating indefinitely), and never

recover.

To overcome the limitations of the EKF, a sliding window smoother is proposed

for the GPS-INS problem, based on recent advances in the Simultaneous Localization and

Mapping (SLAM) research community [22, 54, 55]. In Chapter 4, the MAP optimization

based smoothing method is extended to GPS-INS, to enhance the navigation performance

accuracy and reliability. In Chapter 8, the ability to completely remove the yaw initialization

error of Case 2 (Fig. 3.3) is demonstrated using the proposed estimator of Chapter 4.
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Figure 3.2: Case 1: Divergence of the GPS-INS EKF under poor yaw initialization.
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Figure 3.3: Case 2: Divergence of the GPS-INS EKF under worst-case yaw initialization.
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Chapter 4

Estimation Theory

For a known linear system with white, normally distributed, and mutually uncor-

related process and measurement noise vectors with known covariance, the Kalman filter

(KF) is the optimal estimator [56]. When the time propagation or measurement models are

nonlinear, a variety of methods (e.g., the extended Kalman filter [68]) are available to solve

the sensor fusion problem over a single GPS epoch.

This section reviews the MAP estimator [59] solved over a sliding temporal window

in real-time. The problem has a long history [52]. While the theoretical motivations are

distinct, the approach is also closely related to receding horizon estimation [46,69,75,106].

This approach has been developed extensively in the Simultaneous Localization and Map-

ping (SLAM) research community [22, 24, 54, 55, 64, 74]. The approach developed for GPS-

INS in [105] is referred to as a Contemplative Real Time (CRT) method due to the potential

ability to evaluate and consider alternative outlier hypotheses for all data within the sliding

window. That ability is demonstrated in [80] for CRT with Hypothesis Testing (CRT-HT),

and for CRT with Least Soft-thresholding Squares (CRT-LSS) in [81]. The practical and
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theoretical comparison of CRT-HT versus CRT-LSS is developed and demonstrated herein.

4.1 Theoretical Solution

Let X = [x(tk−L)ᵀ, . . . ,x(tk)
ᵀ]ᵀ ∈ Rns(L+1) denote the vehicle trajectory over a

sliding time window that contains L GPS measurements: [yk−L+1, . . . ,yk]. Assume that the

window will slide one epoch upon arrival of each new GPS measurement. For presentation

purposes only, assume that each GPS epoch aligns with an IMU measurement time. The

results in the experimental section relax this assumption.

Estimation of the vehicle trajectory X can be formulated as a MAP problem (see

eqn. 11.18 in [59]):

X̂ = argmax
X

{p(X,U,Y)} , (4.1)

where within the time window U = {Ul | l ∈ [k−L, k−1]}, and Y = {yj | j ∈ [k−L+1, k]}

is the set of GPS measurements over the time window for satellites 1, ...,m. Both U and Y

will be treated as concatenated vectors in the analysis that follows. The joint probability

for the GPS-INS problem, p(X,U,Y), can be factored as

p(X,U,Y) = p(X,U)p(Y | X,U) (4.2)

= p(X,U)p(Y | X) (4.3)

= p(X,U)
k∏

j=k−L+1

p(yj |xj) (4.4)

= p(xk−L)

k−1∏
l=k−L

p(xl+1|xl,Ul)

k∏
j=k−L+1

p(yj |xj), (4.5)

where p(xk−L) is the distribution of the initial condition for the time window, p(xl+1|xl,Ul+1)

is the conditional distribution of the INS state estimate at t = (l+ 1)T , p(yj |xj) is the dis-

52



tribution of the GPS measurement noise ηy,k.

The steps for the formal proof of eqn. (4.5) are as follows: Eqn. (4.2) is obtained

by applying the definition of conditional probability. Eqn. (4.3) is obtained by applying the

conditional independence property. Eqn. (4.4) is obtained by assuming the noise affecting

the sequence of measurements is independent. Eqn. (4.5) is obtained by assuming Markov

process and temporal independence of process noise. �

4.2 Numerical Solution

Assume that x(tk−L), wk−1, and ηy have Gaussian distributions with positive

definite covariance matrices P(k−L), QD, and R, respectively. Finding X that maximizes

eqn. (4.5) is equivalent to minimizing the negative of its natural logarithm. This yields the

equivalent nonlinear cost function:

C(X) = ‖x̂k−L − x(tk−L)‖2P(k−L)

+
k−1∑
l=k−L

‖Φ
(
x(tl),Ul

)
− x(tl+1)‖2QD

+
k∑

j=k−L+1

‖y(tj)− hj
(
x(tj)

)
‖2R, (4.6)

which can be compactly expressed as C(X) = ‖v(X)‖2W, where v(X) ∈ R(ns+nsL+2mL)×1 is

defined as

v(X) =
[
x̂ᵀk−L − x(tk−L)ᵀ,Φ(X,U)ᵀ −Xᵀ,Yᵀ − h(X)ᵀ

]ᵀ
.

In this expression, Φ(X,U)−X represents the concatenation of the vector terms Φ
(
x(tl),Ul

)
−

x(tl+1), and h(X) represents the concatenation of the vector hj(x(tj)) terms. Using MAT-

LAB syntax, the matrix W ∈ R(ns+nsL+2mL)×(ns+nsL+2mL) is the positive definite block
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diagonal matrix formed by the positive definite submatricies P(k−L) ∈ Rns×ns , Q̄D =

blkdiag(QD) ∈ RnsL×nsL, and R̄ = blkdiag(R) ∈ R2mL×2mL. The matrix W can be rep-

resented as W = blkdiag(P(k−L), Q̄D, R̄), and ‖v‖2W = vᵀW−1v represents the squared

Mahalanobis distance with matrix W.

The cost function in eqn. (4.6) can be normalized using Cholesky Decomposition

[22, 24, 54, 105]. Let ΣᵀWΣW = W−1. Then, r , ΣWv is the weighted residual, and

‖v‖W = ‖r‖2. With this notation the cost function of eqn. (4.6) reduces to

C(X) = ‖a− b(X)‖22, (4.7)

which will be minimized iteratively. In eqn. (4.7), the symbol

a
.
= ΣW[x̂ᵀk−L,0

ᵀ,Yᵀ]ᵀ (4.8)

represents the terms that are known at each iteration, and

b(X) = ΣW[x(tk−L)ᵀ,Φ(X,U)ᵀ −Xᵀ,h(X)ᵀ]ᵀ

represents the terms that are computed based on X.

The optimal value of X in eqn. (4.1) is

X∗ = arg min
X

{
‖a− b(X)‖22

}
. (4.9)

Given an initial vector

X̂ = [x̂(tk−L)ᵀ, . . . , x̂(tk)
ᵀ]ᵀ ∈ Rns(L+1),

this optimization can be solved iteratively using a Taylor series expansion to approximate

b(X):

b(X) = b(X̂) + BδX + h.o.t′s, (4.10)
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where the Jacobian B
.
= ∂b(X)

∂X

∣∣∣
X=X̂

, and

δX = [δx(tk−L)ᵀ, . . . , δx(tk)
ᵀ]ᵀ ∈ Rne(L+1).

Substituting eqn. (4.10) into eqn. (4.9) and ignoring the higher order terms

(h.o.t′s), yields

δX∗ = arg min
δX

‖a− (b(X̂) + BδX)‖22

= arg min
δX

‖r−BδX‖22, (4.11)

where

r
.
= a− b(X̂). (4.12)

The optimal δX∗ is found by solving

BδX∗ = r (4.13)

in the least squares sense. The matrix B ∈ R(ne+neL+2mL)×(ne+neL+2mL) is sparse; therefore,

eqn. (4.13) can be solved efficiently by many methods, e.g. Cholesky, or QR. Further

computational gains can be achieved by employing a sparse matrix library as discussed

in [22,24,55].

The optimal δX is the solution of the normal equation:

BᵀBδX∗
.
= Bᵀr. (4.14)

Eqn. (4.14) can be compactly expressed as

ΞδX = ξ, (4.15)
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where Ξ = BᵀB is the information matrix, ξ = Bᵀr is the information vector [22,24,55,105].

Given δX∗, the update to the trajectory at each iteration is

X̂+ .
= X̂− ⊕ δX∗. (4.16)

The optimal solution is obtained by iterating eqns. (4.8), (4.10), (4.12), and (4.13) to

convergence for some user defined stopping conditions. The superscript symbol ‘−’ denotes

the trajectory estimate at the start of the iteration, and superscript ‘+’ is the updated

trajectory estimate. The symbol ‘⊕’, which is discussed in Section 3.4, represents the

addition operation for position, velocity and bias states, and the multiplication operation

of the attitude states. A line search is implemented in the direction of δX∗ from eqn. (4.13)

to determine the magnitude of the update step in eqn. (4.16) (see [24,94]).

Solving the full MAP problem results in the optimal estimate of the vehicle tra-

jectory X. When the structure of Ξ is sparse, the computational load increases linearly

with the length L of the trajectory (see [24]). The computational complexity of the CRT

algorithm is discussed in Chapter 5.

4.3 Optimization: Iterated Solution

Consider the lth iteration of the optimization, where l is a positive integer. Given

an estimate of the solution X̂l, the optimization algorithm computes an error vector δXl,

which corrects X̂l using eqn. (4.16) to yield an improved solution X̂l+1 to eqn. (4.6).

The fact that the trajectory X must be re-integrated for each iteration, is discussed

in Section 4.3 of [105]. The iterative process is terminated when either ‖δX‖2 ≤ ε or l ≥ lmax,

where ε > 0 is a user defined threshold, and lmax is the user defined maximum number of
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iterations.

The derivation of eqn. (4.11) shows that

r(X) = B(X̂)δX + ηr, (4.17)

where B(X̂) is the Jacobian of r(X) evaluated at X̂, with ηr ∼ N (0, I). This fact will be

used in Chapter 6.
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Chapter 5

Computational Cost

In this chapter consider the computational cost (number of floating-point oper-

ations (FLOPs)) for each update of the CRT estimator. It is assumed that the imple-

mentation uses a sparse matrix library, and only compute and store the upper-triangular

elements of all symmetric positive-definite matrices used in the CRT estimator. First define

the computational cost of the Kalman Filter (KF) [25], then evaluate the most expensive

operation, the computation of δX in the CRT estimator.

Consider the general matrices/vectors, A ∈ Rn×n, v ∈ Rn×1, upper-triangular

Σ ∈ Rn×n, and B ∈ Rm×n, with m > n. The computational cost for basic linear algebra

operations on dense matrices [41] is shown in the first-half of Table 5.1. If A and B are

sparse, a lower-bound can be determined using sparse matrix operations (see [40]), the

results are shown in the second-half of Table 5.1. The computational cost for three matrix

decompositions is provided in Table 5.2. The computational cost for three Least-Square
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Table 5.1: Computational cost for dense and sparse matrices.

Operation Computational Cost

Dense matrices

A−1 ≈ n3
AA n3

Av n2

ABᵀ mn2

BᵀB mn2

Bv mn

Σv n2−n
2 + n

ΣA n3−n2

2 + n2

ΣΣ n3

3

Sparse matrices

A−1 n
AA n
Av n

ABᵀ n
BᵀB n
Bv n

Table 5.2: Computational cost for matrix decompositions.

Decomposition Computational Cost

Cholesky (Section 4.2.1 [41]) n3

3

Householder QR (Section 5.2.1 [41]) 4
(
m2n−mn2 + n3

3

)
Givens QR (Section 5.2.3 [41]) 3n2

(
m− n

3

)

Table 5.3: Computational cost for LS algorithms (Section 5.5.9 [41]).

LS Algorithm Computational Cost

Normal Equations mn2 + n3

3

Householder QR Orthogonalization 2mn2 + 2n3

3
Givens QR Orthogonalization 3mn2 − n3
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(LS) algorithms is provided in Table 5.3.

5.1 Computational cost for KF

For the KF state estimate x̂ ∈ Rn, and measurement y ∈ Rm with m > n, the

computational cost with dense matrices is presented in Table 5.4.

5.2 Computational cost for CRT using Normal Equations

This section is split into two primary parts: first compute δX by dense matrices,

then compute δX by sparse matrices. In both cases we only consider one iteration of the

optimization. Because the calculation of δX is the most expensive operation in the CRT

estimator, assume the state transition matrix Φ, measurement matrix H, measurement

prediction ŷ, integrated state vector xi, and optimized state vector x∗ are each given (refer

to Sections 3 & 4) and are therefore not included in the cost to compute δX.

Table 5.4: Computational cost for the KF (Section 3.3.1 [43]).

Operation Computational Cost

System Propagation

x̂−k = Φk−1x̂
+
k−1 n2

P−k = Φk−1P
−
k−1Φ

ᵀ
k−1 + Qdk−1 2n3

Measurement update

Kk = P−k Hᵀk(HkP
−
k Hᵀk + Rk)

−1 2mn2 + 2mn
x̂+
k = x̂−k + Kk(yk −Hkx̂

−
k ) 2mn

P+
k = (I−KkHk)P

−
k 2mn2
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5.2.1 Dense Jacobian

Given the number of error states ne, the number of measurements nm, and CRT

window length L, the components of the normalized Jacobian matrix J and residual vector

r, are defined below with a mapping to the number of computations required for dense ma-

trices. Both J and r are normalized using Cholesky factorization1, which has computational

complexity n3

3 . Define δXO, rO, and JO as the number of operations to compute δX, r,

and J, respectively.

The components of the Jacobian are,

JP0 , ΣP0 [I,0] 7→
(
n3e
3

+ n3e

)
JQd , ΣQd[Φ,−I] 7→

(
n3e
3

+ 2n3e

)
L

JR , ΣRH 7→
(
n3m
3

+ nmn
2
e

)
L

J ,


JP0

JQd

JR

 7→


n3
e
3 + n3e(

n3
e
3 + 2n3e

)
L(

n3
m
3 + nmn

2
e

)
L

 ,

where, JP0 ∈ Rne×ne , JQd ∈ RneL×neL, JR ∈ RnmL×neL, and J ∈ R(ne(L+1)+nmL)×(ne(L+1)).

The number of operations to compute J is

JO =
n3e
3

+ n3e +

(
n3e
3

+ 2n3e +
n3m
3

+ nmn
2
e

)
L.

1Householder QR, or Givens QR factorization may be used instead (see Table 5.2).
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The components of the residual vector are,

rP0 , ΣP0 [µ− x∗] 7→ n2e

rQd , ΣQd[x∗ − xi] 7→ n2eL

rR , ΣRδy 7→ nmneL

r ,


rP0

rQd

rR

 7→


n2e

n2eL

nmneL

 ,

where, rP0 ∈ Rne×1, rQd ∈ RneL×1, rR ∈ RnmL×1, and r ∈ R(ne(L+1)+nmL)×1. Note, the n3
e
3

and n3
m
3 are not included in the components r, because the cost to compute the Cholesky

decomposition is included in the components of J. The number of operations to compute r

is

rO = n2e + (n2e + nmne)L.

Given the residual vector r ∈ Rp×1 and (dense) Jacobian J ∈ Rp×q for p > q,

where p = (ne × (L+ 1)) + (nm × L) and q = (ne × (L+ 1)), the number of operations to

compute δX by the Normal Equations is

δX = (JᵀJ)−1Jᵀr 7→ pq2 +
q3

3
= δXO.

Expanding p and q:

δXO = n3e

(
4

3
L3 + 4L2 + 4L+

4

3

)
+ n2enm(L3 + 2L2 + L).
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Define δXTO as the total number of operations to compute δX by the Normal

Equations.

δXTO = δXO + rO + JO

= n3e

(
4

3
L3 + 4L2 + 4L+

4

3

)
+ n2enm(L3 + 2L2 + L) + n2e +

(
n2e + nmne

)
L

+
n3e
3

+ n3e +

(
n3e
3

+ n2e +
n3m
3

+ nmn
2
e

)
L

= n3e

(
4

3
L3 + 4L2 +

19

3
L+

8

3

)
+ n2e(nmL

3 + 2nmL
2 + 2nmL+ L+ 1)

+ nenmL+
n3m
3
L.

Therefore the computation for a single iteration of the dense δX by the Normal Equations

is O(n3eL
3).

5.2.2 Sparse Jacobian

Presently, common sparse libraries do not support LS by the Normal Equations

because the operations are not efficient (see [41] and [40]). By inspection, the operation

JᵀJ produces a dense matrix, and the inversion of JᵀJ is O(n3eL
3).

5.3 Computational cost for CRT using QR Factorization

This section first introduces the theory for solving systems of linear equations using

QR factorization, then follows an outline similar to Section 5.2. The same assumptions of

Section 5.2 apply here.
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5.3.1 Theory

Let A ∈ Rm×n with m ≥ n and b ∈ Rm. Suppose that the orthogonal matrix

Q ∈ Rm×m is computed such that

QᵀA = R =

 R1

0


is upper-triangular, with R1 ∈ Rn×n and 0 ∈ R(m−n)×n. If

Qᵀb =

 c

d


where c ∈ Rn×1 and d ∈ R(m−n)×1, then

‖Ax− b‖22 = ‖QᵀAx−Qᵀb‖22

= ‖R1x− c‖22 + ‖d‖22 (5.1)

for any x ∈ Rn. If rank(A) = rank(R1) = n, then the Least-Square estimate x̂ is de-

fined by the upper-triangular system R1x̂ = c. Given R1, solving this system requires

2n2
(
m− n

3

)
FLOPs. While O(mn) are required to update c, and O(n2) are required for

back-substitution (see Section 5.3.2 of [41]), the most expensive operation is the QR factor-

ization of A, which requires at least 3n2
(
m− n

3

)
FLOPs (assuming Givens QR).

Modifying eqn. (5.1) for the CRT estimator, define J ∈ Rp×q, r ∈ Rp×1, δX ∈

Rq×1, R1 ∈ Rq×q, c ∈ Rq×1 and d ∈ R(p−q)×1. For

JδX = r

the Least-Square estimate δX̂ of δX is found by

‖JδX− r‖22 = ‖R1δX− c‖22 + ‖d‖22
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where δX̂ is defined by the upper-triangular system R1δX̂ = c.

5.3.2 Dense Jacobian

Let JQR,d denote the number of operations to compute the QR factorization of

(dense) J. Using the previously defined values for p and q, and the values in Table 5.2,

JQR,d = 3q2
(
p− q

3

)
= 2n3e(L

3 + 3L2 + 3L+ 1) + 3n2enm(L3 + 2L2 + L).

Let δX̂QR,d denote the number of operations to compute the Least-Square estimate

δX̂ with Givens QR of (dense) J (see Table 5.3). Then

δX̂QR,d = 2q2
(
p− q

3

)
= 2n3e(L

3 + 3L2 + 3L+ 1) + 3n2enm(L3 + 2L2 + L).

Therefore the computation for a single iteration of the dense δX using Givens QR is

O(n3eL
3).

5.3.3 Sparse Jacobian

Let JQR,s, rQR,s, and δXQR,s, denote the number of operations to compute the

QR factorization of (sparse) J, r, and δX, respectively. The components of the sparse

Jacobian are,

JP0 7→
(
n3e
3

+
n2e − ne

2
+ ne

)
JQd 7→

(
n3e
3

+
n3e − n2e

2
+ n2e +

n2e − ne
2

+ ne

)
L

JR 7→
(
n3m
3

+ 3nm

)
L.
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The number of operations to compute J is

JQR,s =
n3e
3

+
n2e − ne

2
+ ne +

(
n3e
3

+
n3e − n2e

2
+ n2e +

n2e − ne
2

+ ne

)
L+

(
n3m
3

+ 3nm

)
L.

The components of the residual vector are,

rP0 7→
(
n2e − ne

2
+ ne

)
rQd 7→

(
n2e − ne

2
+ ne

)
L

rR 7→ nmL.

The number of operations to compute r is

rQR,s =
n2e − ne

2
+ ne +

(
n2e − ne

2
+ ne + nm

)
L

Using a sparse library [40], the LS solution via QR factorization is proportional to

the number of non-zero elements in the Jacobian (see [41] and [40]). Therefore

δXQR,s = ne(L+ 1) + nmL

Define δXQR,TO as the total number of operations to compute δX by the sparse QR fac-

torization.

δXQR,TO = δXO + rO + JO

= n3e

(
1

3
+

1

3
L

)
+ n2e

(
ne − 1

2
L+ 1

)
+ ne(3L+ 3) + nm

(
1

3
n2mL+ 5L

)
.

Therefore the computation for a single iteration of the sparse δX using QR factorization is

O(n3eL).
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5.4 Discussion

5.4.1 Normal Equations vs. QR

In Section 5.3.8 of [41], the authors identify the challenge with selecting the “right”

algorithm to solve a linear system of equations.

• Condition Number: while the Normal Equations effectively square the condition num-

ber, QR does not.

• Arithmetic: the Normal Equations use roughly half of the arithmetic as QR when

m� n, while also requiring less storage (memory).

• Applicability: unlike the Normal Equations, QR is more widely applicable because

the errors that arise in AᵀA of the Normal Equations “break down” more quickly

than the process on QᵀA = R of LS by QR.

5.4.2 Sparse vs. Dense

Considering only LS solutions using QR, Sections 5.3.2 and 5.3.3 clearly define

the cost savings using sparse matrices which are O(n3eL), versus dense matrices which are

O(n3eL
3).

However, on modern computers with dual-precision (64-bit) floating point proces-

sors, the primary factor in computational cost is not FLOPs, rather in the storage and

memory access of the data [40]. Identifying the computational complexity is important to

understand the amount of storage required by a particular algorithm, as sparse representa-

tions use less memory and require fewer memory accesses.
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5.4.3 Estimator Comparison

The computational cost for the calculation of δX in the Iterated Extended KF

(IEKF), e.g. CRT with L = 1, is O(n3e), whereas the most expensive computation of

the KF is the state covariance propagation, O(n3e). In contrast, the CRT estimator, with

window length L, scales linearly in L with O(n3eL) when using sparse matrices.
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Chapter 6

Residual Space Outlier Detection

Beard is credited for early work in the field of outlier detection in state estimation

systems. Beard, in his 1971 Ph.D. thesis [14], defines two stages in outlier detection, namely

residual generation and decision making.

Residual generation can be performed by many methods common to state estima-

tion, e.g. least-squares [21, 31, 67], recursive least-squares [51], or parity space [15, 17, 23,

37–39,70,78,91,93].

The most common challenge to outlier detection is the issue of multiple outliers

in a given dataset. Hampel estimates that a routine dataset contain 1-10% (or more)

outliers [45]. A study, performed by Rousseeuw [79], identified that in many cases outliers

go unnoticed, causing serious effects in estimation or model selection. The most popular

statistical modeling method is least-squares [79], which is very sensitive to outliers, so

sensitive in-fact a single outlier may cause the estimate to fail completely.

A common method for outlier detection is the leave-one-out approach [99]. In

this iterative approach, the i ’th measurement is left out, and the residual is generated for
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the remaining measurements. If there are multiple outliers in the remaining measurements,

and the remaining outliers result in a large standard deviation, then the i ’th measurement

does not appear as a outlier; this is called masking [99]. If the outliers cause the norm

of the residual to be large for the non-outlier case of the i ’th measurement, the result is

called swamping [99]. The effects of masking and swamping are the primary challenge to

multiple outlier detection, making the selection of the decision making process a crucial

step in outlier detection.

The decision making process can be performed by a variety of methods. In 1925,

Fisher proposed a hypothesis test to evaluate measurements against their expected value,

for a fixed threshold [27]. After Fisher, many threshold tests were developed to evaluate

measurements against a normal distribution [84], a hypothesized distribution [2], or an

empirically derived distribution [87,90]. However it was Neyman and Pearson who identified

the limitations of a fixed threshold, particularly if based on an incorrect distribution. They

proposed the “Neyman-Pearson Lemma;” an adaptive threshold hypothesis test, based on

a generalized likelihood ratio test (GLRT) [76,78]. Derivations of both the NP-Lemma and

the GLRT are provided in Appendix B and C, respectively.

Robustness to outlier measurements can be achieved by both sensor and analytical

redundancy [12, 13, 28, 29, 36, 65, 77, 89, 103], with further improvements to modeling (less

truncation of higher order terms in Taylor series expansions of nonlinear functions) or

initialization errors, by using nonlinear optimization [30,32,39].
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6.1 Problem Formulation

This section examines the Residual Space method for outlier detection and re-

moval. The discussion in this section uses the standard notation in the hypothesis testing

(HT) literature [2, 84, 87]. The mapping between the HT and CRT variables, comparing

eqns. (4.17) and (6.1), is y = r, H = B, x = δX, and η = ηr. By eqn. (4.17), N (0,σ2
ηI)

with σ2
η = 1. Complete derivations for this section are provided in Section 5 of [82]. The

method developed in this section will be referred to herein as CRT-HT.

Before the optimization process discussed in Section 4.3, the state vector is inte-

grated from the prior (optimized) state X̂0(tk−L) to the current GPS epoch tk, giving an

initial trajectory X̂0, then the GPS residual is computed. Note we assume the prior and

IMU to be outlier free, and therefore only consider GPS outliers. Consider the following

hypotheses related to the GPS residual r(X̂0):

• Null Hypothesis, H0:

y = Hx+ η, (6.1)

• Alternative Hypothesis, Hi≥1:

y = Hx+ η + µiei. (6.2)

For Hi, corresponding to eqn. (3.5), the outlier model is s = µiei and since the prior and

IMU are assumed outlier free: i = ne(L+ 1) + 1, · · · , ne(L+ 1) + 2m. When the magnitude

of the outlier µi is nonzero, the ith measurement is called an outlier. The magnitude µi

will affect the ability to detect such outliers. The null-hypothesis assumes no outliers, i.e.,

µi = 0.
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In this section, y ∈ Rp×1 is the measurement vector, H ∈ Rp×q, p > q, rank(H) = q

is the measurement matrix, and x ∈ Rq×1 is the vector to be estimated. For the alternative

hypothesis, ei = [0, . . . , 0, 1, 0, . . . , 0]ᵀ ∈ Rp×1, such that only the ith element is 1. To

simplify notation in the following equations, let

εi , µiei.

6.1.1 Null-Hypothesis, H0

Corresponding to eqn. (6.1), the minimum-variance unbiased estimator (MVUE)

[59] for x is

x̂ = (HᵀH)−1Hᵀy. (6.3)

To analyze the effect of η, substitute eqn. (6.1) into eqn. (6.3)

x̂ = ((HᵀH)−1Hᵀ)(Hx+ η)

= Ix+ H∗η, (6.4)

where H∗ , (HᵀH)−1Hᵀ. The state error is defined as δx , x − x̂. From eqn. (6.4)

δx = H∗η. Due to the zero mean noise assumption, the expected value of the state error is

E 〈δx〉 = 0.

Consider the residual r0 , y − ŷ, where ŷ = Hx̂ = H(HᵀH)−1Hᵀy. Then

r0 = (I−P)η, (6.5)

where P , H(HᵀH)−1Hᵀ ∈ Rp×p is the projection matrix onto the range-space of H. The

matrix P is symmetric, idempotent, and rank(P) = q (see Appendix A.5).
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Similarly, the matrix Q , (I − P) ∈ Rp×p is a real, symmetric, and idempotent

matrix (i.e. QQᵀ = Q). The matrix Q is a projection matrix onto the left null-space of

H. It has eigenvalues equal to 0 or 1, and its trace is equal to the number of non-zero

eigenvalues: (p− q) (see Appendix A.7).

The mean and covariance of the residual are

E 〈r0〉 = E 〈Qη〉

= 0 (6.6)

Cov 〈r0〉 = E 〈(r0 − E 〈r0〉)(r0 − E 〈r0〉)ᵀ〉

= QE 〈ηηᵀ〉Qᵀ

= σ2
ηQ. (6.7)

The final step is valid because Q is idempotent (see Appendix A.6), and E 〈ηηᵀ〉 = σ2
ηI.

The mean square error (MSE) [59] is

E
〈
‖r0‖2

〉
= E 〈rᵀ0r0〉

= E 〈tr{r0rᵀ0}〉

= E 〈tr{QηηᵀQᵀ}〉

= tr{Q}σ2
η

= (p− q)σ2
η, (6.8)

where tr{·} is the trace operator.
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The standard test statistic ΓX̂ for the validity of H0 [2, 84, 87] is based on eqns.

(6.5) and (6.8):

ΓX̂ =
‖r0(X̂)‖2

E
〈
‖r0(X̂)‖2

〉
=
‖r0(X̂)‖2

(p− q)σ2
η

. (6.9)

Under H0, the statistic ΓX̂ is a reduced chi-square [58] with expected value equal to 1 that

can be used to test the validity of hypothesis H0 (i.e., detect the existence of outliers). The

test statistic calculated by eqn. (6.9) is evaluated relative to a threshold computed using

the one-tailed chi-square distribution with significance level α, normalized by the number

of degrees-of-freedom (DOF) [27,58]:

ΓX̂ <
χ2
α/2,(p−q)

(p− q)
. (6.10)

The threshold χ2
α/2,(p−q) is determined from a look-up table for α versus DOF. The sig-

nificance level α is chosen by the designer for some probability of success. For example,

α = 0.05 indicates a 95% confidence level.

If the test succeeds, r0(X̂) is assumed outlier-free, and the optimization step of

Section 4.2 is performed. Otherwise, outlier identification executes.

6.1.2 Alternate-Hypothesis, Hi

To analyze the effect of the outlier εi on the state error, substitute eqn. (6.2) into

eqn. (6.3)

x̂ = ((HᵀH)−1Hᵀ)(Hx+ η + εi)

= Ix+ (HᵀH)−1Hᵀ(η + εi). (6.11)

74



Therefore, δx = H∗(η + εi). The expected value of the state error due to the outlier is

E 〈δx〉 = H∗εi.

To analyze the effect of the outlier on the residual, substitute eqns. (6.2) and

(6.11) into eqn. (6.5):

r = Hx+ η + εi −Hx̂

= Hx+ η + εi −H
(
Ix+ (HᵀH)−1Hᵀ(η + εi)

)
= Q(η + εi). (6.12)

Note that the residual still lies in the left-null-space of H. The mean and covariance of r

due to the outlier, are

E 〈r〉 = E 〈Q(η + εi)〉 = Qεi (6.13)

Cov 〈r〉 = E 〈(r−Qεi)(r−Qεi)
ᵀ〉 = σ2

yQ. (6.14)

Comparing eqn. (6.7) with eqn. (6.14), we see that the covariance is the same

both with and without the outlier. However, the means are different, as shown in eqns.

(6.6) and (6.13), which provides a method for identifying outliers. The decision statistic

under the alternate-hypothesis Hi, is based on the distribution of r ∼ N (Qεi,σ
2
yQ).

Consider the parity vector [16,91]

p , Uᵀ2r ∈ R(p−q),

where the columns of U2 ∈ Rp×(p−q) form an orthonormal basis for the null-space of Hᵀ

(see Appendix A.5). Thus, using eqn. (6.12)

p = Uᵀ2(y −Hx̂)

= (Uᵀ2ei)µi + Uᵀ2η; (6.15)
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therefore, p ∼ N (µiU
ᵀ
2ei, σ

2
yIp−q) (see [82]).

Then the magnitude of the outlier µi in eqn. (6.2) can be estimated as (see Section

5.6 of [58]),

µ̂i =
(
(Uᵀ2ei)

ᵀ(σ2
yI)−1(Uᵀ2ei)

)−1
(Uᵀ2ei)

ᵀ(σ2
yI)−1p

= σ2
y (eᵀiU2U

ᵀ
2ei)

−1 1

σ2
y

eᵀiU2p

=
eᵀiQ

ᵀr

eᵀiQ
ᵀei

,

where U2U
ᵀ
2 = Q = (I−P), and the covariance of µ̂i is

Cov 〈µ̂i〉 = (eᵀiQ
ᵀei)

−1.

Each time that H0 is rejected, outlier identification is executed iteratively for

each i in the alternative hypothesis set, assuming a single outlier. Each µi is compared

against a threshold γ, such that any µi > γ is considered an outlier. After completion of

the identification process, if an outlier is identified, its’ measurement is removed from the

measurement-set. When H0 is accepted, then and the optimization process of Section 4.2

is performed.

6.2 Complexity

Given 2m GPS measurements at each time over a window of length L, there are

(2mL) GPS residuals in each CRT window. Therefore, there are

2mL∑
k=1

 2mL

k

 =
2mL∑
k=1

(2mL)!

((2mL)− k)! k!
,
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ways that any number of satellite measurements could have outliers in any combination

at one epoch (see Section 3 of [3]). For the EKF or Iterated EKF (IEKF), with L = 1

and p = 9, this results in 262,143 hypotheses, which is too large for full consideration. For

the CRT with L = 20, consideration of all hypothesis is even more infeasible for real-time

implementation. Therefore, simplified approaches are required. An example approach is to

only consider single outlier occurrences, as discussed in the previous section, but to remove

all measurements with residuals greater than a user defined threshold before completing the

optimization.

6.3 Comparison of DOF’s

This section compares the number of DOF (i.e., (p − q)) available for outlier

detection between algorithms, where q is the total number of real variables to be estimated,

p denotes the total number of available constraints, ne is the error state dimension, and mk

is the number of satellite pseudoranges available at epoch k.

The EKF at any time step has q = ne variables to estimate (one state vector)

and p = ne + 2m constraints (GPS and prior); therefore, the DOF is 2m. The DOF of the

IEKF is the same. The advantage of the IEKF is its ability to perform nonlinear iterative

corrections [53,68].

For the CRT algorithm with window length L, the number of variables to be

estimated is q = (L + 1)ne. The number of constraints is p = (L + 1)ne + 2mL. The

DOF is therefore, 2mL. Both the outlier detection capability and the amount of required
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computation increase with the DOF, which increase with L. Also, the ability to detect

outliers and the potential number of outliers both increase with L.
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Chapter 7

CRT using the Soft-Thresholding

Operator

Recent advances in the vision-aided navigation community utilize outlier detection

methods from the field of Robust Statistics, which involves alternative loss (cost) functions,

and thresholding. For detection of multiple outliers simultaneously, Huber proposed a

class of robust or resistant regressors based on maximum likelihood methods, called M -

estimators [1, 50].

The authors of [71,97,104], using a sparse representation of candidate tracking sets

for face recognition, demonstrate that l1-regularization can exploit the sparseness of outliers

in a candidate dataset with redundant measurements to achieve enhanced performance.
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7.1 Problem Formulation

This section develops the theory to adapt the soft-thresholding operator [71,97] to

the CRT problem in Chapter 4, we denote this as CRT-LSS. Complete derivations for this

section are provided in [82].

7.1.1 Outlier Model

For the LSS approach, each component of sk in eqn. (3.5) is assumed to have i.i.d.

Laplacian distributions [71,97] and are assumed to be independent of xk, ηy,k, wk−1:

psρ,k(sρ,k) =
1

2νρ
exp

[
−
|sρ,k|
νρ

]
for pseudorange measurements and

psd,k(sd,k) =
1

2νd
exp

[
−
|sd,k|
νd

]
for Doppler measurements. Therefore

psk(sk) =

(
1

4νρνd

)m m∏
j=1

exp

(
−
[
|sρ,j |
νρ

+
|sd,j |
νd

])
.

To simplify notation later, let λρ = 1
νρ

and λd = 1
νd

. The distribution of

pS(S) =
k∏

n=k−L+1

psn(sn),

where S = {sj | j ∈ [k − L+ 1, k]} and S ∈ R2mL×1.

7.1.2 Theoretical Solution

Modifying eqn. (4.1) to account for S, the MAP estimate of the vehicle trajectory

X is:

X̂ = argmax
X,S

{p(X,U,Y,S)} ,
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where within the time window S = {sj | j ∈ [k − L+ 1, k]} and S ∈ R2mL×1.

The GPS-INS joint probability of eqn. (4.5) is modified as:

p(X,U,Y,S) ∝ p(X,U,S)p(Y | X,U,S) (7.1)

= p(S)p(X,U | S)p(Y | X,U,S) (7.2)

= p(S)p(X,U)p(Y | X,U,S) (7.3)

= p(S)p(X,U)p(Y | X,S) (7.4)

= p(S)p(X,U)
k∏

j=k−L+1

p(yj |xj , sj) (7.5)

= p(S)p(xk−L)

k−1∏
l=k−L

p(xl+1|xl,Ul)

k∏
j=k−L+1

p(yj |xj , sj), (7.6)

where p(S) is the distribution which corresponds to the outlier.

The steps for the formal proof of eqn. (7.6) are as follows: Eqn. (7.1) is obtained

by applying the definition of conditional probability. Eqn. (7.2) is obtained by applying

the definition of conditional probability. Eqn. (7.3) is obtained by applying the conditional

independence property. Eqn. (7.4) is obtained by applying the conditional independence

property. Eqn. (7.5) is obtained by assuming the noise affecting the sequence of measure-

ments is independent. Eqn. (7.6) is obtained by assuming Markov process and temporal

independence of process noise. �
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7.1.3 Numerical Solution

Finding X that maximizes eqn. (7.6) is equivalent to minimizing the negative of

its natural logarithm. This yields the equivalent nonlinear cost function:

C(X,S) = ‖x̂k−L − x(tk−L)‖2P(k−L)

+
k−1∑
l=k−L

‖Φ
(
x(tl),Ul

)
− x(tl+1)‖2QD

+

k∑
j=k−L+1

(
1

νρ
‖sρ(tj)‖1 +

1

νd
‖sd(tj)‖1

)

+

k∑
j=k−L+1

‖y(tj)− hj
(
x(tj)

)
− s(tj)‖2R. (7.7)

To simplify notation later, let ψρ,j =
sρ(tj)
νρ
∈ Rm, and ψd,j =

sd(tj)
νd
∈ Rm, and ψj =

ψ(s(tj)) = [ψᵀρ,j ,ψ
ᵀ
d,j ]. Also, let Ψ(S) = {ψj | j ∈ [k − L+ 1, k]} and Ψ ∈ R2mL×1.

Define ΣᵀRΣR = R−1 and ΣS = blkdiag(0,0,ΣR), where ΣR is upper-triangular.

The cost function C(X,S) can be normalized using Cholesky Decomposition, such that the

minimization problem of eqn. (7.7) reduces to the optimization of

C(X,S) = ‖z− g(X)−ΣSS‖22 + ‖Ψ‖1, (7.8)

where

z = ΣW[x̂ᵀk−L,0
ᵀ,Yᵀ]ᵀ

represents the terms that are known at each iteration and

g(X) = ΣW[x(tk−L)ᵀ,Φ(X,U)ᵀ −Xᵀ,h(X)ᵀ]ᵀ

represents the terms that are computed based on X.

Eqn. (7.8) will be minimized iteratively, by the algorithm discussed in Section 7.2.
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7.2 Solution of CRT with Soft-Thresholding

The discontinuity of the l1-norm in eqn. (7.8) complicates its minimization. The

authors of [71, 97] provide the derivation of the Soft-Thresholding Operator for the linear

case. Eqn. (7.8) can be optimized by methods similar to those of [71,97], as derived below.

Because the l1-norm is not differentiable at its minimum, the optimal solution to C(X,S)

is solved in two parts.

7.2.1 Part 1: Estimate X, holding Ŝ constant

Given Ŝ, the optimal value of X is

X∗ = arg max
X

C(X, Ŝ)

= arg max
X

{
−1

2
‖z− g(X)−ΣSŜ‖22 + ‖Ψ̂‖1

}
= arg max

X

{
−1

2
‖(z−ΣSŜ)− g(X)‖22

}
, (7.9)

where Ψ̂ = Ψ(Ŝ). This optimization can be solved iteratively, starting from an initial value

X̂, using a Taylor series expansion to approximate g(X),

g(X) = g(X̂) + GδX + h.o.t′s, (7.10)

where the Jacobian G
.
= ∂g(X)

∂X

∣∣∣
X=X̂

, and δX ∈ Rne(L+1). Substituting eqn. (7.10) into

eqn. (7.9) and ignoring the higher order terms (h.o.t′s), yields

δX∗ = arg min
δX

‖(z−ΣSŜ)− (g(X̂) + GδX)‖22

= arg min
δX

‖b−GδX‖22
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where in this section b is defined as

b
.
= z−ΣSŜ− g(X̂). (7.11)

Then, the optimal δX solves

GδX∗ = b. (7.12)

in the least squares sense. The update to the trajectory is performed using eqn. (4.16).

Optimization with respect to X̂ is obtained by iterating eqns. (7.10), (7.11), and

the solution of (7.12), to convergence for some user defined stopping conditions. A line

search is implemented in the direction of δX∗ from eqn. (7.12) to determine the magnitude

of the update step in eqn. (4.16).

7.2.2 Part 2: Estimate S, holding X̂ constant

Given an estimate X̂, the optimal value of S is

S∗ = arg max
S

C(X̂,S)

= arg max
S

{
−1

2
‖z− g(X̂)−ΣSS‖22 + ‖Ψ(S)‖1

}
.

= arg max
S

{
−1

2
‖c− S̄‖22 + ‖Ψ(S)‖1

}
,

= arg min
S

∑
i

[
1

2
(ci − s̄i)2 + ‖ψ(si)‖1

]
, (7.13)

where S̄ = ΣSS, and c = z − g(X̂) is independent of S. In eqn. (7.13), the non-boldface

quantities ci, s̄i, and ψ(si) denote the scalar elements of the vectors in the previous equation.
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Each term in the summation in eqn. (7.13) only depends on ci, s̄i, and ψ(si), thus

each term can be optimized independently1:

ŝi = arg min
si

{
1

2
(ci − s̄i)2 + |ψ(si)|

}
(7.14)

The closed-form solution of the optimization problem in eqn. (7.14) is the soft-thresholding

operation (see eqn. 16 of [97]) resulting in two equations, one for pseudorange and one for

Doppler:

ŝρ,i = σρ sgn(ci) max

(
|ci| −

σρ
νρ
, 0

)
, (7.15)

ŝd,i = σd sgn(ci) max

(
|ci| −

σd
νd
, 0

)
, (7.16)

where sgn(·) represents the signum function. The values σρ and σd represent the standard

deviation of the pseudorange and Doppler distributions, respectively. The proof for eqn.

(7.15) is provided in Appendix A.9.

7.2.3 CRT-LSS Summary

Implementation of Sections 7.2.1 and 7.2.2 is summarized in Algorithm 1.

Algorithm 1 Least Soft-threshold Squares Regression

1: Given initial X̂ and Ŝ. Initialize i = 0.
2: while (((‖δX‖2 & ‖δŜ‖2) > 1× 10−3) & (i < 20))
3: i = i+ 1
4: Compute δX and X̂+ = X̂− ⊕ δX (eqns. (7.11), (7.12)).
5: if (‖δX‖2 < 1× 10−3)
6: Compute Ŝ using eqns. (7.15) & (7.16).
7: (Optional) Compute δX and X̂+ = X̂− ⊕ δX (eqns. (7.11), (7.12)).
8: end
9: end

1When R and hence ΣR are diagonal, this is obvious. When R is not diagonal, the fact that ΣR is
upper-diagonal allows (7.13) to be solved one component at a time using back-substitution. For brevity, the
algorithm below only presents the diagonal case.
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In Section 7.2.1 the value of the cost function C(X,S) is decreased by changing

only X, even if multiple nonlinear least squares iterations occur. In Section 7.2.2 the value

of the cost function C(X,S) is decreased by changing only S, only a single iteration is

required, and δŜ is the final S minus the initial S. Therefore, at each iteration, the cost

function is decreased and is bounded below. Ultimately at least a local minimum of the

cost function will be attained. Note that line 7 of Algorithm 1 is not necessary, but is useful

for analyzing the convergence of the cost function C(X,S).

The combined operation of Sections 7.2.1 and 7.2.2 are equivalent to the Huber

Loss function (see [97], [50]).
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Chapter 8

Experimental Results

8.1 Background

In this chapter, both the CRT-HT and CRT-LSS algorithm performance is evalu-

ated in two steps:

1. Synthetic-sensor data is used to evaluate algorithm performance under controlled con-

ditions where ground truth and outliers are known.

2. Real-sensor data is used to demonstrate algorithm performance under real-world con-

ditions, where ground truth is estimated.

8.1.1 Synthetic Data

The synthetic-data is a simulated 515 second automobile trajectory generated by

a signal generator incorporating a 6DOF kinematic model to produce both ground truth

and noise-corrupted IMU and GPS “measurements.” The simulated trajectory is similar to

the real-world trajectory discussed below.

IMU measurements ũi(t) for the ith axis of the gyroscope and accelerometer were

generated at 200Hz according to the sensor model (Ch. 11.6 of [25]):

ũi(t) = (1 + εi)[ui(t) + bi(t) + ηRW,i + ηMA,i],
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where ui(t) is actual acceleration (or angular rotation rate) for axis i, ηRW,i is white noise,

εi is the scale factor error, and ηMA,i is the misalignment error. The time-correlated error

(i.e., bias) bi(t) has a random initial value and performs a random walk over time with

driving noise ηRRW,i. The accelerometer has σRW = 0.05 (m/s)/
√
Hr, bias variation =

15 milli-g, and bias stability = 0.1 milli-g. The constant along-axis scale-factor errors

are 200 parts-per-million (ppm), and cross-axis scale-factor errors are 150 ppm. The gyro

was modeled with angle random walk parameter σRW = 0.1 deg/
√
Hr, bias variation =

3.0 deg/Hr, and bias stability = 1.0 deg/Hr. The constant along-axis g-sensitivity errors

are 2 deg/Hr/g, along-axis scale-factor errors are 200 ppm, and cross-axis scale-factor errors

are 150 ppm.

The GPS signal generator provided L1 pseudorange and Doppler measurements

at 1Hz for both the vehicle and base station using the models in Sections 8.2 and 8.3 of

[25]. Satellite vehicle orbits were produced from Receiver Independent Exchange (RINEX)

ver. 2.10 [44] files downloaded from a Continuously Operating Reference Station (CORS)

server [88], and valid for January 10, 2017, between 9:00-10:00 am local time.

8.1.2 Experimental Data

Real-world performance is evaluated using a 515 second drive-test data around the

University of California, Riverside campus. While driving, the sensor data is time-stamped

and stored. The sensor data includes: a MEMS IMU (Nav Technology Co., Ltd. NV-

IMU100) which outputs specific force and angular rate measurements at 200Hz, and an

L1/L2 GPS receiver (NovAtel OEMV3) which outputs pseudorange, Doppler, and carrier

phase measurements at 1Hz. A GPS antenna (Leica AT502-667126) is mounted on the
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vehicle roof. Differential corrections were obtained in real-time, via cellular connection,

from the UC Riverside NTRIP [34] caster (ntrip.engr.ucr.edu:2101), which broadcasts

raw dual frequency GPS measurements (Message 1004 in RTCM3.1 standard) and the base

position (Message 1006 in RTCM3.1 standard) publicly over the internet at 1Hz and 0.1Hz,

respectively [83]. The base station uses the same model of GPS receiver and antenna as

the vehicle, and runs both the NTRIP Server and NTRIP Caster (both developed in C++)

in Linux (Ubuntu 12.02) on a mini-desktop computer with an Ethernet connection. The

trajectory contains a variety of real-world conditions that can adversely affect GPS receiver

performance, e.g. tall buildings and trees, thereby producing measurement outliers. Fig.

8.1 shows snapshots along this trajectory. The test setup is shown in Fig. 8.2. The number

of satellites available (after double differencing), satellite ID, and elevation angles are shown

in Fig. 8.3.

8.1.3 Ground Truth

For the experimental data, the ground truth trajectory is found by solving a non-

linear MAP optimization problem over the entire (515 second) trajectory using the L1/L2

integer-resolved carrier phase DGPS and IMU measurements to achieve centimeter level

ground truth accuracy [96].

8.1.4 Final Comments

To allow direct comparison of the performance of various algorithms, using iden-

tical input data, the results of this section are computed during post-processing. Even

though running in post-processing for this evaluation, each algorithm is written in C++ to

run in real-time, using only the data and prior as would be applicable for each approach.
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These real-time navigation algorithms only use L1 GPS with differential corrections, and

IMU data.

At the start of the experiment, the vehicle is stationary and pointed approximately

north. The estimated yaw angle is initialized to 180◦ (i.e., south). During the first one

second of this stationary period, the initial roll and pitch are computed from the direction

of the specific-force (i.e, gravity) vector. The initial position is obtained by least-squares

using the first GPS double-differenced L1 pseudorange measurement. The initial biases and

velocity values are all zero.

8.2 CRT-HT Performance

8.2.1 CRT-HT Performance using Synthetic Data

Using the simulated trajectory, 216 simulations were run consisting of: six in-

jected outlier magnitudes (O = {1.0, 1.5, 2.0, 2.5, 5.0, 10.0}m), six CRT window lengths

(L = {1, 5, 10, 20, 30, 40}), and six threshold values (γ = {0.75, 1.00, 1.25, 1.50, 2.00}).

To simulate driving near trees or past a tall building, multiple simultaneous outliers

were added at three known trajectory locations. The outliers persisted for five seconds. The

outliers were added to three of the ten available pseudorange measurements representing

satellites that were visible in one quadrant of the sky. The minimum outlier magnitude

of 1.0m was selected such that the outlier is similar in magnitude to double-differenced

pseudorange measurement noise.

Fig. 8.4 presents the receiver operating characteristic (ROC) curve for several

algorithms, e.g. IEKF and CRT-HT with length L. Each ROC curve plots the Probability

of Correct Detection for one setting of O and L (for CRT-HT), versus Probability of False
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Alarm, as a function of γ.

Since this is simulation, the correct outlier decisions are known for each satellite

at each epoch. To construct the ROC curve for each algorithm and each outlier magnitude,

the procedure discussed in the next paragraph is repeated once for each specified value of

γ. The outlier detection decisions for each algorithm (IEKF and CRT-HT with length L)

and each value of γ are compared with the known correct decisions to compute PCD and

PFA. Each simulation for a single value of γ generates one point on the ROC curve.

For example, to evaluate the CRT-HT L = 5, a significance threshold α is chosen

and γ is computed, then the CRT-HT is run for the entire trajectory. At the completion

of the trajectory, the PCD (of outliers) is calculated, as well as the PFA, and the values

are recorded. This provides one point on the CRT-HT L = 5 ROC curve. The trajectory

estimation is repeated for a vector of α values. This set of values provides the CRT-HT L = 5

ROC curve. This process is performed for each outlier magnitude, and each estimator, e.g.

IEKF, and CRT-HT with L = {5, 10, 20, 30, 40}. For clarity of the graph, only IEKF and

CRT-HT L = {5, 10, 40} are shown here, however the trends for L = {20, 30} are similar.

The outlier detection algorithm evaluates the entire residual vector before optimization of

the trajectory. If outliers are detected, the corresponding measurements are removed, and

the optimization is performed. Upon sliding the window, the outliers from the previous

time-window are ignored and the detection procedure searches the entire residual vector.

Each curve in Fig. 8.4 displays PCD vs. PFA. The trends for γ are as expected.

As γ increases, the next point on each curve will be below and to the left of the last point,

as PCD and PFA both decrease as γ increases. As Fig. 8.4 shows, the rates of decrease

are very different for each algorithm. Curves closer to the upper left corner show improved
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ability to detect outliers with lower probability of injecting false alarms.

The advantage of increasing the CRT-HT window length is demonstrated by the

increase in PCD and decrease in PFA as L increases. For example in Fig. 8.4, consider

points P1 and P2. Both points have outlier magnitude of 2.0m and γ = 1.25. Point P1

for the IEKF has PCD = 48% and PFA = 12%, whereas point P2 for the CRT-HT L = 5

has PCD = 75% and PFA = 8%. While both algorithms perform nonlinear optimization,

it is the window length that contributes to the 27% increase in PCD and a 4% decrease in

PFA. As CRT-HT window length increases, for a given value of γ PCD increases and PFA

decreases.

This confirms the claim that the ability of the CRT-HT algorithm to discriminate

outliers from valid data is enhanced with the length of the sliding window, which increases

the redundancy as quantified by the number of degrees of freedom. The reliability of

achieving a specified level of accuracy increases with the ability to remove outliers.

8.2.2 CRT-HT Performance using Experimental Data

For each algorithm (EKF, IEKF and CRT-HT with length L), Fig. 8.5 shows the

cumulative distribution function (CDF) of the position error norm ‖p̂k−pk‖ at 1 Hz where

the ground truth trajectory is used for pk and p̂k is the result of the optimization at the

first time when the k-th epoch enters the sliding window. For outlier removal, γ = 1.25.

The CRT-HT algorithm curves are included for various window lengths L.

Fig. 8.5 shows that the percentage of occurrences where the EKF position error

is less than 0.1m, is roughly 18%. Roughly 90% of the EKF trajectory has errors less

than 1.0m. Figs. 8.5 also indicate that accuracy improves from the EKF to the IEKF to
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the CRT-HT. Also, CRT-HT performance (generally) improves with the window length L.

For the CRT-HT with L > 5, 100% of the position errors are less than 1.0m. CRT-HT

algorithms with L > 20 each achieve 0.6m position accuracy on 100% of the trajectory. The

EKF and IEKF CDF plots do not reach 100% until the position accuracy is greater than

3.0m.

To gain insight into the status of the CRT-HT estimator with, for example L = 20,

several key variables are plotted versus GPS epoch in Fig. 8.7. The figure shows the

total number of iterations, the final ‖C(X̂)‖2, number of satellites measurements available

and removed, the 2D position error, and the per-epoch Geometric Dilution of Precision

(GDOP) and per-window GDOP. At the start of the trajectory it takes more iterations to

converge from the initial X0 to an estimate X̂ (see eqn. (4.16)) such that δX lies within the

unobservable space. Due to the initial inaccuracy of X0, the error within the unobservable

space may be large. Additionally, the initial covariance is large, and the uncertainty in the

state estimate, in particular yaw, remains large until the vehicle accelerates.

For example, in Fig. 8.8 the true yaw is unknown and initialized to −179◦, and

remains unobservable until the vehicle accelerates at t = 20sec. Upon acceleration from

the stationary initialization point, the biases and attitude errors become observable, and

the effect of the nonlinearities can be significant. This effect is observed in the spike in the

number of iterations in Fig. 8.7 shortly after acceleration. The biases and attitude errors

can be more accurately estimated at this point because the unobservable subspace changes

or becomes null.

To demonstrate the CRT optimization performance, in Fig. 8.8 the initial yaw

error was −179◦, yet just after acceleration the yaw error is less than 1◦. This emphasizes
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the ability of the CRT estimator to correct errors that are large relative to the curvature of

the nonlinearities. In contrast, the EKF diverges with large initial yaw errors, and for this

reason was not included in Fig. 8.8. The EKF is therefore initialized (for all tests) using

ground truth, with an initial yaw error of approximately 1◦. In real-time situations, the

initial yaw can be determined from a compass.

After the CRT state estimates become accurate, fewer iterations are needed. An

average of just three iterations are required for most of the trajectory, even in challenging

areas, e.g. t ∈ [160, 180] where either tall buildings and overhead foliage are present. A

notable exception is at t = 415sec where the vehicle traverses a narrow corridor between

tall structures, and only one line-of-sight GPS satellite is available. As a consequence,

additional iterations are required to accommodate likely multipathed measurements from

six (of seven available) satellites just prior to the corridor. Throughout the trajectory the

final ‖δX̂‖2 is always less then the threshold ε = 10−3. Consider both ξ and δX̂. The

vector ξ is a projection of the residual vector onto a subspace with the same dimension as

δX̂ (see eqns. (4.14) and (4.15)). Because Ξ is nonsingular, the final norms of δX̂ and ξ

should both be near zero when the trajectory estimate is near any local minimum of the

cost function C(X̂). In practice, the inconsistent GPS data, possibly caused by multipath

or overhead foliage, could explain the large values of the final ‖C(X̂)‖2 and final ‖ξ‖2.

During t ∈ [160, 180], initially the ‖2D Pos. Error‖2 increases because only one

satellite is available. The ‖2D Pos. Error‖2 continues to increase as bad satellites mea-

surements are removed, then returns to sub-meter error when good satellite measurements

are available. Note that during this period, the per-epoch GDOP is at maximum value

(set to 100) because a minimum of four satellites are necessary to compute GDOP (this
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explains the other instances when GDOP is large). However, the per-window GDOP during

this period is sub-meter because the computation includes all satellites available within the

window.

During other periods of the trajectory, e.g. t ∈ [230, 240], [380, 410], [440, 450],

where ‖2D Pos. Error‖2 is larger than one-meter, the per-epoch GDOP is large due to either

too few satellites or poor constellation geometry. An example of likely poor constellation

geometry is t ∈ [380, 410], where four satellites are available, but ‖2D Pos. Error‖2 is larger

than one-meter. Note that position error is sub-meter for > 95% of the trajectory.

8.3 CRT-LSS Performance

8.3.1 Specification of Laplacian Parameters

The distribution of the outliers is not known. The CRT-LSS derivation of Section

7.1.1 assumed a Laplacian distribution. For implementation, reasonable values for the

parameters of that distribution need to be specified. Our approach is to specify the standard

deviation of the Laplacian outlier to match a multiple of the standard deviation assumed

for the Gaussian noise. For the Laplacian distribution, the standard deviation σL is related

to the parameter ν according to σL =
√

2ν.

Let σLρ and σLd denote the standard deviation of the pseudorange and Doppler

outliers. Let σNρ and σNd denote the standard deviation of the pseudorange and Doppler

measurements. Setting σLρ, = λσNρ and σLd = λσNd yields νρ = λ√
2
σNρ and νd = λ√

2
σNd .

This selection of the Laplace distribution parameters will cause residuals λ√
2
larger that the

expected Normal standard deviation to be soft-thresholded.
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8.3.2 CRT-LSS Performance using Synthetic Data

Similar to the process discussed in Section 8.2.1, 216 simulations were performed,

wherein the value of λ was selected and held constant for the entire trajectory. This process

is repeated for a set of values of λ, for each estimator and outlier magnitude to evaluate

sensitivity of PCD vs. PFA versus λ for each algorithm. Due to space constraints, only

position and attitude error are discussed herein. The results for velocity error are provided

in Section 6 of [82].

The CRT-LSS algorithm does not perform detection in the same sense as the CRT-

HT algorithm. Therefore the values for PCD and PFA are computed relative to ground truth

using the indices where Ŝ is non-zero, e.g. measurements which required soft-thresholding

(see line 6 of Alg. 1).

Each curve in Fig. 8.9 displays the expected PCD vs. PFA trends versus λ. As

λ increases, the next point on each curve will be below and to the left of the last point.

Therefore, PCD and PFA both decrease with increasing λ (this is similar to the result for γ

in Section 8.2.1). This is because, with increasing the λ value, larger residuals will not be

soft-thresholded, therefore both PCD and PFA will decrease. Curves closer to the upper left

corner show improved ability to accommodate outliers with lower probability of injecting

false alarms.

The advantage of increasing the CRT-LSS window length is demonstrated in the

increase in PCD and decrease in PFA for a given value of λ. For example in Fig. 8.9,

consider two points P1 and P2 each with the outlier magnitude of 2.0m and λρ = 1.0. For

the IEKF PCD = 52% and PFA = 14%, whereas for the CRT-LSS L = 5 the PCD = 70%
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and PFA = 12%. While both algorithms perform nonlinear optimization, it is the window

length that contributes to the 18% increase in PCD and a 2% decrease in PFA. As CRT-LSS

window length increases, the PCD increase and PFA decrease.

8.3.3 CRT-LSS Performance using Experimental Data

Figs. 8.10 shows the cumulative distribution functions (CDF) of the norm of the

position error ‖p̂k − pk‖ for various estimation algorithms. For outlier accommodation in

this section, λ = 1.00. The EKF curves use hypothesis testing while the IEKF and CRT

curves use LSS. Fig. 8.10 shows that the CRT-LSS performance improves with the window

length L. For example, in the CRT-LSS approach with L > 5, 97% of the position errors are

less than 1.0m. The CRT-LSS algorithms with L > 10 each achieve 1.0m position accuracy

on 100% of the trajectory. Alternatively, the IEKF CDF plots do not reach 100% until the

position accuracy is greater than 3.0m.

Similar to the results discussed in Section 8.2.2 for Fig. 8.7, several key variables

are plotted versus GPS epoch in Fig. 8.12 for the CRT-LSS estimator with L = 20. The

figure shows the total number of iterations, final ‖C(X,S)‖2 and ‖Ŝ‖1, the number of avail-

able and number of thresholded satellite measurements, ‖2D Pos. Error‖2 and estimated

position standard deviation, and both per-epoch GDOP and CRT-window GDOP (i.e. com-

puted using all SVs in the CRT window). The CRT-LSS estimator initially has additional

iterations until the vehicle accelerates at t = 20sec. An average of three iterations are

needed throughout the trajectory, even during periods of probable outliers.

Consider t ∈ [310, 340] where GPS signal path is influenced by overhead foliage or

buildings. Here, the ‖C(X,S)‖2, ‖Ŝ‖1, and number of iterations increase due to suspected
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outliers. This demonstrates a desired attribute of CRT-LSS method, whereby outliers are

accommodated with minimal additional iterations, thereby reducing the overall (per-epoch)

computational burden.

While the algorithm is different than the one used in Fig. 8.7, the position error

and GDOP results are similar in both Figs 8.7 and 8.12, and discussed in detail in Section

8.2.2. Note that position error is sub-meter for > 95% of the trajectory.

8.4 Comparison: CRT-LSS vs. CRT-HT

As shown in Figs. 8.4 and 8.9, outlier magnitudes greater than 2.0m range error,

can be accommodated with PCD > 85% by either outlier detection method. In fact, for

CRT-HT or CRT-LSS with L ≥ 20, the PCD > 85% with PFA < 12%. The primary

difference between Figs. 8.4 and 8.9 is the CRT-HT has a lower overall PFA rate (versus

the CRT-LSS) due to the method by which outliers are determined and the values selected

for γ and λρ, however the difference is < 8%.

Note that the range of values for γ and λρ are not a recommended range for the

designer, but rather a set of values which provide a clear visualization of the PCD vs. PFA

for each CRT-HT or CRT-LSS window length. Actual values depend on the expected or

measured standard deviation of the GPS pseudorange measurements.

In Figs. 8.4 and 8.9, two key results are realized.

1. Increasing CRT (LSS or HT) window length L guarantees better outlier accommoda-

tion performance, with PCD approaching 100%, and PFA less than 25%.

2. As outliers exceed 2.5m, the PCD = 100% regardless of the CRT (LSS or HT) window

length.
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Considering Figs. 8.5 and 8.10, where γ = 1.25 and λρ = 1.00, both of which pro-

duce an anticipated PCD > 50% (based on synthetic data test results for outlier magnitudes

> 1.5m), the position error is < 1.0m for 90% of the trajectory for all algorithms (CRT

L = {1, 5, 10, 40}) regardless of the outlier detection method (either HT or LSS). This is

a subtle but important result, as we desire the PCD = 100% regardless of PFA. Here the

worst case PFA < 12%.

From the perspective of outlier accommodation, the data indicate that both meth-

ods (CRT-HT and CRT-LSS) produce equivalent results. However, the numerical imple-

mentation of CRT-HT is a compromise of theory and practicality, whereas the CRT-LSS

is a direct numerical implementation of the theory. As discussed in Section 6.2, the com-

plete alternate hypothesis testing procedure is infeasible in real-time with CRT-HT window

L > 1, therefore a modified approach is implemented numerically. Alternatively, the soft-

thresholding approach of [71, 97] as adapted to the CRT problem in Section 7.2 does not

remove any measurements. Instead, the CRT-LSS automatically detects which residuals

should be soft-thresholded in a manner that guarantees convergence of the MAP optimiza-

tion for each time window, accounting for outliers.

Due to the modified approach used in CRT-HT, the computational cost is similar

to CRT-LSS (see Chapter 5). Both methods have similar performance with respect to PFA

and PCD, as well as position and attitude error for a given window length L.

The CRT estimator (HT or LSS) has several advantages over the EKF which are

summarized here:

1. CRT has the ability to change the linearization point of the trajectory within the CRT

window. For the EKF the linearization point is the prior. Errors in the prior if large
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relative to the higher order terms of the linearization can cause the EKF to diverge.

2. In the CRT approach, multiple iterations, each with re-linearization, are possible to

fully address the nonlinearities in the MAP optimization, whereas the EKF performs

a single iteration per measurement.

3. The improved performance demonstrated in Figs. 8.4–8.12 is attributed to solving the

full nonlinear optimization over a longer window with outlier accommodation. The

longer window enhances the redundancy and allows reconsideration of fault decisions,

as long as the measurement data is within the sliding window. The standard EKF

utilizes a single epoch. Thus an incorrect fault decision can be catastrophic and the

redundancy available is often insufficient to make confident fault decisions.

This enhanced ability to accommodate outliers to achieve reliable performance is

one of the major motivations of the CRT approach.
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Trees & Art building

Overhead trees Library & Science Buildings

Trees & Engineering Building

Vehicle trajectory vs. number of available GPS satellites

x UCR Base Station Antenna

Figure 8.1: Test trajectory around UCR campus. The corner photos identify a variety of
real-world environmental factors which adversely affect the performance of a GPS receiver,
e.g. trees and tall buildings. The center image shows the number of satellites available
along the trajectory for estimation and outlier detection. The UCR base station antenna
position is shown with a red ‘X’.

 

Test vehicle 

GPS antenna (located on center of roof) 

Navigation system & 
survey-grade L1/L2 GPS RX (for ground truth)  

with RF splitter, mounted inside the cabin. 

Figure 8.2: Test set-up. Modern vehicle with GPS antenna located on the center of the
roof, and navigation system located inside the cabin.
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Figure 8.3: Satellite ID, elevation angles, and number of satellites available (after double
differencing), versus trajectory time.

Figure 8.4: Receiver Operating Characteristic curves for each CRT-HT algorithm, outlier
magnitude and γ. Values for γ correspond to curve (O = 1.5m, L = 1), however the
same values apply to the corresponding tick marks on the other curves. Outlier magnitudes
> 2.5m have PCD = 100%. Increasing window length L improves PCD regardless of outlier
magnitude. Tick-mark style (e.g. circle, star, etc.) and line color correspond to outlier
magnitude. Line style (e.g. solid, dashed, etc.) correspond to CRT window length.
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Figure 8.5: Position error cumulative distributions for each HT algorithm. Based on syn-
thetic data results, the value γ = 1.25 was selected for all curves to guarantee minimum
PCD > 50%.
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Figure 8.6: Attitude error cumulative distributions for each HT algorithm. Based on syn-
thetic data results, the value γ = 1.25 was selected for all curves to guarantee minimum
PCD > 50%.
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Figure 8.7: Optimization Statistics for experimental data trajectory using CRT-HT with
L = 20 and γ = 1.00, including: total number of iterations, final ‖C(X̂)‖2, number of
available and number of removed SVs, ‖2D Pos. Error‖2 and estimated position standard
deviation, and both per-epoch GDOP and CRT-window GDOP (i.e. computed using all
SVs in the CRT window).
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Figure 8.8: CRT optimal yaw estimation.
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Figure 8.9: Receiver Operating Characteristic curves for each CRT-LSS algorithm, outlier
magnitude, and λρ. Values for λρ correspond to curve (O = 1.5m, L = 1), however the
same values apply to the corresponding tick marks on the other curves. Outlier magnitudes
> 2.5m have PCD = 100%. Increasing window length L improves PCD regardless of outlier
magnitude. Tick-mark style (e.g. circle, star, etc.) and line color correspond to outlier
magnitude. Line style (e.g. solid, dashed, etc.) correspond to CRT window length.
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Figure 8.10: Position error cumulative distributions for each LSS algorithm. Based on
synthetic data results, the value λρ = 1.00 was selected for all curves to guarantee minimum
PCD > 50%.
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Figure 8.11: Attitude error cumulative distributions for each LSS algorithm. Based on
synthetic data results, the value λρ = 1.00 was selected for all curves to guarantee minimum
PCD > 50%.
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Figure 8.12: Optimization Statistics for experimental data trajectory using CRT-LSS with
L = 20 and γ = 1.00, including: total number of iterations, final ‖C(X,S)‖2 and final
‖Ŝ‖1, number of available and number of thresholded SVs, ‖2D Pos. Error‖2 and estimated
position standard deviation, and both per-epoch GDOP and CRT-window GDOP (i.e.
computed using all SVs in the CRT window).
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Chapter 9

Conclusion and Future Work

This dissertation presented two methods to enhance the level of redundancy in a

GNSS and IMU based navigation system to facilitate the accommodation of outlier mea-

surements. Over a multiple epoch sliding window of data, the CRT algorithm performs

MAP estimation within a nonlinear optimization framework, while maintaining a real-time

estimate as necessary for control and planning purposes. Increasing the duration L of the

sliding window enhances redundancy at the expense of increased computation. Enhancing

redundancy improves the reliability of achieving any given accuracy specification, by better

outlier removal. The MAP framework, through real-time nonlinear optimization, achieves

optimal state estimation without linearization assumptions. The enhanced performance of

this method is demonstrated through direct comparisons of both the accuracy and outlier

detection abilities of various algorithms using experimental data from a challenging envi-

ronment. Moreover, while the CRT-HT and CRT-LSS have similar outlier accommodation

performance, the CRT-HT is a compromise of theory and practicality, whereas the CRT-LSS

is a direct numerical implementation of the theory.
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9.1 Contributions

The major contribution of this dissertation is the proposition of a novel and efficient

outlier accommodation approach for a sliding window filter. This dissertation also provided

the following contributions to the GNSS-INS field, and applicable to any vehicle platform

and sensor suite:

• Instead of the traditional RAIM or eRAIM outlier accommodation framework which

only considers one epoch of aiding measurements, a Bayesian smoothing framework is

implemented with multiple epochs over a time window. With a window of IMU and

GPS measurements, both accuracy and reliability are improved.

• Utilizing a nonlinear optimization approach, a novel and robust outlier accommoda-

tion framework is applied using l1-regularization. This outlier accommodation method

is optimal, can be applied to multiple sensors, e.g. LiDAR, Radar, Rotary encoder,

pressure sensors, etc..

• The CRT framework, through window length, is scalable for position and attitude

accuracy requirements, at the expense of computational load. This has the advantage

that additional accuracy can be gained using inexpensive modern processors instead

of more expensive sensors.

9.2 Publication List

[1] P. F. Roysdon, and J. A. Farrell, “Robust GPS-INS Outlier Accommodation using a
Sliding Window Filter: A Comparative Study,” IEEE Transactions on Control Sys-
tems Technology (to be submitted).

[2] P. F. Roysdon, and J. A. Farrell, “Robust GPS-INS Outlier Accommodation: A Soft-
thresholded Optimal Estimator,” 20th World Congress of the International Federation
of Automatic Control (IFAC). Toulouse, France, 2017.
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[3] J. A. Farrell, and P. F. Roysdon, “Advanced Vehicle State Estimation: A Tutorial
and Comparative Study,” 20th World Congress of the International Federation of
Automatic Control (IFAC). Toulouse, France, 2017.

[4] P. F. Roysdon, and J. Farrell, “GPS-INS Outlier Detection & Elimination using a
Sliding Window Filter”, American Control Conference. Seattle, WA, 2017.

[5] J. J. Morales, P. F. Roysdon, and Z. M. Kassas, “Signals of Opportunity Aided Inertial
Navigation,” Institute of Navigation (ION) GNSS+ Conference. Portland, OR, 2016.

[6] P. F. Roysdon, J. A. Farrell, and D. Kelley, “Enhanced State Estimation for Wheeled
Vehicles,” Institute of Navigation (ION) GNSS+ Conference. Tampa, FL, 2015.

[7] P. F. Roysdon, and J. A. Farrell, “Technical Note: CRT with Hypothesis Testing,”
UC Riverside, 2017.

[8] P. F. Roysdon, and J. A. Farrell, “Technical Note: CRT with Least Soft-thresholded
Squares,” UC Riverside, 2017.

9.3 Future Work

The following two items may be interesting for further research:

• Adaptation of the window length L can provide a trade-off of risk and performance.

Increasing window length provides additional redundancy in the optimization for mea-

surements that might contain outliers. If outliers do not exist within the window, the

length could be reduced to improve computational performance.

• Multipath error modeling can improve the accuracy of the state estimate in a mutlti-

path prone environment by considering the correlation between GPS measurements.
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Appendix A

Proofs & Derivations

A.1 Attitude Update Derivation

The goal of this section is to derive eqn. (3.10) from eqn. (3.9). The starting point

of this derivation is eqn. (3.9) and the related definitions:

Ṙe
b = Re

bΩ
b
eb

Ωb
eb , [ωbeb×] = Ωb

ib −Ωb
ie

αbib , ω
b
ibδt.

The definition of the derivative is

Ṙe
b = lim

δt7→0

Re
b(t+ δt)−Re

b(t)

δt
. (A.1)
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Assuming that the time increment δt is sufficiently small:

Re
b(t+ δt) = Ṙe

b(t)δt+ Re
b(t)

= Re
b(t)Ω

b
ebδt+ Re

b(t)

= Re
b(t)(Ω

b
ib −Ωb

ie)δt+ Re
b(t)

= Re
b(t)Ω

b
ibδt−Re

b(t)Ω
b
ieδt+ Re

b(t)

= Re
b(t)[α

b
ib×]−Re

b(t)R
b
e(t)Ω

b
ieR

e
b(t)δt+ Re

b(t)

= Re
b(t)R

b(t+δt)
b(t) −Ωb

ieR
e
b(t)δt+ Re

b(t) (A.2)

Note that R
b(t+δt)
b(t) is defined in eqn. (3.11) as the exponential of [αbib×]. The last step

in deriving eqn. (A.2) is not obvious, see Section 2.71 in [25]. The only derivation in

the assumption is that the IMU angular-rate measurement is constant over the integration

interval.

A.2 Quaternion Update Approximation

Let f(ρ) =
√

1−
∥∥1
2ρ
∥∥2
2
∈ R1, and δρ = ρ − 0 ∈ R3×1. By first-order Taylor

series expansion of f(ρ), assuming small-angle ρ, the quantity qnn̂ is
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qnn̂ =

 f(ρ)

1
2ρ



=

 f(0) + ∂f(ρ)
∂ρ

∣∣∣
ρ=0

δρ+ δρᵀ ∂
2f(ρ)
2 ∂ρ2

∣∣∣
ρ=0

δρ+ · · ·

1
2ρ



=


1 +

[
−ρ

2
√

1−‖ 1
2
ρ‖2

2

] ∣∣∣∣∣
ρ=0

δρ

1
2ρ



=

 1

1
2ρ

 ,
where the derivation of the gradient and Hessian is provided in Section A.3. Note:

• f(0) =
√

1−
∥∥1
20
∥∥2
2

= 1.

• For ρ� 1, then δρᵀ ∂
2f(ρ)
2 ∂ρ2

∣∣∣
ρ=0

δρ u 0.

• q̂v is linear already.

A.3 Quaternion Gradient & Hessian Derivation

Let h(x) = (xᵀx)1/2 where x ∈ R3×1. The Jacobian of h(x) is

∂h(x)

∂x
=

xᵀ

(xᵀx)1/2
.

The Hessian of h(x) is

∂2h(x)

∂x2
=

I

(xᵀx)1/2
−
(

1

2

)
(2)

xxᵀ

(xᵀx)3/2

=
xᵀx I− xxᵀ

(xᵀx)3/2
.
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A.4 Proof of Idempotent P

For the matrix P to be idempotent, it must be the case that P = PᵀP = PP,

where P , H(HᵀH)−1Hᵀ, and H ∈ Rm×n, with m > n. Thus we can show:

Pᵀ = (H(HᵀH)−1Hᵀ)ᵀ

= H(HᵀH)−1Hᵀ

= P

PP = H(HᵀH)−1HᵀH(HᵀH)−1Hᵀ

= H(HᵀH)−1Hᵀ

= P

∴ PᵀP = PP = P.

�

A.5 Proof of Rank P

We can prove that rank(P) = n. First recall that H ∈ Rm×n, with m > n and full

column rank, i.e. rank(H) = n. Let the SVD of H be defined as

H = UΣVᵀ

= [U1,U2]


Σ1

Σ0


Vᵀ

where Σ ∈ Rm×m, Σ1 = diag(σ1, . . . , σn) ∈ Rn×n, and Σ0 = 0 ∈ R(m−n)×n, where σi

for i = 1, . . . , n are the singular values of H. Both U ∈ Rm×m and V ∈ Rn×n are unitary

matrices, therefore UUᵀ = UᵀU = I ∈ Rm×m and VVᵀ = VᵀV = I ∈ Rm×m. The columns
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of U1 ∈ Rm×n form an orthonormal basis for the range-space of H, and the columns of

U2 ∈ Rm×(m−n) form the null-space of Hᵀ. Similarly the first n columns of V form an

orthonormal basis for the range of Hᵀ, and the m− n columns of V form an orthonormal

basis for the null-space of H. Finally, the eigenvectors V of the matrix HᵀH are the right

singular values of H, and the singular values of H squared are the corresponding nonzero

eigenvalues: σi =
√
λi(HᵀH). Similarly, the eigenvectors of HHᵀ are the left singular

vectors U of matrix H, and the singular values of H squared are the nonzero eigenvalues

of HHᵀ: σi =
√
λi(HHᵀ).

Define P in terms of the SVD of H:

P = H(HᵀH)−1Hᵀ

= (UΣVᵀ)(VΣᵀUᵀUΣVt)−1(VΣᵀUᵀ)

= (UΣVᵀ)(VΣᵀΣVᵀ)−1(VΣᵀUᵀ)

= (UΣVᵀ)(VΣ2
1V
ᵀ)−1(VΣᵀUᵀ) (A.3)

= (UΣVᵀ)(V)−1(Σ2
1)
−1(Vᵀ)−1(VΣᵀUᵀ) (A.4)

= UΣVᵀVΣ−21 VᵀVΣᵀUᵀ (A.5)

= UΣ1Σ
−2
1 Σᵀ1U

ᵀ (A.6)

= UΣ1Σ
−1
1 Σ−11 Σᵀ1U

ᵀ (A.7)

= UIn×nU
ᵀ

= [U1U2]

 In×n 0

0 0


 Uᵀ1

Uᵀ2


= U1U

ᵀ
1.
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The middle product in eqn. (A.3) can be separated because it is an n×n matrix with rank

n, and it is non-singular. In eqns. (A.3)-(A.7), we need only consider Σ1 as Σ0 drops out.

The rank of matrix P is defined as the number of non-zero singular values of

P. Thus, rank(P) = n. Similarly, because P is idempotent, rank(P) = tr(P), then

rank(P) = n.

�

A.6 Proof of Idempotent Q

For the matrix Q to be idempotent, it must be the case that Q = QᵀQ = QQ,

where Q , (I−P), and P ∈ Rm×m. Thus we can show:

QQ = (I−P)(I−P)

= I−P

= Q

QᵀQ = (I−P)ᵀ(I−P)

= (I−Pᵀ)(I−P)

= I−P−Pᵀ + PᵀP, P = PᵀP

= I−P−Pᵀ + P, Pᵀ = P

= I−P

= Q

∴ QᵀQ = QQ = Q

�
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A.7 Proof of Rank Q

We can prove that rank(Q) = m− n by the SVD of H. Apply the result from the

proof for the rank of P, where P ∈ Rm×m and I ∈ Rm×m. Using the inner product we can

define I in terms of U

I = UUᵀ

= [U1U2]

 Uᵀ1

Uᵀ2


= U1U

ᵀ
1 + U2U

ᵀ
2.

Alternatively, by the outer product we can define

I = UᵀU

=

 Uᵀ1

Uᵀ2

 [U1U2]

=

 Uᵀ1U1 Uᵀ1U2

Uᵀ2U2 Uᵀ2U2


where Uᵀ1U1 = I ∈ Rn×n, Uᵀ2U2 = I ∈ R(m−n)×(m−n). Finally, U2U

ᵀ
2 = P ∈ Rm×m as

proved above, and U1U
ᵀ
1 = Q ∈ Rm×m which is proven below.

Now define Q as

Q = I−P

= (U1U
ᵀ
1 + U2U

ᵀ
2)−U1U

ᵀ
1

= U2U
ᵀ
2.
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The rank of matrix Q is defined as the number of non-zero singular values of Q. Thus, for

Q , (I − P), and rank(P) = n, the number of non-zero singular values of Q is at most

m− n, and therefore the rank(Q) = m− n.

�

A.8 Physical Interpretation of P & Q

The physical interpretation for P and Q is a mapping of the measurement and

the residual, as shown in Fig. A.1. Py projects y onto the range(P) along the direction

of y. The complementary projector is Q, where Qy projects y onto the range(Q) which is

orthogonal to the range(P).

a
3

a
2

a
1

�� = ��

� = ��

�

Figure A.1: For a general space in R3, the mapping Py = ŷ is the estimate for y, and
Qy = r is the estimation residual for y.

From the SVD of H we have the relations:

1. V1V
ᵀ
1 is the orthogonal projector onto [N(H)]⊥ = R(Hᵀ).

2. V2V
ᵀ
2 is the orthogonal projector onto N(H).
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3. U1U
ᵀ
1 is the orthogonal projector onto R(H).

4. U2U
ᵀ
2 is the orthogonal projector onto [R(H)]⊥ = N(Hᵀ).

A.9 Soft-Thresholding Operator Proof

This section solves the optimization problem

f(r) = arg min
s

{
1

2

(
r − s

σ

)2
+

1

ν
|s|
}

= arg min
s

gr(s),

where r, s ∈ R, σ > 0 and ν > 0 are the parameters of the Normal and Laplacian distribu-

tions, and

gr(s) ,
1

2

(
r − s

σ

)2
+

1

ν
|s|. (A.8)

Note first that gr(s)
∣∣∣
s=0

= gr(0) = 1
2r

2.

Because gr(s) is not differentiable in s, three cases can be considered (s < 0, s = 0,

and s > 0), with the final answer being the value of s over the three cases that gives the

lowest cost. For s 6= 0:

∂

∂s
gr(s) = − r

σ
+

s

σ2
+

1

ν
sgn(s).

For s > 0, ∂
∂sgr(s) = 0 yields the critical value s∗+ = σ(r − µ), where µ , σ

ν .

Because, in this case s∗+ > 0, it must be that r > µ. The cost at s∗+ is:

gr(s)
∣∣∣
s=s∗+

= gr(σ(r − µ)) = µr − 1

2
µ2.

Note that:

1

2
(r − µ)2 ≥ 0 ∀ r, µ;
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therefore,

1

2
r2 ≥ rµ− 1

2
µ2 ∀ r, µ.

This ensures that in this case (i.e., s > 0), for any value of r, it is true that gr(s
∗
+) ≤ gr(0).

For s < 0, ∂
∂sgr(s) = 0 yields the critical value s∗− = σ(r + µ). Because, in this

case s∗− < 0, it must be that r < −µ. The cost at s∗− is:

gr(s)
∣∣∣
s=s∗−

= gr(σ(r + µ)) = −µr − 1

2
µ2.

Note that:

1

2
(r + µ)2 ≥ 0 ∀ r, µ;

therefore,

1

2
r2 ≥ −rµ− 1

2
µ2 ∀ r, µ.

This ensures that in this case (i.e., s < 0), for any value of r, it is true that gr(s
∗
+) ≤ gr(0).

When |r| < µ, it is straightforward to show that any non-zero value of s will

increase the second term more than it decreases the first term; therefore, in this case s∗ = 0.

Given the analysis above, the unique optimal solution for s as a function of r and

µ > 0 is:

s =



σ(r + µ), if r < −µ,

σ(r − µ), if r > µ,

0, otherwise.

(A.9)

Eqn. (A.9) can be more compactly stated as

Sσ,µ(r) = σ sgn(r) max(|r| − µ, 0).
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Appendix B

Neyman-Pearson Lemma

B.1 Problem Formulation

Consider two densities p(y|H0) and p(y|H1,θ1), for the parameter y and random

variable θ, whereH0 is the null-hypothesis, andH1 is the alternate-hypothesis. A constrained

optimization problem can be formulated and solved by Lagrange multipliers, to maximize

the probability of detection, PD, of event H1, given the probability of false alarm, PFA = α.

For y ∈ X , the subspace X1, where H1 is decided, is found by maximizing

PD =

∫
X1

p(y|H1,θ)dy

under the constraint

PFA =

∫
X1

p(y|H0)dy = α (B.1)

where 0 < α < 1.

Define an objective function (the Lagrangian) using the Lagrangian multiplier γ,
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such that

L = PD − γ(PFA − α)

=

∫
X1

p(y|H1,θ)dy − γ
[∫
X1

p(y|H0)dy − α
]

=

∫
X1

[p(y|H1,θ)− γp(y|H0)] dy + γα.

For any given value γ, the region X1 that maximizes L, and hence PD, under the constraint

PFA = α, is given by

X1 = {y ∈ X | p(y|H1,θ) > γp(y|H0)}. (B.2)

Equation (B.2) yields the likelihood ratio test (LRT) [76] which is the uniformly most

powerful (UMP) test [76] with PFA = α,

Λ(y) =
p(y|H1,θ)

p(y|H0)

H1

≷
H0

γ,

where γ is determined from the constraint PFA ≤ α in eqn. (B.1).

B.2 Illustrative Example

In the following examples, we use modified figures from [47]. Consider the PD

versus the PFA for given threshold γ for two signal distributions shown in Fig. B.1. Distri-

bution a is noise-only, while distribution b is signal-plus-noise. Both distributions in Fig.

B.1 have the same distance between the peaks. The height of the distributions represent

how often a signal is present, and the spread of the distributions indicate the magnitude of

noise present; less noise reduces the spread of the distributions, while more noise increases

the spread.
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Figure B.1: Signal spread due to noise, and resulting overlap.

Consider the internal response to a signal detection system. In Fig. B.2, the

vertical line represents the threshold γ, which splits the figure into four regions: a hit is

defined as the signal-plus-noise region greater than (to the right of) γ, and a miss is the

signal-plus-noise region less than (to the left of) γ. False alarms represent the noise-only

region greater than γ, while correct rejection represents the noise-only region less than γ.

a

a

b

b

Hit

Sigma

P
ro

b
a

b
il

it
y

P
ro

b
a

b
il

it
y

�

Miss

False Alarm
Correct

Reject

Figure B.2: The four regions of hypothesis testing, defined by two overlapping distributions
(a & b) and the vertical line of the decision threshold γ.

Suppose that a low threshold is chosen, then the signal-plus-noise will likely be
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detected, and therefore the system will have a very high hit rate, at the cost of an increased

number of false alarms. Conversely, if the threshold is chosen to be high, then the number

of false alarms will be reduced, at the cost of an increased miss rate. This is demonstrated

by an example of threshold-shifting, shown in Fig. B.3.

Sigma

P
ro

b
a

b
il

it
y

�
P

ro
b

a
b

il
it

y
P

ro
b

a
b

il
it

y

Hits = 97.5%

False Alarms = 84%

Hits = 84%

False Alarms = 50%

Hits = 50%

False Alarms = 16%

Figure B.3: An example result of hits versus false alarms, due to shifting the threshold γ.

Consider the following three conditions:

1. As the region X1 shrinks (γ tends toward infinity), both PD and PFA shrink toward

zero.

2. As the region X1 grows (γ tends toward zero), both PD and PFA grow toward unity.

3. The case where PD = 1 and PFA = 0 will never occur if the conditional PDF’s p(x|H0)

and p(x|H1,θ) overlap as in Fig. B.1.

Item 3 in the list above represents the fundamental trade-off in hypothesis testing, and

motivates the N-P Lemma.
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B.3 Relation to ROC Plots

In the 1940’s, the Allied forces in England sought to make sense of the signals

received from new Radar technology [58]. Specifically, they needed a graphical way to rep-

resent and determine a good signal from random noise. This graphical method is called the

Receiver Operating Characteristic (ROC) plot, with the PD equal to one minus the Prob-

ability of Missed Detection (PMD) on the vertical axis (shown as Hits in Fig. B.4), versus

the PFA on the horizontal axis (shown as False Alarms in Fig. B.4). The Discriminability

index (d′), where d′ = 0, is the Line-of-No-Discrimination, indicating that any signal along

or below this line cannot be discerned from random noise. The curves above this line,

d′ = 1 · · · 4, represent a detected signal with varying thresholds and/or discriminability. A

perfectly detected signal lies on the vertical axis.
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Figure B.4: ROC plot for Hits (PD) versus False Alarms (PFA).

The discriminability of a signal depends both on the separation and the spread

of the noise-only and signal-plus-noise curves. Discriminability is made easier either by
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increasing the separation (stronger signal) or by decreasing the spread (less noise). The

number, d′, is often referred to as an estimate of the signal strength [58].
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Appendix C

Generalized Likelihood Ratio Test

C.1 Problem Formulation

Consider a test for a signal present in Gaussian additive noise with non-zero mean

[95]. A binary test can be performed for a random sample from a population that is normally

distributed and has known variance. Based on the Neyman-Pearson (N-P) Lemma for

binary hypothesis testing [59,76], consider

H0 : y ∼ N (0,σ2I) (C.1)

H1 : y ∼ N (Hθ,σ2I) (C.2)

for measurement y ∈ Rm×1, where σ2 > 0 is known, H ∈ Rm×n is known, and the unknown

θ ∈ Rn×1. The standard, or null-hypothesis, with known mean is defined as H0, and the

alternate-hypothesis with unknown mean is defined as H1.

The Likelihood Ratio Test (LRT) [58] compares the model in H1 to the model in

H0, for threshold γ, such that

p(y|H1,θ)

p(y|H0)

H1

≷
H0

γ,
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where

p(y|H1,θ) =
1

(2πσ2)k/2
e

(
− 1

2σ2 (y−Hθ)ᵀ(y−Hθ)
)

p(y|H0) =
1

(2πσ2)k/2
e

(
− 1

2σ2 (y
ᵀy)
)
.

When H1 is decided:

• if H1 is valid, this is a correct detection,

• if H1 not valid, this is a false alarm.

When H0 is decided:

• if H1is valid, this is a missed detection,

• if H1 not valid, this is a correct rejection.

The log likelihood ratio test is

ln (Λ(y)) = ln

(
p(y|H1,θ1)

p(y|H0)

)
H1

≷
H0

γ ′ (C.3)

where γ ′ = ln(γ).

Defining eqn. (C.3) in terms of eqn. (C.1) & (C.2) yields

ln (Λ(y)) = − 1

2σ2

(
(y −Hθ)ᵀ(y −Hθ)− yᵀy

)
= − 1

2σ2
(−yᵀHθ − θᵀHᵀy + θᵀHᵀHθ)

= − 1

2σ2
(−2θᵀHᵀy + θᵀHᵀHθ). (C.4)

The simplification in eqn. (C.4) is possible because: yᵀHθ = y • (Hθ) = (Hθ)ᵀy. Because

θ is unknown, eqn. (C.4) cannot be evaluated to implement a test.
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The Generalized Likelihood Ratio Test (GLRT) [58] compares the most likely

model in H1 to the most likely model in H0, for threshold γ, such that

max
θ

p(y|H1,θ)

max
θ

p(y|H0)

H1

≷
H0

γ.

The GLRT is determined by finding the Maximum Likelihood Estimate (MLE) of θ. The

MLE estimates θ̂ by finding the value of θ that maximizes Λ̂(θ; y) [59], for i = {0, 1}:

θ̂i , arg max
θ

p(y|Hi,θ).

For the alternate-hypothesis, the θ that makes y most likely is

θ̂1 = arg max
θ

p(y|H1,θ)

= arg max
θ

1

(2πσ2)k/2
e−

1
2σ2 (y−Hθ)ᵀ(y−Hθ) (C.5)

= arg max
θ

− 1

2σ2
(y −Hθ)ᵀ(y −Hθ) (C.6)

= arg min
θ

(y −Hθ)ᵀ(y −Hθ) (C.7)

= arg min
θ

(yᵀy − 2θᵀHᵀy + θᵀHᵀHθ). (C.8)

The exponential function of θ is an increasing function. Eqn. (C.5) can be reduced to eqn.

(C.6) because the log of the exponent does not change the maximization of the exponent

over θ. Eqn. (C.6) can be reduced to eqn. (C.7) because 1
2σ2 is independent of θ, which

will not change the maximum relative to θ. Accounting for the negative value in eqn. (C.6)

changes the problem from a maximization over θ, to an equivalent minimization over θ, in

eqn. (C.7). Finally eqn. (C.8) is simply algebra.
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To find θ̂1, take the partial derivative of eqn. (C.8) and set it equal to zero:

∂

∂θ
(yᵀy − θᵀHᵀy + θᵀHᵀHθ) = 0

0− 2Hᵀy + 2HᵀHθ = 0

θ̂1 = (HᵀH)−1Hᵀy. (C.9)

Substituting eqn. (C.9) into eqn. (C.4) yields the analytical form of the GLRT

ln
(

Λ̂(y)
)

= − 1

2σ2

(
− 2yᵀH(HᵀH)−1Hᵀy + yᵀH(HᵀH)−1HᵀH(HᵀH)−1Hᵀy

)
= − 1

2σ2

(
− 2yᵀH(HᵀH)−1Hᵀy + yᵀH(HᵀH)−1Hᵀy

)
= − 1

2σ2

(
− 2yᵀPy + yᵀPy

)
=

1

σ2

(
yᵀPy − 1

2
yᵀPy

)
=

1

2σ2
yᵀPy

H1

≷
H0

γ ′, (C.10)

where P , H(HᵀH)−1Hᵀ.

From the result in eqn. (C.10), we can now determine the relation of the GLRT

to the Probability of False Alarm (PFA) and the Chi-square distribution.

C.2 GLRT relation to PFA and χ2

The objective is to choose γ ′ for the desired PFA by evaluating eqn. (C.10) for

the binary hypothesis. First, consider yᵀPy under H0. Define H in terms of the “thin” QR
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factorization [42], e.g. H = Q1R1:

H = QR

= [Q1 Q2]

 R1

0


= Q1R1

where Q ∈ Rm×m is a basis for the column space of H, and R ∈ Rm×n with m > n. Both

Q1 and Q2 have orthogonal columns, where Q1 ∈ Rm×n, Q2 ∈ Rm×(m−n). The parameter

R1 ∈ Rn×n is an invertible upper triangular matrix, and the zeros matrix, 0 ∈ R(m−n)×n.

For full column-rank H, i.e. rank(H) = n, then both Q1 and R1 are unique.

Using the QR factorization of H allows analysis of P as

P = H(HᵀH)−1Hᵀ

= Q1R1(R
ᵀ
1Q
ᵀ
1Q1R1)

−1Rᵀ1Q
ᵀ
1

= Q1R1(R
ᵀ
1IR1)

−1Rᵀ1Q
ᵀ
1

= Q1R1R
−1
1 (Rᵀ1)−1Rᵀ1Q

ᵀ
1

= Q1Q
ᵀ
1 (C.11)

where Qᵀ1Q1 = I. Substituting eqn. (C.11) into eqn. (C.10), the decision statistic is

ln
(

Λ̂(y)
)

=
1

2σ2
yᵀPy

=
1

2σ2
yᵀQ1Q

ᵀ
1y

=
1

2σ2
zᵀz

where z = Qᵀ1y ∈ Rn×1 is a Gaussian random variable with m degrees of freedom, and
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ln
(

Λ̂(y)
)

is a χ2
(m−n) random variable with m − n degrees-of-freedom: the degrees-of-

freedom of a Chi-square random variable is the number of measurements m, minus the

number of parameters n.

Under the alternate hypothesis, H1 : y1 ∼ N (Hθ,σ2I), the expected value of z1

is

E 〈z1〉 = E 〈Qᵀ1y〉

= Qᵀ1E 〈y〉

= Qᵀ1Hθ,

and covariance of z1 is

E 〈z1zᵀ1〉 = E 〈Qᵀ1yyᵀQ1〉

= Qᵀ1(σ2In)Q1

= σ2In.

Therefore, under H1, z1 ∼ N (Hθ,σ2In) ∈ Rn×1.

Under the null hypothesis, H0 : y0 ∼ N (0,σ2I), the expected value of z0 is

E 〈z0〉 = E 〈Qᵀ1y〉

= Qᵀ1E 〈y〉

= 0,
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and covariance of z0 is

E 〈z0zᵀ0〉 = E 〈Qᵀ1yyᵀQ1〉

= Qᵀ1(σ2In)Q1

= σ2In.

Therefore, under H0, z0 ∼ N (0,σ2In) ∈ Rn×1.

From eqn. (C.10), the test statistic is

zᵀz

2σ2

H1

≷
H0

γ ′. (C.12)

Given the PFA constraint, the optimum decision threshold γ ′ is found by applying the

inverse CDF of the Chi-square distribution with m − n degrees-of-freedom. Thus, under

H0, we can define the PFA in terms of the GLRT

PFA = p(χ2
(m−n) > γ).

In statistics literature, eqn. (C.12) is referred to as Wilks Theorem [100].
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