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Selective modulation

of cortical population dynamics
during neuroprosthetic skill
learning

Ellen L. Zippi®®, Albert K. You**, Karunesh Ganguly** & Jose M. Carmena®2**

Brain-machine interfaces (BMls) provide a framework for studying how cortical population dynamics
evolve over learning in a task in which the mapping between neural activity and behavior is

precisely defined. Learning to control a BMI is associated with the emergence of coordinated neural
dynamics in populations of neurons whose activity serves as direct input to the BMI decoder (direct
subpopulation). While previous work shows differential modification of firing rate modulation in

this population relative to a population whose activity was not directly input to the BMI decoder
(indirect subpopulation), little is known about how learning-related changes in cortical population
dynamics within these groups compare.To investigate this, we monitored both direct and indirect
subpopulations as two macaque monkeys learned to control a BMI. We found that while the combined
population increased coordinated neural dynamics, this increase in coordination was primarily driven
by changes in the direct subpopulation. These findings suggest that motor cortex refines cortical
dynamics by increasing neural variance throughout the entire population during learning, with a more
pronounced coordination of firing activity in subpopulations that are causally linked to behavior.

Learned behaviors are reinforced through mechanisms involving both cortical and subcortical structures!*.
Just as behavioral actions are reinforced, so is the cortical population activity required to efficiently produce
these actions®”’. Studying mechanisms of cortical reinforcement underlying behavioral reinforcement can be
challenging as the exact neural population controlling the desired behavior is unknown. Early studies of bio-
feedback demonstrated that activity in motor cortex can be reinforced and volitionally controlled using reward
and sensory feedback of the firing rate®’. Later, initial research on brain-machine interfaces (BMIs) showed that
subjects could learn to control external devices (e.g. computer cursors or robotic arms) by learning to modulate
the activity of a population of neurons and that the neural encoding of these prosthetic movements changed
over time and decreased in variability 1°-!%. These BMIs allow for precisely defined mappings between recorded
neural activity and behavior'®*!">. Studies leveraging BMIs to study learning-related changes in cortical activity
have demonstrated that neuroprosthetic skill learning can require the production of novel cortical dynamics to
obtain skillful control 11617,

While classical approaches examine individual neurons to understand fundamentally how motor cortical
activity is reinforced, more recent methods looking at population-level activity have uncovered how dynamic
processes may govern movement planning and execution'®-?? as well as learning?®3°-3. Population-level activ-
ity is often characterized by low-dimensional dynamics that capture patterns of co-activation across neurons
within a population®. These population-level dynamics arise from input connectivity and within-population
connectivity. Two parallel mechanisms have been proposed to reinforce specific cortical population dynamics;
fast reinforcement of dynamics that naturally produce a desired behavior and slower reinforcement that refines
them to result in more reliable production of neural activity patterns*>*..

Previous studies have shown that neural populations are constrained to generate activity patterns within a
pre-existing covariance structure within short timescales®**>*"%, suggesting that it is faster to learn to control and
repurpose pre-existing cortical population dynamics than it is to modify them. When decoder perturbations that
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Figure 1. Experimental setup and behavioral performance. (a) Experimental setup from Ganguly and
Carmena, 2009. Activity recorded from direct neurons (blue) in M1/PMd was input into a fixed linear decoder
and used to drive a computer cursor to perform a center-out task (see Methods for details). Activity from
indirect neurons (red) was simultaneously recorded, but was not input into the decoder. (b) Performance
improves over the first 15 training epochs for Monkey P and Monkey R. Each training epoch consists of 150
initiated trials. For some analyses, epochs were divided into groups of early (orange) and late (purple). Fraction
of initiated trials that were successful increased over training epochs. (c) The time to reach a target decreased
over training epochs. (d) Representative examples of single-trial cursor trajectories during the early and late
learning.

change the behavioral output associated with specific neural activity were introduced after subjects had already
achieved proficient control using a BMI there was an immediate deficit in performance. However, over training,
subjects were able to recover performance of cursor control and furthermore, experienced a washout when the
perturbation was removed, but only when the perturbation did not require alteration of the natural covariance
pattern among the recorded neurons®. Other work has demonstrated that animals can learn to control BMIs
that require neural patterns outside of the pre-existing covariance structure over the course of multiple days™'.
This eventual modification of cortical dynamics suggests that learning novel skills requires the production of
new underlying population activity that develops over longer timescales.

With motor cortical BMIs, a small subset of all possible neurons in motor cortex is selected to use as input
to the decoder (direct neurons). These neurons exist within a large network of other motor cortical neurons
(indirect neurons). While the selection of direct neurons from all recorded units in our experiments was arbitrary
and there was initially no functional difference between the those selected to be direct and those that are not,
previous work has shown that differences in the neural activity of these two groups emerge with learning!®4*-¥’.
For example, it has been demonstrated that the task-relevant modulation of indirect neurons gradually reduces
relative to direct neurons over learning'®. Additionally, it has been shown in rodents that coherence develops
between dorsal striatum and direct neurons, but not indirect neurons**~*. In a study using 2-photon calcium
imaging to record neural activity, mice initially modulated activity of both direct and indirect neurons, but
predominantly modulated direct activity after learning*>. Thus, it is likely that the initial cortical dynamics that
produce desirable outcomes involve both direct neurons and the surrounding cortical network. Over time, as
these cortical dynamics are refined, they may adapt to exclude neurons that do not directly drive behavior.

If this hypothesis is true, we expect differences in how cortical population-level dynamics within direct and
indirect subpopulations change over time as well. As cortical dynamics are modified for more efficient control,
the direct subpopulation would be expected to undergo further modification than the indirect subpopulation as
additional modifications to indirect activity would not directly result in desirable outcomes. Here, we investigate
this idea by studying recorded ensembles of motor cortical neurons while only a subset was assigned to have a
causal role during BMI control and characterize the differential changes in coordinated neural dynamics between
direct and indirect subpopulations.

Results

Two rhesus macaques (P and R) were chronically implanted with bilateral microelectrode arrays in primary
motor and dorsal premotor cortices, with electrodes from a single hemisphere used for BMI control and subse-
quent analyses (see Methods). The monkeys learned to perform a two-dimensional, self-initiated, center-out BMI
task, in which they drove a cursor under neural control to one of eight randomly instructed peripheral targets for
ajuice reward (Fig. 1a). The next trial was initiated by driving the cursor back to the center target. Trials from all
days of the experiment were concatenated then separated into 150-trial epochs since the number of successful
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trials was lower in early days of learning. Both animals increased the fraction of successful trials (Fig. 1b) and
decreased the time to move the cursor from the center target to the peripheral target (Fig. 1c) over the course of
the first 15 epochs. Example cursor trajectories from early and late learning are shown in Fig. 1d. To capture the
correlates of learning before performance saturated, only the first 15 epochs were used for each animal.

Because the BMI decoder used in the experiment was novel to the subjects, they had to initially explore the
neural population activity space. Over time, the subjects learn from the behavioral consequences of explored
activity patterns and select target-achieving, rewarded patterns of activity. To characterize the neural dynamics
associated with this neuroprosthetic learning, we examined recorded ensembles of motor cortical neurons from
which only a subset was assigned a causal role during control. We define these neurons, whose activity was used
as a direct input to the BMI decoder, as “direct neurons” (Monkey P, N =15; Monkey R, N=10). The remain-
ing recorded motor cortical neurons, recorded using the same two 4 x4 mm 64-channel microelectrode arrays
(interelectrode distance 500 um), whose activity was not used as direct input to the BMI, we define as “indirect
neurons” (Monkey P, N =29-69; Monkey R, N =87-187). Spiking activity and waveforms for a representative
direct and indirect unit are shown in Figure S1. For some analyses in which it is important to consider the same
population across epochs we refer to indirect neurons that were stably recorded across all 15 epochs as “stable
indirect neurons” (Monkey P, N=17; Monkey R, N =14). Stability of the indirect neurons was assessed using
the methods described in Fraser and Schwartz*®. This method uses pairwise cross-correlograms, the autocor-
relogram, waveform shape, and mean firing rate to classify neurons and has previously been used on recordings
obtained from chronically implanted microelectrode arrays to assess the stability of neurons across days**->2.
Example waveforms from representative stable indirect units for each animal on the first day, middle day, and
last day of recording are shown in Figure S2.

First, we examined how the neural firing rate variance changed in each subpopulation over learning. Changes
in neural variance are often used as a proxy for neural exploration, as increasing the variance in firing rate allows
for neurons to form different coordinated patterns of firing>****-. Past work has shown neural activity fires in
more coordinated patterns as behavior stabilizes, thereby decreasing the dimensionality in neural space over
learning®**-2, We commonly refer to these low-dimensional spaces as manifolds or neural subspaces. In order to
observe changes in these neural subspaces, epochs were separated between early and late for each animal (Epochs
1-7 and Epochs 9-15, respectively) to track differences as behavioral performance improved. The firing rate for
each neuron was binned in 100 ms intervals. The binned firing rate variance for each neuron was then averaged
across all neurons for each epoch. In early learning, the mean firing rate variance was significantly higher in the
direct subpopulation than the indirect subpopulation for one subject and there was no significant difference for
the other (Fig. S3). We normalized the firing rate variance for each subpopulation based on the mean variance
in early learning to assess relative change in variance from early to late learning within each subpopulation. In
both animals, we observed an increase in relative unit variance between early and late learning for both direct
and indirect subpopulations (Fig. 2a). This increase in variance suggests a concerted effort of neural exploration
that exists in a broader network that includes both direct and indirect neurons. To ensure that this increase in
variance was not due to a change in the distribution of time spent at each target, we repeated this analysis within
each target (Fig. 2b). Trials to each target were evenly divided across 15 epochs and relative unit variance during
early (first 7 epochs) and late learning (last 7 epochs) was considered for each target individually. The relative unit
variance increased within both direct and indirect subpopulations for Monkey P and for six of the eight targets for
Monkey R (Table 1), indicating that this result was not due to a change in the distribution of time spent at each
target. Because the change in relative unit variance was consistent across targets, subsequent analyses included
trials to all targets to increase the statistical power associated with more trials. Furthermore, because the task
required two-dimensional control to achieve success at all targets, grouping trials across all targets provided better
insight into how learning occurs in a generalized two-dimensional space rather than for target-specific activity.

Previous work has shown that neurons fire in increasingly coordinated patterns as performance improves®.
We consider these changes in coordinated firing as a proxy for consolidation of neural population dynamics since
the neural variance is stabilizing onto low-dimensional subspaces. We use factor analysis (FA) to separate the
neural variance in the population into two components—private and shared variances”. The shared variance is
the variance between neurons in the population and can be thought of as the underlying correlated firing pattern
in the recorded population'>*%. Conversely, the private variance denotes the amount of variance each neuron has
that is independent from the rest of the population. Past studies have explored the roles of these components in
the direct neuron population, showing private variance as a proxy for exploration while an increase in shared
variance is correlated to skill consolidation®*. Previous work has quantified the amount of coordinated neural
activity as a measure of the balance between shared and private variance: the ratio of shared variance over total
variance (SOT)>*%-¢!. Here, we compared the proportion of the total neural variance that is captured in shared
spaces for the combined direct and indirect population in each epoch as an estimate of coordination within the
recorded population across learning.

Since the indirect population consisted of different units each epoch, we normalized the SOT to the mean
SOT for early epochs (Fig. 3a). In both animals, we found that the relative SOT increased between early and
late learning for the entire recorded population including both direct and indirect neurons. Together, with the
increase in variance over learning, our results indicated a high level of increased coordination that occurs within
the entire recorded population driven by increased exploration as BMI performance improves. To assess that the
effect was not due to day-to-day differences in the population, we conducted the same analysis on neurons that
were stably recorded across all 15 epochs, which yielded consistent results (Fig. 3b). Along with an increase in
SOT, previous work has shown learning-related decreases in dimensionality of the shared neural subspace for the
direct subpopulation®. We found a similar decrease in dimensionality for the entire stably recorded population
(Fig. 3¢) and furthermore found that the dimensionality of the neural subspace in each epoch was significantly
correlated with the SOT of each epoch (Fig. 3d).
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Figure 2. Neural variance increases with learning Variance was calculated for each neuron and then

averaged across neurons. Relative variance was calculated by normalizing to the mean early variance within
subpopulation. (a) Both direct and indirect subpopulations increased relative neural variance from early to late
learning (Unpaired t-test; Monkey P: direct p=_8.63e-5, indirect p =0.002; Monkey R: direct p=0.007, indirect
p=0.003). (b) Analysis was repeated within target. Both direct and indirect subpopulations increased relative
neural variance from early to late learning within target (Unpaired t-tests results reported in Table 1)
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Monkey P Monkey R
Target | Direct Indirect | Direct Indirect
1 1.74e-04 | 0.003 0.006 8.64e-05
2 9.01e-04 |1.72e-04 |0.010 7.72e-04
3 0.004 0.001 0.015 0.002
4 0.006 1.35e-04 | 0.117 (n.s.) | 0.018
5 7.24e-05 | 0.012 0.001 2.12e-06
6 3.78e-04 | 1.25e-04 | 5.71e-04 4.51e-05
7 3.17e-04 | 5.25e-04 | 0.005 9.75e-04
8 6.07e-04 | 0.006 0.093 (n.s.) | 0.037

Table 1. Relative variance within target. P-values from unpaired t-test comparing relative neural variance in
early and late learning calculated within each target separately.
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Figure 3. Increases in coordinated neural activity over learning are primarily driven by direct neurons. (a)
The relative shared-over-total variance (SOT) ratio was calculated with respect to the mean early SOT across
the entire recorded population. Relative SOT increased between early and late learning, indicating an overall
increase in coordination of neural activity in the entire recorded population (Unpaired t-test; Monkey P,
p=1.31e-5 Monkey R, p=0.033). (b) Relative SOT also increased between early and late learning for a stably
recorded population consisting of the same units each epoch (Paired t-test; Monkey P, p=0.002; Monkey R,
p=0.027). (c) Dimensionality of the neural subspace for the stably recorded population decreased from early
to late learning (Unpaired t-test; Monkey P: p =4.10e-4; Monkey R: p=_8.24e-5). (d) The dimensionality of

the neural subspace is correlated with SOT (Linear regression; Monkey P: R?=0.813, p=4.41e-6; Monkey R:
R?=0.277, p=0.044). (e) Respective contributions of each sub-population to the SOT ratio (pSOT, see Methods
for details) were calculated in early and late learning relative to contributions in early learning. Only direct
pSOT relative to early learning increased from early to late learning (Paired t-test; Monkey P, direct p=0.003,
indirect p=0.805; Monkey R, direct p=0.084, indirect p=0.675). To test that the change in direct was not due
to a chance grouping of neurons, we repeated the t-test 500 times while shuffling direct and indirect labels and
compared the true direct t-statistic to a distribution of t-statistics from the shuftled populations (Permutation
test; Monkey P, direct p=0.014; Monkey R, direct p=0.078). (f) Both near and far indirect neurons exhibited
significant increases in neural variance (Unpaired t-test; near p=0.006, far p=0.007). (g) Only near indirect
neurons exhibited a significant increase in pSOT relative to early learning (Unpaired t-test; p=0.003). Far
indirect neurons exhibited a significant decrease in pSOT (Unpaired t-test; p=0.022). To test that changes in
pSOT are not due to a chance grouping of neurons, we repeated the t-tests 500 times while shuffling near and far
labels (Permutation test; near, p =0.008; far, p=0.002).
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Figure 4. Rotation of low-dimensional neural subspace. (a) Shared alignment was calculated pairwise between
epochs for each subpopulation. (b) Alignment diverges from the first epoch in both subpopulations (Linear
regression; Monkey P: direct, R*=0.530, p=0.001, indirect, R*=0.352, p=0.012; Monkey R: direct R*=0.857,
p=4.63e-7, indirect R?=0.760, p = 1.41e-5). The slopes for direct and indirect shared alignment across epochs
were significantly different (One-way ANCOVA; Monkey P: p=0.024; Monkey R: p=>5.84e-6). (c) Alignment

is correlated with fraction correct (Top, linear regression; Monkey P: direct, R*=0.657, p=2.0e-4, indirect
R?=0.481, p=4.2e-4; Monkey R: direct R?=0.870, p < 1.0e-6, indirect R*=0.589, p = 8.0e-4) and time to hit
(Bottom, linear regression; Monkey P: direct, R?=0.535, p=0.002, indirect R>=0.380, p =0.014; Monkey R:
direct R?=0.815, p< 1.0e-6, indirect R?=0.592, p=8.0e-4).

While the increase in SOT indicates more coordination within the entire population, it does not explain
whether these changes are driven by a specific subpopulation. To answer this question, we considered the partial
shared-over-total variance (pSOT) ratio of the stably recorded population to see how the same population of
neurons change coordinated firing activity over learning (see Methods). Intuitively, the pSOT ratio asks how
much of the overall change in coordinated activity was driven by one subpopulation versus the other. We see that,
relative to early learning, there was an increase in pSOTy;.., in late learning but not in pSOT;, i, for both animals
(Fig. 3e), indicating that the increase in coordination of population activity seen across the stably recorded popu-
lation was driven by the increase in coordination of population activity within the direct subpopulation. While
this result was only statistically significant in Monkey P, Monkey R (who had fewer direct neurons) exhibited the
same trend. The larger increase in pSOTy;. suggests that the increased neural exploration in the network was
primarily a consequence of changes in coordinated patterns specific to the direct neurons. To further character-
ize these changes in the indirect neurons, we separated all of the indirect neurons in Monkey P into “far” and
“near” indirect neurons. “Far” indirect neurons (N =29-69) were those recorded on electrodes not containing
direct neurons. In contrast, “near” indirect neurons (N =7-14) were indirect neurons that existed on the same
electrode shanks as direct neurons. Monkey R was excluded from these analyses due to recording too few near
indirect neurons during several epochs (N =0-10). We found that neural variance increased for both far and
near indirect neurons between early and late learning (Fig. 3f). However, the pSOT only increased for the near
indirect subpopulation and significantly decreased for the far indirect subpopulation (Fig. 3g). Together, these
results suggest that while neural exploration exists in broader networks consisting of both direct and indirect
neurons, activity in neurons closer in proximity to direct neurons becomes more coordinated than activity in
neurons farther away from direct neurons. While the probability of synaptic connections among neurons does
not depend strongly on interneuron distance, differences in near and far indirect neurons could be due to com-
mon synaptic inputs between the direct neurons and near indirect neurons from other brain regions into M1,

To characterize how neural exploration modified the direct and indirect neural subspaces differently, we quan-
tified these changes by calculating the shared alignment pairwise between each training epoch’s shared covariance
matrix for each subpopulation according to the methods described in Athalye et al., 2017 (Fig. 4a). The shared
alignment measures the similarity of covariance planes to compare how much of the shared space of one epoch
projects onto the shared space of another epoch. Intuitively, given both two-dimensional shared subspaces, the
shared alignment compares the angle between the two planes. Orthogonal planes, or subspaces, would result in a
shared alignment of 0 and perfectly aligned planes would result in a shared alignment of 1. If the shared subspace
consolidates with learning, as has been shown in direct subpopulations®, we would expect the shared subspace
to rotate away from the initial subspace over learning. If the shared subspace remains fixed over learning, we
would predict that the alignment between the first epoch and later epochs remains high, indicating little change
in the coordinated activity of the population. Since we are interested in how the subspaces pertaining to specific
populations change over time, we analyzed only the neurons that were stable across learning. We found that
the shared alignment decreased from the first epoch for both subpopulations (Fig. 4b). This indicates that both
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Figure 5. Neural variance modulates concomitantly between subpopulations. (a) Monkey P learned to
perform BMI with a new decoder following proficient control with the old decoder. 8 experimental blocks were
performed, alternating between a new decoder (cross) and the previously learned decoder (circle). Fraction of
initiated trials that were successful increased over training blocks (left) and the time to reach a target decreased
over training blocks (right). (b) Both subpopulations increase their neural variance over blocks (Linear
regression; Direct R*=0.623, p=0.020, Indirect R*=0.655, p=0.015). The relative variances across blocks are
correlated between subpopulations (Pearson’s r, r=0.856, p=0.007). (¢) Each point represents the change in
relative variance between two consecutive blocks. The changes in relative variance within the direct and indirect
subpopulations are correlated (Pearson’s r, r=0.820, p=0.024).

subpopulations rotated their low-dimensional subspaces, suggesting that neurons may adapt on a network level
that includes both direct and indirect neurons. Furthermore, this rotation of the low-dimensional subspaces is
correlated with behavior (Fig. 4c). As the shared subspace diverges from where it began in the first epoch, the
fraction of correct trials significantly increases and the time it takes for the cursor to reach the target significantly
decreases. While this is true for both the direct and indirect subpopulations, the extent of rotation as measured
by the shared alignment with the first epoch and the proportion of the variation in the shared alignment that is
predictable from the behavior were higher for the direct subpopulation than the indirect subpopulation.

To further explore how indirect and direct neural activity may adapt together, we analyzed data from a second
experiment in which Monkey P learned to perform the same BMI task with a new decoder following proficient
control with the original learned decoder (Fig. 5a). The new decoder used the same direct neurons as the original
decoder but the decoder weight assigned to each direct neuron was changed so that the same activity patterns
result in different cursor movements when using the different decoders. Eight experimental blocks were per-
formed over the course of four days, alternating between control with the new and previously learned decoder
each day. The neural variance for direct and indirect neurons was calculated within each of these eight blocks.
Note that only stable indirect neurons were used for this analysis since we wanted to explicitly track how the
variance changed as a function of block number. We found that both subpopulations increased and decreased
neural variance together over blocks, with similar changes in variance between blocks occurring in both direct
and indirect neurons (Fig. 5b). Thus, increases in neural variability with changing decoders over shorter time-
scales involved increased exploration not only by the direct neurons, but also by the supporting indirect neurons.
Because there was an increase in neural variability in both subpopulations with each decoder swap, we were also
able to assess whether the amount change in neural variance was similar between the two subpopulations. We
found that the changes in the firing rate variance of the direct subpopulation were correlated to changes in the
indirec