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ABSTRACT OF THE DISSERTATION

What’s in a Rule: Two-Dimensional Rule Use in Category Learning

by

Patrick Jonathon LaShell

Doctor of Philosophy, Graduate Program in Psychology
University of California, Riverside, March 2010

Professor Michael Erickson, Chairperson

Current theories of rules in category learning define rules as one-dimensional boundaries. However,

recent evidence by Yang and Lewandowsky (2004) and Lewandowsky, Roberts, and Yang (2006)

suggests that rules may also be two-dimensional boundaries. Four experiments are presented that

test for two-dimensional rule use in categories with stimuli composed of integral or separable and

commensurate or noncommensurate dimensions. Participant categorization behaviors were orga-

nized into groups based upon displayed strategies. These groups were modeled by three models of

category learning, ALCOVE, ATRIUM, and a version of ATRIUM modified to use two-dimensional

rules. Evidence was found supporting two-dimensional rule use in categories containing stimuli

with commensurate dimensions.
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Chapter 1

Introduction

Categorization is the process of assigning group membership to stimuli. This process

allows organisms to react to stimuli based on previous experiences with all group members, rather

than only the immediate stimulus. Thus when a child with a dislike of green vegetables encounters

asparagus for the first time, the child is able to act upon their knowledge of green vegetables and

reject it immediately, rather than having to taste the new food. While problematic for parents in this

instance, categorization gives people the ability to distinguish edible from poisonous, friendly from

dangerous, and boys from girls, and it is vital for survival.

Current theories of categorization hold that categorization is best explained by multiple

systems of categorization working together rather than a single monolithic system (Ashby, Alfonso-

Reese, Turken, & Waldron, 1998; Erickson & Kruschke, 1998; Nosofsky, Palmeri, & McKinley,

1994). One proposed system of categorization is rule-based categorization (Bruner, Goodnow, &

Austin, 1956; E. E. Smith & Medin, 1981; Ashby et al., 1998; Erickson & Kruschke, 1998; Nosof-

sky et al., 1994). In the following dissertation I address what rule-based means within perceptual

category learning research and attempt to expand its definition to account for new phenomena while

retaining a strict and clear meaning.

Current theories of categorization that incorporate rules (Ashby et al., 1998; Erickson &

Kruschke, 1998; Nosofsky et al., 1994) are heavily influenced by the classical theory of categories

(Bruner et al., 1956; E. E. Smith & Medin, 1981). The classical theory defines rules as proposi-

tions operating on single features, creating well defined category boundaries, and requiring explicit

awareness. These propositions, that relate category membership to a single feature along a psycho-

logical dimension, will be referred to as one-dimensional rules.

Recent research has provided evidence that the rules used in category learning may not be
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restricted to one-dimensional rules (Yang & Lewandowsky, 2004; Lewandowsky et al., 2006). In

these category learning studies, a model using two-dimensional rules, rules incorporating informa-

tion from different dimensions simultaneously rather than sequentially, were better able to explain

their data than a model using one-dimensional rules, which incorporate information from multiple

dimensions in a sequential fashion. This finding suggests that current accounts of rules in category

learning, which rely upon one-dimensional rules, may be insufficient in explaining category learn-

ing behaviors. An update to rule-based theories that allows for the use of two-dimensional rules

may be necessary to account for these findings.

1.1 Dissertation Overview

This dissertation addresses the nature of rules in categorization. Specifically, I address

whether two-dimensional rule use is possible and the conditions that allow for it. This dissertation

is organized as follows. Chapter 1 is this short introduction. Chapter 2 addresses the circumstances

under which two-dimensional rule use may be be possible. In Chapter 2 two-dimensional rules are

introduced, compared, and contrasted against one-dimensional rules. Two factors that have been

shown to influence category representations, the type of relationship between the stimulus dimen-

sions and verbalizability of the stimulus dimensions, are introduced and discussed. In addition,

current theories of rule use in category learning are described and predictions are formed to distin-

guish the theories with respect to dimensional separability and verbalizability. Chapter 3 presents

experiments that test the predictions made in Chapter 2. Chapters 4 and 5 cover the clustering and

computation modeling of the experiments. Lastly, Chapter 6 summarizes the results of the experi-

ments, includes my closing arguments for the expansion of the term rule to include two-dimensional

rules, and posits theoretical implications resulting from this expansion.
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Chapter 2

Rules in Categorization

Categorization is the mental process by which stimuli are assigned membership to a group

with other stimuli. Making category assignments allows for the generalization of category proper-

ties to the new stimuli and increases the available information for further inference generation.

Decisions can then incorporate information from previous experiences with all group members,

rather than a single potentially unfamiliar stimulus. Contemporary researchers have suggested that

human categorization behaviors are a combination of different systems of categorization (Ashby et

al., 1998; Erickson & Kruschke, 1998; Nosofsky et al., 1994). Systems based on rules, exemplars,

and procedures have all been proposed to account for categorization behaviors. Distinguishing be-

tween these different systems relies on having well defined theories that are continually informed

and updated by empirical findings.

Recently, researchers have questioned the assumptions of current rule-based theories of

categorization (Yang & Lewandowsky, 2004; Lewandowsky et al., 2006). Rule-based theories of

categorization describe rules as providing necessary and sufficient conditions for category mem-

bership. Examples of typical rules are: animals that have wings are birds; men over six feet tall

are tall; and little green men are Martians. Current theories of categorization that use rules have

also defined rules as specifying potential category membership on the basis of individual stimulus

features (Ashby et al., 1998; Erickson & Kruschke, 1998; Nosofsky et al., 1994). Recent evidence

has been provided that people may be using rules that combine information from multiple stimulus

features (Yang & Lewandowsky, 2004; Lewandowsky et al., 2006).

In Yang and Lewandowsky (2004), participants were given a category learning task de-

vised to demonstrate knowledge partitioning. Knowledge partitioning is the idea that people do

not have a unified homogeneous understanding of the world, but instead possess distinct packets of
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information. Furthermore, these packets are difficult to access when not the focus of our cognitive

efforts. Thus, our knowledge of fruit pies is isolated from our knowledge of π. While knowledge

partitioning does not play an important role in this dissertation, the experiments and category struc-

ture used by Yang and Lewandowsky (2004) are relevant.

Yang and Lewandowsky’s (2004) experiments used a two-dimensional category structure

with diagonal boundaries separating the members of different categories. These boundaries sep-

arated the categories, not along a single dimension, but along a combination of two dimensions.

Furthermore, the category structures were composed of two separate substructures which were dis-

tinguished by a context cue. During the transfer phase, participants displayed two different strate-

gies. Knowledge partitioning participants were sensitive to the context cue and categorized stimuli

according to the substructure that matched the context cue. True-boundary participants were not

sensitive to the context cue and categorized stimuli according to the nearest substructure (ignoring

the context cue).

Exemplar accounts of category learning can readily account for category structures with

diagonal boundaries (Kruschke, 1992; Nosofsky, 1986). However, an exemplar model of category

learning (ALCOVE: Kruschke, 1992), was unable to produce the knowledge-partitioning pattern of

behavior. ALCOVE was unable to learn to use the context cue to differentiate the substructures. This

was due to ALCOVE only learning when cues are predictive of category membership. The context

cue was not predictive of category membership, because each category response was equally likely

to occur with either context cue. In contrast, a rule using model (ATRIUM: Erickson & Kruschke,

1998) modified to use rules that operate on two dimensions, instead of only one, was able to explain

these data.

To further challenge the assumptions of current rule-based theories, Lewandowsky et al.

(2006) reused the category structure from Yang and Lewandowsky (2004) with two diagonal bound-

aries to further explore knowledge partitioning. In two experiments, Lewandowsky et al. (2006)

tested the ability of participants to form knowledge partitions in category structures using stimuli

that varied on integral, separable, verbalizable, and nonverbalizable dimensions. Stimuli possess-

ing these types of dimensions have been found to change how participants learn to categorize these

stimuli. These types of dimensions and their effects upon category learning will be discussed in

more depth later on, for now keep in mind that they have been shown to change category learn-

ing behaviors. Lewandowsky et al. (2006) found that participants were able to form knowledge

partitions regardless of the type of underlying dimension. They also found that the participants’ cat-

egorization behaviors were similar those of the participants from Yang and Lewandowsky (2004),
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which were found to be best fit by a modified model that conflicts with current theories of rule-based

categorization.

In summary, current theories of rule-based categorization state that rule-based category

representations operate on single features. When rules operate on multiple features, each feature is

processed individually by a one-dimensional rule, and then the result of each one-dimensional rule is

combined to make a final decision. Yang and Lewandowsky (2004) found that their data was better

explained by a model incorporating two-dimensional rules rather than the one-dimensional rules

supported by current models of categorization. Further experiments by Lewandowsky et al. (2006)

using different stimuli were also found to support two-dimensional rule use. The findings of Yang

and Lewandowsky (2004) and Lewandowsky et al. (2006) contrast with current theories of rule-

based categorization that only support one-dimensional rules. In light of these findings, direct and

more extensive tests of rule use are appropriate, namely whether people can use two-dimensional

rules and under what conditions.

2.1 Rules in Category Learning

Current theoretical accounts of rules in categorization are based on the classical theory

of rules developed by Bruner et al. (1956). In the classical theory, rules are characterized as nec-

essary and sufficient conditions for category membership and are a result of explicit reasoning and

hypothesis testing. The classical theory of rules in categorization has been demonstrated to be in-

sufficient to account for many phenomena of category learning such as: fuzzy categories based on

typicality (Rosch & Mervis, 1975), prototypes effects (Posner & Keele, 1968, 1970), and family

resemblance overriding explicitly given rules (Allen & Brooks, 1991). However, some successful

multiple-system models of category learning have included rule-based subsystems (e.g., ATRIUM:

Erickson & Kruschke, 1998; COVIS: Ashby et al., 1998; RULEX: Nosofsky et al., 1994). To eval-

uate the current state of rules in categorization, I will characterize rule-based theories on the basis

of rule use in these three models.

2.1.1 ATRIUM

ATRIUM (Attention To Rules and Instances in a Unified Model: Erickson & Kruschke,

1998) is a hybrid rule- and exemplar-based model of category learning instantiated in a connec-

tionist model framework. ATRIUM uses a mixtures-of-experts approach to category learning. It

develops different representations, experts, modules, or subsystems to master particular types of
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stimuli and then learns to weight the contributions of each representation appropriately for the var-

ious stimuli. The ability of the model to match the optimal representation for a specific type of

category structure is termed representational attention. Additionally, the model possesses dimen-

sional attention (Kruschke, 1992; Nosofsky, 1986) which allows it to learn which dimensions are

relevant for categorization. Learning in the model is error-driven with incorrect responses causing

changes in representations.

ATRIUM contains two types of modules, an exemplar module, specifically a version of

ALCOVE (Kruschke, 1992), and at least one rule module. Erickson and Kruschke (1998, p. 107)

constrain rules in ATRIUM to “a boundary that is orthogonal to a [single] psychological dimension.”

Typically there is one rule module for each of the dimensions in the category structure. When a

stimulus is presented to the model, it is processed simultaneously by both rule- and exemplar-based

modules. Each of the modules produces a category response, and then a gating module combines

each of the other modules’ responses to make a final category response. When feedback is given, the

modules learn based upon the contribution of each module to the final response and the difference

between the final response and the correct response. The more a module contributes to the final

response, the greater the amount of learning that occurs in the module.

Thus, rules in ATRIUM are defined as one-dimensional boundaries in psychological space

perpendicular to a single psychological dimension. There are no further assumptions underlying

their representation in ATRIUM. Yang and Lewandowsky (2004) modified ATRIUM to use a two-

dimensional rule, however this is not part of the original model.

2.1.2 COVIS

COVIS (COmpetition between Verbal and Implicit Systems: Ashby et al., 1998) is a

hybrid model of categorization combining an explicit rule hypothesizing system, relying upon exec-

utive functions, with an implicit procedural system. Rules in COVIS are verbalizable rules. Ashby

et al. (1998, p. 446) define verbalizable rules as strategies that can be verbally described that de-

fine category membership on the basis of an attentionally attendable stimulus property possessing

a semantic label. Ashby et al. (1998) accept the dificulty in defining the precise set of verbalizable

rules, and characterize unidimensional rules as a large subset of possible verbalizable rules. A unidi-

mensional rule is a “rule that uses a decision bound that is orthogonal to some stimulus dimension”

(Ashby et al., 1998, p. 446).
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The implicit system in COVIS is also represented by boundaries in psychological space.

However the implicit system is not restrained to simple one-dimensional rule boundaries as the

explicit system is restrained. Instead the implicit system is allowed to create boundaries as needed.

In conclusion, rules in COVIS are defined as one-dimensional boundaries in psycholog-

ical space orthogonal or perpendicular to a single psychological dimension. Furthermore, they are

required to be verbalizable.

2.1.3 RULEX

RULEX (RULE-plus-EXception model: Nosofsky et al., 1994; Nosofsky & Palmeri,

1998) is a hybrid model of categorization combining a rule-based system with an exemplar-based

system. RULEX attempts to learn categories using hypothesis testing. RULEX searches for an op-

timal rule and then learns exceptions to that rule. Rules in RULEX are one-dimensional boundaries

in psychological space that are perpendicular to a single psychological dimension.

To learn a category structure, RULEX first attempts to find a single one-dimensional rule

that perfectly solves a category structure. If RULEX fails to find this perfect rule, RULEX then

attempts to find a one-dimensional rule with accuracy above a performance criterion. If no one-

dimensional rule reaches the performance criterion, RULEX then switches to testing conjunction

rules. After finding a rule with accuracy above the performance criterion or failing to find a good

rule after exhaustively testing all conjunction rules, RULEX then switches to storing items that are

not classified correctly as exceptions.

Thus, rules in RULEX are defined as one-dimensional boundaries in psychological space

perpendicular to a single psychological dimension. Additionally, rules in RULEX are the result of

explicit hypothesis testing.

2.2 A Definition of a Rule

Combining how ATRIUM, COVIS, and RULEX instantiate rules provides the basis of

a definition of rules in current accounts of category learning. Table 2.1 contains this definition of

a rule. While the models represent and use rules in different ways, they are consistent on what

constitutes a rule. They define a rule as a single proposition relating potential category membership

to a single feature or dimension; that is, rules are one-dimensional rules.

According to these models, a one-dimension rule is a proposition that assigns a category

label in relation to a single psychological dimension. Furthermore these models also require that
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Table 2.1: Overview of the Requirements for Valid Rules

Requirements for Valid One-dimensional Rules

One-Dimensional The rule forms a boundary operating along a single dimension.

Separable Dimension The relevant dimension is separable from other stimulus dimensions.

Verbalizable The rule fulfills the three requirements for rule verbalizability.

Requirements for Rule Verbalizability

Separable Dimension The relevant underlying dimension is separable.

Semantic Label The relevant underlying dimension has or can have a valid semantic

label.

Semantic Relationship The boundary is formed according to a relationship that has or can

have a valid semantic label.

Requirements for Valid Two-dimensional Rules

Two-Dimensional The rule operates on two dimensions.

Separable Dimensions The relevant dimensions are separable.

Verbalizable The rule fulfills the three requirements for rule verbalizability.

Commensurate The dimensions are measured in the same units.

this dimension must be attentionally selectable or separable from other dimensions. Additionally,

COVIS has a third requirement for rule membership: rules must be verbalizable (e.g., Ashby et al.,

1998). RULEX also requires rules to be formed as a result of hypothesis testing, and thus may also

implicitly require the commensurability assumption.

2.2.1 Boundaries in Psychological Space

As defined thus far, one-dimensional rules are a subset of decision-bound theories. They

can be modeled in psychological space as linear boundaries, orthogonal to a psychological stim-

ulus dimension. Furthermore, one-dimensional rules partition psychological space into category

response regions.

Decision-bound theories of categorization represent categories as response regions in a

multi-dimensional psychological space (Ashby & Gott, 1988; Ashby & Townsend, 1986). Cat-
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egory relevant features are used to form a psychological space that is partitioned into different

response regions by decisional boundaries. When an item is presented, it is mapped to a specific

location in psychological space corresponding to a response region and a category label is retrieved.

One-dimensional rules are a subset of decision-bound theories in which rule boundaries must be or-

thogonal to a single psychological dimension. Thus in a typical two-dimensional category structure

representation, with the underlying psychological dimensions as the axes, rule decision boundaries

are represented by either horizontal or vertical lines.

2.2.2 Dimensional Interactions: Separable or Integral

Dimensional interaction refers to the type of relationship that exists between two stimulus

dimensions (Lewandowsky et al., 2006), either integral or separable (Ashby & Maddox, 1990;

Ashby & Townsend, 1986; Garner, 1970, 1974; Nosofsky, 1986; Shepard, 1957, 1964). This type

of relationship exists only when relating one dimension to another dimension; it does not exist in

isolated dimensions. Separable dimensions are dimensions that can be perceived and operated on

independently of each other. Prototypical examples of separable dimensions are brightness and size

(e.g., Garner, 1977). Integral dimensions are dimensions that are difficult or impossible to attend to

separately. Prototypical examples of integral dimensions are saturation and brightness (e.g., Garner,

1970). Dimension pairs can be classified as separable or integral using multi-dimensional scaling

(MDS; Dunn, 1983; Erickson & Kruschke, 1998; Shepard, 1957), filtration and condensation tasks

(Nosofsky & Palmeri, 1997), speeded classification tasks (Ashby & Maddox, 1990), and several

other methods (for a more detailed review of this literature, see Maddox, 1992).

Stimuli that vary along separable and integral dimensions have been found to generate

different types of categorization behaviors (Ashby, Ell, & Waldron, 2003; Nosofsky, 1986; Wal-

dron & Ashby, 2001). For example, Shepard and Chang (1963) found that performance in category

learning of stimuli with integral dimensions could be predicted from confusions in identification,

whereas the performance in the category learning of stimuli with separable stimuli could not. Simi-

larly, Nosofsky and Palmeri (1996) performed an experiment based on the seminal task and category

structure developed by Shepard, Hovland, and Jenkins (1961) and found that the relative difficulty

ranking of category structures varied depending on whether the category relevant dimensions were

integral or separable.

For a dimension to be used in a one-dimensional rule, it must be a valid source for an

orthogonal boundary. This requires the dimension to be perceived independently of other dimen-

sions, and therefore must be a separable dimension. Such separable dimensions can then used as
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the origin of the orthogonal rule boundary. In contrast, integral dimensions are not perceived in-

dependently of each other. The psychological representation of a specific value along one integral

dimension changes with changes in the second integral dimension. Therefore, representationally

sensible orthogonal boundaries in psychology space cannot occur. Thus one-dimensional rules re-

quire separable dimensions.

2.2.3 Rule Verbalizability

The last property of a rule, that rules must be verbalizable, is not supported by all three

representative models. COVIS and RULEX state that rules are the result of explicit hypothesis

testing, while ATRIUM remains agnostic. If rules are verbalizable and the result of an explicit

reasoning processing, they must be, and contain, concepts and relationships that can be verbalized.

Evidence that supports rule use requiring explicit reasoning comes from a variety of neu-

rological, behavioral, and self-report sources. Evidence for rule use occurring with explicit reason-

ing comes from self-report data in categorization tasks. People are able to describe the rules that they

used while doing the task. Likewise, when people are given rules to follow, categorization behaviors

are better described by rule theories than exemplar theories (e.g., Nosofsky, Clark, & Shin, 1989;

although see Allen & Brooks, 1991 for an example of family resemblance overriding rule use).

Additionally, people can follow rules even without reinforcement, whereas performance in non-

rule-based tasks have been found to be impaired with delayed or absent reinforcement (Maddox,

Ashby, & Bohil, 2003).

Further evidence that supports rule use requiring explicit reasoning comes from Waldron

and Ashby (2001). Waldron and Ashby (2001) found that rule-based category learning tasks are

more susceptible to disruptions caused by increased demands on working memory and executive

attention, than similar non-rule-based category learning tasks. Waldron and Ashby (2001) had par-

ticipants engage in a two-part experiment. In the first part, the practice phase, participants were

taught two variations of two different categorization tasks. The tasks consisted of learning either

a one-dimensional rule-based category or a three-dimensional non-rule-based category using items

that were composed of four binary features.

The one-dimensional rule-based category was similar to the Type I category first tested by

Shepard et al. (1961). For the one-dimensional rule-based categories, items were classified based

on the presence of a single feature. If an item had value A on a feature, it was a member of category

A. If an item had value B on a feature, it was a member of category B. The three-dimensional non-

rule-based category was similar to the Type IV category first tested by Shepard et al. (1961). For
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the three-dimensional non-rule-based categories, items were classified based on the presence of two

or three features that matched a three dimensional category prototype (one dimension was set as

irrelevant).

One week after the training phase, participants were given the testing phase. In the testing

phase, participants were given four new variations of the rule- and non-rule-based categories to

learn (two of each). In the control condition, participants were not given any additional tasks. In the

experimental condition, participants were given a numerical Stroop task to perform simultaneously

with the category learning task. In the numerical Stroop task condition, two numbers were displayed

along side the category item for the first 200 ms of each trial. Participants were to remember the

numerical value and size of the two numbers. After classifying the category item, participants are

prompted with either size or value, signaling which number they were to recall.

Performance in the one-dimension rule-based category learning task was found to be more

impaired by the Stroop task than the more difficult three-dimensional non-rule-based category learn-

ing task. This suggests that the mechanisms underlying rule-based category learning are the same

mechanisms involved in the numerical Stroop task. These mechanisms have been hypothesized to be

part of brain structures that have been linked to selective attention and working memory functions,

the same functions that underly executive reasoning (Ashby et al., 1998). This finding suggests that

rule-based category learning, regardless of the difficulty of the rule, requires explicit reasoning re-

sources. Furthermore, rule-based category learning requires more explicit reasoning resources than

non-rule-based category learning.

Additional evidence that rule use requires explicit reasoning comes from studies with

people who have Parkinson’s disease and from studies with people who have amnesia. Ashby,

Noble, Vincent, Waldron, and Ell (2003) found that participants with Parkinson’s disease were

highly impaired when learning categories defined by a rule. Parkinson’s disease has been found

to impair explicit reasoning. However, these individuals with Parkinson’s disease did not perform

differently than age-matched control participants on non-rule-based tasks. This suggests that rule-

based category learning performance is impaired by a loss of explicit reasoning. In contrast, people

with amnesia caused by damage to the medial temporal lobe, but possessing functional working

memory and executive attentional systems, display the opposite pattern. They have been found

to perform normally on rule-based categorization tasks while being impaired on exemplar-based

categorization tasks (Janowsky, Shimamura, Kritchevsky, & Squire, 1989; Leng & Parkin, 1988).

This suggests that rule-based category learning performance is not as reliant upon explicit memory

systems. Together, these examples suggest that rule use requires explicit reasoning and is less
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dependent upon long term memory.

Accepting these studies as providing sufficient evidence for the requirement of rule ver-

balizability, the next step is to specify the requirements for a verbalizable rule. Ashby and Maddox

(2005) claim that for a rule to be verbalizable, three properties are required. First, the rule operates

on a psychological stimulus feature that possesses (or has the ability to possess) a valid semantic

label. Second, the stimulus feature can be attended to in isolation (i.e., the feature can be repre-

sented as a point along a single separable psychological dimension). Third, the relationship relating

category membership to a stimulus feature must contain an operator that must also possess (or have

the ability to possess) a valid semantic label.

An example of a rule that is verbalizable would be: tall men are more than six feet in

height. First, the stimulus feature that the rule operates on is height and it is a readily understood

concept that possesses a valid semantic label, thus the stimulus feature is verbalizable. Second, the

stimulus feature, again height, can be attended to independently from other dimensions, thus it is

also a separable dimension. Third, the relationship determining category membership more than

is a readily understood concept that possesses a valid semantic label, hence it too is verbalizable.

Therefore, according to Ashby and colleagues (Ashby et al., 1998; Ashby & Maddox, 2005), this

rule qualifies as a verbalizable rule.

However, the verbalization requirement is not without contention. For example, one ob-

jection to the verbalizability requirement for rules comes in the vein of the criticisms of the Sapir-

Whorf hypothesis: Do people’s rules follow the form of their underlying representations, or do

people’s underlying representations follow the form of their rules? In other words, is the semantic

system the source of rules and thus passes on its limitations to rules, or does another system create

the rules which are then moderated by the semantic system? If the semantic system only moder-

ates the rules that people use, then it is possible that rules are not required to be verbalizable. It is

necessary to verify this assumption.

One way to verify the verbalizability assumption requires characterizing the full sets of all

categories with verbalizable (and potentially verbalizable) rules and of all categories with nonver-

balizable rules. The categories that people can and cannot learn may provide evidence on the nature

of the relationship of people’s rules, semantic systems, and representations. Finding categories with

nonverbalizable rules that people can learn would support representations guiding rules, whereas

failing to find learnable categories with nonverbalizable rules would support rules guiding represen-

tations. This search must be exhaustive because it may be the case that only some categories with

nonverbalizable rules are learnable by people whereas others are not. Likewise, it may be the case
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that some categories with verbalizable rules are not learnable by people, in which case there may be

even more limitations on the human categorization system than previously thought.

However, this is not a feasible solution to characterizing learnable rules because an ex-

haustive search of this nature may not be possible. It is unlikely that there is a way to be certain

that the entire set of all dimensions and rules have been found and accurately divided into verbal-

izable and nonverbalizable. Thus an exhaustive search of this nature would be an inefficient use of

researchers’ time and resources.

Two more feasible approaches to the problem of identifying verbalizable rules comes

from Ashby et al. (1998) and Erickson and Kruschke (1998). Ashby et al. (1998) acknowledge

the difficulty in defining the complete set of verbalizable rules and take the tactic of identifying

subsets of verbalizable rules and nonverbalizable rules. In this approach, experiments are designed

using two types of categorization structures. The first type of structure can be represented using

verbalizable rules. The second type of structure is assumed to be very unlikely or impossible to

represent using verbalizable rules, and instead is represented by a nonverbal system. In COVIS

this system is procedurally based, while its counterpart in ATRIUM is exemplar based, and its

counterpart in RULEX is the storage of exceptions (which are exemplar-like, but not complete

exemplars). These two types of category structures can then be used to compare and contrast human

performance on verbalizable and nonverbalizable rule structures.

Erickson and Kruschke (1998) provide an alternative solution to the problem of identi-

fying verbalizable rules. Erickson and Kruschke (1998) explored other facets of category learning

while limiting their experiments to category structures that could be represented using verbalizable

rules, thereby avoiding the necessity to validate the verbalizability assumption. This is a conserva-

tive approach that does not take on the extra assumption of restricting rules to verbalizable concepts

and relationships as does Ashby and colleagues’ approach. The results of Erickson and Kruschke’s

approach should apply regardless of the eventual resolution of rule verbalizability requirements.

2.3 Two-Dimensional Rules

In contrast to the volume of research on one-dimensional rules in category learning models

(Ashby et al., 1998; Erickson & Kruschke, 1998; Nosofsky et al., 1994), only Ashby and colleagues

(e.g., Ashby et al., 1998; Ashby, Ell, & Waldron, 2003) have proposed tentative requirements for

two-dimensional rules. The requirements for two-dimensional rules are extensions of the require-

ments for one-dimensional rules. Like one-dimensional rules, two-dimensional rules are proposi-
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tions that assign category membership in relation to psychological dimensions, must be composed

of separable dimensions, and be verbalizable. Additionally, Ashby and Maddox (2005) proposed

two fundamental differences between one- and two-dimensional rules: (1) two-dimensional rules

combine information from two dimensions, and (2) the dimensions used in two-dimensional rules

must be commensurate (i.e., be measured in the same units).

The first difference between one- and two-dimensional rules proposed by Ashby et al.

(1998) is that the combination of information from the two underlying dimensions in two-dimensional

rules occurs in a predecisional information integration stage. In this stage, information from two

psychological dimensions are combined. The decision criterion operates on this combination of val-

ues instead of the individual psychological dimensions. This predecisional information integration

stage occurs before the decision rule is applied. Later stages may or may not have access to the

underlying dimensions in isolation. That is to say, the combination of the two underlying dimen-

sions may create a new dimension and prevent further independent processing of either of its two

component dimensions.

The second difference between one- and two-dimensional rules proposed by Ashby et al.

(1998) is the additional requirement of commensurate dimensions for two-dimensional rules to be

verbalizable. For two dimensions to be combined in a two-dimensional rule, it is necessary that

that the dimensions must be measured in the same units or be commensurate. To further illustrate

the idea of commensurate dimensions, consider the following examples. The rule a rectangle is

in category A if it is at least twice as tall as it is long is a valid verbalizable two-dimensional rule

according to Ashby et al. (1998). This rule incorporates the separable dimensions of height and

width. The rule incorporates a verbalizable relationship between the dimensions, at least twice as

tall as. Lastly, since both dimensions are measures of distance, they are commensurate. This fulfills

all of Ashby et al.’s (1998) requirements for a valid two-dimensional rule.

In contrast, according to Ashby et al. (1998) the rule a rectangle is in category B if it

is twice as red as it is long is not a valid verbalizable rule. This rule incorporates the separable

dimensions of height and color. The rule also incorporates a verbalizable relationship between

the dimensions, at least twice as tall as. However, since these two dimensions are measured in

different types of units, distance and hue, they are not commensurate. This fails to fulfill all of the

requirements for a valid two-dimensional rule (Ashby et al., 1998), and thus cannot be used to form

a valid two-dimensional rule.

A later account by Ashby, Ell, and Waldron (2003) provides an alternative to the original

account by Ashby et al. (1998). They argue that rules can also be created by abstracting stimulus
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dimensions, which satisfies the requirement of commensurate dimensions. Ashby, Ell, and Waldron

(2003) provide the example rule, “respond A if the stimulus is small on dimension x and small

on dimension y”(p. 1115). In this example rule, the two new psychological dimensions that are

formed are abstractions of the original stimulus dimensions. So for example, a dimension that

represented redness of a stimulus could be created measuring the saturation level of the color red

in the stimulus. Pink stimuli would have a small value of redness, while blood red stimuli would

have a large value of redness. These dimensions would be standardized, and therefore unitless. By

allowing for the creation of new dimensions, the category structure’s representation in psychological

space is converted to a new psychological representation. This allows for two-dimensional rules

because these new unitless dimensions are necessarily commensurate. In allowing the creation of

new psychological dimensions, the verbalizability requirement of rule dimensions is relaxed by

allowing many (if not all) dimensions to be converted to commensurate dimensions.

To summarize, there seems to be a consensus for a definition of one-dimensional rules.

One-dimensional rules are single, potentially verbalizable propositions relating potential category

membership to a single underlying verbalizable and separable dimension. In contrast, only Ashby

and colleagues (e.g., Ashby et al., 1998; Ashby, Ell, & Waldron, 2003) have proposed a definition

for two-dimensional rules. Ashby and colleagues propose that two-dimensional rules are single ver-

balizable propositions relating potential category membership to a combination of two underlying

verbalizable (i.e., commensurate), and separable dimensions.

2.4 Comparisons of One- and Two-Dimensional Rules

Given these definitions of one- and two-dimensional rules, the following are some exam-

ples of typical category structures to help clarify how rules may be represented and how one- and

two-dimensional rules may be differentiated. An example of a category structure formed using a

one-dimensional rule is categorizing Cardinals from a set of birds containing Cardinals and Blue

Jays (see Figure 2.1a). In this example, birds are mapped onto a psychological space with the di-

mensions of size and color. The category Cardinal is formed by the one-dimensional rule: Cardinals

are red. Color is selected as the relevant psychological stimulus dimension and a linear bound is

placed orthogonally to the color dimension, separating red from blue. When a target bird is pre-

sented, the only dimension or feature that matters in the categorization decision is the bird’s color.

The particular bird’s color dimension is evaluated according to the rule, are red. This evaluation is
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Figure 2.1: Example categories using one-dimensional rule boundaries. (a) 1D rule. (b) Two 1D
rules (Conjunction).

then passed on to a final decision process. Other features, such as size, orientation, or number of

legs, have no effect on the categorization decision.

One-dimensional rules can also be used to form more complex categories, such as tall

men. In this example, people are mapped onto a psychological space with the dimensions of gender

and height. To form the category tall men, one-dimensional rules can be combined to form more

complex rules. In this case a conjunction rule can be used to form the rule: tall men have a height

over 6 feet and are male (see Figure 2.2b). To evaluate the rule, boundaries are placed on the relevant

dimensions of height and gender. To be a member of the category a target person’s dimensions

are evaluated by the rules: is a male and is over six feet in height. The results of each of these

individual evaluations are then combined to make a final categorization decision. In all instances of

one-dimensional rules, the decision on each dimension is made separately before being combined to

make an overall categorization decision. This process results in a series of applied rule boundaries,

with each rule orthogonal to its own relevant psychological dimension.

Now consider another typical example category: an overweight person. In this exam-

ple, people are mapped onto a psychological space with the two dimensions of weight and height.

The problem is that the physical fitness classification of a person depends on more than a single

dimension (in this simplified case), it depends on both the height and weight of an individual. One

solution to this category problem is to use the Body Mass Index (BMI) to judge fitness (see Fig-

ure 2.2a). The BMI is a ratio of mass to squared height. Classification decisions can then be made

using both dimensions simultaneously, not individually. People can be classified on this ratio; for
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Figure 2.2: Examples of Fitness categories. (a) BMI solution. (b) Two one-dimensional rules. (c)
Multiple one-dimensional conjunction rules. (d) Two-dimensional rule.

example, overweight people have BMI scores over 25. Thus the BMI can be used to categorize any

combination of weight and height, and its classifications match human classifications.

The problem is that one-dimensional rules cannot reasonably duplicate the category struc-

ture formed using the BMI. Unlike the previous cases it is not sufficient to describe the category, an

overweight person, using rules operating on single dimensions such as an overweight person weighs

over 70 kilograms or an overweight person is less than 2.0 meters tall (see Figure 2.2b). Nor is it

plausible to describe the category in terms of conjunctions of single dimensions such as an over-

weight person weighs over 80 kilograms and is under 1.8 meters tall. It is possible to define this

category as a series of one-dimensional conjunction rules such as “an overweight person weighs

over 80 kilograms and is under 1.8 meters tall OR over 100 kilograms and is under 2 meters tall

OR over 120 kilograms and is under 2.2 meters tall OR ...” (see Figure 2.2c). While this set of

rules would be able to describe the category, depending on the degree of precision, such a series of
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iterative rules would be extremely lengthy, inefficient (many areas are redundantly classified), and

require more processing to use than a typical one-dimensional conjunction rule. Given people’s ten-

dency to create categories using very simple representations rather than complicated representations

(Garner, 1974), it is unlikely that such a process occurs.

An alternative solution is to use two-dimensional rules. An example of a two-dimensional

rule that can match the BMI’s classifications is an overweight person is someone whose weight di-

vided by their squared height is greater than 25 (see Figure 2.2d). In this case weight and height

are combined to form a new dimension upon which an orthogonal rule boundary is placed. This

boundary is orthogonal to an underlying rule dimension, but because this new dimension is a com-

bination of other dimensions, the result is a diagonal boundary relative to the original dimensions in

psychological space.

To reiterate the differences between one- and two-dimensional rules, in the case of a two-

dimensional category structure, one-dimensional rules evaluate relevant psychological dimensions

separately and then combine evaluations to form a single category decision. Thus one-dimensional

rules always form rule boundaries in psychological space that are orthogonal to the relevant psycho-

logical dimensions. In contrast, two-dimensional rules combine information from relevant dimen-

sions before an evaluation is performed. The underlying dimensions are then evaluated simultane-

ously and the result of that evaluation is then used to make a single category decision. This results

in boundaries orthogonal to a combination of the underlying relevant psychological dimensions in

psychological space (i.e., diagonal boundaries).

2.5 Research Questions

This research addresses the issue of two-dimensional rule use in human category learning.

Two factors have been identified that may influence the ability to use two-dimensional rules: the

relationship between the category relevant stimulus dimensions (i.e., separable versus integral), and

the necessity of rule verbalizability (i.e., commensurate dimensions). This results in three questions

that guide this dissertation.

1. Are rules limited to operating on one dimension at a time?

2. Are rules always open to explicit awareness and verbalization?

3. Are psychologically distinct dimensions necessary for the formation of rules?
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It should be noted that the purpose of this research is not to demonstrate that people always

use two-dimensional rules, but instead to explore when people can use two-dimensional rules.

2.5.1 Predictions of Theoretical Accounts of Rule Use in Categorization

Table 2.2 shows the predictions of different theoretical accounts of two-dimensional rule

use. Predictions were made about the ability of people to use two-dimensional rules when the

stimuli are composed of integral, separable, verbalizable, and nonverbalizable dimensions. These

predictions will be used to evaluate the results of the experiments later discussed in this dissertation.

Current models of category learning (e.g., ATRIUM, COVIS, and RULEX) state that peo-

ple can only use rules that align with a single dimension. These models predict that two-dimensional

rule use should not be possible, under any circumstance. If evidence is found that people can use

two-dimensional rules, then a complete theory of category learning will need to be able to account

for the circumstances that allow for two-dimensional rule use.

Ashby et al. (1998) proposed a set of guidelines for two-dimensional rule use. While these

guidelines are not instantiated within COVIS, the model could be altered to use two-dimensional

rules (likewise, RULEX and ATRIUM could also be altered to use two-dimensional rules). Un-

der Ashby et al.’s (1998) account, two-dimensional rules are formed using hypothesis testing and

require underlying dimensions to be separable and commensurate. This account predicts that two-

dimensional rule use will be found in tasks with separable and commensurate dimensions. An

example rule of this type would be: Rectangles that are taller than they are wide are members of

the category.

Ashby, Ell, and Waldron (2003) proposed a relaxed account for two-dimensional rules. It

allows for separable perceptual dimensions to be abstracted into new unitless psychological dimen-

sions. These dimensions are then necessarily commensurate with other abstracted psychological

dimensions and can be used to create two-dimensional rules. This account predicts that evidence

for two-dimensional rules may be found in tasks with separable dimensions, regardless of whether

those dimensions are verbalizable or nonverbalizable. An example rule of this type would be: Rect-

angles that are redder than they are wide are members of the category.

The last account suggests that rule-based systems of categorization do not rely on rea-

soning or executive functions, and that the ability to describe the verbal rules used in a task is

metaknowledge that does not reflect the underlying system. This view would predict that two-

dimensional rules could be formed on integral or separable dimensions and verbalizable or nonver-
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Table 2.2: Predictions of Theoretical Accounts for Evidence of Two-Dimensional Rule Use

Separable Integral

Account Verbalizable Nonverbalizable Verbalizable Nonverbalizable

Current Rule Models (e.g., ATRIUM,

COVIS, RULEX)

No No No No

Two-dimensional rules can be gen-

erated from commensurate and

separable dimensions (Ashby et al.,

1998)

Yes No No No

Two-dimensional rules can be ab-

stracted from separable dimensions

(Ashby, Ell, and Waldron, 2003)

Yes Yes No No

Rules only describe what an under-

lying system is doing

Yes Yes Yes Yes

balizable dimensions. This view is only provided as a null-hypothesis account of two-dimensional

rule use, I do not know of any support for it.

2.6 Experiment Design

The accounts of two-dimensional rule use were evaluated with a series of experiments

devised to investigate two-dimensional rule use using separable or integral dimensions and ver-

balizable or nonverbalizable dimensions. Four experiments were performed testing the use of

two-dimensional rules. In each experiment participants were presented with stimuli created with

a unique combination of integral or separable dimensions and verbalizable or nonverbalizable di-

mensions.

Each experiment used the same category structure, a rule and exception category structure

(see Figure 2.3). This structure allows for the discrimination among the different theories of two-

dimensional rule use in category learning. Performance on training items provides information on

category mastery and is used to discriminate between the types of rules used by participants in the

task. Performance on transfer items (items not shown during training) provides information on the

types of representations used in learning the rule and exception category structure.
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Figure 2.3: The rule and exception category structure. Rule items are labeled A and B. Excep-
tion items are labeled C and D. (a) One-dimensional structure with a horizontal bound. (b) One-
dimensional structure with a vertical bound. (c) Two-dimensional structure with a negative diagonal
bound. (d) Two-dimensional structure with a positive diagonal bound.
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If participants generalize based on an exemplar representation, transfer items will be clas-

sified according to the exception. If participants generalize based on a rule representation, transfer

items will be classified according to the rule. Therefore, transfer item performance will be in-

formative for determining whether individual participants are using exemplar-based or rule- and

exemplar-based categorization strategies, while training item performance will provide information

on what type of rule-based strategies participants are using.

In each experiment there were two conditions that affected how rule items could be clas-

sified. In one set of conditions, participants were presented a one-dimensional rule-based category

structure that could be optimally solved using a one-dimensional category bound. In the other set of

conditions participants were presented a two-dimensional rule-based category structure that could

be optimally solved using a two-dimensional bound. This two-dimensional structure was generated

by rotating the one-dimensional structure 45 degrees and was counterbalanced with clockwise and

counterclockwise rotations. In both the one-dimensional and two-dimensional conditions, correctly

classifying exception items required information from both dimensions. These four experiments

complete an overall between-subjects experimental design of 2 (integral vs. separable) x 2 (verbal

vs. nonverbal) x 2 (one-dimensional optimal bound vs. two-dimensional optimal bound).

2.7 Model Testing

The categorization behaviors of participants reaching a learning criterion were used to

group participants using similar strategies (Lee & Webb, 2005). After grouping, each group was

evaluated using three models of categorization: an exemplar-based model, ALCOVE (Kruschke,

1992); a hybrid-system model using both rule-based and exemplar-based systems, ATRIUM (Erickson

& Kruschke, 1998); and a modified version of ATRIUM that uses diagonal rules, ATRIUM-DR.

Testing with ALCOVE was used to verify the conditions for one-dimensional rule use. Only stimuli

that allow for rule use in the one-dimensional conditions should be predicted to have the possibility

of two-dimensional rule use in the two-dimension conditions.

The type of category representation used by participants was assayed by determining

the best fitting model. Participants using an exemplar-based representation were best fit by AL-

COVE. Participants using one-dimensional rules were best fit by ATRIUM. Participants using two-

dimensional rules were best fit by ATRIUM-DR. The experimental conditions with participants best

fit by ATRIUM-DR are the conditions that allow for two-dimensional rules. These conditions can

be used to evaluate the predictions made by the accounts guiding this research (see Table 2.2).
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2.8 Overview

Yang and Lewandowsky (2004) and Lewandowsky et al. (2006) have provided evidence

that people may be able to use two-dimensional rules in categorization. This is in contrast to

current rule-based theories of categorization (e.g., ATRIUM, COVIS, RULEX) that only support

one-dimensional rules in categorization. Two factors have been identified that may influence peo-

ple’s ability to use two-dimensional rules, the verbalizability of the stimulus dimensions and the

dimensional relationship (separable or integral) of the relevant stimulus dimensions. Predictions

on two-dimensional rule use from four accounts of category learning have been derived to provide

hypotheses for experiments testing the effects of these factors.

In the following chapters, a series of experiments using a rule plus exception category

structure are reported testing these hypotheses. The results of each experiment are analyzed inde-

pendently before being combined to make an overall evaluation. Participant categorization behav-

iors from these four experiments are partitioned into groups of participants using similar strategies.

These clusters are then evaluated using three different computational models of category learning,

ALCOVE, ATRIUM, and ATRIUM-DR. The results will provide new information characterizing

the use of two-dimensional rules in category learning, which is necessary for a complete theory of

category learning.
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Chapter 3

Experiments

3.1 Experiment 1: Separable and Commensurate Dimensions

3.1.1 Methods

Participants

The participants were 99 students from the University of California, Riverside enrolled in

an introductory psychology class who participated to fulfill a class requirement. Participant learning

performance during the last transfer phase was evaluated to select only participants who learned

the category structure for analysis. Participants were required to achieve above chance levels of

accuracy for exception items (22%) and rule items (38%). Figure 3.1 shows participant performance

with respect to these criteria. Applying these criteria resulted in the exclusion of data from 19

participants and retaining data from 80 participants (see Table 3.1). The proportion of participants

lost from each condition was not significantly different, χ2(d f = 3,N = 99) = 0.371, p = .94.

Table 3.1: The Breakdown of Participants by Condition and Learning Criterion for Experiment 1.

Learning Criterion Horizontal Vertical Negative Diagonal Positive Diagonal Total

Achieved 18 22 20 20 80

Failed 8 5 3 3 19

Total 26 27 23 23 99
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Figure 3.1: Participants from Experiment 1 are plotted by their accuracy on rule and exception items
during the last transfer phase. Transfer items were not included in these calculations. The horizontal
line is the rule accuracy criterion of 38%. The vertical line is the exception item accuracy criterion
of 22%.
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Commensurate Noncommensurate

Separable

Integral

Figure 3.2: Examples of the stimuli used in the experiments. Lower left: Experiment 1 used rectan-
gles varying in height and line segment position, which have commensurate and separable dimen-
sions. Lower right: Experiment 2 used circles varying in size and position of an internal radial line
segment, which have noncommensurate and separable dimensions. Upper left: Experiment 3 used
rectangles varying in size and height, which have commensurate and integral dimensions. Upper
right: Experiment 4 used Fourier descriptors varying in initial phase and amplitude of a sine wave
component, which have noncommensurate and integral dimensions

Apparatus

The experiment was performed in dimly lit individual booths on computers using the E–

Prime programming environment. The stimuli were displayed on 17” monitors set at a resolution

of 1024 x 768. Sound was played through headphones. Up to five participants could perform the

experiment simultaneously.

Stimuli

The stimuli were rectangles that varied in height and the position of an internal vertical

line segment (See examples in Figure 3.2). These dimensions have been previously found to be

separable (Erickson & Kruschke, 1998). Additionally, because the dimension are both measured

in units of distance, the dimensions are commensurate. Each dimension had eight possible values,
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Figure 3.3: The physical dimensions of the stimuli in Experiment 1.

resulting in 64 possible stimuli, of which each participant only saw 40 (see Figure 3.4). The mapping

of stimuli to line segment position and rectangle height is shown in Figure 3.3.

For the one-dimensional conditions, the rectangle height ranged from 153 pixels to 433

pixels in steps of 40 pixels. The position of the line segment ranged from 212 pixels to 606 pixels

from the left side of the rectangle in steps of 56 pixels. The positions of the two dimensional

condition stimuli were created by rotating the positions of the one-dimensional stimulus by 45 or

−45 degrees around the center of the category structure. For the two-dimensional conditions, the

rectangle height ranged from 95 pixels to 499 pixels in steps of 59 pixels. The position of the line

segment ranged from 130 pixels to 688 pixels from the left side of the rectangle in steps of 80 pixels.

Category Structures

All stimuli were drawn from a four-label rule-plus-exception category structure, an ab-

stracted example of this type of category structure is shown in Figure 3.4. In this example, correct

classification of both types of training items (i.e., rules and exceptions) can be achieved by attend-

ing to the primary and secondary dimensions. Rule items (labeled as A & B in Figure 3.4), can

be accurately classified by attending only to the primary dimension. If an item possesses a dimen-

sion value less than the midpoint on the primary dimension, the item is classified as a member of

category A, if greater than the midpoint, as a member of category B. In contrast, correct classifi-
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Figure 3.4: The abstracted rule and exception category structure used in the experiments. Rule items
are labeled A and B. Exception items are labeled C and D. Transfer items are labeled T.

cation of exception items (labeled as C & D in Figure 3.4) requires attending to both primary and

secondary dimensions. The two exception items are identified by a unique combination of features

on the primary and secondary dimensions. The remaining items, the transfer items (labeled as T in

Figure 3.4), were used to test representations used by participants. These items were not presented

during the training phases. From this rule and exception category structure, four different category

structures were created, two one-dimensional category structures and two two-dimensional category

structures.

For the one-dimensional conditions, the primary and secondary dimensions corresponded

to the height of the rectangle and the position of an internal vertical line segment. The bound-

ary between rule items was orthogonal to the primary dimension. The horizontal condition (see

Figure 3.5a) corresponded to a category structure with rule items that could be classified using a

boundary orthogonal to the height dimension (i.e., all rectangles shorter than 300 pixels were in

category A, and all rectangles taller than 300 pixels were in category B). The vertical condition (see

Figure 3.5b) corresponded to a category structure with rule items that could be classified using a

boundary orthogonal to the line segment position dimension. These conditions served to counter
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balance the assignment of height or line segment position as the primary dimension for the one-

dimensional category structures.

For the two-dimensional conditions, the primary and secondary dimensions again corre-

sponded to height and line segment position, and were counterbalanced across participants. In these

conditions, however, the category structure was rotated 45 degrees around the center of the cate-

gory structure. This leads to a boundary separating the rule items with either a positive 45 degree

slope, the positive diagonal condition (see Figure 3.5c) , or with a negative 45 degree slope, the

negative diagonal condition (see Figure 3.5d). To learn these two-dimensional category structures,

information from both dimensions is necessary for accurate classification of both rule and exception

items. However, unlike the one-dimensional category structures, in these structures the primary di-

mension does not correspond to a single dimension, but to a linear combination of the two relevant

dimensions.

The experiment was composed of five phases (see Figure 3.6 for the phases and presenta-

tion frequencies). In the first phase, the rule training phase, participants were exposed only to rule

items. Each of 20 rule items, 10 from each category, were presented once per block for 7 blocks,

resulting in a total of 140 trials. In the second phase, the rule and internal exception training phase,

participants were exposed to rule and internal exception items. Each of the 22 rule items were pre-

sented once per block and each of the 2 exception items were presented 6 times per block, for 6

blocks, resulting in a total of 204 trials.

In the third phase, the transfer test with internal exceptions phase, participants were ex-

posed to rule, exception, and transfer items. Each of the 22 rule items were presented twice, each of

the exception items was presented 15 times, and each of the transfer items were presented 3 times.

In addition, the most diagnostic items were shown more frequently. The extreme corner transfer

items were shown 9 times each and the rule items adjacent to the transfer items were shown 5 times

each (Figure 3.6 displays item frequencies). This resulted in a total of 152 trials for phase 3. In

the fourth phase, the rule and external exception training phase, participants were exposed to rule

and exception items. Each of the 22 rule items were presented once per block and each of the 2

exception items were presented 6 times per block, for 14 blocks, resulting in a total of 476 trials.

In the fifth phase, the transfer test with external exceptions phase, participants were ex-

posed to rule, exception, and transfer items. Each of the 22 rule items were presented twice per

block, each of the exception items were presented 15 times per block, and each of the transfer items

were presented 3 times per block. In addition, the most diagnostic items were shown more fre-

quently. The extreme corner transfer items were each shown 9 times per block and the rule items
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Figure 3.5: The four rule and exception category structures used in Experiment 1. Rule items are
labeled A and B. Exception items are labeled C and D. Transfer items are not displayed, but can
be inferred from Figure 3.4. The figure is organized as follows: A. Horizontal bounded category
structure. B. Vertical bounded category structure. C. Negative diagonal bounded category structure.
D. Positive diagonal bounded category structure.
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Figure 3.6: Category structures for each phase of Experiment 1. The letter represents the category
label for that stimulus. Rule items are labeled A and B. Exception items are labeled C and D.
Transfer items are labeled T. The number represents how many times each stimulus was shown per
phase.
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adjacent to the exception items were each shown 5 times per block (Figure 3.6 displays items fre-

quencies). With 3 blocks, this resulted in a total of 456 trials for phase 5. Overall, there were 1428

total trials in Experiment 1. Trial order was randomized within each block for each participant and

the assignment of category label to category was randomized for each participant.

The category structure was designed with two types of exception items, internal and ex-

ternal exceptions (compare phase 2 with phase 4 in Figure 3.6). In the first three phases, the internal

exception items were surrounded by rule items. In the later phases, the exception items were shifted

one unit on both dimensions further from the center of the category structure to the edge of the

training items to become the external transfer items.

The purpose of the internal and external exception items was to encourage a more uni-

form representation of exception items among participants and then to allow for the differntation of

different theories of categorization. Internal exception items are used to convey the notion of ex-

ceptions as single items as uniformly as possible among the participants. If only external exception

items are studied, participant representations are more likely to be divided between representing ex-

ceptions as single items and representing exceptions as groups of items. Initial training on internal

exceptions increases the likelihood of participant representations of exceptions as single items. The

purpose of the external exception items was to allow for the differentiation of participants using sin-

gle strategies from those using multiple strategies of categorization using ATRIUM and ALCOVE.

With internal exceptions ALCOVE and ATRIUM make the same predictions and cannot be differ-

entiated, however with external exceptions the models make different predictions. Hence the shift

of internal to external exception items in the experiment.

Procedure

At the beginning of the experiment, participants were presented with instructions and the

cover story for the experiment. Participants were told they would be learning to identify four dif-

ferent types of space shuttle schematics. On each trial, participants were presented with a stimulus

and asked to classify each as a member of one of four categories by pressing one of four keys on a

keyboard (D, F, J, K). The instructions emphasized that the stimuli could be accurately identified,

and that progression through the experiment could be facilitated by responding as quickly and as

accurately as possible.

In a trial, participants were presented with a blank black screen for 250 ms followed by

the stimulus. The stimulus remained on screen until a response was made by pressing one of the

four keys (D, F, J, or K). Following a response, participants were given feedback and the correct
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category label. The correct category label remained on screen until the participants pressed the

spacebar. This allowed the participant the opportunity to study the correct stimulus and category

label pairing. Participants who misidentified the stimulus heard a low pitched tone for 500 ms and

were forced to remain at the feedback screen for a minimum of 1500 ms. Participants who correctly

identified the stimulus did not hear a tone and were able to continue to the next trial immediately

after pressing the spacebar.

In the transfer phase, participants were given transfer items to classify. On trials with

transfer items no useful feedback was given after participants made a category response. The feed-

back screen only reported that the response was recorded. Participants were then able to continue

to the next trial immediately after pressing the spacebar.

3.1.2 Results and Discussion

Learning

Averaged participant learning curves per condition can be seen in Figure 3.7. All condi-

tions show declines in performance in blocks 8, 14, and 27. In block 8, the exception items were

first introduced, which increased the number of valid category labels to four. Blocks 14 and 27

were the start of the transfer phases, which added trials with unfamiliar transfer stimuli that were

not followed by correct category labels nor accuracy feedback.

On the last block of training, participants averaged 75.6% rule accuracy. A one-way

ANOVA revealed that the final training block rule accuracy was not equal across conditions, F(3,76)=

5.56, p = .001. Participants in the vertical condition had the highest accuracies on rules items

(83.9%), followed by the horizontal condition participants (75.5%), the positive diagonal condi-

tion participants (74.3%), and the negative diagonal condition participants (68.2%). Tukey’s HSD

tests found that participant rule accuracy in the vertical condition (83.9%) was significantly higher

than in the negative diagonal condition (68.2%), p = 0.0007, but no other significant differences

were found. Additionally, a one-way ANOVA found that participants in the one-dimensional condi-

tions were more accurate on rule items (80.1%) than participants in the two-dimensional conditions

(71.3%), F(1,78) = 9.35, p = .003.

On the last block of training, participants averaged 73.8% exception accuracy. A one-way

ANOVA revealed no significant differences between the conditions, F(3,76) = 0.47, p = .70. Par-

ticipants in the positive diagonal condition had the highest accuracies on exception items (78.0%),

followed by the negative diagonal condition (75.0%), the vertical condition (72.3%), and the hor-
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izontal condition (69.4%). Additionally, a one-way ANOVA did not find significant differences

between participants in the one-dimensional and two-dimensional conditions on exception item ac-

curacy, F(1,78) = 1.14, p = .29.

To evaluate differences between rule and exception accuracy during the last training block

by participant, a rule-advantage score was calculated by subtracting average exception accuracy

from average rule accuracy. The resulting measure refers to the performance of the participant on

one type of category structure relative to the other. Positive rule-advantage scores indicate that

participants were more accurate on rule items, a rule-advantage. Negative rule-advantage scores

indicate that participants were more accurate on exception items, an exception advantage. Low or

zero rule-advantage scores indicate that participants were equally accurate on exception and rule

items.

Overall, participants averaged a 1.9% rule-advantage score. Participants tended to per-

form better on rule items than exception items. A one-way ANOVA revealed a significant differ-

ence between the conditions, F(3,76) = 3.51, p = 0.02. Participants in the vertical condition had

the highest rule-advantage score (11.5%), followed by the horizontal condition (6.0%), the posi-

tive diagonal condition (−3.6%), and the negative diagonal condition (−6.8%). Tukey’s HSD tests

found a significant difference between participants in the vertical condition (11.5%) and the negative

diagonal condition (−6.8%), p = 0.026, but no other significant differences between the conditions

were found. Additionally, a one-way ANOVA found that participants in the one-dimensional condi-

tions had higher rule-advantage scores (9.1%) than participants in the two-dimensional conditions

(−5.2%), F(1,78) = 9.72, p = .003.

Finally, t-tests were performed on the rule-advantage scores to determine if they were

different than 0. Only participants in the vertical condition (11.5%) were found to have an aver-

age rule- advantage score significantly different from 0, t(21) = 2.47, p = .02. This suggests that

participants in the vertical condition were more accurate on rule items than exception items.

Transfer

Participant performance during the transfer phase was analyzed to characterize differences

between the conditions and to provide initial evidence for the categorization strategies involved.

Participants could classify items in four different ways. They could classify items in a consistent

fashion, either as an exception-consistent item according to the nearest exception item, or as a rule-

consistent item according to the boundary used to create the category structure. They could also

categorize items in an inconsistent fashion, either as an exception-inconsistent item according to the
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Figure 3.7: Learning curves for Experiment 1. The points are the mean participant accuracies per
block by condition. The error bars are the standard errors of average participant accuracy for each
block.
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exception item on the opposite side of the category structure, or an rule-inconsistent item according

to the rule category on the opposite side of the boundary used to create the category structure.

Rule- and exception-consistent responses measure how well participants learned the cat-

egory structures. These responses can also be used to identify the strategies underlying participant

behavior. In contrast to consistent responses measuring how well participants learned the category

structures, inconsistent responses measure how poorly participants learned the category structures.

Rule-inconsistent responses indicate an uncertainty as to location of the boundary between the rule

categories. High rates of rule-inconsistent responses indicate a category structure where partici-

pants confused the two rule categories. Low rates of rule-inconsistent responses indicate a category

structure where participants were able to distinguish the two rule categories.

Exception-inconsistent responses are less likely to occur than the other types of responses

if participants learned the category structures. To make an exception-inconsistent response, partici-

pants must classify an item according to the exception training item on the opposite side of the rule

boundary. If participants display high rates of exception-inconsistent responses they most likely

have not learned the category structure, and they will not be useful for understanding how people

who have learned to categorize behave.

Responses to transfer items can be used to characterize participant performance and the

underlying categorization strategies used in the task. There are two types of transfer items, the 2

items at the extreme corners of the category structure (one on each side of the category structure),

hereby referred to as extreme transfer items, and the 14 remaining transfer items that are closer to the

training items, including the exception training items. Performance on these items can differentiate

the strategies of categorization used to classify the items due to the interaction of the exception

items and rule items on transfer performance.

When evaluating the responses to the transfer items, the extreme transfer items are most

diagnostic for identifying strategies. The extreme transfer items are farthest from the training items

and are the purest measure of participant strategies. The transfer items that are closer to the training

items are more likely to be influenced in different ways by different participant strategies. Par-

ticipant responses to these items are informative, but because information is combined over many

items, the strategies involved may be mixed and therefore difficult to interpret. The predictions

made by various strategies will therefore be characterized by specific types of extreme transfer item

performance and by a wider range of non-extreme transfer item performance. Figure 3.8 displays

examples of these strategies, including performance on the less informative (non-extreme) trans-

fer items. Performance on both extreme and (non-extreme) transfer items is provided to allow for
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direct comparisons between these examples and later figures displaying the performance of the par-

ticipants.

Exemplar-based strategies of categorization predict high rates of exception-consistent re-

sponses on extreme transfer items and either high rule, high exception, or a mixture of high rule and

high exception responses on transfer items. Performance on transfer items, those items nearest to

the exception item, show the strength of generalization from the exception item. High exception-

consistent response rates on transfer items indicate conditions in which participants have strong

exception item influence and weak rule item influence. In contrast, high rule-consistent response

rates on transfer items indicate conditions with weak exception item influence and strong rule item

influence.

Rule- and exemplar-based strategies of categorization predict high rates of rule-consistent

responses on extreme transfer items and either high rule, high exception, or a mixture of high

rule and high exception responses on transfer items. Performance on transfer items, those items

nearest to the exception item, show the strength of generalization from the exception item. High

exception-consistent response rates on transfer items indicate conditions in which participants have

strong exception item influence, most likely due to exemplar strategies. In contrast, high rule-

consistent response rates on transfer items indicate conditions with weak exception influence, and

low influence from the exemplar strategies.

Mixtures of participants using exemplar-based and rule- and exception-based categoriza-

tion strategies produce response patterns on transfer and extreme transfer items with large variances

and a mean dependent upon the proportion of participants with each strategy, as shown on the final

row of Figure 3.8. Note that none of the predictions in Figure 3.8 would result from participants

using a guessing strategy or participants pressing a single key in response to a transfer item. Par-

ticipants using a guessing strategy would have performance for transfer and extreme transfer items

characterized by consistent responses rates of 25% and low variance. Likewise participants who

press a single key in response to transfer items would be characterized by having high inconsistent

responses rates of 25% and high variance.

Transfer and extreme transfer item performance in Experiment 1 can be seen in Figure 3.9.

Participants in the horizontal, vertical, and negative diagonal conditions were found to have no

significant differences in transfer and extreme transfer item performance. This pattern of behavior

is consistent with mixtures of participants using different strategies. These data will be explored in

more detail in the model fitting chapters, however at this point these conditions tentatively support

the idea that participants can solve these categories a variety of different ways. As this supports the
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Figure 3.8: The transfer pattern predictions based on the underlying categorization strategy. The
top row shows three different predictions of exemplar-based accounts. The middle row shows three
different predictions of rule- and exception-based accounts. The bottom row shows three different
predictions of mixtures of participants with rule- and exemplar- based accounts.
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Figure 3.9: Responses to transfer items in Experiment 1 by condition. The extreme transfer items are
the two stimuli on the outside corners of the category structure. The transfer items are the remaining
14 non-extreme transfer items. The error bars are the standard errors of average participant response
rates.

use of rule-based categorization, this also tentatively supports the use of rules in the one-dimensional

conditions and in the two-dimensional negative diagonal condition.

In contrast to the other conditions, participants in the positive diagonal condition had

significantly more exception responses on transfer items than rule responses t(19) = 2.82, p = .01,

but no differences in response rates for extreme transfer items. This pattern of performance is

consistent with rule- and exception-based strategy responses. This condition also provides evidence

of two-dimensional rule use. The results of the transfer analysis for categories using separable and

commensurate dimensions provide support for one-dimensional and two-dimensional rules.
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Figure 3.10: Participants from Experiment 2 are plotted by their accuracy on rule and exception
items during the last transfer phase. Transfer items were not included in these calculations. The
horizontal line is the rule accuracy criterion of 38%. The vertical line is the exception item accuracy
criterion of 22%.

3.2 Experiment 2: Separable and Noncommensurate Dimensions

Experiment 2 was very similar to Experiment 1. The major changes were new stimuli

composed of separable and noncommensurate dimensions, and a series of procedural changes de-

signed to increase participant performance (which is described later).

3.2.1 Methods

Participants

The participants were 144 students from the University of California, Riverside enrolled

in an introductory psychology class who participated to fulfill a class requirement. Applying the

criteria from Experiment 1 resulted in the exclusion of data from 18 participants and retaining data

from 126 participants (See Figure 3.10). The proportion of participants lost from each condition

were not significantly different, χ2(d f = 3,N = 144) = 2.17, p = .54 (see Table 3.2).
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Table 3.2: The Breakdown of Participants by Condition and Learning Criterion for Experiment 2.

Learning Criterion Horizontal Vertical Negative Diagonal Positive Diagonal Total

Achieved 29 29 32 36 126

Failed 5 6 5 2 18

Total 34 35 37 38 144

Stimuli

The stimuli were circles with radial line segments that ranged on the separable and non-

commensurate dimensions of circle size and angle of the radial line (See examples in Figure 3.2).

Circle size and angle of orientation of a radial line are classic examples of separable dimensions

(Ashby & Maddox, 1998). Additionally, because the dimensions are measured in different units,

angle degree and distance, they are not commensurate. Each dimension had eight possible val-

ues, resulting in 64 possible stimuli, of which each participant only saw 40 (see Figure 3.4). The

mapping of stimuli to the circle size and angle of the radial line segment is shown in Figure 3.11.

It should be noted that the definition of these stimuli as separable and noncommensurate is

only valid for two-dimensional rules. The dimensional characteristics of separability and commen-

surability are based upon the relationship of two dimensions. One-dimensional rules are defined

by a single dimension, so these characteristics are not meaningful when applied to one-dimensional

rules.

For the one-dimensional conditions, the angle of the radial line segment ranged from 18

degrees to 105 degrees in steps of 12 degrees. The circle radius ranged from 64 pixels to 180

pixels in steps of 16 pixels. The positions of the two-dimensional condition stimuli were created

by rotating the positions of the one dimensional stimulus by 45 or −45 degrees around the center

of the category structure. For the two-dimensional conditions, the angle of the radial line segment

ranged from 0 degrees to 122 degrees in steps of 8.75 degrees, and the circle radius ranged from 40

pixels to 203 pixels in steps of 11.66 pixels.

Procedural Changes

Previous studies with these types of stimuli and categories with the student population

found that a 90-minute experimental session was necessary for participants to learn the category

structure and then test transfer performance. To increase participant interest and arousal during this

task, some modifications were made to the procedure to make the task seem more like a game.
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Figure 3.11: The physical dimensions of the stimuli in Experiment 2.

In this version of the task, participants were instructed that they were taking on the role

of a trainee spaceship captain whose task was to defend the Earth against the evil space aliens. As

a trainee, participants were to learn to categorize four types of alien ships which would allow them

to use the correct weapons to defeat the aliens.

During the task, the participants were presented a display with the view from a space ship

radar. The display was broken up into two sections by a vertical white line. The long-range radar

portion of the screen consisted of the right 25% of the screen. The remaining 75% of the display

was the short-range viewing screen and was used to present the stimuli.

In a trial, participants were shown a simulation of an encounter with a hostile alien ship.

At the start of a trial a red dot, representing the alien, approached a blue dot, representing the

participant’s ship, on the long-range radar. The approaching sequence took 250 ms during which

the short-range viewing screen was blank. Once the alien ship was in range, the stimulus appeared

on the short-range viewing screen. The stimulus remained on screen until a response was made.

Following a response, an animation (lasting 35 ms) was shown on the long-radar screen,

in which the participant’s ship fired upon the alien ship. The shot fired by the participant’s ship was

accompanied by a laser sound (lasting 200 ms). Each of the four key responses fired a unique col-

ored shot (green, blue, yellow, or red) and a unique laser sound. Sounds and colors were randomized

for each participant.
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If the participant correctly identified the stimulus, the alien ship on the long-range radar

screen was covered with a randomized star-like polygon representing an explosion of the same

color as the fired shot. Additionally, an explosion word (BOOM, KAPOW, BANG, ZAP, or SPLAT)

was randomly selected to appear in the center of the explosion. If the participant misidentified

the stimulus, the alien ship would return fire (a yellow line appeared connecting the two ships on

the radar display with no animation), the message Enemy Returning Fire!! was displayed, and an

additional failure message was randomly selected to appear in the center of the radar screen (Shields

Held!, Dodged!, Missed!!, Evaded!!, or Avoided!!).

After the firing animation sequence, the participant was given feedback and the correct

category label. The correct category label remained on screen allowing the participant the oppor-

tunity to study the correct stimulus and category label pairing. To continue to the next trial the

participant pressed the spacebar. Participants who misidentified the stimuli heard a low pitched tone

for 500 ms and were forced to remain at the feedback screen for a minimum of 1500 ms, while

participants who correctly identified the stimulus were able to continue to the next trial immediately

after pressing the spacebar. No feedback was given for transfer items, the screen reported that the

alien ship had warped out. After a transfer item, participants were able to continue to the next trial

immediately after pressing the spacebar.

In addition to these animations, sounds, and a more fantastic cover story, a running score

of performance was kept. The score was visible during the feedback portion of a trial at the top

of the screen. Participants earned 10 points for correct responses and lost 5 points for incorrect

responses.

3.2.2 Results and Discussion

Learning

Averaged participant learning curves per condition can be seen in Figure 3.12. All con-

ditions show declines in performance in blocks 8, 14, and 27. In block 8, the exception items were

first introduced, which increased the number of valid category labels to four. Blocks 14 and 27

were the start of the transfer phases, which added trials with unfamiliar transfer stimuli that were

not followed by correct category labels nor accuracy feedback.

On the last block of training, participants averaged 76.2% rule accuracy. A one-way

ANOVA revealed that rule accuracy in the final training block was not equal across conditions,

F(3,122)= 2.80, p= .004. Participants in the positive diagonal condition had the highest accuracies
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on rules items (81.3%), followed by the vertical condition participants (75.5%), the negative diago-

nal condition participants (73.7%), and the horizontal condition participants (73.2%). Tukey’s HSD

tests found differences between participants in the positive diagonal condition (81.3%) and in the

horizontal condition (73.2%), p = .06, and between participants in the positive diagonal condition

(81.3%) and the negative diagonal condition (73.7%), p = .08. No no other differences approached

significance. Additionally, participants in the one-dimensional conditions were not found to be less

accurate on rule items (74.3%) than participants in the two-dimensional conditions (77.7%) with a

one-way ANOVA, F(1,124) = 2.04, p = .16.

On the last block of training, participants averaged 80.4% exception accuracy. A one-way

ANOVA revealed significant differences between the conditions, F(3,122) = 5.30, p = .002. Par-

ticipants in the positive diagonal condition had the highest accuracies on exception items (88.7%),

followed by the negative diagonal condition (81.5%), the horizontal condition (76.7%), and the ver-

tical condition (72.4%). Tukey’s HSD tests found differences between participants in the positive

diagonal condition (88.7%) and in the vertical condition (72.4%), p = .001, and between partici-

pants in the positive diagonal condition (88.7%) and the horizontal condition (76.7%), p = .03. No

other differences approached significance. Additionally, a one-way ANOVA found that participants

in the one-dimensional conditions (74.5%) were lower in exception accuracy than participants in

the two-dimensional conditions (85.3%), F(1,124) = 11.93, p = .0008.

To evaluate differences between rule and exception accuracy during the last training block

by participant, the rule-advantage score was calculated by subtracting average exception accuracy

from average rule accuracy. Overall, participants averaged a −4.2% rule-advantage score, par-

ticipants tended to perform better on exception items than rule items. A one-way ANOVA did

not reveal significant differences among the conditions, F(3,122) = 2.49, p = 0.06. Participants

in the vertical condition had the highest rule-advantage scores (3.1%), followed by the horizontal

condition (−3.5%), the positive diagonal condition (−7.3%), and the negative diagonal condition

(−7.8%). Additionally, a one-way ANOVA found that participants in the one-dimensional condi-

tions had higher rule-advantage scores (−2.0%) than participants in the two-dimensional conditions

(−7.6%), F(1,124) = 5.41, p = .02.

Lastly, t-tests were performed on the rule-advantage scores to determine if they were

different than 0. Participants in the negative diagonal condition (−7.8%) were found to have an

average rule advantage score less than 0, t(31) = 2.61, p = .013, as well as participants in the

positive diagonal condition (−7.3%), t(35) = 3.05, p = .004. This suggests these participants were

more accurate on exception items than rule items.
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Figure 3.12: Learning curves for Experiment 2. The points are the mean participant accuracies per
block by condition. The error bars are the standard errors of average participant accuracy for each
block.
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Transfer

Transfer and extreme transfer item performance in Experiment 2 can be seen in Fig-

ure 3.13. Participants in the horizontal condition did not have a significant difference between

transfer and extreme transfer item performance. This pattern of performance is consistent with

mixtures of categorization behaviors, which includes rule-based categorization. Participants in the

vertical condition were found to have significantly more rule responses to transfer items than ex-

ception responses, t(28) = 2.19, p = .037. This pattern of was also present in the extreme transfer

items, but was not significant, t(28) = 0.98, p = .33. This pattern of results is consistent with rule-

based categorization and supports one-dimension rule use. They also support the use of rules in the

one-dimensional conditions for separable dimensions, as has previously been found.

Participants in the negative diagonal condition were not found to have differences in trans-

fer item performance, but were found to have significantly more exception response than rule re-

sponses on extreme transfer items, t(31) = 2.13, p = .04. Likewise participants in the positive

diagonal condition were found to have significantly higher exception response rates on both transfer

items, t(35) = 5.90, p < .0001, and extreme transfer items, t(35) = 2.96, p = .005. This pattern of

behavior is consistent with exemplar-based categorization. The results of the transfer analysis for

categories using separable and noncommensurate dimensions provide support for one-dimensional

rules and no support for two-dimensional rules.

3.3 Experiment 3: Integral and Commensurate Dimensions

Experiment 3 was identical to Experiment 2, except the stimuli were composed of integral

and commensurate dimensions.

3.3.1 Methods

Participants

The participants were 133 students from the University of California, Riverside enrolled

in an introductory psychology class who participated to fulfill a class requirement. Applying the

criteria from Experiment 1 resulted in the exclusion of data from 9 participants and retaining data

from 124 participants (See Figure 3.10). The proportion of participants lost from each condition

were not significantly different, χ2(d f = 3,N = 133) = 0.388, p = .94 (see Table 3.3).
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Figure 3.13: Responses to transfer items in Experiment 2 by condition. The extreme transfer items
are the two stimuli on the outside corners of the category structure. The transfer items are the re-
maining 14 non-extreme transfer items. The error bars are the standard errors of average participant
response rates.

Table 3.3: The Breakdown of Participants by Condition and Learning Criterion for Experiment 3.

Learning Criterion Horizontal Vertical Negative Diagonal Positive Diagonal Total

Achieved 34 25 34 31 124

Failed 1 5 0 3 9

Total 35 30 34 34 133

47



0 20 40 60 80 100

0
20

40
60

80
10

0

Rule Accuracy (%)

E
xc

ep
tio

n 
A

cc
ur

ac
y 

(%
)

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

Figure 3.14: Participants from Experiment 3 are plotted by their accuracy on rule and exception
items during the last transfer phase. Transfer items were not included in these calculations. The
horizontal line is the rule accuracy criterion of 38%. The vertical line is the exception item accuracy
criterion of 22%.
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Figure 3.15: The physical dimensions of the stimuli in Experiment 3.

Stimuli

The stimuli were rectangles that ranged on the integral and commensurate dimensions

of width and height (see examples in Figure 3.2). Rectangle width and height have been found to

be integral dimensions (Dunn, 1983). Additionally, because the dimensions are both measured in

units of distance they are commensurate. Each dimension had eight possible values, resulting in 64

possible stimuli, of which each participant only saw 40 (see Figure 3.4). The mapping of stimuli to

height and width is shown in Figure 3.15.

For the one-dimensional conditions, rectangle width ranged from 177 pixels to 540 pixels

in steps of 52 pixels, and the rectangle height ranged from 150 pixels to 502 pixels in steps of 50

pixels. The positions of the two-dimensional condition stimuli were created by rotating the positions

of the one-dimensional stimulus by 45 or −45 degrees around the center of the category structure.

For the two-dimensional conditions, the rectangle width ranged from 102 pixels to 614 pixels in

steps of 73 degrees, and the rectangle height ranged from 77 pixels to 592 pixels in steps of 73

pixels.
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3.3.2 Results and Discussion

Learning

Averaged participant learning curves per condition can be seen in Figure 3.16. All con-

ditions show declines in performance in blocks 8, 14, and 27. In block 8, the exception items were

first introduced, which increased the number of valid category labels to four. Blocks 14 and 27

were the start of the transfer phases, which added trials with unfamiliar transfer stimuli that were

not followed by correct category labels nor accuracy feedback.

On the last block of training, participants averaged 79.5% rule accuracy. A one-way

ANOVA revealed that final training block rule accuracy was not equal across conditions, F(3,120)=

7.09, p = .0002. Participants in the positive diagonal condition had the highest accuracies on rules

items (87.7%), followed by the negative diagonal condition participants (78.1%), the vertical con-

dition participants (76.5%), and the horizontal condition participants (75.8%). Tukey’s HSD tests

found differences between participants in the positive diagonal condition (87.7%) and the horizontal

condition (75.8%), p = .0004, between participants in the positive diagonal condition (87.7%) and

the negative diagonal condition (78.1%), p= .006, and between participants in the positive diagonal

condition (87.7%) and the vertical condition (76.5%). No differences were found between partici-

pants in the negative diagonal, vertical, or horizontal conditions. Additionally, a one-way ANOVA

found that participants in the one-dimensional conditions were less accurate on rule items (76.1%)

than participants in the two-dimensional conditions (82.7%), F(1,122) = 9.24, p = .003.

On the last block of training, participants averaged 86.8% exception accuracy. A one-way

ANOVA revealed significant differences between the conditions, F(3,120) = 2.90, p = .04. Partic-

ipants in the horizontal condition had the highest accuracies on exception items (91.4%), followed

by the positive diagonal condition (87.9%), the negative diagonal condition (84.3%), and the verti-

cal condition (82.7%). Tukey’s HSD tests found differences between participants in the horizontal

condition (91.4%) and in the vertical condition (82.7%), p = .001. No other differences approached

significance. Additionally, a one-way ANOVA found that participants in the one-dimensional con-

ditions (87.7%) did not have higher exception accuracy than participants in the two-dimensional

conditions (86.0%), F(1,122) = 0.52, p = .472.

To evaluate differences between rule and exception accuracy during the last training block

by participant, a rule-advantage score was calculated by subtracting average exception accuracy

from average rule accuracy. Overall, participants averaged a −7.3% rule-advantage score, partic-

ipants tended to perform better on exception items than rule items. A one-way ANOVA revealed
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significant difference among the conditions, F(3,120) = 8.42, p < .0001. No condition showed

an average positive rule-advantage score, all conditions performed better on exception items. Par-

ticipants in the positive diagonal condition had the greatest rule-advantage scores (−0.2%), fol-

lowed by the vertical condition (−6.1%), the negative diagonal condition (−6.2%), and the hor-

izontal condition (−15.6%). Tukey’s HSD tests revealed lower rule-advantage scores for partic-

ipants in the horizontal condition (−15.6%) than in the vertical condition (−6.1%), p < .0001,

the negative diagonal condition (−6.2%), p < .013, and the positive diagonal condition (−0.2%),

p < .0001. Additionally, a one-way ANOVA found that participants in the one-dimensional condi-

tions had lower rule-advantage scores (−11.6%) than participants in the two-dimensional conditions

(−3.1%), F(1,122) = 12.27, p = .0006.

Lastly, t-tests were performed on the rule-advantage scores to determine if they were

different than 0. Participants in the horizontal condition (−15.6%) were found to have an average

rule-advantage score less than 0, t(33) = 7.78, p < .0001, as well as participants in the vertical

condition (−6.1%), t(24) = 2.19, p = .04, and the negative diagonal condition (−6.2%), t(33) =

2.60, p = .014. This suggests these participants were more accurate on exception items than rule

items.

Transfer

Transfer and extreme transfer item performance in Experiment 3 can be seen in Fig-

ure 3.17. Participants in the horizontal and negative diagonal conditions were not found to have

significant differences in transfer and extreme transfer item performance supporting mixtures of

participants using rule-based and exception-based strategies. However, the trend in the horizontal

condition of more exception-consistent responses than consistent rule responses supports exemplar-

based categorization. In contrast, the trend in the negative diagonal condition of more rule responses

than exception responses supports rule-based categorization. Thus there is tentative support for one-

dimensional and two-dimensional rule use.

Participants in the vertical condition were found to have higher rule consistent response

rates than exception-consistent response rates on transfer items, t(24) = 4.04, p = .0005, but no

differences in extreme transfer performance. This pattern supports one-dimensional rule use. Addi-

tionally, participants in the positive diagonal condition were found to have more rule response than

exception responses to both transfer items, t(30) = 9.14, p < .0001, and extreme transfer items,

t(24) = 5.32, p < .0001. This supports provides support for two-dimensional rule use. The results
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Figure 3.16: Learning curves for Experiment 3. The points are the mean participant accuracies per
block by condition. The error bars are the standard deviations of average participant accuracy for
each block.

52



Horizontal Negative Diagonal Positive Diagonal Vertical

Condition

R
es

po
ns

e 
R

at
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Transfer: Rule Consistent
Transfer: Exception Consistent
Extreme Transfer: Rule Consistent
Extreme Transfer: Exception Consistent

Figure 3.17: Responses to transfer items in Experiment 3 by condition. The extreme transfer items
are the two stimuli on the outside corners of the category structure. The transfer items are the re-
maining 14 non-extreme transfer items. The error bars are the standard errors of average participant
response rates.

of the transfer analysis for categories using integral and commensurate dimensions provide support

for one-dimensional rules and stronger support for two-dimensional rules.

3.4 Experiment 4: Integral and Noncommensurate Dimensions

Experiment 4 was identical to Experiment 2 and 3, except a change in the stimuli to

Fourier descriptors, stimuli containing integral and noncommensurate dimensions.
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Figure 3.18: Participants from Experiment 4 are plotted by their accuracy on rule and exception
items during the last transfer phase. Transfer items were not included in these calculations. The
horizontal line is the rule accuracy criterion of 38%. The vertical line is the exception item accuracy
criterion of 22%.

3.4.1 Methods

Participants

The participants were 139 students from the University of California, Riverside enrolled

in an introductory psychology class who participated to fulfill a class requirement. Applying the

criteria from Experiment 1 resulted in the exclusion of data from 10 participants and retaining data

from 129 participants (see Figure 3.18). The proportion of participants lost from each condition

were not significantly different, χ2(d f = 3,N = 139) = 0.125, p = .99 (see Table 3.4).

Stimuli

The stimuli were constructed using Fourier descriptors. The Fourier descriptors varied

on the integral and noncommensurate dimensions of amplitude and phase (see examples in Fig-

ure 3.2). Amplitude and phase, when used to construct Fourier descriptors, have been found to be

integral dimensions (Op de Beeck, Wagemans, & Vogels, 2003; Cortese & Dyre, 1996). While
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Table 3.4: The Breakdown of Participants by Condition and Learning Criterion for Experiment 4.

Learning Criterion Horizontal Vertical Negative Diagonal Positive Diagonal Total

Achieved 33 32 32 32 129

Failed 1 5 2 2 10

Total 34 37 34 34 139

both dimensions are measures of rotation, they manifest themselves differently in visual stimuli.

Since the dimensions are not measured in the same units, angle of rotation (phase) and complexity

(amplitude), they are not commensurate. The Fourier descriptors were composed of three different

sine waves of frequencies 2, 4, and 8 cycles per perimeter. The sine waves of frequency 2 and 4

cycles per perimeter had amplitudes of 0.5 radians and phases of 0 degrees. The frequency 8 cycle

per perimeter sine wave varied along the dimensions of amplitude and phase. Each dimension pos-

sessed eight possible values, resulting in 64 possible stimuli, of which each participant only saw 40

(see Figure 3.4). Figure 3.19 contains the stimuli used in Experiment 4 arranged by condition. The

mapping of stimuli to the amplitude and phase of variable sine wave is shown in Figure 3.20.

For the one-dimensional conditions, amplitude ranged from 0.5 radians to 1.55 radians in

steps of 0.15 radians and the phase ranged from 0 degrees to 280 degrees in steps of 40 degrees.

The positions of the two dimensional condition stimuli were created by rotating the positions of the

one-dimensional stimulus by 45 or −45 degrees around the center of the category structure. For

the two-dimensional conditions, amplitude ranged from 0.5 radians to 1.55 radians in steps of 0.075

radians and the phase ranged from 0 degrees to 280 degrees in steps of 20 degrees.

3.4.2 Results and Discussion

Learning

Averaged participant learning curves per condition can be seen in Figure 3.21. All con-

ditions show declines in performance in blocks 8, 14, and 27. In block 8, the exception items were

first introduced, which increased the number of valid category labels to four. Blocks 14 and 27

were the start of the transfer phases, which added trials with unfamiliar transfer stimuli that were

not followed by correct category labels nor accuracy feedback.

On the last block of training, participants averaged 78.2% rule accuracy. A one-way

ANOVA revealed that final training block rule accuracy was not equal across conditions, F(3,125)=

16.34, p < .0001. Participants in the horizontal condition had the highest accuracies on rules items
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Figure 3.19: The Fourier descriptors used in Experiment 4. The category structures are rotated so
that the rule-bounds are parallel to the x-axis. Upper left: Horizontal bounded category structure.
Upper right: Vertical bounded category structure. Lower left: Negative diagonal bounded category
structure. Lower right: Positive diagonal bounded category structure. Stimuli are labeled according
to their category. The transfer stimuli are unlabeled.
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Figure 3.20: The physical dimensions of the stimuli in Experiment 4.

(87.6%), followed by the negative diagonal condition participants (78.1%), the vertical condition

participants (77.1%), and the positive diagonal condition participants (70.0%). Tukey’s HSD tests

found differences between participants in the horizontal condition (87.6%) and the positive diagonal

condition (70.0%), p < .0001, between participants in the horizontal condition (87.6%) and the ver-

tical condition (77.1%), p= .0003, and between participants in the horizontal condition (87.6%) and

the negative diagonal condition (78.1%). Participants in the negative diagonal condition (78.1%)

were more accurate than participants in the positive diagonal condition (70.0%), p = .010, and par-

ticipants in the vertical condition (77.1%) were also more accurate than participants in the positive

diagonal condition (70.0%), p = .030. Additionally, participants in the one-dimensional conditions

were found to be more accurate on rule items (82.4%) than participants in the two-dimensional

conditions (74.1%), F(1,127) = 18.15, p < .0001.

On the last block of training, participants averaged 83.7% exception accuracy. A one-way

ANOVA did not reveal any significant difference between the conditions, F(3,125) = 2.19, p = .09.

Participants in the horizontal condition had the highest accuracies on exception items (87.1%),

followed by the negative diagonal condition (85.4%), the vertical condition (82.8%), and the positive

diagonal condition (82.7%). Additionally, a one-way ANOVA found that participants in the one-

dimensional conditions (85.0%) did not have lower exception accuracy than participants in the two-

dimensional conditions (82.3%), F(1,127) = 1.31, p = .255.
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Figure 3.21: Learning curves for Experiment 4. The points are the mean participant accuracies per
block by condition. The error bars are the standard deviations of average participant accuracy for
each block.
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To evaluate differences between rule and exception accuracy during the last training block

by participant, a rule-advantage score was calculated by subtracting average exception accuracy

from average rule accuracy. Overall, participants averaged a −5.4% rule-advantage score, partic-

ipants tended to perform better on exception items than rule items. A one-way ANOVA did not

reveal any significant differences between the conditions, F(3,125) = 2.41, p = .07. Participants

in the horizontal condition had the highest rule-advantage scores (0.4%), followed by the vertical

condition (−5.7%), the negative diagonal condition (−7.3%), and the positive diagonal condition

(−9.1%). Additionally, a one-way ANOVA found that participants in the one-dimensional condi-

tions had higher rule-advantage scores (−2.5%) than participants in the two-dimensional conditions

(−8.2%), F(1,127) = 4.36, p = .039.

Lastly, t-tests were performed on the rule-advantage scores to determine if they were

different than 0. Participants in the negative diagonal condition (−7.3%) were found to have an

average rule-advantage score less than 0, t(31) = 3.26, p < .003, as were participants in the positive

diagonal condition (−9.1%), t(31) = 3.05, p = .005. This suggests that these participants were

more accurate on exception items than rule items.

Transfer

Transfer and extreme transfer item performance in Experiment 3 can be seen in Fig-

ure 3.13. Participants in the horizontal condition were found to have more rule-consistent responses

than consistent exception responses for transfer items, t(32) = 2.39, p = .023. There were no dif-

ferences in responses for extreme transfer items. This supports a mixture of participants using

rule-based and rule- and exception-based categorization strategies. Participants in the vertical con-

dition were found to have more rule responses than exception responses for both transfer items,

t(31) = 5.36, p < .0001, and for extreme transfer items, t(31) = 4.26, p = .0002. This supports

rule-based categorization.

Participants in the positive diagonal condition did not show significant differences in re-

sponse rates. However, there was a trend toward more exception-consistent responses. This pat-

tern of behavior supports a mixture of participants using exception-based and rule- and exception-

based categorization strategies. Participants in the negative diagonal condition showed strong ex-

ception response rates for transfer items, t(31) = 8.18, p < .0001, and for extreme transfer items,

t(31) = 5.22, p < .0001. This supports exception-based categorization. The results of the transfer

analysis for categories using integral and noncommensurate dimensions provide support for one-

dimensional rules and weak or no support for two-dimensional rules.
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Figure 3.22: Responses to transfer items in Experiment 4 by condition. The extreme transfer items
are the two stimuli on the outside corners of the category structure. The transfer items are the re-
maining 14 non-extreme transfer items. The error bars are the standard errors of average participant
response rates.
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3.5 Evaluation of Procedure Changes

After Experiment 1, adjustments were made to the procedure to enhance participant learn-

ing. The following experiments did have a large proportion of participants reaching the learning cri-

terion than Experiment 1. In Experiment 1, 80% of the participants reached the learning criterion.

This increased to 87.5% in Experiment 2, 93% in Experiment 3, and 92% in Experiment 4.

3.6 Summary

Four experiments were performed to test for two-dimensional rule use. The four experi-

ments were designed to test one of the unique factorial combinations of the two factors of dimen-

sionality (separable versus integral) and verbalizability (noncommensurate versus commensurate).

Evidence of one-dimensional rule use was found across all experiments. However, evidence of two-

dimensional rule use was only found in Experiments 1 and 3. These are the two experiments that

used stimuli composed of commensurate stimulus dimensions. This is consistent with participants

only using two-dimensional rules when stimuli are composed of commensurate dimensions.
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Chapter 4

Cluster Analysis

When given a categorization task to perform, participants often use different strategies and

develop different representations (Erickson & Kruschke, 1998; Ashby et al., 1998). When analyzing

data it is necessary to select a level of analysis that can both discriminate between strategies and also

retain sufficient information to distinguish consistent behaviors from random error. By combining

across too much data, individual differences in strategy and representation are lost. By combining

across too few data, consistent behaviors are distorted by random error. When choosing to analyze

a data set, the questions that are being asked about the data set, determine the appropriate level of

analysis.

In this paper, participants were analyzed at the level of strategy. Following Lee and Webb

(2005), cluster analyses were used to group participants according to displayed strategies. These

groups were then used for model fitting. This procedure allows for the advantages of both individ-

ual and group level of analysis. By fitting groups of participants, the influence of random factors

on participant performance was reduced by the larger amount of stable nonrandom performance.

Likewise, by fitting individuals grouped by similar categorization behaviors, unique strategies are

preserved. Consequently, the technique of analyzing participants grouped by strategy allows both

the noise-reduction advantages of group fitting and the retention of unique strategies of individual

fitting.

To group participants using similar strategies a series of cluster analyses were performed

upon participant transfer item performance. The participants were first clustered by experiment and

then clustered across experiments. The individual experiment cluster analyses allow for the char-

acterization of participant behaviors within a common set of conditions and stimuli. The combined

experiment cluster analyses allow for the determination of participant categorization behaviors that
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were consistent across experiments. In the following, individual cluster analyses by experiment are

discussed and then followed by the combined experiment cluster analysis.

4.1 Cluster Analysis Method

Participant data from the transfer phase was prepared for the cluster analysis by con-

verting each participant’s performance into an abstracted form. Individual participant performance

was characterized by the frequency at which a participant made each type of response to each of

the 40 stimuli (see Figure 3.4). The four types of responses were: rule-consistent, rule inconsis-

tent, exception consistent, and exception-inconsistent (see previous chapter for further clarification).

Therefore, each participant was described by a vector of 40 stimuli by 4 types of responses, or 160

numbers.

These vectors were transformed into item profile plots for easier description and under-

standing of the strategies that produced each type of behavior. For simplicity, the horizontal condi-

tion category structure was chosen as the representative abstract structure. All subsequent figures

and descriptions are based on this orientation of the category structure (see Figure 4.1). Each partic-

ipant or group of participants is represented by a row of four profile plots. The plots in each of the

four columns represents one type of response. Each of the cells represent one unique item, oriented

according to its location in the category structure. The darkness in shading of each of the cells in

each plot represents the frequency of that response. The darker the cell the greater frequency of that

response. The training items are the items outlined by the thicker black box and the transfer items

are the items in the upper left and lower right corners (for more detail refer back to Figure 3.4).

Figure 4.1 contains three different patterns that could be generated by a participant who

was 100% accurate on training items. High performance on the training items requires both high

proportions of rule-consistent responses to rule training items and high proportions of exception-

consistent responses to exception training items. A high proportion of rule-consistent responses

to rule training items is displayed in the rule-consistent response column (the first column) of Fig-

ure 4.1. A high proportion of exception-consistent responses to exception training items is displayed

in the exception-consistent response column (the third column) of Figure 4.1.

The difference between the three patterns in Figure 4.1 reflects different types of per-

formance on the transfer items. Transfer item performance can be used to determine the type of

strategy used by the participant (Erickson & Kruschke, 1998). The top pattern, the rule gener-

alization pattern, corresponds to a participant classifying transfer items according to the nearest
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rule item. This type of pattern is generated by participants using rule- and exception-based cate-

gorization. The middle pattern, the exception generalization pattern, corresponds to a participant

classifying transfer items according to the nearest exception item. This type of pattern is generated

by participants using exemplar-based categorization. The bottom pattern, the guessing generaliza-

tion pattern, corresponds to a participant who was equally likely to respond to a transfer item with

each of the four possible category labels. This may be a result of a participant simply guessing on

each of the transfer items. This type of pattern may also emerge when combining across participants

using different strategies, whose averaged performance resembles that of a single participant using

a guessing strategy. Regardless, this type of pattern does not provide evidence as to what kind of

strategy was used to learn the categories.

These patterns are used as guidelines to interpret the patterns displayed by participants.

If participants in the two-dimensional category conditions are found to perform in a manner similar

to the rule generalization pattern, this provides support for the use of two-dimensional rules. Par-

ticipants displaying other types of transfer item generalization may still be using two-dimensional

rules, however they do not provide direct evidence of such use.

A series of cluster analyses using the Partitioning Around Medoids (PAM: Kaufman &

Rousseeuw, 2005) method was performed upon these data. PAM partitions observations into clus-

ters by maximizing the similarity of observations to their assigned cluster and maximizing the dis-

similarity of the clusters to each other. To accomplish this, PAM searches a data set until it finds a

series of representative objects, or medoids. Observations are then assigned to the cluster that pos-

sesses the closest medoid. PAM attempts to find the best k clusters, where k is provided by the user.

The final selection of medoids and clusters minimizes the summed distance of all cluster members

to their cluster medoid.

For this data, a series of different PAM cluster solutions using a Euclidean distance metric

were considered as possible participant groupings. The final clustering solution was determined

by a combination of the interpretability of the clusters, the number of clusters suggested by a ag-

glomerative cluster solution using Ward’s method, and the average silhouette width. Kaufman and

Rousseeuw (2005) proposed silhouette width as a means of evaluating clustering solutions and the

average silhouette width as a means of evaluating the fitness of the entire clustering solution. Sil-

houette plots are a graphical representation of the silhouette widths of all observations in a clustering

solution, and are used to explain the findings. Figure 4.2 displays an example of a silhouette plot.

In a silhouette plot, silhouette width is calculated for each observation in the data and then

arranged by cluster. The silhouette width is a measure of the goodness of fit that each observation
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Rule Generalization Pattern
Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

Exception Generalization Pattern
Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

Guessing Generalization Pattern
Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

Figure 4.1: Examples of individual participant transfer performance.

has to its cluster. Silhouette widths range from -1 to 1, with positive values being good fits of an

observation to a cluster, zero being an observation that is between two clusters, and negative values

being an observation that may be more appropriately placed in another cluster.

The silhouette width for observation i, si, is defined as:

si =
bi −ai

max(ai,bi)
, (4.1)

where ai is the average dissimilarity of observation i to all other members of its assigned cluster,

and bi is the average dissimilarity of observation i to all members of its nearest neighboring cluster.
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Table 4.1: Division of Participants into Clusters in Experiment 1

Cluster 1D 2D

1 16 15

2 5 16

3 14 0

4 2 5

5 3 0

6 0 4

The silhouette width is a measure of clustering fitness. It is a function of the difference

between an observation and its cluster and the nearest neighboring cluster, weighted by the larger

of the two differences. It is based on the average distance of each observation to the members

of a cluster. It is formally equivalent to the distance between an observation and the mean of a

cluster. When observation i approaches the average (or center) of its cluster, ai is minimized, and

the silhouette width is reduced to bi
bi

or 1. When the observation is midway between two clusters,

ai and bi are approximately equal, and the silhouette width is reduced to 0
max(ai,bi)

or 0. When the

observation approaches the average (or center) of its neighboring cluster, bi is minimized, and the

silhouette width is reduced to −ai
ai

or −1.

In some cases silhouette plots show PAM producing clusters with negative silhouette

widths. This is because PAM creates clusters by minimizing the distance between observations

and the medoids of each cluster, whereas silhouette width is calculated using the distance between

observations and the average of each cluster. Clustering solutions with many negative or near zero

silhouette widths suggest that the clusters are poorly formed. This may be the result of large amounts

of variance in the data leading to poorly defined clusters or choosing a clustering solution that does

not reflect the underlying groups in the data.

4.2 Experiment 1: Separable and Commensurate Dimensions

Figure 4.2 contains the silhouette plot of the six cluster solution for Experiment 1 and

the dendrogram created by the agglomerative clustering. Figure 4.3 shows the average participant

performance for the six cluster solution for Experiment 1. Table 4.1 shows the breakdown of par-

ticipants into clusters based on condition. This solution contains three large and consistent clusters

66



Silhouette width si

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Silhouette Plot for Experiment 1

Average silhouette width :  0.19

n = 80 6    clusters    Cj

j :  nj | avei∈∈Cj    si

1 :   31  |  0.10

2 :   21  |  0.22

3 :   14  |  0.33

4 :   7  |  0.003
5 :   3  |  0.60
6 :   4  |  0.21

14 12 10 8 6 4 2 0

Experiment 1: Dendrogram

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Figure 4.2: The left panel contains the silhouette plot for Experiment 1. The right panel contains
the dendrogram for Experiment 1.

(Clusters 1, 2, and 3), two small and consistent clusters (Clusters 5 and 6), and one small and

inconsistent cluster (Cluster 4).

Cluster 1 contains participants who classified transfer items as members of the rule-

consistent category. This suggests that these participants used rule- and exemplar-based categoriza-

tion. This cluster contains the most participants and has a positive average silhouette width. Clus-

ter 1 also contains a mixture of participants from both the one-dimensional and two-dimensional

conditions. Therefore, Cluster 1 provides evidence for rule use in one-dimensional conditions, as

previously found with separable and commensurate dimensions, and may also provides evidence

for two-dimensional rule use.

Cluster 2 contains participants who classified transfer items as members of the exception-

consistent category. This suggests that these participants used exemplar-based categorization. This

cluster contains the second most participants and has a positive average silhouette width. Cluster 2

contains one third as many participants from the one-dimensional conditions as Cluster 1. This sug-

gests that participants were more likely to use rule generalization in the one-dimensional conditions

than exception generalization. Cluster 2 contains approximately the same number of participants

from the two-dimensional conditions as Cluster 1. This suggests that participants are equally likely

to use rule generalization as exception generalization in the two-dimensional conditions. Although

Cluster 2 does not suggest rule-use, it does contain a large portion of participants from the two-
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1

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

2

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

3

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

4

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

5

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

6

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

Figure 4.3: The proportion of responses for each stimulus during the transfer phase for the average
participant per cluster of Experiment 1. The shading in each cell corresponds to the proportion of
responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of response. The cluster number is displayed to the left of each row.
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dimensional conditions and is a well-formed cluster. Thus Cluster 2 may still provide evidence that

may lead to a better understanding of when two-dimensional rules may be used.

Cluster 3 contains participants who classified transfer items as members of the exception-

consistent category, this suggests exemplar-based categorization. Cluster 3 contains only half the

number of participants as Cluster 1, but has a high positive average silhouette width. Furthermore,

Cluster 3 contains only participants from the one-dimensional conditions. While the participants did

generalize to the exception-consistent category, participant strategies might not be exemplar-based.

Participants in Cluster 3 were found to have high rates of consistent exception responses

to stimuli that shared the same feature (or a more extreme value) on the primary dimension as the

exception training items. This strategy can be described by the theoretical rules of equal to or

more extreme. The term theoretical rule is used here as a description of the strategy used by the

participants and does not imply participants used a rule. The use of this strategy creates bands of

exception responses that can even cross into the training items, as shown in Figure 4.3.

These patterns of response bands can be explained in different ways. One explanation is

that participants did use exemplar-based categorization to learn the structure, as suggested by the

high frequency of exception-consistent responses to the transfer items. Another possibility, is that

participants solved the structure using four one-dimensional rules. These rules would correspond to

two rules used to classify the rule items (i.e, category A if it is tall or category B if it is short) and

the two theoretical rules described above (one for each group of exceptions). Regardless, Cluster

3 does not contain any participants from the two-dimensional conditions, and therefore does not

provide any evidence for two-dimensional rule use.

Cluster 4 contains only 7 participants, and has an average silhouette width near 0. The

averaged participant profile plot provides no strong indication of a meaningful strategy. Individual

participant performance plots supported this finding. They suggested that these participants had not

mastered the categorization task. The lack of consistent behaviors between participants and the lack

of a meaningful strategy prevents Cluster 4 from providing any evidence for two-dimensional rule

use.

Cluster 5 is the smallest cluster, containing only three participants, but also has the highest

average silhouette width. These three participants performed similarly and came from the one-

dimensional conditions. These participants’ transfer phase performance was similar to participants

in Clusters 3. However, whereas participants in Cluster 3 seem to have generalized according to

theoretical rule of equal to or more extreme, Cluster 5 participant performance can be described as

using the theoretical rule of equal to. This type of behavior suggests the use of multiple rules along
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Figure 4.4: The left panel contains the silhouette plot for Experiment 2. The right panel contains
the dendrogram for Experiment 2.

a primary dimension. Regardless, all participants were from the one-dimensional condition, and are

therefore not informative on the use of two-dimensional rules.

Cluster 6 contains four participants from the two-dimensional conditions. Their strategy

can be best described as attempting to use one-dimensional rules upon a two-dimensional structure.

Although this cluster is not informative on the use of two-dimensional rules it does provide evidence

that participants use one-dimensional rules, even when such strategies are not optimal.

In conclusion, the cluster analysis for Experiment 1 provides evidence for rule use in a

task using stimuli with separable and commensurate dimensions. Additionally, with 37% of the

participants in the two-dimensional conditions, Cluster 1 provides evidence for two-dimensional

rule use.

4.3 Experiment 2: Separable and Noncommensurate Dimensions

Figure 4.4 contains the silhouette plot of the six cluster solution for Experiment 2 and the

dendrogram produced by the agglomerative clustering. Figure 4.5 shows the averaged participant

performance for the six cluster solution for Experiment 2. Table 4.2 shows the breakdown of par-

ticipants into clusters based on condition. This solution contains two large and consistent clusters
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Figure 4.5: The proportion of responses for each stimulus during the transfer phase for the average
participant per cluster of Experiment 2. The shading in each cell corresponds to the proportion of
responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of response. The cluster number is displayed to the left of each row.

71



Table 4.2: Division of Participants into Clusters in Experiment 2

Cluster 1D 2D

1 20 11

2 11 17

3 12 0

4 6 17

5 3 7

6 6 16

(Clusters 1 and 2), two large and inconsistent clusters (Clusters 4 and 6), one small and consistent

cluster (Cluster 3), and one small and inconsistent cluster (Cluster 5).

Cluster 1 contains participants who classified transfer items as members of the rule-

consistent category. This suggests that these participants used both rule- and exemplar-based cate-

gorization. This cluster contains the most participants and has a positive average silhouette width.

Cluster 1 also contains a mixture of participants from both the one-dimensional and two-dimensional

conditions. Additionally, there were twice as many participants from the one-dimensional con-

dition than from the two-dimensional condition which again suggests that two-dimensional rules

may be more difficult to implement than one-dimensional rules. The participants using rule-based

generalization in the one-dimensional conditions in Cluster 1 provide evidence for rule use in one-

dimensional conditions. Likewise, the participants using rule-based generalization in Cluster 1 from

the two-dimensional conditions also provide evidence for for two-dimensional rule use in the two-

dimensional conditions.

Cluster 2 contains participants who classified transfer items as members of the exception-

consistent category. This suggests that these participants used exemplar-based categorization. This

cluster also contains the second most participants and has a positive average silhouette width. Clus-

ter 2 also contains half as many participants from the one-dimensional conditions as Cluster 1.

This suggests that participants were more likely to use rule-generalization in the one-dimensional

conditions than exception generalization. Cluster 2 contains approximately 1.5 times as many par-

ticipants in the two-dimensional conditions as Cluster 1. This suggests that participants were more

likely to use exception generalization than rule generalization in the two-dimensional conditions.

Although cluster 2 does not suggest rule-use, it does contain a large portion of participants from the

two-dimensional conditions and is a well-formed cluster. Thus Cluster 2 may still provide evidence
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leading to a better understanding of when two-dimensional rules may be used.

Cluster 3 contains participants who classified transfer items as members of the exception-

consistent category. This suggests that these participants used exemplar-based categorization. Clus-

ter 3 contains only half as many participants as Cluster 1, but has a high positive average silhouette

width. Furthermore, Cluster 3 only contains participants from the one-dimensional conditions.

While the participants did generalize to the exception-consistent category participant strategies

might not be exemplar-based. These participants performed in a manner similar to the participants in

Cluster 3 from Experiment 1. Thus these participants may have also used multiple one-dimensional

rules to learn the category structure. Regardless of the strategy used by the participants, Cluster 3

contains no participants from the two-dimensional clusters. Therefore, Cluster 3 does not provide

evidence for two-dimensional rule use.

Cluster 4 contains 23 participants and has an average silhouette width of near 0. This

indicates a cluster of participants with a mixture of different generalization patterns. Containing

three times as many participants from the two-dimensional conditions than one-dimensional con-

ditions, this cluster has a large number of participants who used a one-dimensional rule to learn a

two-dimensional category. Inspection of the individual participant profile plots support this inter-

pretation. The high exception-consistent response rates to the transfer items also suggest the use of

exemplar-based strategies. While these participants may seem to have performed poorly in the task,

examination of the training items show that they learned the category. It is only when considering

their performance on the transfer items do these participants seem to have done poorly. This cluster

provides evidence for participants using different strategies of category learning, in this case using

one-dimensional boundaries when two-dimensional boundaries are optimal. However, it is does not

provide support for two-dimensional rule use.

Cluster 5 is the smallest cluster, containing only 10 participants, and also has a near zero

silhouette width. The transfer patterns of participants in Cluster 5 are similar to those of Cluster 4.

Additionally, like Cluster 4, Cluster 5 is made up primarily of participants from the two-dimensional

conditions. The main difference between the clusters is how participants generalized to the extreme

transfer items. Participants from Cluster 4 tended to give exception consistent responses, while par-

ticipants from Cluster 5 tended to give more rule inconsistent and exception-inconsistent responses.

This pattern of results is consistent with using multiple rules along a single dimension. Like Cluster

4, the participants in this cluster do not provide support for two-dimensional rule use.

Cluster 6 contains 22 participants. Cluster 6 has a low average silhouette width and con-

sists of a large distribution of participant response patterns. Furthermore, 13 participants were from
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Table 4.3: Division of Participants into Clusters in Experiment 3

Cluster 1D 2D

1 20 50

2 18 2

3 21 13

the positive diagonal condition which means that the behavior in this cluster was primarily driven

by these participants. The strategy used by the participants in the cluster can be best described as

rule generalizing to some transfer items but exception generalizing to other transfer items. This may

suggest that participants were using two different strategies based upon the location of the stimuli.

When the participants were presented large circles with radial line segments possessing small an-

gles, participants were more likely to generalize according to rule-consistent category. Whereas

when the participants were presented with small circles with radial line segments possessing large

angles, participants were more likely to generalize to the exception-consistent category. While this

cluster is informative upon how participants may learn categories with stimuli having separable and

noncommensurate dimension, it is does not provide support for two-dimensional rule use.

In conclusion, the cluster analysis for Experiment 2 provides evidence for rule use in a

task using stimuli with separable and noncommensurate dimensions. Additionally, with 11 of the

participants in the two-dimensional conditions, Cluster 1 provides evidence of two-dimensional rule

use. In contrast to the clustering solution of Experiment 1, only half of the participants in the two-

dimensional conditions were in clusters that may provide meaningful evidence for two-dimensional

rule use. The other participants from the two-dimensional conditions were members of clusters that

were best explained by using one-dimensional rules. This suggests that participants may prefer to

use one-dimensional rules when learning category structures with two-dimensional boundaries with

stimuli that possess separable and noncommensurate dimensions. This contrasts the behaviors of

participants in the two-dimensional conditions in Experiment 1, who were more likely to display

two-dimensional rule-like behaviors.

4.4 Experiment 3: Integral and Commensurate Dimensions

Figure 4.6 contains the silhouette plot of the three cluster solution for Experiment 3 and

the dendrogram produced by the agglomerative clustering. Figure 4.7 shows the averaged partici-

pant performance of the three cluster solution for Experiment 3. Table 4.3 shows the breakdown of
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Figure 4.6: The left panel contains the silhouette plot for Experiment 3. The right panel contains
the dendrogram for Experiment 3.
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3

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

Figure 4.7: The proportion of responses for each stimulus during the transfer phase for the average
participant per cluster of Experiment 3. The shading in each cell corresponds to the proportion of
responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of response. The cluster number is displayed to the left of each row.
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participants into clusters based on condition. This solution contains three large and consistent clus-

ters. The dendrogram in Figure 4.6 suggests that a four cluster solution might be more appropriate,

however upon adding a fourth cluster, the first cluster was broken up into two groups that did not

have clear meaningfully differences.

Cluster 1 contains participants who classified transfer items as members of the rule-

consistent category. This suggests that these participants used both rule- and exemplar-based cate-

gorization. This cluster contains the most participants and has a positive average silhouette width.

Cluster 1 also contains a mixture of participants from both the one-dimensional and two-dimensional

conditions. Additionally, there were twice as many participants from the two-dimensional condition

than from the one-dimensional condition. Indeed 77% of the participants in the two-dimensional

conditions were placed into Cluster 1. This provides evidence for one-dimensional and two-dimensional

rules, and suggests that with stimuli possessing integral and commensurate dimensions, two-dimensional

rule use is a dominant strategy.

Cluster 2 contains participants who classified transfer item as members of the exception-

consistent, rule-consistent and rule inconsistent categories. This cluster is predominately composed

of participants from the one-dimensional conditions. This type of transfer pattern suggests that

participants were using a two-dimensional rule bound to learn a one-dimensional category structure.

Previous research (e.g., Lewandowsky et al., 2006; Monahan & Lockhead, 1977) has

found that in some cases integral dimensions, such as the dimensions used in this experiment (rect-

angles that vary in height and width), are perceived not as different dimensions, but instead as a

single dimension. This may account for the behaviors of some participants. They may have viewed

these stimuli as varying on area or the ratio of height to width rather than varying in height and

width. If these participants applied one-dimensional rules, their resulting behavior would resem-

ble two-dimensional rule use. These participants may be better classified as one-dimensional rule

users rather than two-dimensional rule users. This suggests that the participants in Cluster 2, who

followed what appears to be a two-dimensional rule in a one-dimensional category, may instead be

using one-dimensional rules based on the dimension of area. Thus, while this cluster is informative

upon how participants may learn categories with integral stimuli, it is does not provide support for

two-dimensional rule use. Additionally, the other participants in the two-dimensional conditions

may have perceived the stimuli in similar ways. This would result in them performing as if they

used two-dimensional rules yet actually using one-dimensional rules.

Cluster 3 contains participants who classified transfer items as members of the exception-

consistent category. Their behavior is consistent with an exemplar-based strategy. This cluster is
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Figure 4.8: The left panel contains the silhouette plot for Experiment 4. The right panel contains
the dendrogram for Experiment 4.

primarily composed of participants from the one-dimensional conditions, but also contained some

participants from the two-dimensional conditions. The majority of participants in the two-dimension

conditions were classified into Cluster 1. This suggests that participants were much more likely to

demonstrate rule generalization to the transfer items than to the exception items.

In conclusion, the cluster analysis for Experiment 3 provides evidence for rule use in a task

using stimuli with integral and commensurate dimensions. The clustering patterns indicated that not

only were participants in the two-dimensional conditions using two-dimensional rule bounds, but

that this was the most prevalent type of transfer pattern. However, the given the behaviors of the

participants in Cluster 2, it may be the case that many participants viewed stimuli as being unidi-

mensional. If this is so, then the two-dimensional rule-like behaviors displayed by the participants

in Cluster 1, may actually be one-dimensional rule-like behaviors.

4.5 Experiment 4: Integral and Noncommensurate Dimensions

Figure 4.8 contains the silhouette plot of the two cluster solution for Experiment 4 and the

dendrogram produced by the agglomerative clustering. Figure 4.9 shows the averaged participant

performance of the two cluster solution for Experiment 4. Table 4.4 shows the breakdown of partic-

ipants into clusters based on condition. This solution contains only two clusters. Both clusters are
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1

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

2

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

Figure 4.9: The proportion of responses for each stimulus during the transfer phase for the average
participant per cluster of Experiment 4. The shading in each cell corresponds to the proportion of
responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of response. The cluster number is displayed to the left of each row.

Cluster 1D 2D

1 45 10

2 20 54

Table 4.4: Division of Participants into Clusters in Experiment 4
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relatively large and have positive average silhouette widths. The dendrogram in Figure 4.8 suggests

that a three or four cluster solution might be more appropriate, however upon adding more clusters,

the second cluster was broken up into multiple groups that were not meaningfully different.

Cluster 1 contains participants who classified transfer items as members of the rule-

consistent category. This suggests that these participants used both rule- and exemplar-based cate-

gorization. Cluster 1 contains the majority of the participants from the one-dimensional conditions,

along with a small number of participants from the two-dimensional conditions. This cluster pro-

vides evidence for one- and two-dimensional rule use with stimuli possessing integral and noncom-

mensurate dimensions, although two-dimensional rule use is a minority strategy.

Cluster 2 contains participants who classified transfer items as members of the exception-

consistent category. This cluster contains the majority of participants from the two-dimensional

conditions, along with a small number of participants from the one-dimensional conditions. This

suggests that participants in the two-dimensional conditions were most likely to make exemplar-

based generalizations, and participants in the one-dimensional conditions were most likely to make

rule-based generalizations.

In conclusion, the cluster analysis for Experiment 4 provides evidence for both rule- and

exception-based strategies in a task using stimuli with integral and commensurate dimensions. How-

ever, the clustering solution found sparse support for the use of two-dimensional rules with most

participants in the two-dimensional conditions using an exemplar-based generalization strategy.

4.6 Overall Experiment Cluster Analysis

The final series of cluster analyses were performed on the combined data from all exper-

iments. By combining across all experiments larger, more consistent clusters may emerge, clusters

with few members may gain enough sufficient members to separate themselves from other clusters,

and it allows for more straightforward comparisons between experiments. Figure 4.8 contains the

silhouette plot and the dendrogram, Figure 4.9 shows the averaged participant performance, and

Table 4.4 shows the breakdown of participants into clusters based on condition. The overall experi-

ment cluster analysis contains six clusters, two clusters are large and consistent (Clusters 1 and 2),

one cluster is large and somewhat consistent (Cluster 5), one cluster is small and consistent (Cluster

3), and two clusters are small and inconsistent (Clusters 4 and 6).

Cluster 1 contains participants who classified the transfer items as members of the rule-

consistent category. This suggests that these participants used both rule- and exemplar-based cat-
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Figure 4.10: The left panel contains the silhouette plot for all participants combined across all
experiments. The right panel contains the dendrogram for all participants combined across all
experiments.

Experiment

1 2 3 4 Total

Cluster 1-D 2-D 1-D 2-D 1-D 2-D 1-D 2-D 1-D 2-D

1 14 10 22 10 16 43 32 5 84 68

2 5 15 12 27 16 11 6 29 39 82

3 16 0 9 0 0 1 10 0 35 1

4 4 5 5 17 6 5 5 8 20 35

5 0 5 0 10 20 3 9 14 29 32

6 1 5 10 4 1 2 3 8 15 19

Table 4.5: The division of participants into clusters based on condition across all experiments
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Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

2
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3

Rule Consistent Rule Inconsistent Exception Consistent Exception Inconsistent

4
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5
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6
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Figure 4.11: The proportion of responses for each stimulus during the transfer phase for the average
participant per cluster for the combined experiment clustering solution. The shading in each cell
corresponds to the proportion of responses for each response type. Dark cells indicated a high
proportion of responses, light cells indicate a low proportion of response. The cluster number is
displayed to the left of each row.
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egorization. This cluster contains the most participants and the highest positive average silhouette

width. This is the cluster that provides the most support for the use of two-dimensional rules.

Cluster 2 contains participants who classified the transfer items as members of the exception-

consistent category. This suggests that these participants used an exemplar-based strategy. This

cluster contains over twice as many participants from the two-dimensional conditions as the one-

dimensional conditions. This suggests that participants in the two-dimensional conditions were

more likely to use exception generalization than rule-generalization.

Cluster 3 contains participants who classified the transfer items as members of the exception-

consistent category. This suggests that these participants used an exemplar-based strategy. However,

this pattern is also consistent with participants who classified stimuli according to the theoretical rule

of equal to or more extreme as previously found in Experiments 1 and 2. Cluster 3 consists of a ma-

jority of participants from the one-dimensional conditions, there was only one participant from the

two-dimensional conditions. This cluster contains low numbers of participants from Experiments

1, 2, and 4, and only one participant from Experiment 3.

Clusters 4, 5 and 6 are related clusters containing participants who classified transfer

items as members of the rule-consistent, rule inconsistent, and exception-consistent categories.

These clusters were a combination of four different strategies. Clusters 4 and 5 were composed

of participants using a one-dimensional bounds on a two-dimensional category structure or a two-

dimensional bound on a one-dimensional category structure. Cluster 4 contains participants that

utilized a bound counter-clockwise to the optimal bound, while Cluster 5 contains participants that

utilized a bound clockwise of the optimal bound.

Clusters 4 and 6 contain participants who classified transfer items differently, depending

on where the transfer items were located. Cluster 4 contains participants who classified transfer

items in the upper left as members of the rule-consistent category, whereas they classified transfer

items in the lower right as members of the exception-consistent category. Cluster 6 contains par-

ticipants who reversed this pattern. All three of these clusters contain low numbers of participants

from all four experiments. None of these clusters provide evidence for two-dimensional rule use.

4.7 Summary

The cluster analysis revealed that all experiments contained a cluster of rule-consistent

generalizers that support the use of one-dimensional and two-dimensional rules. Support for one-
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dimensional rule use was more prevalent than support for two-dimensional rule use. However,

evidence for two-dimensional rule use was still present in all experiments.

Experiments 1 (separable and commensurate dimensions) and 3 (integral and commensu-

rate dimensions) contained many participants from the two-dimensional conditions that were rule

generalizers. This supports the use of rules in commensurate conditions. Experiments 2 (separable

and noncommensurate dimensions) and 4 (integral and noncommensurate dimensions) contained

fewer participants from the two-dimensional conditions that were rule generalizers. This provides

support for the use of two-dimensional rules but at a lower rate than in the other experiments. This

suggests that two-dimensional rules are more difficult to use on stimuli with noncommensurate

dimensions.

Experiment 1 had roughly equal amounts of participants from the one-dimensional and

two-dimensional conditions in the rule generalizing cluster. This suggests that a two-dimensional

rule strategy was frequently adopted by participants. Experiment 3 had roughly twice as many par-

ticipants from the two-dimensional than one-dimensional conditions in the rule-generalizing cluster.

This suggests that most participants adopted a two-dimensional rule.

Experiment 2 had half as many participants from the two-dimensional conditions as the

one-dimensional conditions. This suggests that adopting a two-dimensional rule was possible, but

generally more difficult. Experiment 4 had very few participants from the two-dimensional con-

ditions in the rule-generalizing cluster. This is suggestive of a very low adoption rate of a two-

dimensional rule.
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Chapter 5

Mathematical Modeling

To determine how participants most likely approached the classification problems in the

experiments, participant behaviors were fit by a series of mathematical models. The first two groups

formed by the cluster analysis were selected for modeling. These clusters were the most likely to

provide evidence for two-dimensional rule use, contained the majority of the participants, and were

the most consistent of the clusters. The first cluster contained participants, who in the transfer

phase, made a high proportion of rule-consistent responses to the transfer items. These participants

generalized in a manner consistent with the rule items. Thus this cluster is referred to as the rule-

generalization cluster. In contrast, the second cluster contained participants, who in the transfer

phase, made a high proportion of exception-consistent responses to the transfer items. These partic-

ipants generalized in a manner consistent with the exception items. Thus this cluster is referred to

as the exception-generalization cluster.

Three models were fit to the data, ALCOVE (Kruschke, 1992), ATRIUM (Erickson &

Kruschke, 1998), and a modified version of ATRIUM that utilizes two-dimensional rules, ATRIUM-

DR. The fitness of the models were evaluated using the Bayesian information criterion statistic

(BIC; Shwarz, 1978). The BIC is a fitness statistic that penalizes models for the number of free

parameters it has and allows for comparisons to be made between different unnested models. The

penalty applied by the BIC for free parameters is a function of the number of free parameters and

sample size. So, as the number of trials increases, so does the penalty for for each free parameter.

The BIC is then composed of a measure of how well the model matches the data (log-likelihood)

and the penalty for free parameters and the amount of data. Models that accurately match the data

have low BIC scores, whereas models that are inaccurate or contain more free parameters have

higher BIC scores. Therefore, in the following fits, the model with the smallest BIC best describes
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the data.

Within each cluster, each participant’s data was independently fit by each model. Each

model was fit to the exact series of trials presented to each participant. Model fitness was calculated

based on performance in the final transfer phase. The resulting fitness values are the sum of all in-

dividual fitness values for a particular set of parameters. Thus, the resulting best fitting parameters

were the parameters that most accurately matched the behaviors of the entire cluster of participants,

rather than any one particular participant. In addition to the BIC, R2 and Root Mean Square Devia-

tion (RMSD) were calculated for each fit. These additional fit statistics are included in the figures

with BIC. They can be use evaluate how well the models fit each set of data. They will not be

discussed further.

5.1 ALCOVE

ALCOVE is a single system exemplar-based connectionist model of category learning

(Kruschke, 1992). The version of ALCOVE used in this paper has five free parameters that con-

trol model performance. Table 5.1 summarizes ALCOVE’s parameters. The following is a short

description of ALCOVE, for more details see Kruschke (1992).

In ALCOVE, exemplars are represented by nodes that are positioned within a category

space according to the features of the exemplar. Each stimulus feature is represented along a con-

tinuous dimension. The contribution of each stimulus feature to a category response is weighted by

the amount of attention allocated to each dimension and the relative salience of the dimensions. The

amount of attention allocated to a dimension affects how the participants perceive the similarity of

features along that dimension. The more attention allocated to a dimension, the more distinct the

different features on that dimension. Likewise, the less attention allocated to a dimension, the more

similar the different features on that dimension. As the model learns the category structure, it learns

to pay more attention to relevant dimensions and less attention to irrelevant dimensions.

Similar to attention, the relative salience parameter, s, also represents a differential weight-

ing of the relevance of a dimension. However, unlike attention, which is learned by the model,

the relative salience of dimensions does not change during learning. Instead, the relative salience

represents a comparison of the salience of one dimension to another dimension, or the perceptual

prominence of one dimension over another. A dimension that easily captures attention, such as the

brightness of a flashing red light is more salient than a dimension that is more subtle, such as the

speed of a ceiling fan. The relative salience is the ratio of the salience of one dimension to another

85



dimension. When s is close to 1, the dimensions have similar saliences. As s differs from 1, the

relative salience of the dimensions increases, with one dimension being more salient than another.

So, in the previous example of a flashing red light and a ceiling fan, the relative salience of this

pair of dimensions might be 5, or 1/5 if the ceiling fan is the first dimension and the red light is the

second.

In ALCOVE, the activation of an exemplar node is a function of the similarity of a pre-

sented stimulus and the exemplar n. The distance is weighted by salience and attention settings, and

further modified by the specificity parameter, c. The specificity parameter magnifies the distance

between the exemplar node and presented stimulus. Larger values of c result in increased distances

between exemplar nodes and less generalization, whereas smaller values of c result in decreased

distances between exemplar nodes and more generalization.

Each exemplar node is connected to all output nodes. The output nodes correspond to the

model’s possible category choices. The amount of activation that each output node receives from

each exemplar node is a function of the activation of the exemplar node and learned connection

weights between the exemplar node and the output node. ALCOVE produces response probabilities

based upon the activation of the output nodes. The choice probability scaling constant parameter,

φ, determines the extent to which the model’s output is deterministic or probabilistic. Large values

of φ result in more deterministic responses, while small values of φ result in more probabilistic

responses.

The last two free parameters in ALCOVE are learning rate parameters (lambda); the at-

tentional learning rate parameter λa and the exemplar learning rate parameter λw. These parameters

control how quickly the model changes its distribution of attention across the input dimensions and

the connection weights between the exemplar and output nodes. Larger values of the λ parameters

result in faster changes, while smaller values result in slower changes. The model changes its atten-

tional distribution and connection weights between exemplar nodes and output nodes as a function

of the error produced by the models output. The larger error, or the difference between the correct

response and the model’s output, the greater the change in the model.

Additionally, larger values of λ may cause the model to over-react by over-learning. The

model is forced to compensate for this by making another (large) change. Smaller values of λr are

less likely to cause over-reacting, and are better able to follow learning gradients. An analogy of

this is trying to avoid a dog while driving. If a person turns the steering wheel by a large amount

to avoid a dog, they must then quickly turn the steering wheel the other way to avoid going off the

road. This second turn also runs the risk of causing another over-reaction, and the process continues
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Table 5.1: Summary of ALCOVE Parameters

Parameter Description

c Specificity

λa Attention learning rate

λw Exemplar learning weight

φ Choice probability scaling constant

s Relative salience

until the car is stable again (or crashed into the side of a hill). Whereas if a smaller adjustment is

made to avoid the dog, there is less difficulty and less risk in reversing this change after the dog is

avoided.

5.2 ATRIUM

ATRIUM is a hybrid rule- and exemplar-based connectionist model of category learning

(Erickson & Kruschke, 1998, 2002). The version of ATRIUM used in this paper has 11 free pa-

rameters that influence module performance. Table 5.2 summarizes ATRIUM’s parameters. The

following is a short description of ATRIUM, for a more details, see Erickson and Kruschke (1998).

ATRIUM is a hybrid model that combines an exemplar module, a version of ALCOVE,

with a number of rule modules. The modules process each stimulus simultaneously and the output

from all modules is combined to produce a category response. The number of rule modules is

dependent upon the category structure being fit, with one rule module per rule dimension. In these

experiments, two rule modules, one for each relevant dimension, were used. For example, in the

one-dimensional conditions of Experiment 1, one module classified stimuli based upon a height-

rule, the other classified stimuli based upon a line–segment–position-rule.

The contribution of each module to a category response is dependent upon a gating mod-

ule. The gating module uses an exemplar representation to learn which modules are best suited to

classify each stimulus and to weight the contributions of each module appropriately. The gating

module also controls the amount of feedback each module receives, with the most appropriate mod-

ule receiving the most feedback. The amount of feedback a module receives also determines the

rate of learning for the module, with larger amounts of feedback allowing for larger changes in a

module.
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In addition to possessing all of the parameters used by ALCOVE, ATRIUM has its own

unique parameters. These parameters control the gating and rule modules. In the presented simula-

tions, ATRIUM’s rule modules have four free parameters and ATRIUM’s gating modules have two

free parameters.

In ATRIUM, the activation of a rule module is a sigmoidal function of the stimulus being

presented. The steepness, or gain, of the sigmoid is represented by the rule gain parameter, γ. High

values of γ result in sharply defined rule boundaries between categories, whereas low values of γ

result in gradually defined rule boundaries.

Each rule module also has a rule bias parameter, β. In the presented simulations there

are two rule modules, so there are two rule bias parameters, β1 and β2. The rule bias parameters

influence the contribution of the rule modules to the categorization response. They control the

initial propensity to use each of the modules. The higher the module bias parameter the larger

the contribution of that module to a categorization response. The exemplar module has a similar

bias parameter. However, the sum of the rule and the exemplar biases is constrained to equal one,

therefore, the exemplar module bias is determined by the rule modules biases and does not vary

freely.

The last rule parameter is the rule learning weight parameter, λr. Similar to the other

learning parameters, this parameter controls how quickly the model adjusts which rule it uses for

a particular stimulus. Large values of λr cause rapid changes and may cause over-reacting, while

small values cause slow changes and are less likely to cause over-reacting.

The gating module uses two free parameters, the gating module probability scaling con-

stant and the gate learning weight, to control the gate modules behavior. The gating module proba-

bility scaling constant, φg, determines how the model combines the response outputs of the modules.

Larger values of φg cause a winner take all type of performance, where the module with the great-

est response output contributes the most to the category decision. Smaller values of φg cause more

equal contributions from the modules. The gate learning weight parameter, λg, controls how quickly

the model adjusts the contributions of the rule and exemplar modules. Similar to the other learning

parameters, large values of λg cause rapid changes and may cause over-reacting, while small values

cause slow changes and are less likely to cause over-reacting.
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Table 5.2: Summary of ATRIUM Parameters

Parameter Description

c Specificity

φ Choice probability scaling constant

λa Attention learning rate

λw Exemplar learning weight

γ Rule gain

φg Gating module probability scaling constant

β1 Rule 1 bias

β2 Rule 2 bias

λr Rule learning weight

λg Gate learning weight

s Relative salience

5.3 ATRIUM-DR

ATRIUM-DR is a modified version of ATRIUM and has the same free parameters. There

are two main differences between the models. The first difference is that in ATRIUM-DR the

one-dimensional rule modules are replaced by two-dimensional rule modules. For example, in the

two-dimensional conditions of Experiment 1, these two-dimensional rule modules corresponded to

linear combinations of these two dimensions, either height divided by width, a positive diagonal–

rule, or the difference between height and the maximum stimulus height divided by width, a negative

diagonal–rule.

The second difference, is how dimensional attention relates to the rule modules. In

ATRIUM and ALCOVE, dimensional attention allows the models to shrink or expand dimensions

allowing more accurate categorization (Erickson & Kruschke, 1998; Nosofsky, 1986). By expand-

ing a dimension, the similarity between adjacent values along that dimension decreases, resulting

in greater influence of that dimension on the categorization response (i.e., features become more

distinct and important). By shrinking the dimension, the similarity between adjacent values along

that dimension increases, resulting in less influence of that dimension on the categorization response

(i.e., features become less distinct and less important). This expansion and shrinking occurs on a

per dimension basis and can mimic the effects of a one-dimensional rule. In ATRIUM-DR, the rule

modules do not use one-dimensional rules, so dimensional attention can no longer directly mimic
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the effects of the rules.

5.4 Modeling Details

When fitting the clusters, participant data with different category structures were com-

bined together. This required a few manipulations to the free parameters to make them consistently

meaningful for each of the clusters. Additionally, there are a few other details about the modeling

process will be discussed.

5.4.1 Relative Salience

No scaling studies were performed with the stimuli used in the experiments, so relative

salience was used as a free parameter. Additionally, the reported relative salience for all three

models always refers to the same primary dimension. For Experiment 1, the primary dimension

was line segment position, for Experiment 2, the primary dimension was angle of the radial line

segment, for Experiment 3, the primary dimension was rectangle width, and for Experiment 4, the

primary dimension was amplitude. As a parameter, relative salience should be interpreted as the

relative contribution to the categorization response of the primary dimension in proportion to one

unit of the other dimension. For example, in Experiment 1, if s was 2.0, this would mean that the

position of the line segment was weighted twice as much as the height of the rectangle when making

a classification.

5.4.2 Rule Bias Parameters (β1 & β2)

In ATRIUM and ATRIUM-DR the rule bias parameters were arranged so that β1 always

referred to the rule consistent with the rule used to create the category structure, and β2 always

referred to a rule orthogonal to the rule used to create the category structure.

5.4.3 Search Methods

A combination of different search methods were used to find the optimal parameters for

each of the models. These methods included using a genetic algorithm, a hill-climbing algorithm,

and using an artificial averaged per subcluster subject in a grid search. The best fit from each of

these initial methods was then further refined through a hill-climbing algorithm. The besting fitting
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Table 5.3: ALCOVE Fits for Experiment 1

Rule- Exception-

Generalizers Generalizers

Parameter 1-D 2-D 1-D 2-D

c 39.92 38.85 17.17 5.20

φ 3.37 2.90 0.88 1.51

λa 0.003 0.003 1.474 1.315

λw 0.004 0.001 0.021 0.011

s 2.16 1.19 0.95 1.22

BIC 7155 5842 3328 9545

R2 .92 .88 .86 .87

RMSD .09 .11 .12 .12

solution was then selected from all of these fits. Additionally, similarity and distance in the models

were computed using a Minkowski r-metric with r = 1 (city block or Manhattan distance).

5.5 Experiment 1: Separable and Commensurate Dimensions

The stimuli for Experiment 1 possessed separable and commensurate dimensions. They

were rectangles that varied in the position of an internal line segment and height. The best fitting

parameters for Experiment 1 for ALCOVE are shown in Table 5.3, for ATRIUM in Table 5.4, and for

ATRIUM-DR in Table 5.5. The average participant performance and the predictions of the models

can be seen in Figures 5.1 through 5.4. Additionally, when presenting the fit data for ATRIUM

and ATRIUM-DR in cases where they were unable to outperform ALCOVE (e.g., Table 5.4) the

ATRIUM specific free parameters are not reported, as they did not affect the behavior of the model.

Nevertheless, the BICs for ATRIUM and ATRIUM-DR were computed using 11 free parameters.

Experiment 1: Rule-Generalizers

The rule-generalizer cluster contains participants who categorized the transfer items in a

rule-consistent manner. In the one-dimensional conditions, the horizontal and vertical conditions,

both ALCOVE and ATRIUM were able to perform in a manner qualitatively similar to the partic-

ipants. However, ATRIUM (BIC: 6324) was better able to account for this cluster of participants
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Table 5.4: ATRIUM Fits for Experiment 1

Rule- Exception-

Generalizers Generalizers

Parameter 1-D 2-D 1-D 2-D

c 33.763 1.499 10.482 5.2

φ 2.171 0.568 1.151 1.51

λa 0.006 0.405 0.025 1.315

λw 0.013 0.044 2.249 0.011

γ 2.798 3.211 21.647 –

φg 3.12 4.526 0.17 –

β1 -1.684 2.386 3.841 –

β2 1.266 -3.49 -0.615 –

λr 0.372 0.446 0.101 –

λg 0.025 0.215 0.756 –

s 1.56 3.021 2.289 1.22

BIC 6324 5872 3226 9587

R2 .98 .88 .89 .87

RMSD .05 .11 .10 .12

Note. In cases where ATRIUM’s fit was worse

than ALCOVE’s the ATRIUM-specific free pa-

rameters were not reported, as they did not affect

the behavior of the model. Nevertheless, the BIC

for ATRIUM was still computed using 11 free pa-

rameters.
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Table 5.5: ATRIUM-DR Fits for Experiment 1

Parameter Rule-Generalizers Exception-Generalizers

c 24.718 5.27

φ 0.644 1.937

λa 0.04 0.375

λw 0.043 0.004

γ 3.768 0.687

φg 0.77 1.092

β1 2.206 2.166

β2 -1.214 -0.01

λr 0.234 0.191

λg 0.874 0.254

s 1.186 0.871

BIC 5515 8938

R2 .94 .99

RMSD .08 .04

than ALCOVE (BIC: 7155). The key items that ALCOVE failed to account for, but ATRIUM was

able to account for, were the extreme transfer items, as shown in Figure 5.1. The extreme transfer

items are the transfer items furthest from the training items.

To model this cluster, ALCOVE used a high specificity to correctly match participant

performance on the transfer items. This resulted in relatively few consistent-exception responses

to the exemplar training items, unlike the participants. ALCOVE, with only exemplar representa-

tion, is unable to classify both the exception training items with high levels of exception-consistent

responses and classify the extreme transfer items with high levels of rule-consistent responses.

In order to produce a high level of exception-consistent responses to exception training

items, ALCOVE requires either strong connection weights (due to learning) between the exception

exemplars and the exception-consistent output nodes or large exemplar specificity. With strong con-

nection weights between the exception training exemplar and the exception-consistent output nodes,

the presentation an exception item produces a relatively high exception response activation com-

pared to the amount of rule-consistent response activation. This results in high exception-consistent

response rates. Likewise, with large exemplar specificity, the influence of the rule-consistent exem-

93



Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.1: Proportion of responses for each stimulus during the transfer phase of Experiment 1
for rule-generalizers in the 1-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light
cells indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM.

plars is relatively weak compared to the activation of exception-consistent exemplars, resulting in

high exception-consistent response rates.

However, both ways of achieving high exception-consistent responses to the exception

training item, high exemplar specificity or strong connections weights, result in classifying transfer

items as exception-consistent items. This is unlike the rule generalization performance of the par-

ticipants in this cluster. ALCOVE can either have high consistent-exception responses to exception

training items or high consistent-rule responses to the transfer items, but not both.

One potential adaptation to ALCOVE that might allow ALCOVE to fit data like these is

to allow specificity to vary between exemplars (Erickson & Kruschke, 1998). This would allow

some exemplars to represent very specific stimuli, in this case, the exception training items, while

other exemplar nodes would be allowed to represent broader ranges of stimuli, in this case the rule

training items. Erickson and Kruschke (1998) tested a version of ATRIUM that included exemplar
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM−DR

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.2: Proportion of responses for each stimulus during the transfer phase of Experiment 1 for
Rule-Generalizers in the 2-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light
cells indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM. The fourth row displays the predictions made by ATRIUM-DR.

specific attention. They found that the model was unable to learn adjust exemplar specificity to

allow for both high levels of exemplar-consistent responses to exception training items and high

levels of rule-consistent responses to transfer items. They concluded that such an enhancement was

still insufficient to produce this type of generalization.

In contrast to ALCOVE, ATRIUM obtained a superior fit by using rules and exemplars.

For ATRIUM the training items were primarily classified by the exemplar module, whereas the

transfer items were primarily classified by the rule module. This allowed the model to classify

the exception in an exception-consistent manner at high levels and to classify the transfer items in

a rule-consistent manner. This suggests that participants are able to use one-dimensional rules to
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learn category structures formed with a one-dimension rule boundary and composed of stimuli with

separable and commensurate dimensions.

In the two-dimensional conditions, the positive and negative diagonal conditions, AL-

COVE, ATRIUM, and ATRIUM-DR were all able to perform in a manner qualitatively similar to

the participants. However, ATRIUM-DR (BIC = 5515) was better able to account for this cluster of

participants than ALCOVE (BIC = 5842) or ATRIUM (BIC = 5872). Like in the one-dimensional

conditions, the key items were the extreme transfer items as shown in Figure 5.2.

ALCOVE was again unable to account for the transfer performance of participants for the

same reasons as in one-dimensional conditions. ATRIUM was likewise unable to match the transfer

item performance, as its rules were not aligned with the diagonal rule used to create the category

structure. However, ATRIUM-DR was able to match transfer item performance with its diagonal

rules. This suggests that two-dimensional rule usage is possible for stimuli composed of separable

and commensurate dimensions.

Experiment 1: Exception-Generalizers

The exception-Generalizer cluster contains participants who categorized the transfer items

in an exception-consistent manner. In the one-dimensional conditions, the horizontal and vertical

conditions, both ALCOVE and ATRIUM were able to perform in a manner qualitatively similar

to the participants. However, ATRIUM (BIC = 3226) was better able to account for this cluster of

participants than ALCOVE (BIC = 3327). The two key sets of items that ALCOVE failed to account

for, but ATRIUM was able to account for, were the extreme transfer items and the rule training items

on opposite side of the category structure relative to the exception items as shown in Figure 5.3.

The first set of key items for comparing models and participants in one-dimensional con-

ditions of exception-generalizers were the extreme corner transfer items. Participants made the most

consistent exception responses to the extreme corner transfer items. The rate of consistent exception

responses increased as a function of the distance from the training items. Participants’ exception-

consistent responses were lower for the exception training items than they were for the extreme

transfer items. ALCOVE was unable to reproduce this pattern. ALCOVE’s best attempt was to

classify the transfer items with similar responses rates as the exception training item. ALCOVE

was unable to duplicate the increase in exception-consistent responses as a function of the distance

from the training items. While ATRIUM was unable to produce a response gradient in the transfer

items as extreme as the participants, it was able to produce a gradient that was qualitatively similar.
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.3: Proportion of responses for each stimulus during the transfer phase of Experiment 1 for
exception-generalizers in the 1-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM.
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM−DR

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.4: Proportion of responses for each stimulus during the transfer phase of Experiment 1 for
exception-generalizers in the 2-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM. The fourth row displays the predictions made by ATRIUM-DR.
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The second set of key items for comparing models and participants in one-dimensional

conditions of exception-generalizers were the rule training items. Participants in the one-dimensional

conditions of exception-generalizers were less consistent in their responses than ALCOVE pre-

dicted. This is most noticeable in the rule training items on the opposite side of the category

structure relative to the exception training items. Participants responded with high rates of rule-

consistent responses, but also with noticeable rates of rule-inconsistent responses. ALCOVE was

unable to match these types of responses. The high specificity of the best fitting solution forced

these responses to be highly influenced only by their nearest neighbors. This resulted in ALCOVE

having a high rule-consistent response rate for these items. This pattern was unlike participants,

who were less consistent. In contrast, ATRIUM was able to produce less consistent behavior to

these items, matching the behavior of the participants.

ATRIUM provided a superior fit to the data of the participants who generalized according

to the exception items in one-dimensional conditions. This suggests that participants are able to use

one-dimensional rules to learn categories structures formed with a one-dimension rule boundary

and composed of stimuli with separable and commensurate dimensions.

In the two-dimensional conditions, the positive and negative diagonal conditions, AL-

COVE, ATRIUM, and ATRIUM-DR were all able to perform in a manner qualitatively similar to

the participants. However, ATRIUM-DR (BIC = 8938) was better able to account for this cluster of

participants than ALCOVE (BIC = 9545) or ATRIUM (BIC = 9587). The key items for the models

to fit were the exception items and the transfer items, as shown in Figure 5.4.

Participants in the two-dimensional conditions of exception-generalizers classified the

exception items with high rates of exception-consistent responses, but also with a moderate rate of

rule-consistent responses. Also, like in the one-dimensional conditions, the frequency of exception-

consistent responses for the transfer items increased as the distance between the transfer items and

the training items increased. ALCOVE was unable to produce this pattern of results. ALCOVE

learned to classify the exception training items with a consistent exception response rate that was too

high. Likewise, ALCOVE’s responses to the transfer items did not match the gradient observed in

the participants’ data. ATRIUM was unable to find a way to improve upon ALCOVE’s performance.

Its best solution was to perform as ALCOVE.

ATRIUM-DR was more successful than the other models because its rule modules were

aligned to the rule used to create the category structure. This allowed ATRIUM-DR to use its rule

module in the transfer phase, resulting in a better fit to the data.

Another prominent feature of the participants’ behavior was the boundary used to separate
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the rule categories. Participants did not use an optimal boundary between the stimuli, but instead

used one that was biased more toward one physical dimension of the stimuli. This is displayed in

Figure 5.4 by the pattern of rule inconsistent responses. If the boundary was rotated clockwise the

training items with high rule-inconsistent responses on edges of the category structure would then

become rule-consistent responses. This consistent pattern of behavior is due to the large number of

participants in the cluster who were in the same condition and biased towards the same dimension,

the line segment position dimension. This pattern follows previous findings by Erickson and Kr-

uschke (1998), who also found preference for line segment position over height in a similar stimulus

set.

In fitting ATRIUM-DR, the model was forced to use rules that reflected the true boundary

between the categories and was not allowed to vary them to fit the boundaries potentially used by

a participant. However, if ATRIUM-DR was adapted to allow the model to change the slope and

intercept of the boundaries in its rules, it would be better able to match participant performance.

Such an adaptation would, however, go beyond the initial assumption that people can use two-

dimensional rules. It would also require the assumption that people can construct two-dimensional

rules in a variety of different combinations of the underlying perceptual dimensions. While this may

be what people actually do, confirmation of two-dimensional rule usage is necessary before more

extensive assumptions should be made. Regardless, ATRIUM-DR was better able to account for the

cluster of participants than either ALCOVE or ATRIUM, using a combination of rule and exemplar

modules.

ATRIUM-DR provided a superior fit to the data of the participants who generalized ac-

cording to the exception items in two-dimensional conditions. This suggests that participants are

able to use two-dimensional rules to learn category structures formed with a two-dimension rule

boundary and composed of stimuli with separable and commensurate dimensions.

Experiment 1: Summary

The transfer behaviors of participants who were given category structures formed using

one-dimensional boundaries composed of stimuli with separable and commensurate dimensions

were better fit by ATRIUM than ALCOVE. ATRIUM produced superior fits for both clusters of

participants, both rule-generalizing and exception-generalizing participants. This is consistent with

previous literature supporting rule usage in category learning (Erickson & Kruschke, 1998, 2002).

The transfer behaviors of participants who were given category structures formed using

two-dimensional boundaries composed of stimuli with separable and commensurate dimensions
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Table 5.6: ALCOVE Fits for Experiment 2

Rule- Exception-

Generalizers Generalizers

Parameter 1-D 2-D 1-D 2-D

c 36.48 29.50 58.53 7.15

φ 2.48 2.55 0.52 1.97

λa 0.005 0.001 0.001 0.119

λw 0.001 0.001 0.015 0.013

s 1.03 1.32 1.37 2.42

BIC 14208 6539 9292 15924

R2 .92 .89 .87 .90

RMSD .09 .10 .10 .10

were best fit by ATRIUM-DR. ATRIUM-DR produced superior fits for both clusters of participants.

This suggests that people may use two-dimensional rules. Furthermore, the system constructing

these rules may not form optimal rules. This may indicate a system with a more flexible rule

construction method or one that is influenced by the perceptual characteristics of the stimuli.

5.6 Experiment 2: Separable and Noncommensurate Dimensions

The stimuli for Experiment 2 possessed separable and noncommensurate dimensions.

They were circles that varied in the angle of radial line segment and height. The best fitting pa-

rameters for Experiment 2 for ALCOVE can be seen in Table 5.6, for ATRIUM in Table 5.7, and for

ATRIUM-DR in Table 5.8. The average participant performance and the predictions of the models

can be seen in Figures 5.5 through 5.8.

Experiment 2: Rule-Generalizers

The rule-generalizer cluster contains participants who categorized the transfer items in a

rule-consistent manner. In the one-dimensional conditions, ALCOVE (BIC = 14208) was better

able to account for this cluster of participants than ATRIUM (BIC = 14252), as seen in Figure 5.5.

Examining the gating module of ATRIUM revealed that ATRIUM relied upon its exem-

plar module to learn the category structure, and did not use its rule modules. However, ALCOVE
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Table 5.7: ATRIUM Fits for Experiment 2

Rule- Exception-

Generalizers Generalizers

Parameter 1-D 2-D 1-D 2-D

c 36.48 29.5 58.53 33.11

φ 2.48 2.55 0.52 1.05

λa 0.005 0.001 0.001 0.129

λw 0.001 0.001 0.015 0.063

γ – – – 21.75

φg – – – 0.92

β1 – – – 1.62

β2 – – – -0.72

λr – – – 0.05

λg – – – 0.25

s 1.03 2.32 1.37 2.06

BIC 14252 6580 9332 15106

R2 .92 .89 .87 .96

RMSD .09 .10 .10 .06

Note. In cases where ATRIUM’s fit was worse

than ALCOVE’s the ATRIUM-specific free pa-

rameters were not reported, as they did not affect

the behavior of the model. Nevertheless, the BIC

for ATRIUM was still computed using 11 free pa-

rameters.
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Table 5.8: ATRIUM-DR Fits for Experiment 2

Parameter Rule-Generalizers Exception-Generalizers

c 29.50 2.38

φ 2.55 0.31

λa 0.005 0.188

λw 0.001 0.147

γ – 0.001

φg – 0.640

β1 – -0.958

β2 – -0.602

λr – 0.039

λg – 0.170

s 2.32 2.94

BIC 6580 18890

R2 .92 .95

RMSD .10 .07

Note. In cases where ATRIUM-DR’s fit was

worse than ALCOVE’s the ATRIUM-specific free

parameters were not reported, as they did not af-

fect the behavior of the model. Nevertheless, the

BIC for ATRIUM-DR was still computed using

11 free parameters.
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.5: Proportion of responses for each stimulus during the transfer phase of Experiment 2
for rule-generalizers in the 1-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light
cells indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM.

was able to capture the participants’ high level of exception-consistent responses to training items

nor match the participants’ transfer item performance.

The superior fit by ALCOVE suggests that participants who generalized according to the

rule items were not using one-dimensional rules to learn this category structure. Therefore, rules

may not be necessary to learn category structures formed with a one-dimensional rule boundary and

composed of stimuli with separable and noncommensurate dimensions.

In the two-dimensional conditions, ALCOVE (BIC = 6539) out performed both ATRIUM

(BIC = 6580) and ATRIUM-DR (BIC = 6580). Comparing the performance of the participants

with the models in Figure 5.6, the models managed to capture the rule generalization aspect of the

participants’ performance. However, like in the one-dimensional conditions, the models failed to

respond with high exception training item accuracy and match transfer item behaviors. Also like

in the one-dimensional conditions, examining the gating modules of ATRIUM and ATRIUM-DR
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM−DR

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.6: Proportion of responses for each stimulus during the transfer phase of Experiment 2
for rule-generalizers in the 2-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light
cells indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM.The fourth row displays the predictions made by ATRIUM-DR.

revealed that both models exclusively relied upon their exemplar modules to learn the category

structure.

In both the models’ outputs and the participants’ behaviors, there were very distinct trans-

fer item performance behaviors. Looking at the rule-consistent and consistent exception responses

for the averaged participant behaviors, there are distinct patterns in the transfer items. In the upper

left transfer items, participants made higher exception responses to items that were to the upper right

and the lower left of the exception training item. If this category structure was realigned with the ac-

tual stimulus dimensions of the stimuli (i.e., unrotating it), these would be the stimuli that share one

particular feature nearly identically with the exception item. For example, given stimuli with a rule
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boundary on size, participants were more likely to make exception-consistent responses to transfer

items with the same size as the exception training item, and more likely to make rule-consistent

responses to transfer items with different sizes.

In contrast to the single feature generalization occurring in the upper left transfer items,

participants made different types of generalizations to the lower right transfer items. Instead of

generalizing to a single feature, participants produced a pattern of behavior that was more consistent

with generalization to both features of the exception item. Examination of the individual participant

behaviors eliminates the possibility that this is an artifact of averaging over cluster members and

reveals the same consistent pattern. Some participants display very different generalization patterns

to symmetrical category structures.

The models failed to duplicate these two different patterns of behaviors. ALCOVE, the

model that best fit the participants’ behaviors, did so by generalizing in the opposite direction of

the participants. However, given that the differences in behavior between the top left and bottom

right transfer items were not evident during the training period of the experiment, it is not surprising

that the models were unable to predict both of these outcomes. During the fitting process the mod-

els were unable to find a set of parameters that allowed the models to predict two different types

of behaviors given a symmetrical category structure. ATRIUM and ATRIUM-DR could produce

these sorts of patterns, however this would require direct manipulation of the models’ modules and

weights. Such artificially constructed versions of the models would not reflect the learning behav-

iors that occurred during the experiment, and would only produce the divergent strategies used by

the participants during the transfer phase.

Experiment 2: Exception-Generalizers

The exception-generalizer cluster contains participants who categorized the transfer items

in an exception-consistent manner. In the one-dimensional conditions, ALCOVE (BIC = 9291) was

better able to account for this cluster of participants than ATRIUM (BIC = 9332). The behaviors of

the models, as seen in Figure 5.7, show that ATRIUM was performing like ALCOVE.

Both models managed to capture the rule-generalization aspect of the participants’ data.

Yet, neither model was able to capture the participants’ increases in exception-consistent responses

to the transfer items. Examining the gating module of ATRIUM revealed that it was only using its

exemplar module and was not using rules.

The superior fit by ALCOVE suggests that participants who generalized according to the

exception items were not using one-dimensional rules to learn the category structure. Therefore,
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.7: Proportion of responses for each stimulus during the transfer phase of Experiment 2 for
exception-generalizers in the 1-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM.

rules may not be necessary to learn category structures formed with a one-dimensional rule bound-

ary and composed of stimuli with separable and noncommensurate dimensions.

In the two-dimensional conditions, ATRIUM (BIC = 15106) out performed both AL-

COVE (BIC = 15924) and ATRIUM-DR (BIC = 15720). Comparing the performance of the partic-

ipants with the models in Figure 5.8, the models managed to capture the exception generalization

aspect of the participants’ performance. The key items that distinguished between the behaviors of

ALCOVE, ATRIUM, and ATRIUM-DR were the transfer items and the frequency of rule inconsis-

tent responses close to the boundary between the rule items.

ALCOVE’s transfer generalization pattern was influenced by its initial salience parameter

and its attentional settings. This resulted in ALCOVE being more influenced by one dimension than

the other dimension. This influence was manifested in ALCOVE’s generalization patterns. When

ALCOVE generalized from the exception training items during the transfer phase, it did so along
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM−DR

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.8: Proportion of responses for each stimulus during the transfer phase of Experiment 2 for
exception-generalizers in the 2-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM. The fourth row displays the predictions made by ATRIUM-DR.

one dimension. This resulted in the transfer items, to the top left and bottom right of the exception

training items, having a large proportion of exception consistent responses. The participants did not

have this type of generalization pattern. ATRIUM and ATRIUM-DR were not as heavily influenced

by attentional settings and better matched participant transfer performance.

The participants’ behavior at the boundary between the rule training items was character-

ized by a large proportion of rule-inconsistent responses. This behavior is characteristic of partic-

ipants with an ill-defined boundary between the two categories. ATRIUM-DR attempted to match

this performance using only its exemplar module, whereas ATRIUM used both a rule module and

its exemplar module. Both models used a rule module to produce exception generalization to the
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transfer items. However, because ATRIUM uses one dimensional rules, it was also able to use the

same rule module to learn training item classifications. ATRIUM’s use of two modules allowed it

to better match participant performance than ATRIUM-DR’s single module.

ATRIUM provided a superior fit to the data of the participants who generalized according

to the exception items in two-dimensional conditions. This suggests that participants are able to

use one-dimensional rules to learn category structures formed with a two-dimension rule boundary

and composed of stimuli with separable and noncommensurate dimensions. It also suggests that

participants who were exception-generalizers in the two-dimensional conditions were not required

to use two-dimensional rules.

Experiment 2: Summary

The transfer behaviors of participants who were given category structures formed using

one-dimensional boundaries and composed of stimuli with separable and noncommensurate dimen-

sions were better fit by ALCOVE than ATRIUM. Likewise, ATRIUM-DR failed to provide a better

fit than ALCOVE in the two-dimensional conditions. This experimented failed to find evidence of

two-dimensional rule use. However, given the very different transfer item generalization patterns

produced by participants to symmetrical category structures, caution is suggested when interpreting

these results.

5.7 Experiment 3: Integral and Commensurate Dimensions

The stimuli for Experiment 3 possessed integral and commensurate dimensions. They

were rectangles that varied in width and height. The best fitting parameters for Experiment 3 for

ALCOVE can be seen in Table 5.9, for ATRIUM in Table 5.10, and for ATRIUM-DR in Table 5.11.

The average participant performance and the predictions of the models can be seen in Figures 5.9

through 5.12.

Experiment 3: Rule-Generalizers

The rule-generalizer cluster contains participants who categorized the transfer items in a

rule-consistent manner. In the 1-D conditions, the horizontal and vertical conditions, both ALCOVE

and ATRIUM were able to perform in a manner qualitatively similar to the participants. However,

ATRIUM (BIC = 8584) was better able to account for this cluster of participants than ALCOVE
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Table 5.9: ALCOVE Fits for Experiment 3

Rule- Exception-

Generalizers Generalizers

Parameter 1-D 2-D 1-D 2-D

c 2.15 23.93 90.86 14.80

φ 2.43 3.73 0.94 1.95

λa 1.125 0.001 0.069 0.161

λw 0.002 0.003 0.018 0.010

s 1.41 0.85 0.93 0.81

BIC 9268 22952 9552 6288

R2 .86 .92 .84 .90

RMSD .13 .09 .13 .10

Table 5.10: ATRIUM Fits for Experiment 3

Rule- Exception-

Generalizers Generalizers

Parameter 1-D 2-D 1-D 2-D

c 14.18 34.37 19.74 4.73

φ 0.58 4.37 1.72 1.87

λa 1.853 0.001 0.002 0.928

λw 0.103 0.001 0.001 0.005

γ 1.508 0.969 7.187 2.650

φg 1.05 1.791 0.743 1.772

β1 -1.761 -2.876 3.762 1.722

β2 2.060 0.250 0.050 -1.48

λr 0.738 0.010 0.036 0.474

λg 0.135 0.202 0.562 0.094

s 0.854 1.018 1.289 1.628

BIC 8584 22091 9032 6074

R2 .93 .95 .95 .94

RMSD .09 .08 .08 .08
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Table 5.11: ATRIUM-DR Fits for Experiment 3

Parameter Rule-Generalizers Exception-Generalizers

c 33.750 16.816

φ 3.217 1.635

λa 0.001 0.018

λw 0.037 0.013

γ 1.238 12.811

φg 1.644 1.931

β1 1.118 2.327

β2 -1.347 4.111

λr 0.006 0.015

λg 0.051 0.066

s 0.978 0.906

BIC 21713 6243

R2 .97 .93

RMSD .06 .09

(BIC = 9268). The key items that ALCOVE failed to account for, but ATRIUM was able to account

for, were the exception training items and the transfer items, as shown in Figure 5.9.

ALCOVE, with only an exemplar representation, was unable to capture both the high

exception-consistent response rates to the exception training items and produce rule-consistent gen-

eralization to the transfer items. However, ATRIUM was able to produce these patterns of behavior.

ATRIUM learned to categorize the training items with its exemplar module and used its rule module

to learn to classify the transfer items.

ATRIUM provided a superior fit to the data of the participants who generalized according

to the rule items in the one-dimensional conditions. This suggests that participants are able to use

one-dimensional rules to learn category structures formed with a one-dimension rule boundary and

composed of stimuli with integral and commensurate dimensions.

In the two-dimensional conditions, all models were able to qualitatively match the perfor-

mance of the participants. However, ATRIUM-DR (BIC = 21713) was better able to account for this

cluster of participants than ALCOVE (BIC = 22952) or ATRIUM (BIC = 22091). The key items

distinguishing between the models were the transfer items.
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.9: Proportion of responses for each stimulus during the transfer phase of Experiment 3
for rule-generalizers in the 1-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light
cells indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM.

ALCOVE and ATRIUM were both heavily influenced by dimensional attention when

making transfer item generalizations. This is demonstrated by the large proportion of exception-

consistent responses to the transfer items that were aligned with the exception training item along a

single dimension. These items were the transfer item to the upper left of the exception training item

and the transfer item to the lower right of the exception training item. Examining ATRIUM’s gating

module, revealed that ATRIUM’s responses were dominated by its exemplar module, resulting in

very ALCOVE-like performance. However, ATRIUM-DR was more successful in accounting for

participant transfer item performance. It was able to use both its rule and exemplar modules to

account for the behavior of the participants.

ATRIUM-DR provided a superior fit to the data of the participants who generalized ac-

cording to the rule items in the two-dimensional conditions. This suggests that participants are able
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM−DR

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.10: Proportion of responses for each stimulus during the transfer phase of Experiment 3
for rule-generalizers in the 2-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light
cells indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM. The fourth row displays the predictions made by ATRIUM-DR.

to use two-dimensional rules to learn category structures formed with two-dimension rule bound-

aries and composed of stimuli with integral and commensurate dimensions.

Experiment 3: Exception-Generalizers

The exception-generalizer cluster contains participants who categorized the transfer items

in an exception-consistent manner. In the one-dimensional conditions, the horizontal and vertical

conditions, both ALCOVE and ATRIUM were able to perform in a manner qualitatively similar to

the participants. However, ATRIUM (BIC = 9032) was better able to account for this cluster of

participants than ALCOVE (BIC = 9552). The transfer items were the key items that ALCOVE

failed to account for, but ATRIUM was able to account for, as shown in Figure 5.3.

To account for the high exception-consistent response rate to the exception training items,

ALCOVE was required to have high specificity and therefore low generalization between exemplars.
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.11: Proportion of responses for each stimulus during the transfer phase of Experiment 3 for
exception-generalizers in the 1-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM.

This resulted in the module having a high exception-consistent response rate to the transfer items

in the corners, but a low exception-consistent rate to the transfer items on the edges. These transfer

items were closer to the rule-consistent training items than the exception-consistent training items,

and were therefore categorized with a higher proportion of rule-consistent responses. However,

the participants did not display this pattern of generalization. Participants responded with high

exception-consistent responses to all transfer items. In contrast to ALCOVE, ATRIUM was able to

produce this pattern of results by using both its rule and exemplar modules.

ATRIUM provided a superior fit to the data of the participants who generalized according

to the exception items in the one-dimensional conditions. This suggests that participants are able to

use one-dimensional rules to learn category structures formed with a one-dimension rule boundary

and composed of stimuli with integral and commensurate dimensions.
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM−DR

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.12: Proportion of responses for each stimulus during the transfer phase of Experiment 3 for
exception-generalizers in the 2-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM. The fourth row displays the predictions made by ATRIUM-DR.

In the two-dimensional conditions, the positive and negative diagonal conditions, AL-

COVE, ATRIUM, and ATRIUM-DR were all able to perform in a manner qualitatively similar to

the participants. However, ATRIUM (BIC = 6074) was better able to account for this cluster of

participants than ALCOVE (BIC = 6288) or ATRIUM-DR (BIC = 6243). The keys items for the

models to fit were the transfer items and the training items near the boundary between the rule items,

as shown in Figure 5.4.

ALCOVE was unable to match the transfer item generalization pattern displayed by par-

ticipants. In learning the training items, ALCOVE allocated a large amount of dimensional at-

tention to one dimension. This caused ALCOVE’s transfer generalization to be driven by a single
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dimension, unlike participants who generalized more equally across both dimensions. ATRIUM and

ATRIUM-DR were more successful than ALCOVE in producing this pattern of behavior. ATRIUM

and ATRIUM-DR were able to use different modules to classify training and transfer items. This

allowed them to perform more like the participants.

ATRIUM was better able to match participant behaviors than ATRIUM-DR. Specifically,

the models performed differently on the training items close to the boundary between the two rule

categories. ATRIUM was able to use its exemplar module to learn the training items. The exemplar

module is more flexible for learning training items because it has exemplars for each of the items.

Each exemplar is able to be associated with an output response independently of other items. In

contrast, ATRIUM-DR relied upon a rule module to classify the training items and was unable to

produce the slightly skewed boundary between the two categories that the participants displayed.

Rules are less flexible than exemplars because rules produce the same classification for all items

that are equidistant from the rule.

In addition, because ATRIUM uses one-dimensional boundaries, it would still be able to

produce a skewed boundary pattern if it was required to use its rule module to learn the training

items. ATRIUM-DR’s rule modules are aligned to the actual category structure. This forces it to

fit too well to the category structure, unlike the participants who were more uncertain about the

location of the boundary. Interestingly, ATRIUM-DR did not use its exemplar module to learn this

category structure, it only used rule modules. If ATRIUM-DR was required to use its exemplar

module, it may match ATRIUM’s performance.

ATRIUM provided a superior fit to the data of the participants who generalized according

to the exception items in two-dimensional conditions. This suggests that participants may not use

two-dimensional rules in learning category structures formed with a two-dimension rule boundary

and composed of stimuli with integral and commensurate dimensions.

Experiment 3: Summary

The transfer behaviors of participants who were given category structures formed using

one-dimensional boundaries and composed of stimuli with integral and commensurate dimensions

were better fit by ATRIUM than ALCOVE. This is consistent with previous literature supporting

rule use in category learning (Erickson & Kruschke, 1998, 2002).

The transfer behaviors of participants who were given category structures formed using

two-dimensional boundaries and composed of stimuli with integral and commensurate dimensions

were best fit by ATRIUM-DR when transfer item generalization was rule consistent. However,
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when participant transfer item generalization was exception-consistent, the data were best fit by

ATRIUM. This provides limited evidence that people may use two-dimensional rules with integral

and commensurate dimensions.

ATRIUM-DR’s failure to account for the behaviors of participants who generalized ac-

cording to the exception may be a result of the model having too many possible rules. The second

rule module allowed for it to account for participants’ transfer and training item performance, with-

out requiring the exemplar module. ATRIUM’s success over ATRIUM-DR may be due to its use of

only one rule module and its exemplar module. A version of ATRIUM-DR with only one rule mod-

ule may be able to produce a better fit. Currently, rules in ATRIUM and ATRIUM-DR are assigned

by the experimenter. The models can learn when it is appropriate to use a particular rule, but they

cannot recruit new rules or remove inappropriate rules. This is a design feature of the models that

reflect the implicit nature of rule development and use.

5.8 Experiment 4: Integral and Noncommensurate Dimensions

The stimuli for Experiment 4 possessed integral and noncommensurate dimensions. They

were Fourier descriptors that varied in initial phase and the amplitude of a sine wave component.

The best fitting parameters for Experiment 4 for ALCOVE can be seen in Table 5.12, for ATRIUM

in Table 5.13, and for ATRIUM-DR in Table 5.14. The average participant performance and the

predictions of the models can be seen in Figures 5.13 through 5.16.

Experiment 4: Rule-Generalizers

The rule-generalizer cluster contains participants who categorized the transfer items in a

rule-consistent manner. In the one-dimensional conditions both ALCOVE and ATRIUM were able

to perform in a manner qualitatively similar to the participants. However, ATRIUM (BIC = 19953)

was better able to account for this cluster of participants than ALCOVE (BIC = 21532). Yet, neither

model was able to match the exception-consistent response rates for the exception training items

displayed by the participants, as shown in Figure 5.13. Examining the gating module of ATRIUM

reveals that it was primarily using its exemplar module with only a small contribution from its rule

modules. This small contribution was sufficient to allow ATRIUM to outperform ALCOVE.

While ATRIUM provided a superior fit to the data of the participants who generalized

according to the rule items in one-dimensional conditions, it failed to utilize a strong rule module.

The contributions of the rule modules were rather weak, suggesting that rules may not be responsible
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Table 5.12: ALCOVE Fits for Experiment 4

Rule- Exception-

Generalizers Generalizers

Parameter 1-D 2-D 1-D 2-D

c 40.43 94.60 13.65 27.30

φ 2.17 0.38 1.07 1.59

λa 1.592 0.003 0.362 0.139

λw 0.001 0.035 0.025 0.012

s 0.81 0.33 0.46 0.45

BIC 21532 3595 4507 19929

R2 .86 .92 .84 .90

RMSD .13 .09 .13 .10

Table 5.13: ATRIUM Fits for Experiment 4

Rule- Exception-

Generalizers Generalizers

Parameter 1-D 2-D 1-D 2-D

c 4.451 8.608 8.552 11.283

φ 2.546 1.983 1.108 1.315

λa 0.082 0.229 0.131 0.092

λw 0.010 0.005 0.131 0.018

γ 0.012 0.436 20.44 9.997

φg 1.192 0.943 1.020 1.095

β1 0.042 0.353 0.870 1.562

β2 0.92 -0.003 -0.002 -0.007

λr 0.002 0.001 0.112 0.179

λg 0.074 0.552 0.036 0.198

s 0.872 0.400 0.564 0.477

BIC 19952 3509 4287 18786

R2 .93 .95 .95 .94

RMSD .09 .08 .08 .08
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Table 5.14: ATRIUM-DR Fits for Experiment 4

Parameter Rule-Generalizers Exception-Generalizers

c 26.52 14.186

φ 0.542 1.144

λa 0.044 0.098

λw 0.059 0.016

γ 6.098 8.929

φg 0.236 0.663

β1 -1.125 2.452

β2 -3.88 -0.456

λr 0.048 0.096

λg 0.018 0.855

s 0.186 0.899

BIC 3593 19265

R2 .97 .93

RMSD .06 .09

for ATRIUM’s superior performance. This provides weak evidence that participants are able to use

one-dimensional rules to learn category structures formed with a one-dimension rule boundary and

composed of stimuli with integral and noncommensurate dimensions.

In the two-dimensional conditions ALCOVE, ATRIUM, and ATRIUM-DR were all able

to perform in a manner qualitatively similar to the participants. However, ATRIUM (BIC = 3509)

was better able to account for this cluster of participants than ALCOVE (BIC = 3595) or ATRIUM-

DR (BIC = 3593). The transfer items were the key items for distinguishing between the models, as

shown in Figure 5.14.

ALCOVE and ATRIUM-DR’s performance on the transfer stimuli was characterized by

a strong preference for one dimension. Examination of ATRIUM-DR’s gating module revealed that

the model was dominated by its exemplar module, resulting in very ALCOVE-like performance.

ATRIUM, however, was able to utilize both rule and exemplar modules. This allowed the model to

match participant behaviors better than ALCOVE or ATRIUM-DR. However, ATRIUM still failed

to match participant response patterns to the exception training items.
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.13: Proportion of responses for each stimulus during the transfer phase of Experiment 4
for rule-generalizer in the 1-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light
cells indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM.

ATRIUM provided a superior fit to the data of the participants who generalized accord-

ing to the rule items in two-dimensional conditions. This suggests that participants are able to

use one-dimensional rules to learn category structures formed with a two-dimension rule boundary

and composed of stimuli with integral and noncommensurate dimensions. It also fails to provide

evidence for two-dimensional rule use in these types of categories structures.

Experiment 4: Exception-Generalizers

The exception-generalizer cluster contains participants who categorized the transfer items

in an exception-consistent manner. In the one-dimensional conditions both ALCOVE and ATRIUM

were able to perform in a manner qualitatively similar to the participants. However, ATRIUM (BIC

= 4287) was better able to account for this cluster of participants than ALCOVE (BIC = 4507). There
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM−DR

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.14: Proportion of responses for each stimulus during the transfer phase of Experiment 4
for rule-generalizer in the 2-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light
cells indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM. The fourth row displays the predictions made by ATRIUM-DR.

are two key sets of items that ALCOVE failed to account for, but ATRIUM was able to account for,

the transfer items and the number of rule inconsistent responses, as shown in Figure 5.15.

To learn to classify the exception training items with a high proportion of exception-

consistent responses, ALCOVE used a high specificity value. This resulted in few exception-

consistent responses to the transfer items closest to the rule-consistent training items. This is in con-

trast to participant behavior, which was characterized by a high proportion of exception-consistent

responses to all transfer items. However, ATRIUM was able to produce this pattern of behavior by

using its exemplar module to classify the training items and a combination of exemplar and rule

modules to classify the transfer items.
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.15: Proportion of responses for each stimulus during the transfer phase of Experiment 4 for
exception-generalizers in the 1-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM.

The participants’ transfer performance was also characterized by a large proportion of

rule-inconsistent responses. This suggests that participants found the task difficult. ALCOVE was

unable to produce this large error rate, however ATRIUM was able to do so.

ATRIUM provided a superior fit to the data of the participants who generalized according

to the exception items in the one-dimensional conditions. This suggests that participants are able to

use one-dimensional rules to learn category structures formed with a one-dimension rule boundary

and composed of stimuli with integral and noncommensurate dimensions.

In the two-dimensional conditions, the positive and negative diagonal conditions, AL-

COVE, ATRIUM, and ATRIUM-DR were all able to perform in a manner qualitatively similar to

the participants. However, ATRIUM (BIC = 18786) was better able to account for this cluster of

participants than ALCOVE (BIC = 19929) or ATRIUM-DR (BIC = 19265). The key items for the

models to fit were the transfer items and the training items near the rule boundary, as shown in
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Average Participant

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ALCOVE

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

ATRIUM−DR

Rule−Consistent Rule−Inconsistent Exception−Consistent Exception−Inconsistent

Figure 5.16: Proportion of responses for each stimulus during the transfer phase of Experiment 4 for
exception-generalizers in the 2-D conditions. The shading in each cell corresponds to the proportion
of responses for each response type. Dark cells indicated a high proportion of responses, light cells
indicate a low proportion of responses. The top row displays the empirical data averaged over
participant. The second row displays the predictions made by ALCOVE. The third row displays the
predictions made by ATRIUM. The fourth row displays the predictions made by ATRIUM-DR.

Figure 5.16.

ALCOVE’s transfer item performance was characterized by a strong preference for one

dimension. This caused ALCOVE’s transfer generalization to be driven by a single dimension,

unlike participants who generalized more equally across both dimensions. ATRIUM and ATRIUM-

DR were more successful than ALCOVE in producing this pattern of behavior. The models were

able to use different modules to classify training and transfer items, which allowed them to perform

more like the participants.

Like in the rule-generalizer cluster, participants made a large number of rule-inconsistent

responses. This suggests that both clusters of participants found the task difficult. Additionally, the
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frequency of rule-inconsistent responses on the outside edges of the rule boundary suggests partici-

pants were not using an optimal rule, but instead one biased toward one dimension. Examination of

the gating modules revealed that ATRIUM and ATRIUM-DR used rule modules to classify transfer

stimuli and exemplar modules to classify training stimuli. ATRIUM’s rule modules are optimal for

categorizing the transfer stimuli, allowing it to use one rule module for the transfer items and the

other rule module to facilitate training item performance. ATRIUM-DR, however, used both rule

modules to classify the transfer items, and only the exemplar module was used to classify training

items.

ATRIUM provided a superior fit to the data of the participants who generalized according

to the exception items in two-dimensional conditions. This suggests that participants are able to

use one-dimensional rules to learn category structures formed with a two-dimension rule boundary

and composed of stimuli with integral and noncommensurate dimensions. It also fails to provide

evidence for two-dimensional rule use in these types of categories structures.

Experiment 4: Summary

The transfer behaviors of participants who were given a category structure formed using

one-dimensional boundaries composed of stimuli with integral and noncommensurate dimensions

were better fit by ATRIUM than ALCOVE. This is consistent with previous literature supporting

rule use in category learning (Erickson & Kruschke, 1998, 2002).

The transfer behaviors of participants who were given category structures formed using

two-dimensional boundaries composed of stimuli with integral and noncommensurate dimensions

were best fit by ATRIUM. This fails to provide evidence for two-dimensional rules for categories

using stimuli with integral and noncommensurate dimensions.

5.9 Summary

The summary of the modeling fitting can be seen in Table 5.15. Support for two-dimensional

rule use was only found in Experiments 1 and 3. Experiments 1 and 3 both contained stimuli com-

posed of commensurate dimensions in contrast to Experiments 2 and 4 which contained stimuli

composed of noncommensurate dimensions.

In Experiment 1, both rule-generalizing and exception-generalizing clusters were found

to be best described by ATRIUM-DR. This suggests that 2D rules were used by participants using

both strategies. In Experiment 3, only those participants who generalized according to the rule items
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Table 5.15: Summary of Model Fits

Cluster 1: Rule-Generalizers Cluster 2: Exception-Generalizers

Experiment 1-D 2-D 1-D 2-D

1: Separable & Commensurate ATRIUM ATRIUM-DR ATRIUM ATRIUM-DR

2: Separable & Noncommensurate ALCOVE ALCOVE ALCOVE ATRIUM

3: Integral & Commensurate ATRIUM ATRIUM-DR ATRIUM ATRIUM

4: Integral & Noncommensurate ATRIUM ATRIUM ATRIUM ATRIUM

were found to be best described by ATRIUM-DR. Participants in Experiment 3 who generalized

according to the exception items were found to be best described by ATRIUM.
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Chapter 6

General Discussion

In this dissertation, I addressed the nature of rules in categorization. Specifically, I in-

vestigated the use of two-dimensional rules in category learning and the conditions that allow for

two-dimensional rule use. Two factors were explored in four experiments designed to test two-

dimensional rule use. These factors were the dimensionality (integrality or separability) and the

verbalizability (commensurate or noncommensurate) of the stimulus dimensions.

The data from these experiments were organized into groups based upon the performance

of the participants. These groups were then used for the fitting of three different models of category

learning, ALCOVE, ATRIUM, and ATRIUM-DR. Evidence for two-dimensional rule use was pro-

vided by participant behaviors that were best described by ATRIUM-DR. The results of the model

fitting were used to evaluate the claims and predictions made by the various rule-based accounts of

category learning (refer back to Table 2.2).

The results of the model fitting (see Table 5.15) suggest that two-dimensional rules can

be used by people when learning categories under certain conditions. Participants from Experiment

1 and 3 were found to show two-dimensional rule use, as they were best modeled by ATRIUM-

DR. In Experiment 1, participants in the two-dimensional conditions that were classified as rule-

generalizers or exception-generalizers were found to be best described by ATRIUM-DR. Like-

wise, in Experiment 3, participants in two-dimensional conditions that were classified as rule-

generalizers were found to be best described by ATRIUM-DR. This suggests that people can use

two-dimensional rules when learning two-dimensional category structures.

Experiments 1 and 3 both contained stimuli composed of verbalizable dimensions. This

suggests that two-dimensional rules can only be used to learn categories with stimuli composed of

verbalizable dimensions. This is not consistent with any of the rule accounts that were discussed in
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Chapter 1 (refer back to Table 2.2 for the predictions of the accounts). The account that is closest to

the current results is the account provided by Ashby et al. (1998).

Ashby et al. (1998) claim that two-dimensional rule use is only possible with stimuli com-

posed of separable and verbalizable dimensions. The results of Experiment 1 are consistent with this

claim. However, the results of Experiments 3 are not consistent with this claim. Experiment 3 used

categories with stimuli composed of integral and verbalizable dimensions, finding two-dimensional

rule use with these types of stimuli is not directly predicted by Ashby et al. (1998). Thus, Ashby et

al.’s claim is not completely supported.

6.1 Two-Dimensional Rules or Predecisional Integration

There is a possible explanation for these data that would support Ashby et al.’s account.

It is possible that participants were not using rules, but instead were were performing predecisional

integration that resulted in rule-like behaviors (Ashby et al., 1998; Ashby, Ell, & Waldron, 2003;

Ashby & Gott, 1988; Shaw, 1982). The stimuli used in Experiment 3 possessed integral dimen-

sions, they were rectangles that varied in height and width. Some participants have been found

to perceive integral stimuli, not as combinations of the dimensions (i.e., of height and width), but

instead along an emergent unitary dimension (i.e., of area, a ratio of height to width, or similar

emergent composite dimensions). If some participants did perceive these stimuli as rectangles that

varied along the dimension of area, then these participants would appear to use two-dimensional

rules when learning a category with a two-dimensional boundary. However, they would actually be

using a one-dimensional bound along the single dimension of area.

Support for this possibility comes from the distributions of participants in the clusters. In

general, people prefer to use simple strategies (e.g., Nosofsky et al., 1994). This leads to a prefer-

ence for using one-dimensional rules even when the category structures used in the task were created

using two-dimensional boundaries (e.g., Erickson, 2008). Experiments 1, 2, and 4 are consistent

with this idea. In these experiments, more participants in the one-dimensional conditions grouped

into the rule-generalization cluster than the exception-generalization cluster. In contrast, more par-

ticipants in the two-dimensional conditions were grouped into the exception-generalization cluster

than into the rule-generalization cluster. This suggests that in these experiments, participants found

rule-generalization to be harder in two-dimensional conditions than in one-dimensional conditions.

This also supports the finding that two-dimensional rule use is more difficult than one-dimensional

rule use.
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...
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Figure 6.1: An information processing model displaying the processes that occur during
categorization.

However, in Experiment 3, this pattern of behavior is reversed. In Experiment 3, partici-

pants in the one-dimensional conditions were equally likely to use rule-generalization as exception-

generalization. Additionally, participants in the two-dimensional conditions were more likely to use

rule-generalization than exception generalization. This suggests that participants in Experiment 3

found two-dimensional rule use easier than one-dimension rule use, in contrast to Experiments 1,

2, and 4. This reversal in difficulty may be a result of participants treating the stimuli as varying

along the dimension of area. By representing the stimuli as varying along the dimension of area,

participants are able to use a simpler one-dimensional rule to learn the two-dimensional category

structure. Likewise, representing the stimuli as varying along the dimension of area would also

result in some participants having to use a more difficult two-dimensional rule to learn the one-

dimensional category structure. This would result in the conditions being reversed. Participants

would use one-dimensional rules to learn categories with one-dimensional boundaries and use two-

dimensional rules to learn categories with one-dimensional boundaries. This reversal would also

affect difficulty, resulting in categories with two-dimensional boundaries being easier to learn than

categories with one-dimensional boundaries.

In addition, Experiment 3 provided the largest number of participants classified into Clus-

ter 5. This was the cluster that contained participants who were best described as using a two-

dimensional rule on a one-dimensional category structure. This is consistent with the assumption

that some participants treated the stimuli as varying along the dimension of area. For the participants

using a one-dimensional area rule, the task of categorizing stimuli based on height or width would

be like a two-dimensional category structure. If participants in Experiment 3 were displaying two-

dimensional rule use, but were actually using a one-dimensional rule along a composite dimension,

their behavior may not truly be two-dimensional rule use.
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To better illustrate this point requires differentiating between perceptual and decision inte-

gration (Ashby & Townsend, 1986; Shaw, 1982). Figure 6.1 displays a basic information processing

model containing the processes that occur during categorization. This model is simplified, it con-

tains no references to the recurrent or continuous nature of human cognitive functions (McClelland,

1979), but it is sufficient to demonstrate the time-line of categorization. A stimulus has a set of

sensory components that can be detected and processed by the human sensory system. These raw

sensory components are processed pre-attentively to produce streams of sensory information. These

streams contain information such as color, luminance, shape, and motion. These sensory streams

are then combined using attention to form object representations (Treisman & Gelade, 1980). Next,

these object representations are used in making category decisions. Finally, the output of the deci-

sion process is used to make a category response.

The processes underlying categorization can be divided into two types of processes, per-

ceptual and decision processes (Ashby & Townsend, 1986; Shaw, 1982). Perceptual processes

operate on the raw sensory information provided by the stimulus, transforming it into a psycho-

logical representation. Decision processes operate on the psychological representation created by

perceptual processes and result in a category response. This method of modeling the processes

that occur in categorization is relatively straightforward in the unidimensional case, however the

addition of other relevant stimulus dimensions greatly increases the complexity of the task. When

stimuli with multiple relevant dimensions are categorized, at some point the information from each

dimension must be combined. This integration process can occur in the representational stages or

the decisional stages (Ashby & Townsend, 1986; Massaro & Friedman, 1990; Shaw, 1982).

Representational integration refers to the integration of stimulus dimensions that occurs

before or during the object representation of a stimulus. This type of integration is performed for

the purpose of constructing object representations. It contains all types of integration that occur pre-

attentively. This includes low level sensory integration of perceptual primitives such as luminance,

shape, and motion. It also includes higher level integration such as the changes to object represen-

tations that are due to perceptual learning about members of a category (Foard & Kemler Nelson,

1984; J. D. Smith & Kemler Nelson, 1984). This type of integration is also contained within the

term, predecisional representation (Ashby & Gott, 1988; Ashby et al., 1998). I use representational

integration to emphasize that the integration does not occur at a basic sensory level, but instead

when representing the stimulus.

An example of representational integration is color. The underlying dimensions of color,

(i.e., hue, saturation, and brightness) are combined to form a single color percept. These dimensions
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are classical examples of integral dimensions. The combination occurs pre-attentively, after which,

the system loses access to the information used (e.g., hue, saturation, and brightness) to create the

new feature.

Decisional integration refers to the integration of dimensions that occurs after a stimulus

has been fully represented. It is during the decisional processes stage that rule-based categorization

occurs. In the case of a unidimensional category, a stimulus is represented as a single feature along

a dimension. This dimension is evaluated by a one-dimensional rule and the outcome is used to

produce a response. In the case of a multidimensional category being classified using conjunction

rules, the process is more complicated, but still occurs within the decisional processes stage. In this

case, a stimulus is represented by two independent features. These features are evaluated separately.

The outcome of each of these evaluations is then combined and a new evaluation is performed. The

result of this third evaluation is used to produce a response.

An example of decisional integration is the category defined by the conjunction rule, a

black cat is a cat and is black. When given the stimulus of a white cat, the decision process is

as follows. The stimulus (a white cat) is represented by the dimensions of animal (cat) and color

(white). The color dimension is white, this is evaluated by the rule, is black, and is found to be

false. The animal dimension is cat, this is evaluated by the rule, is a cat, and is found to be true. The

results of both of these comparisons are combined (true and false), and the result, false is used to

produce a category response. In this case, the answer is a white cat is not a member of the category

black cat.

Likewise, two-dimensional rule use also occurs in this decisional processes stage. In this

case, unlike the one-dimensional comparisons, both dimensions are combined and evaluated in a

single step. The result of this one evaluation is then used to produce a response (refer back to

Chapter 2 for examples of two-dimensional rules).

Having defined representation integration and decisional integration, it is now more

straightforward to analyze participants who perceived rectangles varying in height and width as

possessing a single unitary dimension of area (or similar emergent dimension), rather than pos-

sessing the two dimensions of height and width. For these participants, the features of the stimuli

are combined by representational processes and a single feature is then passed forward to the de-

cisional processes. The decisional processes then evaluates this single dimension according to a

one-dimensional rule. The output is used to produce a category response. For these participants,

the integration of these dimensions occurs in the representation phase, thus these participants are

performing representational integration. Although these participants are behaving as if they were
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using two-dimensional rules, they are actually using a one-dimensional rule.

Interpreting the data provided by the participants in Experiment 3, those participants given

integral stimuli, as being the result of representational integration supports Ashby et al.’s account.

However, it is not straightforward to characterize all the participants as using representation in-

tegration or decisional integration. The composition of participant strategies in Experiment 3 is

unknown.

The difficulty lies in establishing which participants are using an area representation

with a one-dimensional rule and which are using a height and width representation with a two-

dimensional rule. The participants in Cluster 5 of Experiment 3, those using two-dimensional

boundaries to solve one-dimensional category structures, provide evidence that some participants

are using an area representation. However, this is not sufficient to declare that all participants in Ex-

periment 3 used representational integration. It may be the case that only the participants classified

into Cluster 5 used representational integration.

Support for this counter claim comes from the participants classified into Cluster 1 in the

one-dimensional conditions. These are the participants who were given one-dimensional categories

to learn and classified transfer items as members of the rule consistent category. The transfer phase

behaviors of these participants are similar to other participants classified into Cluster 1 from the

other experiments. If all participants in Experiment 3 had used representational integration, then the

participants in Cluster 1 from the one-dimensional conditions would have behaved more like those

participants in either Clusters 2 (exception-generalizers) or 5 (those using a two-dimensional bound-

ary in a one-dimensional structure). Since this was not the case, it is unlikely that all participants in

Experiment 3 were using representational integration.

Regardless of the evidence provided by these indirect measures of participant strategies,

there were no definitive tests applied in these experiments. It is therefore, inappropriate to make

conclusions based upon any one particular group composition. The participants in Experiment 3

may have used either representational integration or decisional integration.

However, it is possible to separate these groups of participants. For example, one method

to distinguish between participants using representational integration or true two-dimensional rule

use is to evaluate their use of dimensional attention. If participants formed a representation along

the dimension of area, they may have done so in the representational processing stage by combining

the dimensions of height and width. If these dimensions are combined at this stage of processing,

participants may no longer have direct access to the underlying dimensions. This is akin to how

information about the saturation level of a stimulus is lost after the creation of a color percept. If
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participants lack access to these dimensions, then they may be unable to directly apply dimensional

attention to them.

This argument parallels the argument proposed by Nosofsky (1986), that participants are

only allowed to make dimensional adjustments along single dimensions. Having lost access to these

dimensions, the participants would be forced to apply dimensional attention only to their emergent

area dimension. This would manifest as a strong influence to stimuli that are diagonally adjacent

to stimuli in psychological space rather than stimuli that are horizontally or vertically adjacent in

psychological space. Examples of this type of influence can be seen in the the behaviors of AL-

COVE and ATRIUM when these models were fit to the data of participants in the two-dimensional

conditions (e.g., see Figure 5.4).

However, if participants do not lose direct access to the dimensions used to form new

emergent dimensions, then this dimensional bias will not be displayed. In this case, participants

may retain the ability to allocate attention to the underlying dimensions of height and width, even

though they use a one-dimensional area rule. This suggests that participants have transformed a

two-dimensional category (height and width) into a three-dimensional category (height, width, and

area). However, it is unlikely that this is the case. If participants did have access to all three

dimensions, then it would be more likely that participants would apply a one-dimensional rule to

solve one-dimensional category structures instead of using a less accurate one-dimensional rule on

their composite dimension, as displayed by the participants in Cluster 5 of Experiment 3.

Two possible methods for testing which representation participants were using are to di-

rectly test participant representations and to perform mathematical modeling of their categorization

behaviors. To directly test participant representations, a filtration and condensation task may be

used (Kruschke, 1993). These tasks can be used to distinguish between participants using deci-

sional integration and those using representation integration. If participants are given a filtration

and condensation after performing the categorization experiments used in this dissertation, the na-

ture of their representation can be verified.

The second method for testing participant representations is to perform mathematical

modeling of their categorization behaviors. This would be a further extension of the modeling

performed in this paper. An additional set of models would be tested against those currently being

tested. These models would consist of versions of each of the current models. The version of AL-

COVE would have the dimensions and exemplars rotated to align with the representation integrated

dimension of area. The version of ATRIUM would possess the rotated version of ALCOVE and

one-dimensional rules aligned with the new dimensions. The version of ATRIUM-DR would like-
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wise possess the rotated version of ALCOVE and two-dimensional rules aligned as one-dimensional

rules with the original dimensions.

6.2 Dimensional Attention with Two-Dimensional Rules

One of the difficulties in modeling the data was how to interpret dimensional attention (i.e,

the dimension weights) in ATRIUM-DR. In ATRIUM, rules are one-dimensional boundaries that are

formed along the same dimensions as those used by the exemplar module. In ATRIUM-DR, rules

are two-dimensional boundaries that are formed along a new dimension and is a combination of the

underlying dimensions. This new dimension is not directly represented in the exemplar module. It

may be argued that dimensional weights for attention should include this new composite, either in

addition to the two underlying dimensions or as a replacement for those dimensions.

I would argue that this is inappropriate. In ATRIUM (and ATRIUM-DR) attention is ini-

tially set by the experimenter (in the simulations, the attention weights were set equal to each other).

Any changes that occur in the attention weights are caused by the exemplar module. The rule mod-

ules do not directly affect attention weights. Likewise, the attention weights do not directly affect

the rule modules. In ATRIUM, the attention weights affect the activation of the exemplar nodes,

which in turn affect the activation of the gating nodes, which in turn affect the contributions of

the rule modules to the output node activations. However, rule use does not directly influence di-

mensional attention and vice versa. If rules and dimensional attention do not directly affect each

other, a dimension available only to the rule system should not affect the exemplar system. Follow-

ing this reasoning, dimensional attention in ATRIUM-DR was set to be only available to the same

dimensions used by the exemplar-modules.

In contrast to participants who used two-dimensional rules, participants performing rep-

resentational integration would most likely represent stimuli along their new composite dimension.

While discussed more thoroughly earlier in this chapter, the conclusion is that these participants are

mostly likely representing stimuli along their new composite dimension and may or may not retain

direct access to the underlying dimensions. However, these participants were not the focus of the

modeling efforts, and were not specifically modeled for this dissertation.
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6.3 The Continuum of Separability and Integrality

While dimensions have been previously discussed as being either separable or integral,

this is a oversimplification. Previous research has found (e.g., Foard & Kemler Nelson, 1984;

Garner, 1974; Lockhead, 1972; J. D. Smith & Kemler Nelson, 1984) that separability and integrality

are better represented as continuum rather than a dichotomy. This issue was not discussed earlier

because it was incidental to the questions raised about two-dimensional rule use. However, the

stimuli were designed to account for this perspective. They were chosen because they exist on

the extremes of the separable-integral continuum, and were therefore also representative of the

dichotomous scale.

In life however, the distinctions between separability and integrality is less defined. Pre-

vious research has found that the likelihood of processing stimuli in an integral or separable fashion

can be manipulated by a number of factors (e.g., J. D. Smith & Kemler Nelson, 1984; Foard &

Kemler Nelson, 1984; Garner & Felfoldy, 1970). Relevant factors include stimulus factors, task

factors, and subject factors.

Evidence that stimulus factors can influence the perception of separability and integral-

ity comes from Foard and Kemler Nelson (1984). They found that when participants are given

stimuli that vary in the magnitude of stimulus differences, performance shifts to reflect the amount

of similarity. When a category contains stimuli that possess features that are close together along

their dimensions, the dimensions are more likely to be treated as being integral. Whereas, when

a category contains stimuli that possess features that are farther apart along their dimensions, the

dimensions are more likely to be treated as being separable.

Foard and Kemler Nelson (1984) also found evidence for task factors influencing the per-

ception of separability and integrality. When participants were given instructions that emphasized

analytical processing, participants were more likely to treat dimensions as being separable. Like-

wise, when participants were instructed to make more holistic judgments, they were more likely

to treat dimensions as being integral. Additionally, when participants are placed under time con-

straints, they are more likely to treat stimuli as having integral dimensions (e.g., J. D. Smith &

Kemler Nelson, 1984).

Garner and Felfoldy (1970) also demonstrated that under some circumstances stimuli

demonstrate asymmetrical dimensional relationships. Garner and Felfoldy (1970) presented partic-

ipants with card sorting tasks testing the the effect of a secondary dimension on a one-dimensional

sorting task. The stimuli were constructed from two dichotomous dimensions. The correct classifi-
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cation of a card was determined by the primary dimension. The secondary dimension varied based

on condition and was either a fixed value, correlated with the primary dimension, or orthogonal to

the primary dimension. The type of secondary dimension and relationship of the primary dimension

to the secondary dimension was found to help, hinder, or not affect the accuracy of the card sorting

task.

With stimuli composed of circles with radial line segments that varied in the size of the

circle and the angle of the radial line segment. Garner and Felfoldy (1970) found that when the

primary dimension was size, participant behaviors were not affected by secondary dimension of the

orientation of the line segment. This suggests that size was separable from line segment orientation

and that the participants did not benefit from the redundancy when categorizing the second type

of stimuli. However, when the primary dimension was the angle of orientation of the radial line

segment, participant behaviors were affected by the secondary dimension of size. When participants

were given the stimuli with a secondary dimension correlated to the primary dimension, they were

more accurate than when they were given the stimuli that possessed a fixed secondary dimension

or when the secondary dimension was orthogonal to the primary dimension. Garner and Felfoldy

(1970) further found that they could manipulate this relationship by changing the relative salience of

the dimensions. This reversal and the malleability of dimensional relationships demonstrates their

asymmetrical properties.

Evidence for subject factors influencing the perception of dimensional relationships is

supported by studies that examine how strategies develop over time and studies that compare chil-

dren to adults. People have been found to change how they represent stimuli as they gain experience.

When participants are allowed to practice a task, the dimensions may shift in their degree of sepa-

rability versus integrality over time (Foard & Kemler Nelson, 1984). This shift tends to encourage

analytical analysis and perception of the stimuli as possessing features along separable dimensions.

Similar effects arise when comparing the categorization behaviors of children and adults (J. D. Smith

& Kemler Nelson, 1984). Children are found to be guided by holistic or overall similarity more than

they are by analytical processes. This results in them displaying behaviors consistent with interpret-

ing dimensions as being integral. In contrast, adults show the opposite pattern, they tend to use

analytical processes more than similarity based processes, which is consistent with interpreting di-

mensions as being separable. Further research has demonstrated that these findings may be driven

by cultural attitudes. When comparing adults educated in Western European cultures versus those

educated in East Asian cultures, East Asian educated adults are more likely to use intuition and less

likely to perform analytically (Norenzayan, Smith, Kim, & Nisbett, 2002). Taken together, these

135



findings suggest that expertise and task difficulty influence how dimensions are represented.

The perspective that separability and integrality are better interpreted as a continuum de-

pendent upon stimuli, task, and subject factors, is consistent with the findings of this dissertation.

In the previous experiments, separability and integrality were not found to predict two-dimensional

rule use. Participants displayed two-dimensional rule use when categorizing both integral and sep-

arable dimensions, hence to some degree, integral and separable dimensions were treated the same

by participants.

This is not to say that dimensional relationships had no effect on participant behaviors.

Dimensional relationships caused a dramatic behavioral difference in participants. This difference

is demonstrated by the behaviors of participants in Cluster 5 of Experiment 3, those classified as

using an emergent dimension, such as area, to classify the stimuli. The effect of separability and

integrality may be best described as allowing some participants the opportunity to use different

representations. By representing the stimuli differently, these participants were able to solve a

different categorization problem, an easier one. To be more specific, because the stimuli were

composed of integral dimensions, some participants were able to represent the stimuli along the

area dimension. This allowed those participants to reduce the task of learning a two-dimensional

rule to the task of learning a one-dimensional rule.

6.4 Two-Dimensional Rule Commensurability

Participants were found to use two-dimensional rules when given stimuli with commensu-

rate dimensions, but not when given stimuli with noncommensurate dimensions. This suggests that

participants require commensurate dimensions to use two-dimensional rules. It further suggests that

rule use may be a function of hypothesis testing and thus requires executive functions. This supports

the requirements for two-dimensional rule use provided by Ashby et al. (1998).

6.5 Extensions to the Current Research

In accounting for the data, the models performed well. However, there are extensions to

the modeling and to the experimental design, that would provide additional evidence for the nature

of two-dimensional rule use. As previously discussed, more in depth modeling of the participants’

behaviors may be appropriate. Testing the data with models that can distinguish between two-

dimensional rule use and representational integration would be especially useful. Likewise adding
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filtration and condensation tasks after the primary categorization task would provide information

towards the representations used by participants.

Another issue previously discussed is that ATRIUM (and ATRIUM-DR) may be able to

account for behavior better with a simplified rule representation. These models represent rules

as boundaries in psychological space. The version of ATRIUM used in this dissertation uses a

double thermometer encoding in the rule modules. This type of rule-module is useful for learning

categories structures where the different categories are organized into bands along a dimension

(e.g., ABAB). ATRIUM has difficulty in learning not to use all of the modules and representations

available to it. When participants perform in ways that are not optimal, as displayed in the previous

experiments, ATRIUM has difficulty in matching these behaviors. Simpler versions of ATRIUM,

ones that incorporate only a single rule module or do not possess double thermometer encoding rule

modules, may be more successful in displaying the suboptimal behaviors displayed by participants.

An additional area to address is how participants were organized into groups by strategy.

In this dissertation, groups were created using the PAM cluster analysis technique and based on

participant transfer phase performance. Another possible method would be to fit participants in-

dividually with the models and then perform a cluster analysis on the free parameters used by the

participants. This would group participants together based upon how the models would describe

them. This type of clustering may better represent the strategies employed by the participants. This

technique maximizes the information from individual participants, but strategies may be distorted

due to the large amount of random error.

Another potential method of clustering, would be to develop a series of different proto-

typical strategy performance profiles. These performance profiles would represent the strategies

potentially used by participants to do the task. These profiles would include strategies such as rule-

generalization, exception-generalization, random-guessing, and multiple one-dimensional rule use.

These performance profiles can then be used as the seeds to form a cluster analysis. This method

would sort participants into groups based upon established strategies. However, it would also reduce

the emergence of any unexpected strategies. If participants did display any strategies not contained

within the original performance profiles, they might be evident from this type of analysis.

6.6 Two-Dimensional Rules and Knowledge Partitioning

Yang and Lewandowsky (2004) explored knowledge partitioning in category learning and

found evidence for two-dimensional rule use. In testing categories formed with diagonal bound-
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aries, they found that a version of ATRIUM with two-dimensional rules was better able to model

the results than ALCOVE. This was followed by Lewandowsky et al. (2006) demonstrating that

knowledge partitioning was possible with stimuli that varied in the type of relationship between the

dimensions (integral or separable) and the commensurability of the dimensions. Their conditions

were equivalent to the conditions used by the experiments in this dissertation. The results of my

experiments provide three extensions to these works.

The first extension relates to when knowledge partitioning occurs. Lewandowsky et al.

(2006) found knowledge partitioning in all conditions except the easiest condition, where stimuli

were composed of rectangles that varied in height and width (i.e, the dimensions were integral

and commensurate). This condition corresponds to the present Experiment 3, which contains par-

ticipants displaying representational integration. My results suggest that this condition may have

been the easiest because participants were using representational integration. This would allow

participants to use a one-dimensional rule to learn Lewandowsky and Yang’s (2004) category struc-

ture, whereas in the other conditions, participants still need to process a two-dimensional category

boundary.

The second extension relates to how ATRIUM performs knowledge partitioning. Yang

and Lewandowsky (2004) found that a version of ATRIUM using diagonal rules was better able to

fit their data than ALCOVE. They suggested this was due to different rule modules being able to

learn the different parts of the knowledge partitioning task, in contrast to ALCOVE which possesses

only one exemplar module. However, they further allowed that it was ATRIUM’s multiple module

systems that allowed the model to succeed in this task, and that this success may not be due to the

particular type of module (rule or exemplar).

The results from the current experiments support the idea of the different modules being

necessary and not the specific type of module. In Experiment 1 (stimuli with commensurate and

separable dimensions), participants were able to use two-dimensional rules. This suggests that par-

ticipants may use different rules to knowledge partition in tasks with stimuli composed of commen-

surate and separable dimensions. In contrast, in Experiments 2 and 4 (stimuli with noncommensu-

rate and either separable or integral dimensions), participants were not able to use two-dimensional

rules. This suggests that participants may use different exemplar modules to knowledge partition

in tasks with stimuli composed of noncommensurate of dimensions. Thus evidence was found to

support knowledge partitioning relying upon different modules and not a specific type of module.

The third extensions relates to the differences in the modeling. When modeling their re-

sults, Yang and Lewandowsky (2004) used a version of ATRIUM with one rule per module, whereas
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the simulations in this dissertation used a version of ATRIUM with several rules per module. While

previously discussed, it may have been the case that ATRIUM attempted to use the multiple rules

in a way that caused the model to perform less like the participants. Thus, modeling the data from

my experiments with a version of ATRIUM using rule-modules with a single rule may demonstrate

two-dimensional rule use. Likewise, modeling the data from Yang and Lewandowsky’s experi-

ments with a version of ATRIUM using multiple rules per module may demonstrate different ways

to account for knowledge partitioning.

6.7 Summary

This dissertation found evidence for two-dimensional rule use in category learning. Par-

ticipants were able to use two-dimensional rules when learning categories that contained stimuli

with commensurate dimensions. However, evidence was not found for two-dimensional rule use

when the categories contained stimuli with noncommensurate dimensions. These findings support

the requirements for two-dimension rule use proposed by Ashby et al. (1998). These findings also

challenge current theories of rule-based categorization which state that rule-based category rep-

resentations operate on single features. The experiments within this dissertation found evidence

for rules operating on multiple features that create a two-dimensional boundary. Furthermore, when

modeling categories with two-dimensional boundaries with mathematical models such as ATRIUM,

the inclusion of two-dimensional rules in the models should be considered.

139



References

Allen, S. W., & Brooks, L. R. (1991). Specializing the operation of an explicit rule. Journal of

Experimental Psychology: General, 120, 3–19.

Ashby, F. G., Alfonso-Reese, L., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological

theory of multiple systems in category learning. Psychological Review, 105, 442–481.

Ashby, F. G., Ell, S., & Waldron, E. (2003). Procedural learning in perceptual categorization.

Memory and Cognition, 31(7), 1114–1125.

Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidi-

mensional stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition,

14, 33–53.

Ashby, F. G., & Maddox, T. (1990). Integrating information from separable psychological di-

mensions. Journal of Experimental Psychology: Human Perception and Performance, 16(3),

598–612.

Ashby, F. G., & Maddox, W. T. (1998). Measurement, judgement, and decision making. handbook

of perception and cognition (2nd ed.). In M. H. Birnbaum (Ed.), (pp. 251–301). San Diego,

CA, US: Academic Press.

Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology,

56, 149–178.

Ashby, F. G., Noble, S., Vincent, F. J., Waldron, E. M., & Ell, S. W. (2003). Category learning

deficits in parkinson’s disease. Neuropsychology, 17, 115–124.

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological

Review, 93, 154–179.

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. New York: Wiley.

Cortese, J. M., & Dyre, B. P. (1996). Perceptual similarity of shapes generated from fourier de-

scriptors. Journal of Experimental Psychology: Human Perception and Performance, 22,

133–143.

140



Dunn, J. (1983). Spatial metrics of integral and separable dimensions. Journal of Experimental

Psychology: Human Perception and Performance, 9(2), 242–257.

Erickson, M. A. (2008). Executive attention and task switching in category learning: Evidence for

stimulus-dependent representation. Memory & Cognition, 36(4), 749–761.

Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of

Experimental Psychology: General, 127, 107–140.

Erickson, M. A., & Kruschke, J. K. (2002). Rule-based extrapolation in perceptual categorization.

Psychonomic Bulletin and Review, 9, 160–168.

Foard, C., & Kemler Nelson, D. (1984). Holistic and analytic modes of processing: The multiple

determinants of perceptual analysis. Journal of Experimental Psychology: General, 113(1),

94–111.

Garner, W. R. (1970). The stimulus in information processing. American Psychologist.

Garner, W. R. (1974). The processing of information and structure. Hillsdale, NJ: Erlbaum.

Garner, W. R. (1977). The effect of absolute size on the separability of the dimensions of size and

brightness. Bulletin of the Psychonomic Society, 9(5), 380–382.

Garner, W. R., & Felfoldy, G. (1970). Integrality of stimulus dimensions in various types of

information processing. Cognitive Psychology, 1, 225–241.

Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., & Squire, L. R. (1989). Cognitive impariment

following frontal lobe damage and its relevance to human amnesia. Behavioral Neuroscience,

103, 548–560.

Kaufman, L., & Rousseeuw, P. J. (2005). Finding groups in data: An introduction to cluster

analysis. Hoboken, NJ: Wiley-Interscience.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning.

Psychological Review, 99, 22–44.

Kruschke, J. K. (1993). Human category learning: Implications for backpropagation models.

Connection Science, 5, 3–36.

Lee, M., & Webb, M. (2005). Modeling individual differences in cognition. Psychonomic Bulletin

and Review, 12(4), 605–621.

Leng, N. R., & Parkin, A. J. (1988). Double dissociation of frontal dysfunction in organic amnesia.

British Journal of Clinical Psychology, 27, 359–362.

Lewandowsky, S., Roberts, L., & Yang, L. (2006). Knowledge partitioning in categorization:

Boundary conditions. Cognition.

Lockhead, G. (1972). Processing dimensional stimuli: A note. Psychology Review, 79(5), 410–419.

141



Maddox, W. T. (1992). Multidimensional models of perception and cognition. In F. G. Ashby

(Ed.), (pp. 147–180). Hillsdale, NJ: Erlbaum.

Maddox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback effects on rule–based and

information–integration category learning. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 29(4), 650–662.

Massaro, D. W., & Friedman, D. (1990). Models of integration given multiple sources of informa-

tion. Psychological Review, 97, 225–252.

McClelland, J. L. (1979). On the time-relations of mental processes: An examination of systems of

processes in cascade. Psychological Review, 86, 287–330.

Monahan, J., & Lockhead, G. (1977). Identification of integral stimuli. Journal of Experimental

Psychology: General, 106, 94–110.

Norenzayan, A., Smith, E. E., Kim, B. J., & Nisbett, R. E. (2002). Cultural preferences for formal

versus intuitive reasoning. Cognitive Science, 26, 653–684.

Nosofsky, R. M. (1986). Attention, similarity and the identification-categorization relationship.

Journal of Experimental Psychology: General, 115, 39–57.

Nosofsky, R. M., Clark, S. E., & Shin, H. J. (1989). Rules and exemplars in categorization,

identification and recognition. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 15, 282–304.

Nosofsky, R. M., & Palmeri, T. J. (1996). Learning to classify integral-dimension stimuli. Psycho-

nomic Bulletin and Review, 3, 222–226.

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded

classification. Psychological Review, 104, 266–300.

Nosofsky, R. M., & Palmeri, T. J. (1998). A rule-plus-exception model for classifying objects in

continuous-dimension spaces. Psychonomic Bulletin and Review, 5, 345–369.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception model of classifi-

cation learning. Psychological Review, 101, 53–79.

Op de Beeck, H., Wagemans, J., & Vogels, R. (2003). The effect of category learning on the repre-

sentation of shape: Dimensions can be biased but not differentiated. Journal of Experimental

Psychology: General, 132, 491–511.

Posner, M. I., & Keele, S. (1970). Retention of abstract ideas. Journal of Experimental Psychology,

83(2), 304–308.

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental

Psychology(77), 353–363.

142



Rosch, E. H., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of

categories. Cognitive Psychology, 7, 573–605.

Shaw, M. L. (1982). Attending to multiple sources of information: I. The integration of information

in decision making. Cognitive Psychology, 14, 353–409.

Shepard, R. N. (1957). Stimulus and response generalization: A stochastic model relating general-

ization to distance in psychological space. Psychometrika, 22, 325–345.

Shepard, R. N. (1964). Attention and the metric structure of the stimulus space. Journal of Mathe-

matical Psychology, 1, 54–87.

Shepard, R. N., & Chang, J. J. (1963). Stimulus generalization in the learning of classifications.

Journal of Experimental Psychology, 65, 94–102.

Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961). Learning and memorization of classifica-

tions. Psychological Monographs, 75(13). (Whole No. 517)

Shwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.

Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University

Press.

Smith, J. D., & Kemler Nelson, D. (1984). Overall similarity in adult’s classification: The child in

all of us. Journal of Experimental Psycholgy: General, 113(1), 137–159.

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psy-

chology, 12, 97–136.

Waldron, E. M., & Ashby, F. G. (2001). The effects of concurrent task interference on category

learning: Evidence for multi1ple category learning systems. Psychonomic Bulletin and Re-

view, 8(1), 168–176.

Yang, L., & Lewandowsky, S. (2004). Knowledge partitioning in categorization: Constraints on

exemplar models. Journal of Experimental Psychology: Learning, Memory, and Cognition,

30(5), 1045–1064.

143




