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TRANSVERSE COHERENT RESISTIVE INSTABILITIES.
.8
OF AZIMUTHALLY BUNCHED BEAMS IN PARTICLE ACCELERATORS

. Ernest D. Courant
_Brookhaveh National lLaboratory
Asgociated Universitiés, Inc.

Upton, New York
and
Andrew M. Sessler
lavrence Radiation Laboratory
University of Californie
_Berkeley, California

April 1, 1966
ABSTRACT

The transver;eueiectrom;%netic coupling of bunches of particles
with each other isAinvestigated theoretically, and shown ﬁo inccrpOrate
tﬁe poesiﬁility (due to the effect of nonpeffecfly conaucting Qacuum
1 chamber-wallg) df coherent instability even when thevlonéitudinal
distance bétween bunches is much larger than the transverse dimensions
ofvthe vacuum tank. The modes of oscillation in which the bunches
move rigidly aré inveétighted;‘criteria for stability, and expressions
for the small amplitude‘growth rates under unstable cgnditions are
' presented. _The case of.avéingle bunch is considered in detail andi
demonstrated to be stable (even in the absence qf Landau damping)
provided v 1lies between an integer and the next higher half—integer,.

where v 1is the number of transverse free betatron oscillations

Research suppdrted by the U. 8. Atomic Energy Commission.
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occurfing in one revolution; for man& bunches which are sensibly
different'in 1ntensity.(a criterion for this is presented), all modes
are s_table provided v satisfies the same restriction. For_ equally
spaced bunches of equal‘numbefs of particles, approximately half the
‘modes ate unstable without Landau damping. Numerical examples are

presented covering_bome intermediate situations.
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I. INTRODUCTION

The possible instability of coherént transverse oscillations
of an azimuthally unifdrm beam of particles circuléting in a metallic
vacuum ch&unber has béen studied by laslett, Neil, and Sesslerl (LNS),V
wvho showed that under certain circﬁmstances the finite'resistivity of
the vacuum walls could cause growing oscillations. In most accelerators,
the rf acceleration‘mechanism generates azimuthal non-uniformity of
particlé density, and consequently the work of LNS is not'applicab}?
tq-tﬁg analysis of transverse instabilities of the beam. In this wéfk,
we treat a complementary idealization to that of INS--namely, a beam
consisting_of a number qf bunches which are assumed to have ﬁo cohereht
motion of the internal degrees of freedom.

v We have not, in this paper, studied»coherent modes Qithin a
Bunch. vWe expect fhat in the absence of Landau damping some of these
modes will be unstable, but we also expect that the s&nchrotrOn motion
wil] introduce conaiderable lLandau damping and that--in practice--these
modes will not impose a restraint upon beam intensity.

The physical concepts which form the basis of resietive

instabilities have been expounded in INS; there is no need to repeat

 the discussion here. Howevér, the physics for bunches of particles is,

perhaps, somewhat more trénsparent than that for a uniform beam, and

consequently we present it in Section II. Section III contains the body

of the analysis, culminating in a dispéraion relation involving the
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sélution of a set of homogeneous equations. The consequences of the
dispersion relation are explored in Section IV, first for a singlé bunch,
secondly for bunches thch have different numbers of particles, thirdly
for equally épaced bunches of equal numbers, fourthly (nuﬁerically)jfor
intermediéte cases, and finally for unequal bunch spécings. An |
Appendix {8 devoted tb hnalysis of a function—-the ﬁunch Function--
' which piays»a fuﬁdamental role in the theory.
= The reader interested only in results may tﬁrn directly to.
Section iV; readers not interested in mathematics but wanting fo_
-»"undgrstqnd"'the phenomena may find Sections II and IV.adquate.

A répqrt on partvof this work was presented at the.Particie
AcceleratorFCoﬁfergnce in March 1965.;2 a preliminary report and abstract
| of tﬁis work appears in the Summary Report of tﬁé‘SLAC Sumher»Study on

_ Instabilities in Stored Particle Beams.>

II. PHYSICAL CONSIDERATIONS

-In this section wve limit our éttentibn to,the case of‘a single
' bﬁnch having no internal degrees of freeddm. Tﬁe analysis_could'féadily
be extended to.include many bunches, and also to 1ﬁc1ude’spread9 ih
.parficle revolution frequency (and hence lLandau damping), but the
A resulting:analysis‘would then,becomevmore cumbersome thén that employed
iﬁ Section IIX whefe the completely general proﬁlem is conéidered;

The simp]ified problem of this section has already been treated
| in the .11't.era‘t_n.xre-;l"l5 we repeat the discussion becausé_(i) it is 8o

relevant to an appreciation of the contents of this paper, (11) 1t is
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muéh more transpafent than previous discussions (Ref.”l) of the analysis

of Section III, and (111) it is rather brief.

The physical basis of the instability is that in a resistive

. vacuum tank, fields due to a particle decay ohly very slowly in time
‘after the.pértiéle hés left. The decay'can be so slow that whenba bunch

_ retﬁrns after one (or more) revolutions it 1s subject to its own residual

field which--depending upon its phase relative to the wake field--can
lead to damped or undamped tranverse motion. Wé need, as é-first
ingredient, the solution to the eiectromagnetic problem and this has
been giveh by a number of author8.5’6’7’8 From Ref. 8 we knbw that a
particJe'éf'charge Ne passing the point =z = O at time t = O while

traveling with speed PBc down a straight pipe of circular cross section

.and radius b and oscillating transversely with displacement £ exp(+iwt)

will exert a force on a particle of charge e having speed fc and

passing the point 2z at time t given by

'

o +iwz/Be

h e" N ¢ 62 e

,(ué\")% vz - ﬁctlé ’

F = for 1z < Bet | (2.1)
whéré OQ = b x B o/c and ¢ 1is the conductivity of the pipe walls.
For z > et, the force is negligible 1ﬁ comparison with that‘of Eq. (2.1).
We can, with this force, immediatel& write an equation for the
transverse displacehent y of the bunch;‘namely:
2

4%y | X | .
™o W F+ep S’ o (2.2)

fl
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where 7mo_ is the mass of, and F 1is the force on, one particle of

o
fields of a bunch upon itself; these fields are generally less important

rest mass m in the bunch. In Eq. (2.2) vwe have neglected any local

than the wake field and, in any case, of such a sign as to cause damping.
The last term-in Eq. (2.2) is the force due to the external field which .
determinea the transverse oscillation frequency VO 0 of the unperturbed

‘bunch, in terms of which Eq. (2.2) may be written as

d 2 2. F P

%% Yt | (23

at T S . o
vith'the‘particie'cirCulation freqdency @, ] Bc/R~. The force F must

be evaluated as a sum over contfibutions from all previous turns,
(z‘= -2¢Rn), and assuming that y varies harmonically (as it does),
we see that Eq. (2.3) becomes

+ivw t

a® 2 2|, ™%  uecwpPte © o erivemn
—5 + ¥y @ te = T 5 3 ) , ‘—“—2‘ ’
at _ ‘ (n @) b” R® ym, A=Y : (2xn)=

(2.4) )

‘where we have replaced o with wo The sum is conveniently expresSed

O .
in terms of a function--the Bunch Function--and by Eq. (A9) of the -
- Kppendix, Eq.,(2.h) ylelds

2 o uNe2B° G(2x,v)

(KG{)%.bj m, Ré'mba 2«i ’ | ‘. o »'(2-5);

.with solution




3

UCRL-16T51

-5-

[ 2 .2 i
v = v 1 Ne' B~ G(2n,v) =%’ (2.6)

© ) uﬁ\)% b)ﬂnoR%wO Vo B '

whefe‘the positive sign is requifed to be consistent with the force
asﬁumeq in Eq. (2.1). Inetabiliﬁy occurs for " Im v'( O and.fhus is-
confined to.those regions in which Im G(2r,v) >0 . It is shovniin
the Apbéndix (discussion foilowing Eq. (A5)] that Im G(2rx,v) >'o<'
when I - 4 <v <I where I 1is any 1ntéger. [Tﬁis result is
cohsisteﬁt with that derived with only the first term in G ; i.e., ﬁhe
residual'fiéld from only'the last revolutibn.] . -

The phyéical basis df the instability is thus clear; more

“bunches will simply cause mathematical complications, whereas allowing
~frequency spread of the partiéles in the bunch will give possible

"stability from Lanaau damping in the range of instability disclosed

by the preaent_dnalysis. In the absence of lLandau démping, Eq. (2.6)

gives a growth time v , for I - i <v<I:

.. LIRS b3 UnoR 1 , ‘(2 7
N Rr.c Be |Im c(2n,v )| - -
(O . .0
' / | |
2, 2 .
vhere r. = e /moc is the .classical particle radius.

(0]
IIT. DERIVATION OF THE DISPERSION REIATION
We proceed directly, now, to the analysis of the general M-bunch
problem, including the dispersion of particle frequencies and hence
landau damping. We first consider the electromagnetic problem, then

particle dynamics. - : R
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A. Fields
We obtain the reqpisite.field expressions by employing the
results of INS, whose\treatment‘is-confined to a continuous beam, of
‘azimuthally constant density and dimensions, oscillating coherently
- in such a mode that its transverse e]ectric dipole moment per unit
evlength'is of the form

1(no-wt)
’ )

P(Q,t) B y p(r,e,z,t)dr dz = Pn e - (3-1) .

: vhere o] :is the charge density of the beam per unit volmme.' We employ

; cylindrical coordinates r, 9, z‘; 'y is the direction of transverse,
‘oscillations, and we have ignored effects associated vith the major
vradius ofsthe beam. From INS Eq. (2.25), the average force per unit-charge

" acting on the beam 1is

AN e ] e | |
.157 = P |U + .w( % ) ei(ne4nt) y L (3.2)

where U and W depend on the geometry of the beam and the vacuum
chamber. For a circular beam (radius a) in a circular vacuum chamber

- (radius 'b) they obtain, approximately,

' 2 11
U = - [==-=
. 72 2 2

, (3.3)
2 -1/2

b

"
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where ¢ 18 the conductivity of the wall material, éxpressed in

- Gaussian units (dimension 'quj and Pc is the veloéity_of the

particles in the beam. The expressions of Eq. (3.3) are ya]id if

§ >, g >> qg/d%n (d = thickness of vacuum.chamber wall >> skin
depth), R/n > b (wave length of oscillation >> transJerae dimension

of chamber). For other geometries the expressions for U and W are
'differént; but Bubject to the above conditions, they still possess the
" following chéracteristics: (a) U and W are 1ndependént §f ® and
»dfvthe.mode number n ; (b)Y v contains the faétor 1/72 ,. W doéé not;
:(c) 4] is_sensitive to the beam dimensions, W 1s not; (d) W 1is |
proportional to‘ 0-1/2 .

| The resistive (W) term 16 Eq,/(3.2) arises from the skin

effect in the chamber wall. The derivation of this effect shows that
the sign of the square root must te chosen, regardless of fhe sign of aS,

1/2

in such a way that (i/w) has a positive real part, corresponding

to an attenuated wave in the metal.
For a non-uniform beam with arbitrary‘time dépendencé, we may
write P(e,t) as a periodic function of €6 and a Fourier integral

in ¢t :

P(8,t) = a(e,0) e ap . ' (3.4)

=-C0O

By Eq. (3.2) the Fourier transform of F 18 then
A
[u + (Z) W | q(e,0) . (3.5)

P
s
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Inverting the Fourier transform and noting that U and W are '

independent of ® , we obtain

F AR
I (e,t) = UP(B,L) + —ggit—)- . (3.6)
e . 1t
_ (t - t)
To find the fields aseociated with bunches of afbitrary shape,
‘we use the éomewhat indirect (but transparent) method of first finding
the field due to a single particle at the position of another single
particle, and then superimposing the results. ansider; therefore,ta
single particle--the rth particle--circulating with angular vél.ocity :
“o
amplitude g (we assume that all particles have the same angular

and oscillating transversely vith angular frequency v<no -and

velocity wb).
' The dipole moment per unit length due to this particle is

- . i(¢r + v t) ' , ,
P(e,t) = 5 & e ~ Ble-e -ayt), (37

where e 1s the charge of the particle, bp 18 the periodic delta
| function, ¢r is the tranaverse phase, and 9 is the azimuthal
location of the particle at t =0 . Substituting Eq. (3. 7) in

Eq. (3.6), we find |

- Wet e1(¢’-' + v t)

F(0,8) = UR(6,8) + 3 oa,v)
2t R @, _
S (3.8)

where o =6 - 6 - oyt , and. we: have introduced the function G(a,v).
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The "Bunch Function" G(a,v) 18 defined as

) @ 71v(a+2nk) » ‘
G(a,v) = 2n -——-——ge » (3.9)
: k_d (@ + 2nk)

for 0 <a < 2rx , and is defined to be periodic in «a vitﬁ period

2n  for other values of a [equivalent to'starting the summation over
kv, iﬁ Eq. (3.9), with the smallest integer greater than -a/2r }.

The Append;x is devoted to a study of ihe properties of this funct;o?;
it eontains alternative representations, approxihate formulas, numéfiéal

‘values, and some general theorems which will be employed subsequently.

B. Particle Dynamics

From Eq. (3.8) the force per unit charge on a particle moving
with velocity Bc , due to,thevoacillation and longitudinal motion of

the rth pafticle, is:

o : et
(E) - uro,t) + A o slay) expl(d, + wgt)il
“ (3.10)

where P 1s given by Eq. (3.7), and « = 6 +w,t -8 . Consider the
motion of a particle--the sth particle, subject to the force of Eq._(}.lO)

(evaluated at 6 = w.t + Gs) as well as the restoring force of the

0
external focusing field. Its equation of transverse motion 1is
(5, 0,2 9,2 3,) = e U Bl6 w8, %) w—£e2§’ (1(8_wogt) ) o )
m (¥ 4" vy )=eUPO wt,t) ¢+~ exp{1(@_+vo t)] G(6_-86 ,v) .
0‘, 8 0 8 8 8 O Exﬂmb r O r 5

(5.11);
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" We study the normal modes of oscillation of an arbitrary collection'of
. particles by assuming they all oscillate coherently, with transverse |

angular frequency vu%). Thus the motion of the sth particle is

described by:

moxuo?(vsz, - Vo), exoli(d, + wot)] = e UP(8, +apt,t)

. e N ¢ expli(¢g + wo t)] G(6_ - 8_,v)
© o 'r r 0 r s’ ’ o
(3.12)
"Qhere v o, 1é the frequency of. free oscillation of>£he sth part1C1e.
To proceed further, we assume that the particles are bunchedi
. tightly into M bunches, eachiof length L , the' mth: hgving N,
pérticléé. Thé particles have various amplitudes of oscillation 1;-,

phases ¢ , azimuthal location 6 , and betatron frequencies vQDO .

We describe this'situation with a distribution function V¥ , taken of

the form

. | o

v(e,,d,v,) = Nm(——f-) D(¢,¢) £(v,) o ()
-for 6 1in the raﬁge, (L/ExR), and zero elsewhere. The functions D

and f are normalized to unity. The dipole mément of & bunch, Qm ,

is given by

G = e f*(9.£,¢,v8) 3 o1t dg ag ae , | (3.14)

whereas the dipole moment per unit length P(8,t) = Qm/L .
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We obtain an equation for Qn by multiplying Eq. (3.12).by
ev , dividing by (vs2 - VQ), and then integrating ¢, ¢, O, and \
over the nth bunch. We also replace ‘the summation over r by

summation over bunches and integration within the bunches:

.:\ - ‘_ [ .
. ' 2nR . :

/ —-—9> (&) | e, o )
r , : o

(particles)

to obtain

f(v )dv | ézlann
0 Qn - ) : L

N
L/QxR

X 2 we?
e (2" Y al Q’“ [ [ a8 ae_c(e - e ,v)) .
| .

(3.16)

In the summation over m we must treat the nth bunch specially; for all
“other bunches the bunch function may be treated as a constant and removed

from the integral. Within the nth bunch ve use Egs. (A12) and (Al3%)

to obtain : r
2 -~ -
f(v_)dv e“UN_Q WeN | j>
2 8 8 n n n L
w?Q = + : G(e - o ,v)
o. % ("32 - vd) L 2"}_“’0§ n % @O O
L/2nR Q,
2
+ (9‘-5) a8 _ a8 2(—’6") exp| - 1(9 -8 )
0 .

+

Q, c(2n,v) . ‘. (3. 17)‘
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.\ - o "% , | | o (3a8)

‘and expanding the exponential in the integral of Eq. (3}17), vélid for

vL/2nR << 1, we obtain

2 o 2 e
eU_NnQn+WeN N\

an ] in _/’._’Q,,,G(Gm_-_ﬁn,v)
o L anRw mwn o
| TR O T SN S |
RS ECRE S (C Dt IE /T
| ) (3.19)

(Higher 6rder terms in vL/enR can easilybbe generated, if needed.) .

'Finally, we may write Eq. (3.19) in the compact form

(Nn'U' -x)qn+nnw' Z Q6. = 0, - (3.20)
Vhérev
G’“.“ = G(Gm - en,v) , ' SR “(3.21)
3 3 '
O = O(20¥) - () v G

and
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2 , .
we = —= ¥ , - - (3.23)
2 R wo : ,
2 4 » o

fn the next section we shall discuss the solution of Egs. (3.20); the

equations are valid for the coherent motion of short bunches.

-IV. CONSEQUENCES OF THE DISPERSION REIATION

We will, in this section, study the set of homogeneous linear

“equations {Eq. (3.20)] for the dipole moments Q. These equations

are of thg form of a standard eigenvalue problem: Thebeigenva1Ue A must
be detefmiﬁed 1n”such a way that the determinant of the coefficients of
the Q  vanishes. Then,.from Eq. (3.18), one solves fof v which givés
immediately--by Eq. (3.7)--the time development of the coherent motioﬁ.
Clearly the'motion is ungtable if the imaginary part of v is negative,
stable if the iﬁaéinaryvpart is positive, |

‘ The case of bunches with no spread in betatfon frequeﬁcies, and
hence no Landau damping, is éimpleat to cohaider; Froﬁ Eq. (5.18), with

v the common betatron tune,

0
2 2 S : |
Mo 7% ‘
and hence
A
V [ VO - » (,‘-2)
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_svince v ;nﬁst have the sign of v, . Thus the motion is unstable if

and only if ImA > O . - Do o -
- With Landau damping included, the motion is always stable if the

ImA < O ; with ImA > O the motion can still be stable; with the

v Btabiiity depending upoﬁ the Re A and the distribution functién f(vs) .

This‘p01nt is discussed at some length in'LNs, and all the analyéis

given there is épplicable hefe. The new feature, of this paper, is the

expression for N in térms of the properties of the acéelerator<aggi

fhe nature. of the'pnrticlé beam. Wé éhall concentfate upon this aégect

_of theAproblem, treéting a number of different cases.‘

A. One Bunch

For one bunch of N particles Eq. (3.20) becomes
R Nur +w G ). . (4.3)

_ xhaefting‘qu (4.3) into Eq. (h.l)-;corresponding—to no Landau damping--

ana'ﬁsing Egs. (3.22), (3.25), and (3.2&)‘y1e1ds:7

e
V02 - N 5 e . W [Bn ( 2nR )+ 6(2n,v) - %%_7( E%ﬁ
‘ : my7 W, L Eanoi 5 L |

if we drop the terms which are purely real--as the& vonft affect the

stability anaiysis_(to lowest order)--and employ Eq. (3.3), we have

_ 2.2 Bn% L 3 ]
: LNe“B {c(ar V) - (=) v1! -
v2 .42 . ! 15 2ﬂR) L (h.h)

o S ("(&)5 55 y moRi m02 21'%
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)

vhere ‘.W = hnpo/c . Compare this result with Eq. (2.5), which was
derived employing wake fields. It agrees with the simple gnaiysig
ekcept for the addition of the local-field term:{which had its source 
in '0(9 v) for 0 <6 << 2x). For a short bunch the local field is

nebligible compared to the residual field from previous turns, and the

analysis of Section IT is valid: The motion is stabl

fif and only 1f v
1ies above an integer; namely I <v<IH+ % , for any 1nteger I. ‘

{(Derivation of this result and further discustion may.pe found in

Section II, following Eq. (2.6).]

In the more general‘caSe, where local fields:qre‘importantjjohe

‘can employ Eq. (4.4). If Landau damping is to pe“¢onsigered also, then

one must resort to Eqs. (4.3) and (3.18).
It is interesting to consider the case qf é-iéfy'large accelérator
~--that is, a pariicie moving down a long straight fesis?ive piﬁe,' Is 
it stable or unstable with respect to transverse osc}ll@tions? To
study this case, we take the 1limit of Eq. (4.h) aé Rt*}oﬁ. Introducing

in place of v‘,'the distance, that the particle travels durihg

xﬁ,
one'trgnsversé Qscillationvperiod'[durétion (\lt-po)f1 j , we observe that
v = R/)s6 - 0. Consequently the local-field tefm\in Eq. (4.4) dominéte89
G(Qﬁ,v) --in agreement with Eq. (A9) of the Appéndix vhich sh@wa fhgtn
G(2n,v) consists only of contributions from previoué turns. The.
remaining term yields Im v > O , and hence the-mot19n 1s stdble:%o We
may readily pursue the problem further énd compuée fhg damping rate, |

which is a factor of expl-(Im v)vo'll in each transverse oscillation
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 period. From Eq. (4.4), the damping factor per period, f , is:

. [ AR SN -
-8N To™p L '
f = exp ] ) (4.5)
- 15% ¥ b3’,/ (2({/ ’ . .
where L ="é2/m0c2 is the classical particle radius, the bunch of

length L has R particles andrtravels dowvn a resistive tube of

radius b vhile oacillating with tfansverse-wave length ikﬁ « The
- quantity 63_1 1s a skin depth, and Eq. (4.5) is valid for

kB S>L>> b > @,'1 .

B. Many Nonequal Bunches

If the number of particles, Nn , in thg varioué_bunches are
unéqual, then the set of equations for the Qn'[Eq. (3.20)] has non- )
_degenerate eigenvalues in the limif that W' - O . In this case, and
for small W' , fhe eigenvaluée, k(n) ; are given to first order in

W' only by the diagonal terms of the matrix:
‘ - .'b L} 4 P ) e 00 . - ) . .
"(n) = Nn[U +W Gnn], n=1, M. (h.6)

) The‘ M veigenvalues of Eq. (4.6) are the same as one would obtain for

M 1independent bunches. Just as for one bunch, for many bunches we are

»  assuredvof stability if Im A < O ; that can 5e accomplished by choosing

I < v<I+ % , for any integer f . | |
Therresult obtained is easily understood since for bunches of

unequal number Nn" the natural frequency of eaéh bunch»ialdifferent

from that of any‘ofher bunch. Thus most of the influence of one bunch

.
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on ancther averages out . to a large extent (to be precise, it is removedi
from ftret order), and hence the bunch notien is dominated by the | |
:'influence of one bunch upon itself. The natural'frequencies of the
bunches are almost equal however, since the frequency difference is

due only to the effect of image terms. Quantitatively, the bunches
will act 1ndependent]y when the interbunch contribution to the coberent-
frequency 18 small compared with the difference ln bunch frequency

| ‘For all m and n, In_ W Gmnl << ‘(Nn - Nm)|U'| . Since We .
1nvolves the resistivity and U' does not, U' is often much 1arger
than W' and this condition is satisfied with only modest differences
in the bunch numbers. In the extreme relativistic 1limit, however, u!
- vanishes since the electric and magnetic images tend to cancel;
Dielectricvloading and otber similar devices can be ueed‘to keep

ur > IW', as has been discussed in the literature;l1 for a emocth _
vacuum tank. the criterion for. 1ndependent bunch motion 1is, lfrom |
Bas. (3. 25), (3.24), (3.3), and (A9) (taking a = b/2),

N 2 b [ 1 | | .

"where N ie the number of particles in one of the M bunches--each
of length [ --and ON 1is the required difference 1n number between
bunches. More generally, the requirement on ON for independent

bunch motion is:

»> (@ 1l o (w8)
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‘ In the case of independent bunch motion, and when v 1s below
an 1nteger, the motion is unstable except for lLandau damping. The
extensive discussion of LNS may now be applted vith k( ) given by
Eq. (4.6): For |Ju'] > ]w'Gnnl the threshold particle 1ntensity
for an instability is approximately proportional to U' and almoet'
independent of W' . From Eq. (3.24) 1t is seen that the threshold
-1ntensity depends upon the tightnese of bunching (U' a L-lV] s
whereas from Eq. (3.23) it is seen thaf the growth rate (when above,

threshold) 18 independent of the degree of bunching.

C. Egpally Spaced Bunches of Equal Intensity

. In some circumstances--usueily for beams of extremely
relativistic particles--the 1nequalit1ee for independent bunch motion
are strongly violated. It is then pcssib]e that a different approximation
necomes.valid; namely, that all the bunches are sensibly eqpal in
intensity. The case of equally spaced bunchee of equal 1ntensity:is
one forvwhich the solution of Eq;:(3.20) is immediate. |

Taking Nﬁ = N, and 6 = 2x m/ha;bwe observe that Eq. (3.20)
vcan be written in the form ;

(NU' + NW'G__ - A]Q + N /\) G Q = 0, (4.9)

n

vhere G_. = (;<;FT (m-n),;> and G 1s (from Eq. (3.22)] independent

of n . Relabelling the sum, we obtain
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3!

T

o / 2nr ™
(NUr + W00G, - AIQ + W O(FF »¥)Qur = 00

(4.10)

_ Zr

4n which all the coefficients are independent of n . The matrix is

cyclic and the solution well<known. In particular, lét

-2xmi /M

8(m) ~ e (4.11)

-‘be ihe Eﬁh of the M roots of unity. Then clearly an mth édlﬁtion;of

the set of equations is

%mh =.%m? , _(me

with associated eigenvalue:

M=1 o o
_ »x(m) = NU' + Nw'c;nn + WW! ) G <%5 ’ v> a(m’)' o (4.13)
=1 o :

i

' This may be written, from Eq. (3.22), in the form:

) ' 811% L é ' R 2nr > -atmri/M'
My = MW ()T vieme ) G<T"’-e- ‘
r=1 S '

(4.1k)

By Eq. (A18) of the Appendix, the M eigéhvalues are

gy = W'+ M£G<a,ﬂ,-?’-) -?—;—- (-e—i'ﬁ)vil‘ . |
| | (b.15)
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If we ignore the self-field term then, by Eq. (AS), ‘the‘_'

. imaginary part is positive wﬁen (v + m)/M lies between an 1n£eger
and the next lower half-integer, aﬁd negative in the dther.half-.

v 1nterv§i. Therefore; if M 1is even, half the eigenvalues have
positiﬁe and_half have hegativé imaginary parts; if M is odd, one
‘more has a positivevimaginary part than a negative oﬁe (Qr viée versa).
. The oniy case yhere there i8 no eigenvalue with a pdsitive imaginary
part occurs when there is only one bunch and v 1lies 1n.the:prope§1

range.

The self-field term 1is stabilizing, of course, and could improve
the situatibn, but it appears ﬁnlikely that machine parameters would be
spch as to have this term important. Also, finally, Landau damping can

make some (or all) of the modes with Im A > 0 stable.

D. - Numerical Calculations

A cdhputer program has beeﬁ prepared which obtaiﬁs the eigen-
values and eigenvectors of qu._(s.éo) [with the second term in
Eq; (3;22) omitted] for given values of the ratio H'/U' and given
distributions of bunch populations Nn ; and for uniform spacing of the
bunches. As is expected, it is found that if W' << AN/N ‘and |
W'/U‘ >> AN/N, respeétively, the results behﬁve as described in
Secs. IV.B and IV.C. | |

In the’;ntermedidte case, for M= 12 bﬁnches and v = 8.85

(corresponding to the Brookhaven AGS), the real parts of the normalized -
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eigenvalues are plotted as functions of H'/U’ in Fig. 1,Vfor the case
that the relative bunch populations vary in steps of 10-3 from 1.000 to

0.989. The largest value of W'AI' for which all modes have positive

i

-1 ‘ .
imaginary parts 1is 1.5. 10 ', which just about corresponds to

replaéing the inequality in Eq. (4.8) with an equality. For W'

four times as lafge, or larger, six.modes have negative imaginary parts,

as in thé_iimit vhere all bunches are equally'populated.

" Note that, for W'/U' greater than the "threshold" value

: - , -
(1.5 ~ 107" in this case), the real part of the highest eigenvalue

increases rapidly with W'AI' while the lower ones change much less.

Examination of the corresponding eigenvectors discloses that this mode

1is a'"collective" mode in which all bunches participate:in the motion,

‘with relative phases corresponding to that 1ntegfal wave number which

lies closest to v (in this case, 9). In all the other modes some of

the bunches participate far less than others, espeéidlly for relatively

. . |
small W'/U'. For example, with W'Ai' =5 x 107" , the amplitudes of

oscillations of the various bunches vary from ;,0 to 0.58 1in the

"collective” mode, from 1.0 to 0.068 in the next highest mode; and

from 1.0 to 1.3 x 10-5 in the mode whosge eigenvalue has the smallest

‘Teal part.

A more detailed study of these regularities lies beyond the

scope‘of the present paper and will have to be left to future investiga-

 tions.

-
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E. Unequal §pac1ng

For the case where the bunches are not equally spaced, we have :
not succeeded in deriving any general theorem about the behavior of
the solutions. Numerical studies show that with just two equal1y
populated bunches there is always one stable and one unstable mode,
‘no matter how close the tvo bunches are; when two of many bunches have
the same population there is a]ways at least one stable and one unstable
mode. When there are just two bunches this property can be shown to-

be equivalent to the statement that
| tno(2e,v)| < Jim (o(8,v) clen - 8, WIF |,

a relation which can'be inferred for small 6 from the approximations

(A12) and (A13), but which we have not yet demonstrated for all © .
This result indicates that, with bunches of finite 1ength

there will always be unstable modes corresponding tq relative motion

within.a”bﬁnch; ﬁe beiieve, hovever? that these modes will, in pfacpice,

be stabilized by landeau dampiﬁg, as stated in tﬁe Introduction.

N R AR,
L

AR,
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APPENDIX

In this Appendix we analyze the Bunch Function G(@,v), which

is defined by:

@  -iv(e+ark)
. e )

c(e,v) = ané ) — : _ (A1)

. -0 (e.+ 2rk) -
where k ranges over nonnegative integers, V¥ vis nonintegral, ‘and
0<®e<or. Outéide this range of © , 'd(e,v) is defined by the
periodic continuation of Eq. (A1). There is evidentiy no diffiéulty‘in
passing to the 1imit @ - 2x , and wve define G(e;v) by Eq. (A1) also |
for @ =21 . |

1. Alternative representations.

Because of the general formula for the GCaussian integral

3

) (Rea >0),  (A2)

f.e'ay-d’é-é (Z
0 Vy , ¢

 we may rewrite Eq. (Al) in the form

, - - -(y+iv)(e+2nk) 3 !
6(e,v) = 2 'élo e . dy/y® . ~ (A3)
= 0 ’ '

Interchanging summation and integration, we have a convenient 1n£egral

representation:

c(e,v) - 2 u[' e ST %% , 0<e g2t . (Ah)

o

[
R |

4]
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The:sign of the imaginary part of fhe Bunch Function plays a
| éruc'ial role 1n.sbtab111ty analysis. From Eq. (AbL) 1t is clear thaf,
fqr--e‘; on , | V
' : ° . dy -2ﬂy o N
Im G(2n,v) = -2 sin 2nv j( A e' e , (As)
. 0 %'ll _ve-en(y+iv)|? o

Yy

and from the posiiive definite character of the integrand, the
Im G(2r,v) 1is negative for I < v <I+4 and positive for I - 3 <v < I
for any integer I . Since G 1is, by definition, periodic, it may be

expanded in a Fourier series

- T .
G(O,V) = ) 8“ e-ine y
n=-% . -
with _
on o ‘ : .
: 1 in® ' »
By T B [ G(e,v) e~ d® . | (A6) |

0

Using Eq. (Al) we find

P ' dy
L J [y + (v - n)ly?
a

. T o 2° 4 1(v - n)

(Equation AT continued)
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% (1/(n - v)]é n>v

- ! (A7)
4

n<y

{ -1/{v - n)]

\

with the sign of the root chosen so as to make the real part of 8,

positive in all cases.

Therefore. an alternate form for G 1is

K. o} . 'wé
o(e,v) = ) (n e I | (A8)
némdo ) ' \

~with the sign of (i/n - v)ﬁ chosen so that its real part 18 positive.

. 2., Summation formulas and approximations.

For computational purposes it is convenient to compute the sum
(A1) over a finite number of terms and to estimate the remainder. We
- need 6n1y carry out the procedure leading to Eq. (AL) with the sum

from k = M to oo converted to an integral:

3 Qi"’l‘ -e-iv(e+2m)

G(e,v) = 2«

m= (e + Errm]é
® , v
' ~(6+2nM)(y+1v)
dy e
+ 2 l 3 o (yo1v) . (A9)
y (1 -e ]_

For largevrM , the integral in Eq. (A9) becomes Very small and

may be approximated by an asymptotic formula. Writing
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\
o 2n(y+iv] TSI iic’ = T { ’
| | B (A10)

we can easily'generate'su¢h a formula. In particular, the first two

 _ terms yield
o ® 'dy e-(Oe2xM)(y4ty) o o(es2mM)iy
1 o y%'ll _ e-ax(y+1v) 1 .‘(1_-'e'2"1?)(e ;‘2“M)§ -
x [ . ™ e v » J
(- e‘2“4”>(e + 2nM)
~(A11)

From Eq. (A9) we can readily obtain limiting values of the

" Bunch Function. Thus for 0 <©® < 2n ,

-vo 3 TR -1v(esem) N

_ . :
g(e,v) = 2n T + 2x ,

and for @ << 2r we can neglect © in the sum to obtain

. G(e,v) = 2(«/’9)é e Ve 4 G(2n,v), fof/.e,<< 2n .- (A12)

For 8 <0, G(-lel,v) = c(2r - |e],v), and since G(8,v) varies

‘elowly for 6 =+ 2x , ve have:
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o(-lel,v) ~ olee,v), e << mx.  (a13)

Numerical value312

of 6(8,v) , obtained émploying Eq. (A9),
are displayed in Figs. 2 and 3. Values of the Bunch Function outside

the range displayed can be obtained from the relation

G(® + 2xm,v + n) = e~ 1@ G(e,v) , | : (A1h)

valid for all integers m and n , which follovs immediately from the

definition of G(®,v) [see Eq. (A8)].

. 3, Addition theorem.,

We wish to évaluaté the sum S defined as

W =
s - ) e En Ly, (n15)
» ! | |

.'vhere m,r, and M are integers. Employing the representatioh of
- Eq. (Ah), andvinterchanging the finite summation and the integration

yields

"

dy e-?n[(m#v)1+y]r/M ;

5=% | T e-zn(y+1v7j

0 Y

o

(A16)

The sunmation is immediate and ylelds

AT W e s st el A A‘ o T




. w0
0

" Since exp(-2nm) =

m "

- UCRL-16751

ay e-a:[(ﬁ;w)ﬂy]/M [1 _é-?ﬂ[(mW)if}']}

-yi,ll - é'?"(y“")] [1 - e?En[(m+v)i+y]/M.]

(ALT)
1 , ve have--after repiacing yM with y-a

;__1 -2«(§+(m+v)1/t4]
dy ‘e ' :

- — e , "A18 |
4 e-2n[5+(mw)1/m } ( - )

yhich; on comparison with Eq. (Al4), ylelds S =-Mi G(2r, %y- ) -



UCRL~-16751
-;O“

FOOTNOTES AND REFERENCES

L. J. laslett, V. K. Neil, and A. M. Sessler, Rev. Sci. Instr. 26,

W36 (1965).

E. D. Courant, Proceedings of the Particle Accelerator Conference, -

Washington, D. C., March 10-12, 1965, IEFE Trans. Nucl. Sci.

N5-12 (3], p. 590.

E. D. Courant and A. M. Sessler, in Storage Ring Summer Study, 1965,

on'Instabilities in Stored Particle Beams, a'Summary Report, SIAC-h9,

Aug. 1965, p. 36.

‘A: M. Sessler, Instabilities of Relativistic Particle Beams, lawrence

Radiation Laboratory Report UCRL-164k0, Oct. 1965 (unpublished).

Submitted for publication to the Proceedings of the International

Conference on High Energy Accelerators, Frascati, 1966.

N. S. Dekonskij and A. N. Skrinski, Coherent Instability of Bunches
of Charged’Pafticles, Institute of Nuclear Physics Report, |
Novosibirsk, USSR, 1965 (unpublished).

K. W. Robinson, in SIAC-49, Aug. 1965 (see Ref. 3), p. 32.

L. J. Laélett'and A. M. Sessler, in SIAC-49, Aug. 1965 (see Ref.'j),

p. 23.

‘P. L. Morton, V. K. Neil, and A. M. Sessler, Wake Fields of a Pulse

of Charge Moving in a Highly Conducting Pipe of Circular Cross

- Section, lawrence Radiation laboratory Report UCRL-16Th0, Feb. 1966

(unpublished). To be published in J. Appl. Phys.




UCRL-lGle‘

-31-

. . ‘; v 9.‘ ih the limiting process we must ohoerve the condition VL/2qrR << l
' requlredrto obtain Eq; (}.19). This condition is satiofied if

I, < Exka . o

10, The.resultvfor rootilipear‘motion has been obtained in a somewhat
roundobout manner; the rooder may volcome the folldwing more
1 straightforward argument. For a single partiole in a straight
pipe the Bunch Funotion, as defined by Eq. (3. 9), becomes modified
in an-obvious way; namely, the periodic delto function of Eq. (5.7)

is replaced with an ordinary delta function with the result‘that

[see Eq. (AS)]

o | [ % _ike
. . 1 -
G(G»,_v.) - Ge.p._(e,v) s dl( ( Ty ,

-00

‘The Straight Pipe Bunch Function may readily be evaluated by contour '

,integration with the result

1 ~

Gsp(erv)_ =

o R @ < 0.

This is seen to be exactly the same as the m=0 term in Eq. (A9),

4

dynamical analysis will conseqpently lead 'to a result analogous to

F'q. (u u), but' with the term G(2x,v) absent.

The argument just given is not, however, immune to criticism:

ﬁeintegration_over k there is a range where k 18 near K" and

In
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one of the criteria for valid field expressions, namely w >> ce/hgq,

is not satisfied. One can answer the criticism by replacing the

field expressions of Eq. {(3.3) with more generally valid expressions,

given in'Reff 8, and then evaluatiﬁg Gap(é,v) ; This 18 a very
tedious calculation--which has not.been performed--but, because
the range of invalidity of Eq. (3.3) is exceedingly narrow one
expeé@g'Only very small corrections to Gsp<8,v).

Note that the derivation given in the body of the paper is

~not subject to criticism, since for any large {but not fantastically
~large) R , the sum employed in the definition of G(8,v) completely

~avoids contributions from the small region where the skin depth

exceedé the vacuum chamber wall thickness.

A. M. Sessler, in SIAC-49, Aug. 1965 (see Ref. 3), p. 8.

M. Allen, M. lee, and J. Rees, in SIAC-U49, Aug. 1965 (see Ref. 3),

p. 49. We wish to thank these authors for supplying us with the

numerical results presented here.
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FIGURE CAPTIONS

ﬁeal pafts of the eigenvalues of the matrix-defihed by Eq. (3.20)w
as a function of W'A' for M= 12”bunchea, ‘v = 8.85, and :
5unch populations ranging from 1.00 to 0.989 in steps of 0.00l.
The dots are cases in vhich the 1mag1nary part of the'eigenvalueé
ére positi§é; crosses correspond to negative 1maginary pérts.
Values of the real part of the Bunch Function G(e,v) for

0<6 <2t and v - 0.1, 0.9 (0.2). The function 1s def‘ine&
by Eq. (Al).  (See Fig.2a and Fig. 2b) |

Values of the imaginary part of the Buﬁch Function G(e,v) for

0<e<2r and v =0.1, 0.9 (0.2). The function is defined

by Eq. (Al).  (See Fig. 3a and Fig. 3b)
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