
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Retrieving Structured Items via Utility Estimation

Permalink
https://escholarship.org/uc/item/70t4p4n6

Author
Wolfe, Shawn Robert

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/70t4p4n6
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

RETRIEVING STRUCTURED ITEMS VIA UTILITY
ESTIMATION

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Shawn R. Wolfe

December 2018

The Dissertation of Shawn R. Wolfe
is approved:

Professor Yi Zhang, Chair

Professor Lise Getoor

Richard M. Keller, Ph.D.

Lori Kletzer
Vice Provost and Dean of Graduate Studies

Copyright © by

Shawn R. Wolfe

2018

Table of Contents

List of Figures v

List of Tables vi

Abstract viii

Dedication x

Acknowledgments xi

1 Introduction 1
1.1 Shortcomings of the Boolean Approach 4
1.2 The Goal of Utility Estimation for Item Retrieval 5
1.3 Contributions of the Dissertation 6
1.4 Outline of the Dissertation . 8

2 Background 10
2.1 Multi-criteria Decision Making . 10

2.1.1 Principles . 11
2.1.2 Ranking Models . 13

2.2 Behavioral Economics and Mathematical Psychology 18
2.3 Multiple Criteria Approaches to Information Retrieval 19
2.4 Search Methods for Items . 21
2.5 Metrics and Statistical Significance 22

3 Leveraging Multiple Criteria in Item Retrieval 27
3.1 Leveraging Criteria in Retrieval Problems 27

3.1.1 Multi-Criteria Based Ranking Methods 29
3.1.2 Retrieval Domains and Criteria 33
3.1.3 Evaluation of Multi-Criteria Methods 35

3.2 Translating Queries to Criteria Ratings 36
3.2.1 A Unifying Relevance Model 36

iii

3.2.2 Experimental Design . 40
3.2.3 Results . 56
3.2.4 Summary and Contributions 60

4 Learning Subutility Functions 63
4.1 Criteria Subutility in Recommendation 63

4.1.1 Datasets . 64
4.1.2 Approach . 66
4.1.3 Linear Model . 66
4.1.4 Nonlinear Model . 67
4.1.5 Results . 70

4.2 Incorporating Nonlinear Subutility into Query-based Retrieval . . 72
4.2.1 Towards a model of subutility 73
4.2.2 Learning . 76
4.2.3 Experiment . 79
4.2.4 Results . 88
4.2.5 Summary and Contributions 91

5 Extending the Retrieval Model 95
5.1 Extending to an Active Search Engine 95

5.1.1 The Exoplanet Orbital Database 96
5.1.2 Characterizing the EOD and its Use 99
5.1.3 Expanding to Other Attribute Types 101
5.1.4 Results . 104

5.2 Moving Beyond Structured Search Interfaces 115
5.2.1 Search Interface and Data Used 116
5.2.2 Handling Imprecise Constraints 118
5.2.3 Results . 121
5.2.4 Summary and Contributions 123

6 Conclusion and Future Work 126
6.1 Contributions . 126

6.1.1 Contributions to Items Retrieval 126
6.1.2 Contributions Beyond Item Retrieval 127

6.2 Opportunities for Future Research 128
6.2.1 Improving the Core Framework 128
6.2.2 Extending the Framework 130

Bibliography 133

iv

List of Figures

3.1 Commercial Website (top) versus User Study Interface (bottom) . 41
3.2 Query Interface for SortedBoolean 42
3.3 Query Interface for Lexical . 43
3.4 Query Interface for SimpleMAUT 45
3.5 Query Interface for Tradeoff . 46

4.1 Hierarchical Bayesian model of AdaptiveMAUT 77
4.2 Log Likelihood . 77
4.3 SortedBoolean search interface. 80
4.4 Faceted search interface. 81
4.5 Point-based search interface. 81
4.6 Example Scenario for Meal Plan Study 85

5.1 exoplanets.org Front Page Excerpt. 97
5.2 Form-based EOD Search Engine. 97

v

List of Tables

3.1 Scenarios in the ticketing experiment. 34
3.2 MCDM Algorithms Results . 35
3.3 MAP of Live Models . 55
3.4 Community-evaluated MAP . 55
3.5 Community-evaluated MAP, comparing user weights 55
3.6 MAP: Constrained Scenarios . 57
3.7 Tickets Eliminated by Subject’s Restrictions 57
3.8 MAP and MRR, Optimized . 58
3.9 Queries and Pages Viewed . 59
3.10 Review Time and Qualitative Ratings 59

4.1 Mean Squared Error for Global Model 70
4.2 Mean Squared Error for Personal Model 70
4.3 Community-evaluated Induced MAP 89
4.4 Searcher Success by Search Engine 89
4.5 Head-to-Head . 90
4.6 Turker Behavior . 90

5.1 Attribute Types . 99
5.2 Top 10 Queried Attributes . 101
5.3 All Queries: MAP . 110
5.4 All Differing Queries: MAP . 110
5.5 Single Attribute Queries: MAP 111

vi

5.6 Differing Single Attribute Queries: MAP 111
5.7 Multiple Attribute Queries: MAP 112
5.8 Differing Multiple Attribute Queries: MAP 113
5.9 Queries using Numeric Attributes: MAP 113
5.10 Differing Queries using Numeric Attributes: MAP 114
5.11 Queries not using Numeric Attributes: MAP 114
5.12 Differing Queries not using Numeric Attributes: MAP 115
5.13 Constraint Category Co-occurence on Initial Queries 119
5.14 Community MAP . 122

vii

Abstract

Retrieving Structured Items via Utility Estimation

by

Shawn R. Wolfe

Searching for items by their attribute values or metadata is a commonplace

task in e-commerce and science today, for instance, when searching for a product

by its technical specifications. Finding a desirable item in such a catalog requires

that the user specify desirable properties, specifically desirable attribute values.

Current search tools support a retrieval style similar to a database, requiring users

to place hard constraints on acceptable attribute values to limit the result set, as

in Boolean or faceted search. Boolean retrieval often yields no results or too

many. Faceted search usually avoids empty result sets, but the facets are often

pre-computed and may not match the user’s intent well.

In contrast, modern information retrieval systems have largely abandoned

constraint-based retrieval models for those that estimate relevance to the latent

user need. Such systems can avoid the problems of constraint-based search, such

as empty results sets, by instead ranking by estimated relevance. They also shift

the user’s mental model from how to retrieve desired results, to simply what results

are desired. Such information retrieval techniques have been successfully applied

to a wide range of retrieval problems, but not to item retrieval, particularly given

numeric attribute values.

This dissertation develops a model of relevance for item retrieval based in part

from concepts in multi-attribute decision making theory. We cast the problem as

that of utility estimation, and in contrast to the Boolean and faceted approaches,

our approach does not use constraints. First, we develop a core model based

viii

on multi-attribute utility theory that trades off among conflicting criteria on the

user’s behalf, and in this way get closer to the underlying query intent. Second,

we develop a flexible model of subutility for numeric attributes, using a Bayesian

graphical model to learn the specific subutility functions. Finally, we expand

our subutility model to handle other types of attributes and to interpret vague

natural language queries. We evaluate our model on several item recommender

and retrieval datasets, as well as two user studies, and compare its performance

to the de facto standard of Boolean retrieval as well as several models proposed

in the literature.

ix

To Christina

x

Acknowledgments

First of all, I would like to thank my advisor, Yi Zhang. Her research and

guidance inspired me to come up with this topic and it would not have come to

be had it not been for her. Whenever the research seemed to stall and I was

grasping for ideas, she was always quick to suggest a completely new direction.

This journey took a lot longer than either of us had expected, but she showed

limitless patience and endless encouragement.

I would also like to thank my other committee members, Rich Keller, Lise

Getoor, as well as Neoklis “Alkis” Polyzotis and Manfred Warmuth. Like my

advisor, their suggestions helped me improve the research as they brought ideas

from their areas of expertise. I would like to thank Rich for his always steadfast

support, bringing a fresh perspective to the research and always encouraging me to

step outside my comfort zone. Likewise, I really appreciate Lise’s encouragement

and suggestions, and flexibility despite challenging circumstances and timeframe.

I am also grateful to Alkis for directing me to important database research and

answering my implementation questions, and for Manfred teaching me many of

the theories and approaches to machine learning.

I am also grateful to have met other students at the Information Retrieval

and Knowledge Management (IRKM) Lab, Sarah Tyler, Aaron Michelony, Lanbo

Zhang, Jian Wang, Qi Zhao, Yize Li, Jessica Gronski and Jonathan Koren. As a

returning and part-time student, it was easy to feel out of place, but they welcomed

me and made me feel part of the group. It was easier to face the challenges of

graduate school together, and I enjoyed being able to discuss the technical and

the not-so-technical with my lab-mates.

I am also indebted to Jason Wright of Penn State for allowing me to set up my

search engine to search his exoplanet data. Picking a topic that had no relevant

xi

test collections was a major obstacle, and gathering data was the bulk of the work.

The exoplanet web site was a perfect venue to finally test my ideas. I am grateful

to Y. Katherina Feng as well, who helped connect me to Jason and encouraged me

in my research. I also would like to thank my employer, NASA, who supported

me through this journey both financially and professionally.

Even before I embarked on this endeavor, I am indebted to my parents, Jim

and Susie, who raised me from a baby. They always believed in me and gave me

what I needed to succeed without ever really asking for anything in return. They

gave me a firm foundation and encouraged me to be whatever I wanted to be.

Most of all, I have the deepest gratitude to my wife, Christina. Her love and

unwavering support gave me the fuel to keep going. The joy of the much-too-few

moments we spent together during this time were sparks of light in the darkest

moments. The remainder is too sappy for this dissertation, so I conclude by

dedicating this dissertation to you, Christina.

xii

Chapter 1

Introduction

Techniques for the retrieval of items (often thought of as records or data) and

information (primarily text) have been developed independently over the years,

with little overlap. Automated information retrieval was envisioned as early as

1948 by Vannevar Bush [17], with the earliest systems using a Boolean retrieval

paradigm. The Boolean paradigm gave way to other classic models, such as the

vector space and probabilistic models, as they were able to accommodate partial

matches to queries [8]. Today, the Boolean paradigm has largely fallen by the

wayside in information retrieval, used in only a few specialized area where recall

is essential [50], for instance in systematic medical reviews [69].

In contrast, when searching for items by attribute values, the retrieval systems

in use at the time of writing adhere to the Boolean framework. These systems

operate by placing conditions on the attributes of the matching items, coming in

two varieties: a faceted search/navigation interface, or a database-like querying

approach. In either case, the user provides an explicit specification on how to

find desired items: defining the results set by including or excluding items by

specific attribute values, and/or an explicit sort order. In contrast to information

retrieval, this explicit form of retrieval is more like that in a database, and is best

1

suited to the user who can clearly articulate the user need (i.e., what is sought)

and provide clear specification of what should be returned.

Why are item and information retrieval treated so differently? Weikum [80]

points to historical precedence, where item retrieval is assumed to best match a

database-like approach. Databases have been used to retrieve data that is pri-

marily numeric or categorical; information retrieval systems mostly retrieve doc-

uments of unstructured text. Database researchers find efficient ways to retrieve

data given precise query semantics; information retrieval researchers seek to max-

imize the relevancy of results given uncertain user needs. As Fuhr pointed out in

his Salton award lecture1, this division is not illogical: the goal of an information

retrieval system is to support the user in their task or problem solving, whereas a

database is intended for precise logic-based retrieval (e.g. in a computer program),

with any ambiguity or uncertainty falling outside the scope of the database, to

the application layer [34].

Are user needs best served by the Boolean model when retrieving items that

are not unstructured text? Recently researchers have begun to challenge this sta-

tus quo. Information retrieval has branched out into structured domains, most

notably the retrieval of XML documents or fragments [45]. Information retrieval

has also been applied to non-textual domains, as in music information retrieval

[19], content-based image retrieval [24], and other forms of multimedia retrieval.

Database researchers, for their part, have noticed the increasing prevalence of

substantial text within their structured holdings and have advocated for leverag-

ing information retrieval techniques [80] and integration into the database query

framework [22].

Nonetheless, when it comes to records, i.e., structured items that are defined by
1The Salton award is a prestigious lifetime award for information retrieval researchers, named

after Gerald Salton, who made seminal contributions in the early development of information
retrieval.

2

their attributes, the presumption of a database-like approach for retrieval remains

persistent. Databases are meant to provide speedy access to structured items,

and are often used programmatically. Therefore, database researchers tend to

think in terms of logical semantics and efficiency of retrieval. In the database

paradigm, the caller should have an understanding of the layout of the database,

a precise and unambiguous definition of what information is desired, and the

sophistication to correctly state this in the query language. This contrasts with

information retrieval researchers who tend to think in terms of vague user needs

and estimations of relevance to that need.

Human users also often need to search for items by their attribute, though,

and their needs are not always satisfied through this rigid form of retrieval. We

illustrate some of the difficulties through a extended hypothetical example:

Muhammad is struggling in his probability and statistics class. His
calculus is rusty and wasn’t very good in the first place, so he wants
a reference that he can brush up on it in the evenings. He would
like a book that is cheap, not too long, and has a high rating with
a good number of reviews (so he can trust the rating). He searches
online at a popular retail site using “calculus” as the sole keyword
and gets over 30,000 matches. Overwhelmed, he modifies the query
to restrict price < 25, review = 5 and gets no results. He relaxes
his query restrictions to review ≥ 4 and gets almost 2000 books. The
books that come up on the first page are a mishmash of various topics,
studying for the Advanced Placement (AP) exam, physics applications
of calculus, and books that look far too advanced. He tries sorting this
list by price, but the books that are listed first are basic calculus books
that don’t look to be much help. He continues to tweaking his query,
alternating between too many results and none, and repeating this
process until frustration sets in. As it turns out, there was a book
“Understanding Calculus” that nearly matched his criteria, only five
dollars more expensive than his stated limit and with somewhat fewer
reviews than he had desired. Muhammad never found that book, and
instead ended up buying the cheapest one, which was a translation
from a Russian text. That book isn’t very helpful and he ends up
failing the class.

3

1.1 Shortcomings of the Boolean Approach

We consider a general situation that at first might appear best suited for the

database paradigm: a large collection of structured items with primarily numeric

attributes. We assume that the user does understand the structure of these items

and is able to at least approximate the need using the query language of the

database system. However, we assume that the user has no knowledge of the

specific items in the database. Moreover, we assume that the user’s need is such

that it cannot be precisely specified- either there is some element that cannot be

expressed in the language (but can be evaluated through manual inspection), or

many items fit the need, but some satisfy it more than others.

For such a user need, we identify several ways a Boolean “all-or-nothing” query

approach can fail to give good results.

• Too few results. If the user specifies an overly specific specification of

the user need, no items might match that query, even in a large dataset.

Even if some results are returned, it maybe that the user has listed some

constraints but not others, and so the “best” match may violate one of the

listed constraints and thus be missing from the result set.

• Too many results. On the other hand, if the user specifies a broader

version of the need, perhaps after being frustrated by the above case, the

number of results returned may be overwhelming. The “best” match may

indeed be in the result set, but finding it in the list can amount to finding a

needle in a haystack. In the pathological worst case, the broad query returns

all results, and the query engine has failed to add any value.

• Unranked results. Even if the user has specified the query in the best

possible terms, including all desired results in the result set and excluding

4

as many as possible, the result set remains unranked. For large data sets

or user needs that are not specified precisely, this may very well be a large

list. Of course, in most database retrieval systems it is possible to order

the list by a user-specified function. However, this makes another strong

demand of the user– that the user have a precise understanding of how to

rank results according to the need and the ability and patience to describe

it in a formula.

The issues all stem from the basic design of the retrieval algorithm in a Boolean

query system, namely that the user must explicitly provide a definition of rele-

vance. In contrast, modern information retrieval systems allow use an implicit

paradigm, where the user provides some description of the need, and the system

infers what is relevant. Of course, when searching for items, there may be some

situations when an explicit retrieval model is best suited, just as the Boolean

paradigm remains in use for certain specialized information retrieval tasks. The

assumption that explicit retrieval methods are appropriate for all or most item

retrieval tasks, however, is not warranted.

1.2 The Goal of Utility Estimation for Item Re-

trieval

In contrast to Boolean retrieval in the example above, the information retrieval

community has developed various retrieval models, such as vector space models,

language models, and inference networks. These retrieval systems have moved

away from a Boolean database paradigm to a non-Boolean direction, which does

not assume a user can issue an accurate, explicit query, and thus tries to infer

the information needs or intention of the user. As demonstrated in information

5

retrieval research, these information retrieval systems usually work better than

Boolean retrieval systems in typical information retrieval tasks, particularly in

text retrieval systems.

This leads to our our main hypothesis, which we will test in this dissertation:

an item retrieval system that estimates relevance to the user’s need can offer better

performance than one that relies on explicit query semantics. The overarching goal

of this dissertation is to test this hypothesis by developing such an item retrieval

framework. The first challenge is develop a basic retrieval model, which defines

what form the query may take and how to relate this to items in the corpus.

We choose to use utility estimation as our approach, using a query consisting of

desired attribute values as reference points of maximal utility. We use principals

from multi-criteria decision making to combine these multiple criteria into a single

utility estimate per item, and use these estimates to produce a ranking of results.

The second challenge is to develop a model of how the item’s attribute values

translate into the criterion rating, i.e., to develop a method to estimate per-

attribute subutility. We choose to do this by developing a parameterized subutility

function, derived from expected properties of such a function, and embedded in a

Bayesian graphical model to learn its parameter values from training data. The

third challenge is extend the model so that it can be applied in complex domains,

using natural query paradigms. We explore this by extending our approach to

handle the attribute types of a space science dataset, and to interpret imprecise

values from natural language queries.

1.3 Contributions of the Dissertation

This dissertation evaluates methods for the retrieval and ranking of items

given a user’s query. We develop a retrieval framework, inspired by multi-criteria

6

decision making theory, that estimates relevance by means of a multiple attribute

utility model. We develop the model in several steps:

Combine Multiple Criteria Ratings Into a Relevance Estimation. We eval-

uate how multi-criteria decision making models perform as retrieval models,

by applying two representative models from the main branches of multi-

criteria decision making, an outranking model and a utility estimation model.

We evaluate these in the context of two recommendation tasks, and com-

pare their performance with a Boolean retrieval model. We develop our first

retrieval model, translating query and attribute values into criteria ratings,

and combine these in a model of utility. We evaluate this first utility model

in a online experiment in an airline ticketing domain, along with three ex-

plicit retrieval models, including Boolean retrieval. We also use a listwise

learning-to-rank algorithm to adjust the parameters of the utility model, and

compare its performance to several item retrieval models from the literature.

Estimate Criteria Subutility from Attribute Values. We test our earlier as-

sumption of a linear subutility model by comparing its ranking performance

on two recommendation tasks. Based on our findings, we develop a param-

eterized yet flexible subutility function, guided by several principles relating

the item’s attribute value to that which the user seeks. We evaluate this with

another online experiment, seeking nutritionally-based meals, and compare

the performance of our enhanced model with two explicit retrieval models,

again including Boolean retrieval. We further extend the model by em-

bedding the utility function in a Bayesian graphical network, learning the

model’s parameters in pairwise learning-to-rank framework, and compare its

performance to several item retrieval models from the literature.

Extend Retrieval Model to New Data Types, Uses and Query Modalities.

7

We explore how the retrieval model could be used in new domains and query

interfaces. We expand the model cover Boolean, enumerated and textual at-

tribute types, as well as to accept numeric ranges. We evaluate the extended

model’s performance on data gathered from a scientific vertical search site.

We also explore an open-ended query model where users describe their user

need using natural language. We gather such queries in an online experi-

ment, and identify several categories of imprecise query clauses. We inter-

pret these clauses in our utility-based model, as well as two explicit retrieval

models, and evaluate the performance of each, again in the nutrition domain.

1.4 Outline of the Dissertation

The dissertation is structured as follows. Chapter 2 provides an overview of

work relevant to item retrieval, in particular multi-criteria decision making the-

ory and algorithms, economic and psychological models of decision making, and

the few item retrieval methods that exist in the literature. Chapter 3 describes

our basic utility estimation model, its use in item retrieval, and evaluation in a

user study. Chapter 4 enhances this model by developing a model of subutility

functions and evaluates its performance in another user study. Chapter 5 ex-

tends the model further by expanding it to cover the attribute types of a vertical

search engine and to accept imprecise natural language queries, evaluating both

in retrospective studies. Chapter 6 concludes with a summary of the work and

opportunities for further improvements.

Although the chapters build upon one another, each is a self-contained con-

tained unit and can be read in isolation. Readers with a basic familiarity in

information retrieval and who are unconcerned with theory and other item re-

trieval methods can skip Chapter 2. Those uninterested in the development of

8

the basic framework can pass over Chapter 3 and instead focus on the more ad-

vanced versions in Chapters 4 and 5. Those wanting only a basic idea can read

Chapter 6, and possibly, the chapter you are currently reading.

Parts of the thesis have been previously published, although at times the cov-

erage in this dissertation is quite different. Chapter 3 includes material published

in the ACM Conference on Research and Development in Information Retrieval

(SIGIR) in 2009 [82] and 2018 [84]. Chapter 4 includes material published in the

International Conference on User Modeling, Adaptation, and Personalization in

2010 [83] as well as the ACM Conference on Research and Development in Infor-

mation Retrieval (SIGIR) in 2018 [84]. In contrast, chapter 5 contains our most

recent work that has yet to be submitted for publication.

9

Chapter 2

Background

2.1 Multi-criteria Decision Making

Multi-criteria decision making (MCDM), also referred as multiple criteria de-

cision analysis, is a branch of operations research designed to assist in the making

of particular types of decisions [67]. These decision problems involve several cri-

teria (hence the name) which presumably are somewhat at odds. In other words,

the problem is assumed to be difficult, in the sense that the criteria are at least

partially in conflict, meaning that some options are preferred under a particular

criterion while disfavored under a different criterion.

The focus of multiple criteria decision making is specifically on combining these

criteria to lead the decision maker to a particular alternative (i.e., choice). It is

a prescriptive rather than a predictive approach, in that it is meant to present

options to the decision maker that are more likely to be accepted, and perhaps to

persuade such selections, rather than predict what decision would have ultimately

been made without any decision making tool.

Information retrieval has similarities to MCDM. Like MCDM, its focus is on

modeling the decision making of a user– in this case, the specific decision of

10

whether or not a given item is relevant to the user’s information need. Like

MCDM, the operational process is prescriptive rather than predictive. Moreover,

several researchers have framed the information retrieval problem in terms of

multiple criteria [30, 31, 51, 63, 11, 82]. Indeed, the popular multidimensional

“bag of words” representation in information retrieval is similar to the multi-

criteria decision matrix, and there is some similarity in the methods used in both.

2.1.1 Principles

MCDM, like information retrieval, can be applied to different classes of prob-

lems. We focus on the ranking problem, assuming a finite number of alternatives

to rank, where the goal is to rank the alternatives from best to worst, without

making any claim to the value of a particular rank. The objective of ranking is

to produce a ranking of alternatives such that no rank inversions occur. A rank

inversion occurs whenever an lower ranked alternative is preferred to a higher

ranked alternative; i.e., the lower ranked item should have been ranked higher.

Many multi-criteria decision-making methods assign a numeric score to each

alternative, so that a ranking can be derived simply from ordering by the corre-

sponding scores. However, the choice of scoring function and the interdependen-

cies of the criteria affect one another, as described in multi-attribute utility theory

(MAUT) [28]. We review these restrictions next. We assume that for each pair

of alternatives, there is either a preference for one or the other or an indifference

(all pairs are comparable). Since we have restricted ourselves to a finite set of

alternatives, it is possible to assign a score to each alternative such that a ranking

by these scores is free of ranking inversions.

Consider a subset of criteria. That subset is said to be preference independent

if and only if the preferences for alternatives, given these criteria, are not affected

11

by constant (shared) ratings on the other criteria. Consider a restaurant selection

problem with three binary criteria: ambience, tastiness, and price. If you prefer

restaurants with poor ambience and tasty food to those with good ambience with

lousy food whenever the price is cheap (in both alternatives), and this preference

does not change when the price is expensive (for both alternatives), then ambience

and tastiness are preference independent of price.

Preference independence for a subset of criteria indicates that some decomposi-

tion of the scoring function is possible, but does not necessarily yield a straightfor-

ward formula. On the other hand, mutual preference independence does. Mutual

preference independence means that all subsets of criteria are preference indepen-

dent. In this case, the overall score of the ith alternative has a multiplicative score,

as given in Eq. 2.1:

u(Ai) =
∏n
j=1 [cwjuj(aij) + 1]− 1

c
(2.1)

where uj() is a function that maps the ratings of the jth criterion onto a subutility

curve, wj is a weighting factor for the jth criterion, and c is an overall scaling

factor.

A stronger notion yet is that of difference independence. A subset of criteria

is said to be difference independent if and only if the difference in utility, given

values on these subsets, are not affected by constant (shared) ratings on the other

criteria. In our restaurant example above, if ambience and tastiness are difference

independent of price, and the difference in the cheap case for the ratings stated

above was 0.2 in overall utility, then the difference for the expensive case with the

same pairs of ratings would also have to be 0.2 in overall utility.

Like preference independence, mutual difference independence is difference in-

dependence in all subsets of criteria and yields a powerful new functional form. In

12

difference independence, gains or losses in utility can be calculated independent of

the ratings of the other criteria. This amounts to an additive effect on the overall

utility, and so in the case of mutual difference independence, the score is simply

a linear combination, as in Eq. 2.2:

u(Ai) =
n∑
j=1

[wjuj(aij)] (2.2)

with the same definitions as for Eq. 2.1. Since mutual difference independence

implies mutual preference independence, Eq. 2.2 must be a special case of Eq.

2.1, and apparently this is the case when the scaling constant c is zero [28].

However, it is worth stressing that for mutual difference independence, the

same difference on the rating do not necessarily produce the same change in over-

all utility. Instead, it is the difference in the value of the criterion’s subutility

function uj, which is not necessarily linear. Indeed, the presence of these cri-

terion subutility functions make discovering the true underlying functions more

challenging. As an example, compare a multiplicative (mutual preference inde-

pendence) overall utility function with linear criterion subutility functions to that

of an additive (mutual difference independence) overall utility function with log

criterion subutility functions. Both functions produce the same preferences, but

do not have the same utility values.

2.1.2 Ranking Models

In this section, we review the two major approaches to ranking alternatives

used in the methods: utility-based and outranking. Utility-based approaches give

an intrinsic score to each alternative, and rank according to that score. Outranking

methods use information about the preferences to induce a ranking, with less

dependence on the magnitudes of the ratings. The most basic outranking notion

13

is that of dominance. An alternative Ai dominates alternative Ak iff ∀j : aij ≥ akj

and ∃j : aij > akj. Unfortunately, dominance is insufficiently prevalent to be of

much use in most real world problems, and an utility-based approach that assumes

monotonicity will respect dominance anyway. Therefore, outranking techniques

attempt to go beyond the notion of dominance. For all methods, we assume a

complete set of ratings for all alternatives on each criterion, and a set of nonzero

criteria weights that typically are constrained to sum to one.

Weighted Sum

The simplest model, a linear combination of the ratings, is the most commonly

used approach. The score is computed as in Eq. 2.3 below:

s (Ai) =
n∑
j=1

wjaij (2.3)

The Analytical Hierarchical Process (AHP) [68] uses the weighted sum to

calculate scores once the ratings and weights have been determined. Typically,

the ratings are normalized per criterion either so the sum of the ratings equals one

(referred to as the distributed mode) or so that the greatest rating is one (referred

to as the ideal mode). UTASTAR (UTilité Additives) [70] also uses a weighted

sum as its basis for combining criteria. Note that in UTASTAR, the criterion

weights are implicitly modeled in its learned utility functions approximations,

and that the linear combination is on those functions and not the criteria ratings.

The TOMASO method [53] does not quite fit the independent linear model, as

it remaps the scores by comparing them with others, and has different sets of

weights for different permutations, but effectively amounts to a linear combination,

something we will also see in other methods.

14

Weighted Product

On the other hand, the weighted sum has been criticized because it combines

items of incomparable units. For instance, in our restaurant example, cost and

deliciousness are combined into a single score, despite have presumably different

units. (However, this can be easily remedied by consider the weights as units of

utility per criterion unit.) A ratio comparison in a weighted product [75], as given

in Eq. 2.4, has been proposed as a “dimensionless” measure that avoids this issue:

r (Ai, Ak) =
n∏
j=1

(
aij
akj

)wj
(2.4)

As given in Eq. 2.4, this yields many more values (in the square of number

of alternatives) and is not the same type of scoring function as other methods

reviewed so far, though it presents no obstacle to ranking. Nonetheless, it turns

out that an equivalent order can be obtained by using the scoring function in Eq.

2.5:

s (Ai) =
n∏
j=1

(aij)wj (2.5)

Moreover, as log is an order preserving function, we can create the same ranking

as in Eq. 2.5 using its log, which once again becomes a linear combination. So if

we allow for subutility functions (as in UTASTAR) and are concerned with only

the ranking and not the absolute values, we may again use the weighted sum.

ELECTRE II

The ELECTRE method [32] is probably the best known outranking approach

and certainly one of the most venerable, having multiple versions and leading

to new outranking approaches. We describe ELECTRE II, which is intended to

15

order alternatives, although many of the concepts are common to all ELECTRE

models.

ELECTRE is based on a notion of concordance (acceptance of a proposition)

and disconcordance (rejection of a proposition). For a given pair of alternatives

Ai and Ak, the proposition to evaluate is that Ai is at least as preferable as Ak.

Each criterion is given a weight: concordance holds when the sum of the criteria

weights where Ai is at least as good as Ak meets some predefined threshold.

Discordance holds when some rating on Ak is greater than that of Ai by some

predefined amount. Note that it is possible to have concordance and discordance

on the same pair.

From this, ELECTRE II defines both a strong and a weak preference, with

the latter using less stringent thresholds, following the description in [32]. For

both preferences, Ai is preferred over Ak when there is a concordance without a

discordance. Two orders are created from both preferences, a direct ranking and

an inverse ranking. In the direct ranking, all alternatives that do not have a more

strongly preferred alternative are ranked above all others. Within this group,

items are further ordered by a analogous process using the weak preference, with

any ties broken randomly. The process is repeated on any unranked alternatives

until all alternatives are ranked.

The inverse ranking is created starting with a bottom-most group, consisting of

all alternatives that are not preferred over any other alternative, but otherwise in

the same manner as the direct ranking. The end results is two complete rankings

that may not be identical. A final order can be reached by sorting by the average

of ranks from the two orders.

16

PROMETHEE II

PROMETHEE II [13] (and its predecessor, PROMETHEE I) is an outranking

method designed to address some of the difficulties with the ELECTRE family

of methods. A difference mapping function is used on each criterion to measure

the degree to which an alternative is preferred over another (ranging from zero,

indicating no preference, to one, indicating total preference). For each criterion,

the decision maker must choose a particular difference mapping function.

The average differences are calculated as positive and negative outranking

flows, similar to the notions of concordance and discordance. These are then

combined into a single fuzzy measure, with the final order is now determined

by this score, as would be done in a utility-based method. Indeed, a little alge-

braic manipulation reveals that the final score is once again a linear combination

of criteria-based quantities, as it is with several utility-based methods. How-

ever, as these quantities are computed by comparisons with other alternatives,

PROMETHEE II maintains its outranking perspective.

TOPSIS

TOPSIS [76] further simplifies the outranking concept to the point that it is

worth questioning if TOPSIS is an outranking method at all. TOPSIS is based on

a weighted Euclidean distance measure and comparison to positive and negative

ideals (i.e., the best and worst possible alternatives). The final score of each alter-

native is defined as the ratio of the weighted Euclidean distance to the negative

ideal versus the sum of the weighted Euclidean distances to both ideals, measuring

how much closer the alternative is to the positive ideal than it is to the negative

ideal. As with the other methods with a single score, the final ranking is simply

done by this score.

17

2.2 Behavioral Economics and Mathematical Psy-

chology

Behavioral Economics and Mathematical Psychology are subfields of their re-

spective disciplines that develop models of decision making. Behavioral Economics

differs from standard economics in that the goal is to build models of how people

actually behave (like psychology), rather than assuming rationality and a quest for

optimality. Likewise, researchers in mathematical psychology strive to build mod-

els of human behavior for the purposes of prediction, unlike standard psychology

which focuses more on understanding the behavior than making testable predic-

tions. The two subfields have substantial overlap and little practical distinction

for our purposes.

Experimental findings from these subfields support the exemplar-based paradigm

common in multi-criteria decision making, though the goals (predictive versus

prescriptive) differ. Kerimi, Montgomery and Zakay [42] found people consumer

choice generally matches the weighted-sum approach of MAUT (see Section 2.1.1),

but switches to a Euclidean distance to the ideal when MAUT fails to produce

a winner. Dieckmann, Dippold and Dietrich [26] compared the a weighted-sum

prediction with that of a noncompensatory model (in this case, a lexicographic

model, but part of the wider outranking family) in consumer choice and found

the weighted sum prediction had better agreement with the actual choices.

Perhaps the most well-known, influential, comprehensive and thoroughly tested

model of decision making is prospect theory [77, 41]. Daniel Kahneman, the sur-

viving co-author of prospect theory, was awarded a Nobel prize1 in 2002 in recog-

nition for his development of prospect theory. Prospect theory was developed in
1The Nobel prize in economics is separate from the others in that is not one of the five areas

designated in the will of Alfred Nobel, the originator of the Nobel prize.

18

part to explain the so-called Allais paradox, where a the same individual makes

both risk-seeking (e.g., playing the lottery) and risk-avoiding (e.g., buying insur-

ance) choices – an apparent inconsistency. Prospect theory has several aspects,

but for this dissertation the most salient its utility function; that people evaluate

options based on a reference point, concave in the region of gains (greater than

the reference) and convex in the region of losses (below the reference). Originally

developed to model choices under uncertainty (e.g., lotteries), prospect theory has

been successfully applied to consumer choice [18].

2.3 Multiple Criteria Approaches to Informa-

tion Retrieval

Most of the research in information retrieval that uses multiple criteria has

been in information filtering. Manouselis and Costopoulou categorize 37 recom-

mender systems that implicitly use some multi-criteria aspect in their operation

[51]. The majority of these systems’ methods can be viewed as the weighted sum

method presented in this paper. Of the information filtering systems we are aware

of, PENG [63] is the most similar to the one in our experimental study. PENG is a

multi-criteria news bulletin filtering system that utilizes several criteria, including

content, coverage, reliability, novelty and timeliness. A later evaluation of PENG,

using only content and coverage, showed comparable or superior performance to

other approaches [11]. Farah and Vanderpooten have explored the use of multiple

criteria in the context of search using rank-based methods. In their work [30], the

user provides query terms as the only input (and thus criterion) for the search

process. From this, additional criteria are formed from elements of the web page,

such as text, keywords, anchor text and incoming links. Later work [31] expanded

19

on this notion by using the rankings produced several high performing algorithms,

with each algorithm essentially acting as a criterion or critic. In both cases, their

findings were that the use of multiple criteria provided performance comparable

to the best single criteria. However, they equate criteria to document features,

which differs from our view of criteria as part of user’s decision of what makes a

document good.

In related fields, multi-criteria methods have been used to combine multiple

forms of evidence, in the same spirit of the work of Farah and Vanderpooten, rather

than multiple user-specified criteria. In text classification, a lazy classification

technique consisted of generating rules for each unclassified document based on

classified documents with similar content or linkages [78]. Each rule generated

a weighted vote which was combined to a single verdict, resulting in accuracy

comparable to other approaches but derived in much less time. Multiple similarity

metrics have been combined in a case-based reasoning domain [46]. ELECTRE II,

a rank-based MCDM algorithm that is designed to work with conflicting criteria,

was used, and we have also used this algorithm in our study as a simple member of

the rank-based family of MCDM algorithms. Their results show an improvement

in performance over single criterion techniques when the good criteria weights

are chosen. Finally, a multi-criteria approach has also been applied to feature

selection [27]. It was shown in experimental results that a slight improvement

in performance can be gained by combining the top selections of several feature

selection methods (e.g., mutual information, chi-square, etc) over using any single

method.

20

2.4 Search Methods for Items

Common item retrieval methods use a Boolean retrieval paradigm, either in

database-like query or faceted search [37], with the latter a popular choice with

many e-commerce websites [25]. The Boolean model has also been applied to new

types of data, for instance object-oriented objects [35], Extensible Markup Lan-

guage (XML) [86] documents, and Resource Description Format (RDF) [85] data.

Database researchers have also expanded the query model while still preserving

clear retrieval semantics, notably with top-K approaches [40], which retrieve the

k-highest scored items given a scoring formula, and ranking given uncertain data

[72]. Skyline queries [39] do not use a specific scoring formula, instead returning

the Pareto set given desired characteristics. Finally, several researchers have ex-

plored incorporating preferences into database queries [1, 43, 44, 23]. The focus

of that work has been the semantics of the operators and on efficient execution,

and not inferring latent preferences. Overall, the important body of work refer-

enced above is focused on a different problem than we address in this dissertation,

namely that of efficiency and defining explicit retrieval semantics, not query intent.

In contrast, we do not assume a scoring function or explicit retrieval paradigm,

and instead attempt to maximize user satisfaction by estimating item relevance.

The few item retrieval methods that do rank results according to estimated

relevance tend to use methods suited for categorical data on all attributes, even

numeric ones, perhaps because of the similarity to the bag-of-words model of in-

formation retrieval. Chauduri et al. [21] and Su et al. [73] adapted the binary in-

dependence model, discretizing numeric attribute values, similar to faceted search.

Agrawal et al. [2] adapted TF*IDF to search database records, but abandoned the

term frequency term. AIMQ [57] further advanced the numerical relevance con-

cept through a “like” operator that calculated the bounded absolute percentage

21

difference between query and data attributes, combining them in a linear combi-

nation. Agrawal et al.’s method and AIMQ were combined and slightly modified

by Meng et al. [52]. CQAds [65] use a normalized absolute difference to compare

numerical query and data attributes, combined in a simple summation, to find

advertisements (or more precisely, search through “for sale” listings). Finally,

the appropriately named VAGUE system [54, 55] was an early retrieval frame-

work that incorporated a “similar-to” operator that would retrieve records close

to the desired attribute values, using the system designer’s chosen metric func-

tion. Vague queries were later incorporated into a probabilistic framework [33],

although how to estimate these probabilities was left as a difficult open question.

We include Agrawal et al.’s, model, AIMQ, CQAds and VAGUE as baselines in

our experiments.

Package retrieval is complementary task to item retrieval (retrieving a com-

posite set of item instead of an individual item). Prior research has focused on

recommending packages that meet the user’s constraints and maximizing a pro-

vided objective function, thus more aligned with the explicit retrieval of database

technologies rather than the implicit retrieval models of information retrieval.

Package recommendation [89] has been explored in a number of areas, such as trip

planning [38, 88, 74, 6], student course planning [61, 62, 60], compatible products

[9], diversity in restaurants [5] and web page conglomeration [12]. Given the large

number of potential packages, recommended packages are typically generated on

the fly, typically an NP-complete problem.

2.5 Metrics and Statistical Significance

We calculate a variety of statistics to evaluate the performance of retrieval

models. The first of these is mean squared error. Given a vector y consisting of

22

n observations, and a corresponding vector ŷ of n predictions, the mean squared

error (MSE) is calculated as:

MSE = 1
n

n∑
i=1

(yi − ŷi) (2.6)

Mean squared error is a useful metric for evaluating the performance of a regression

model.

Although some form of numeric prediction often is a part of a retrieval system,

evaluating the accuracy of those predictions is rarely possible as the actual value

is unknown. Instead, documents (or items, in our case) are graded on relevance to

the user need. When this scale is binary, as it is in this dissertation, it would be

possible to calculate classification accuracy, but this is rarely helpful given a large

class imbalance (most documents are not relevant). Two fundamental metrics are

used to evaluate a result set in information retrieval, recall and precision. Recall

is the fraction of relevant results returned, given as:

r = |X ∩ R|
|R|

(2.7)

where X is the result set and R is the set of relevant documents. Maximal recall

can be achieved trivially by returning the entire corpus. Precision is the fraction

of the result set that is relevant, calculated as:

p = |X ∩ R|
|X |

(2.8)

with X and R defined as above. Precision is more difficult to optimize, and is

usually of more interest in retrieval systems as it is rarely necessary to review all

relevant documents.

Ranking of the documents in a result set is also of interest, and the metrics

23

typically incorporate precision or recall, explicitly or implicitly. The result set is

often quite large and subdivided into a paged display, so users essentially deter-

mine the result set size by the number of pages reviewed. Perhaps the simplest

rank-based metric is reciprocal rank, which is the precision of the ranked set of

results, ending with the first relevant result. Given n queries, mean reciprocal

rank (MRR) is:

MRR = 1
n

n∑
i=1

(
1
si,1

)
(2.9)

where si,1 is the rank of the first relevant document returned for the ith query.

Expanded the metric to cover all relevant results yields mean average precision

(MAP), given by:

MAP = 1
n

n∑
i=1

|Rj |∑
j=1

(
j

si,j

) (2.10)

where Rj is the set of relevant documents for the ith query, and si,j is the rank

of the jth relevant result, with ranks strictly increasing with increasing j. The

innermost summand is the precision of the result set stopping at the jth relevant

result.

Mean reciprocal rank and mean average precision are both metrics that calcu-

late an average over queries. However, these averages can be misleading if there is

imbalance of underlying conditions. As an example, consider a taste test between

two competing products with 100 test subjects, of which 30 are female and 70 are

male. An (unweighted) average would be shifted towards the male perspective,

which may not be desirable.

In such cases, it can be helpful to compute a micro-average and a macro-

average, which are both weighted averages of averages. Given the a set X to

24

average, the micro-average is computed as:

micro =
n∑
i=1

|Xi|
|X |

∑
x∈Xi

x

 (2.11)

where X is subdivided into n disjoint sets according to the underlying condition of

interest. As each inner mean is weighted by the size of the corresponding subset,

the micro-average is the same as the (unweighted) average over the entire set. In

contrast, the macro-average is defined as:

macro =
n∑
i=1

1
n

∑
x∈Xi

x

 (2.12)

with the same quantities as the micro-average.

Observed differences between test statistics are sometimes the result of random

chance and so do not show a meaningful difference. Thus, it is necessary to

calculate statistical significance to decide if an apparent result can be trusted.

Many popular statistical tests make assumptions that hold only given a particular

underlying distribution or a large enough sample. In contrast, the randomization

test is a simulation-based approach that does not make such assumptions [71].

The randomization test evaluates a null hypothesis that two sets of observations

come from the same distribution, and so the observed difference is an outcome of

chance. It tests this hypothesis by randomly reassigning the observations to each

group many times, and counting the number of times the resulting difference’s

magnitude was at least as large as that observed. This number is commonly

referred as the p-value and represents the chance the null hypothesis is correct.

Typically, the null hypothesis is rejected in favor of the alternate hypothesis (in

this case, that two sets of observations are drawn from different distributions)

when the p-value is no greater than 0.05, a standard we adopt throughout this

25

dissertation.

26

Chapter 3

Leveraging Multiple Criteria in

Item Retrieval

In this section, we explore how multi-criteria decision making principles could

be applied to item retrieval problems. In the first part, we compare several repre-

sentative multi-criteria decision making algorithms [82]. We focus solely on how

best to apply ratings from differing criteria, without investigating how to derive

criteria rating from a user’s query and item attribute values. In the latter part,

we introduce the user’s query to our solution framework [84]. We formulate a

simple query model that is can be readily used to translate item attribute val-

ues into estimates of criteria ratings. We evaluate this retrieval model against

retrieval paradigms commonly in use at the time of writing, as well as several

similar approaches proposed in the literature.

3.1 Leveraging Criteria in Retrieval Problems

The operations research community has extensively studied the use of multiple

criteria in multi-criteria decision making (MCDM), also known as multi-criteria

27

decision analysis, which aids decision makers in making difficult choices evaluated

under potentially conflicting criteria. A variety of methods have been developed

for MCDM, ranging from straightforward single formula methods to more complex

methods that use multiple stages to induce a ranking. Though these techniques are

designed for decision analysis, it is worth exploring how can they be adapted to the

ranking problem à la information retrieval. As a starting point, we have applied

MCDM techniques to two different retrieval applications: air travel booking and

information filtering (of news articles).

Airline tickets are potentially well-suited to multi-criteria approaches because

it is not content-based and (possibly as a result) does not have a single criterion

that is likely to dominate the user rankings of available tickets. The criteria are

also a mix of objective criteria (e.g., cost) and subjective criteria (e.g., desirability

of destination), with both often at odds. On the other hand, the information

filtering task may not be well suited to MCDM techniques. In this domain, one

criterion (subject relevance) is consistently the strongest indicator of user interest,

and all of the criteria are highly correlated. Therefore, there may be little benefit

in considering additional criteria in information filtering.

To evaluate the potential of MCDM in item retrieval, we adapted several

MCDM algorithms [75]. The most familiar of these is sorting into a lexicographic

order, consistent with non-compensatory preferences, which indicates that no cri-

terion rating difference of a lower order can compensate for even the smallest

criterion rating difference of a higher order. The other two algorithms support

compensatory preferences. The simpler of these two algorithms is the weighted

sum: the score for each option is linear combination of criteria weights and criteria

ratings. The second method, ELECTRE II, is an outranking method which or-

ders the different options directly by combining combining partial orderings with

28

progressively more relaxed consistency conditions.

3.1.1 Multi-Criteria Based Ranking Methods

Casting the item retrieval problem as a multi-criteria decision making problem

allows us to bring to bear the large amount of operation research that has been

developed for such problems. To illustrate the idea, we applied three MCDM

algorithms for ranking: lexical sort, weighted sum and ELECTRE II. Our selection

of algorithms is not meant to be exhaustive, but representative of the varied type

of multi-criteria ranking methods, and quite diverse.

Lexical Sort

Of all the multi-criteria models, lexical sort is the most readily available

method today, easily accessibly in database queries and e-commerce search, often

in a restricted form. The user specifies a sort order (ascending or descending) on

criteria in turn, with subsequent criteria used only to break ties. As such, the

model is non-compensatory, since no difference in later orders can override even

the slightest difference in an earlier order. In many current e-commerce sites, this

is restricted to a single sort order.

Weighted Sum

The second MCDM algorithm we evaluate has a simple formulation, ranking

the items by a score from a linear combination of criteria ratings and weights. By

convention, the criteria ratings range from zero to one, with one being the most

desirable, and the criteria weights sum to one. For the airline ticketing domain, we

have only attributes rather than criteria ratings, so we assume that the criteria

correspond to the ticket attributes. We also have the slight complication that

29

for most attributes (such a price), lower values are more preferable, leading to a

somewhat more complicated subutility function. For the jth criteria, we define

gj() to be the normalized subutility function:

gj(dij) =


dij−⊥j
>j−⊥j prefer high
>j−dij
>j−⊥j prefer low

(3.1)

where dij is the rating on the jth criterion for candidate Di, and >j and ⊥j are

the greatest and least rating on criteria j. These normalized subutilities are then

combined in a linear combination:

f(Di) =
∑
j

wj × gj(dij) (3.2)

where wj is the weight of criteria j, with candidates ranked in descending order

of this score. In general, a user could directly specify a real-valued weights for the

criteria, something we explore in our next experiment. However, for this study

we adopt a simpler approach: given a ranking of criteria (with rank of one most

important), we assign weights as follows:

wj = 2× (m+ 1− rj)
m× (m+ 1) (3.3)

where m is the number of criteria and rj is the rank of the jth criterion. This

weighting scheme results in a constant difference between consecutively ranked

criteria, with the weight of the highest ranked criterion m times that of the lowest

ranked criterion.

ELECTRE II

Though it uses the same normalized scores and weights as WeightedSum, the

outranking ELECTRE II is considerably more complex than weighted sum. We

30

adapt the ELECTRE II formulation of Lamontagne and Abi-Zeid [46] for item

retrieval, and as such, our formulation differs slightly from the original ELECTRE

II.

ELECTRE II defines several logical propositions, and uses these to establish

that an item should outrank another. In all, ELECTRE II defines five logical

propositions on pairs of items, and from these, arrives at two item rankings which

are combined into a final ranking. ELECTRE II apparently seeks to avoid items

that are particularly poor in some way rather than seeking those that greatly excel

on some criteria.

The base proposition is a weighted vote for item Di over item Dk:

V (Di,Dk) ≡
∑
j

wj × sgn (gj(dij)− gk(dik)) > 0 (3.4)

where sgn is the sign function and other parameters are defined as in Eqs. 3.1

and 3.3. In essence, the total weight of criteria that Di rates higher than Dk must

exceed the total weight of criteria where Dk rates higher than Di in order to win

the vote.

Next, we define two acceptance propositions, the first being:

Aθ(Di,Dk) ≡
∑
j

wj × [gj(dij) ≥ gj(dkj)] > θ (3.5)

where θ is a threshold value, with higher values providing a more stringent test,

[] is the Iverson bracket, and the other parameters defined as before. In essence,

this proposition sets a minimum total weight of criteria that Di is at least as good

as Dk to be acceptable.

The second acceptance proposition is:

31

Bλ(Di,Dk) ≡
∑
j

[
gj(dkj)− gj(dij) > (1− wj)λ

]
= 0 (3.6)

where λ is another threshold value, [] is the Iverson bracket, and the other pa-

rameters are defined as before. This proposition sets a minimum standard for

each criteria such that Di cannot be accepted over Dk if Di, Dk is that much

better rated. The original ELECTRE II used the same threshold for all criteria

regardless of the criterion weight, but in our experimentation we found that in-

corporating the weights lead to better performance, leading us to the formulation

above.

From these three propositions, ELECTRE II defines a strong and weak pref-

erence. The strong preferences is defined as:

Ps(Di,Dk) ≡V (Di,Dk)∧

[(Aθ1(Di,Dk) ∧Bλ1(Di,Dk)) ∨

(Aθ2(Di,Dk) ∧Bλ2(Di,Dk))]

(3.7)

and the weak preference is defined as:

Pw(Di,Dk) ≡V (Di,Dk) ∧ Aθ3(Di,Dk) ∧Bλ3(Di,Dk) (3.8)

where θ1, θ2, θ3, λ1, λ2, λ3, were somewhat arbitrarily set to 0.87, 0.75, 0.63, 2, 2,

and 3, in our experiments respectively, with these values giving better performance

than others we had tried.

The strong and weak preference functions are used to create two rankings,

a direct ranking and an inverse ranking, which are combined to create the final

32

ranking. For the direct ranking, the highest rank consists of all items that are not

outranked by any item outside the highest rank (i.e., no item outside the highest

rank is strongly preferred over an item in the highest rank). Should there be more

than one option in the highest rank, the weak preference breaks ties. This process

continues with the second-highest rank, which contains options not outranked by

any other unranked option, and so on, until all options are ranked in the direct

ranking. The inverse ranking works in a similar fashion but in reverse: first the

lowest rank is selected, which consists of items that do not strongly outrank items

outside the lowest rank, applying the weak preference in an equivalent manner to

break ties and iterating as before until the complete inverse rank is created. We

use the mean of the direct and inverse ranking as our final rank for each option.

3.1.2 Retrieval Domains and Criteria

For the ticketing experiment, we culled information from several online databases

[14, 15] to develop a representative set of ticketing options and expected delay pro-

files, with just over 5000 tickets used in our study. The following criteria were

identified, with the criterion shorthand in parentheses: distance to the desired ori-

gin of the flight1 (ODist); Distance to the desired destination of the flight (DDist);

the price of the fare (Cost); the expected flight time (FTime); the number of con-

nections (Legs); the expected delay (FDelay); popularity, defined as the number

of tickets sold for this final destination (Desire); stopover popularity (Stop), calcu-

lated like the prior criterion, but for the connection airports (presumes sightseeing

at the connection is possible).

In addition, we generated five tasks for five fictional persons, loosely inspired by

real situations with which we were familiar, as shown in Table 3.1. We chose cases
1Nearby airports were also included.

33

Table 3.1: Scenarios in the ticketing experiment.

Task From To Criteria Order Scenario
T1 SJC ROC Cost ODist DDist Student returning home
T2 DCA ANC ODist DDist FTime Fdelay Scientist giving talk
T3 GFK n/a Cost ODist Legs Retired man on vacation
T4 GFK n/a Desire ODist Fdelay Ftime Retired woman on vacation
T5 LAX BOS ODist DDist Stop Cost Professor attending conference

that we thought would cover a range of tasks, but does not necessarily match the

distribution of actual consumer travel patterns. Three subjects served as judges

for our search results, marking tickets as relevant or not relevant, according to

the task. The subjects fly regularly but are not heavy travelers (around five trips

per year). Each subject was given a description of the fictional person, the trip,

and the listed criteria, and then allowed to interpret the appropriateness for each

ticket for the stated need. Though real trips would typically also involve return

flights, in part to reduce the burden on our test subjects, we treated the trips as

if they were one way. Each subject evaluated every ticket as a match (or not) for

the given task.

For the news filtering experiment, we used a data collected from a previous

study: for more information on the dataset see [91]. In that study, approximately

20 subjects rated news articles on several criteria from a corpus of almost 9000

articles. On this data set, the following criteria are included: novelty, author-

ity, readability, and relevancy to the news article category. This data had been

gathered previously and the subjects did not weight the criteria, so we give each

criterion equal weight. We treated the highest rated articles as relevant, with the

goal of the system to rank all items evaluated by each subject as if they were

returned from a single query.

34

3.1.3 Evaluation of Multi-Criteria Methods

Table 3.2: MCDM Algorithms Results

Dataset Subjects Queries WS ELECTRE II 1-Sort All-Sort
Tickets 3 15 0.59∗ 0.51 0.15* 0.34*
News 23 23 0.54 0.53 0.45* 0.58
Both 26 38 0.56§ 0.52* 0.34* 0.49

Table 3.2 shows the results of our MCDM-based studies, as evaluated on mean

average precision (MAP), with the best performer bolded. In addition to a full

lexical sort (All-Sort), we also include for comparison a sort on only the top cri-

terion (1-Sort) as most users start with simpler queries. We use a randomization

test [71] to evaluate statistical significance with a million samples per test. The

null hypothesis is that a different user need (as scenarios for the ticketing exper-

iment, subjects in the news filtering experiment) would have been equally likely

to have flipped the observed difference among methods, so we randomly swap

results2 and observe how often our randomly generated difference is of equal or

greater magnitude (regardless of sign), with significance at the standard p-value

of 0.05, although these are less common given the sample size. Nonetheless, the

weighted sum (WS) method appears to outperform the others, with statistical

significance against all but ELECTRE II marked by asterisk (*), and against all

but All-Sort marked by the double S (§). All differences versus 1-Sort are also

significant. All-Sort outperformed the weighted sum on news filtering, but this

difference was not statistically significance. Even though the observed difference

between weighted sum and all-sort on the combined results of the experiment

were greater than that with ELECTRE II, the result was not significant as the

difference stems from fewer user needs (mostly in the ticketing domain).
2These random “swaps” either swap results or leave as-is with equally likelihood.

35

The news filtering experiment used equal weights, but lexical sort requires

some prioritization of criteria, so we used the best criteria ordering over all the

news data as a whole. This may have given the lexical sort an unrealistic advan-

tage over the uniformly weighted algorithms in the news filtering domain. Despite

its complexity, ELECTRE II did not perform as well as the simpler weighted sum

algorithm. It may be the the domains chosen were not suited to this algorithm;

ELECTRE II is designed to find compromise solutions in the presence of conflict-

ing criteria, which was not particularly problematic in these applications.

3.2 Translating Queries to Criteria Ratings

Multi-criteria decision making models usually assume that the user has pro-

vided a rating for each option on every criterion. This assumption is reasonable

given a small number of options and a critical decision, but is generally not a good

fit for item (or information) retrieval problems. Therefore, a practical retrieval

system must induce criteria ratings from its representation of the user’s need. In

this section, we explore translating a user’s query to criteria ratings.

3.2.1 A Unifying Relevance Model

We make several assumptions in order to adapt multi-criteria decision making

algorithms to query-based item retrieval. First, as mentioned previously, we as-

sume that the criteria correspond to attributes of the items. Second, we assume

that there is some single attribute value for each attribute of interest that yields

maximal utility, i.e., a most desirable value, similar to TOPSIS [76]. This suggests

the form of the queries, i.e., that users will provide desirable attribute values on

a subset of the attributes. Finally, for simplicity, we assume a linear relationship

36

between the subutility of a criterion and the absolute difference of the attribute

and desired value.

According to multi-attribute utility theory (MAUT) [28], certain assumptions

on the properties of preferences entails that the underlying utility function follow

a particular form. We assume mutual utility independence, which means for any

subset of attributes, the preference for a set of values is unaffected by the values

of other attributes. As an example, this would mean if red wine is preferred over

white wine for two otherwise identical meals, then red wine will always be preferred

over white regardless of the meal’s remaining components. This assumption entails

that the underlying utility function must take a multiplicative form:

f(Q,Di) =
∏
j [1 + cwj × gj(qj, dij)]− 1

c
(3.9)

where j is the index of the jth attribute, wj is the priority (weight) given to the

attribute, Q are the desired attribute values, Di is the ith item in corpus D, with

qj and dij the values of the jth attribute of Q and Di, respectively, and c is a

constant greater than -1.

Expanding Eq. 3.9 for a particular instance can enhance understanding. Con-

sider the two attribute case:

[1 + cw1 × g1(q1, di1)]× [1 + cw2 × g2(q2, di2)]− 1
c

= w1 × g1(q1, di1) + w2 × g2(q2, di2) + cw1w2 × g1(q1, di1)g2(q2, di2)

Each weighted subutility evaluation appears independently, as well as a combina-

tion of the two. The function of c is also more clear; when c = 0, the subutility

of each criterion contribute independently to the overall utility. In that case, the

utility function reduces to a linear combination:

37

f(Q,Di) =
∑
j

[cwj × gj(qj, dij)] (3.10)

Interestingly, although Eq. 3.9 is only a linear combination when c = 0,

there is an closely related linear combination that will produce the same ranking.

Consider the following, which we get by multiplying Eq. 3.9 by c, adding 1, and

taking the logarithm:

log (1 + c× f(Q,Di)) = log
∏

j

[1 + cwj × gj(qj, dij)]


=
∑
j

log (1 + cwj × gj(qj, dij))
(3.11)

Multiplying by a positive constant, adding a constant, and taking the logarithm

are all operations which maintain the original order. However, c may be negative

or zero, though Eq. 3.9 is already a linear combination when c = 0. When c < 0,

ranking by Eq. 3.11 would invert the correct order. This can be remedied by

ranking by the negation of Eq. 3.11 when c < 0, or equivalently, multiplying by

sgn(c):

sgn(c) log (1 + c× f(Q,Di)) = sgn(c) log
∏

j

[1 + cwj × gj(qj, dij)]


= sgn(c)
∑
j

log (1 + cwj × gj(qj, dij))

=
∑
j

sgn(c) log (1 + cwj × gj(qj, dij))

(3.12)

With some abuse of the theory, we can define a new subutility function g′j(qj, dij) =

sgn(c) log (1 + cwj × gj(qj, dij)) when c 6= 0, or g′j(qj, dij) = wj × gj(qj, dij) when

38

c = 0, and rank the results by∑j g
′
j(qj, dij), keeping in mind that though g′j(qj, dij)

deviates from the latent subutility function, it nonetheless produces in an equiv-

alent ranking. This also gives more insight into the constant c, with values less

than zero producing convex shapes, and those above producing concave. As such,

we assume the underlying utility function must be linear combination of ratings,

yielding our base utility function:

f(Q,Di) =
∑
j

wj × gj(qj, dij) (3.13)

where quantities are the same as defined for Eq. 3.9, with items ranked in order

of decreasing utility.

Nonetheless, in terms of the exact form of the subutility function, MAUT

offers no further guidance. Subutility evaluations are typically given as input to

the MAUT problem, but we need to estimate subutilities. Estimation is trivial

for Boolean attributes, as there are only two possible attribute values, so the

subutility is one when qj = dij, zero otherwise. Categorical attributes (e.g., color)

are more challenging. An extreme solution would be to use the same approach

as Boolean attributes, estimating zero subutility except when qj = dij. A more

nuanced approach could be derived from domain theory or user choice training

data when either is available.

Numeric attributes, on the other hand, have mathematical relationships among

their values which suggest other avenues for subutility estimation. A simple yet

intuitive method is to relate subutility to the absolute difference from the desired

value, which we chose as follows:

g(qj, dij) =
(

1− |qj − dij|
max (|qj −⊥j|, |qj −>j|)

)
(3.14)

where ⊥j and >j are the least and greatest values of the jth attribute in the

39

corpus, and other variables are as defined in Eq. 3.13. This formulation gives us

our initial retrieval model, SimpleMAUT. SimpleMAUT accepts as input a query

consisting of desired attribute values (0 or 1 per attribute) and attribute priorities

(0 when the corresponding attribute is not of interest) and returns items ranked

by their estimated utility. SimpleMAUT (and the forthcoming MAUT models)

could also be extended to support ranges or multiple desired values by giving such

maximum utility.

3.2.2 Experimental Design

We return to the domain of booking airline tickets for our experiment, as

such items are well described by their attribute values, have attribute values that

are not highly correlated, and does not require specialized knowledge from the

participants. In all, each ticket has nine attributes: price, as well as departure

time, arrival time, connections and duration for both outbound and return flights.

Our interface largely mimicked that of a popular ticketing website (see Fig. 3.1),

with the query mechanism (“Refine Filters” in the right interface) changing per

the model, as detailed below.

Live Models

Many of our models used the same query parameters, or subsets of those

parameters. This allowed us to limit the number of query interfaces and retrieval

models implemented in the live experiment to four, randomly chosen.

SortedBoolean We reviewed the ticketing Web sites Expedia3, Travelocity4, Or-

bitz5 and Priceline.com6 to develop our the SortedBoolean model. Though
3http://www.expedia.com
4http://www.travelocity.com
5http://www.orbitz.com
6http://www.priceline.com

40

Figure 3.1: Commercial Website (top) versus User Study Interface (bottom)

41

there were minor differences among the Web sites, at the time we developed

our user study their capabilities were largely the same. Most importantly,

they allowed users to restrict the result set by limiting the returned tickets

to ranges of attributes (with the exception of price), much like a boolean

retrieval model. In addition, the tickets could be ranked by by a single

attribute, chosen from a limited set of attributes7. We developed the emph-

SortedBoolean baseline to match both the functionality and look-and-feel of

one of the Web sites closely. The query interface is shown in Figure 3.2.

Figure 3.2: Query Interface for SortedBoolean

Lexical As an alternative baseline to the SortedBoolean model, we developed a

lexical sorting model. Though not in use for booking tickets the time of

writing, sorting is a common paradigm for ordering results in a database
7Namely, total travel duration, total connections, outbound departure or arrival time.

42

or spreadsheet. It is also differs from the SimpleMAUT approach as it is a

noncompensatory model, like the models of preference databases, as a more

attractive option on a less important attribute cannot compensate for a a

less attractive option on a more important attribute, no matter how great

or small the relative differences are. In our interface, the test subject can

choose up to four attributes to sort the tickets, each in either descending or

ascending order. The items are first ordered by the first specified attribute,

with ties broken by the second specified attribute, and so on. The query

interface is shown in Figure 3.3.

Figure 3.3: Query Interface for Lexical

SimpleMAUT This is our novel approach, described in detail in Section 3.2.1.

The query interface is shown in Figure 3.4. The SimpleMAUT retrieval

model solicits a query consisting of two components: an “ideal” item, which

is the item the user would most like to find, and a set of priorities over the

attributes of this item. We use the 1-9 priority scale as recommended by

Saaty [68] for weights, with the addition of an “ignore” value to indicate

that the attribute is not of interest to the test subject (essentially giving the

43

criterion a 0 priority). These priorities, re-scaled onto a 0-1 scale, become

the coefficients of the linear combination in base utility Eq. 3.13. For this

model and those to be described later, we define division by zero to be one

when the numerator is zero, infinity otherwise.

44

Figure 3.4: Query Interface for SimpleMAUT

Tradeoff Contrasting with SimpleMAUT, the Tradeoff model allowed test subject

to directly provide a utility function by giving an explicit tradeoff rate (in

terms of dollars) they would be willing to spend to get closer to their desired

attribute values. Items are ranked by increasing score order, where the score

of Di is defined as:

f(Q,Di) =
∑
j

tj|qj − dij| (3.15)

where tj is the tradeoff rate (in dollars) for the jth attribute, with other

45

parameters defined as before. The query interface is shown in Figure 3.5.

Figure 3.5: Query Interface for Tradeoff

Post Study Models

The remainder of our models use the same queries as the above, so we could

apply them to the queries and choices gathered in our user study. Variables are

defined as defined for SimpleMAUT (see Section 3.2.1) unless otherwise specified.

AIMQ This model estimates relevance using a different normalization and global

weights derived from functional dependencies (see [56, 57] for details), rather

than user-specified weights. Items are ranked by decreasing score order,

where the score of di is defined as:

46

f(Q,Di) =
∑
j∈Q

wj

(
1−min

(
1, |qj − dij|

qj

))
(3.16)

where j ∈ Q indicates the jth attribute was given a desired value (not left

blank), and wj is the global weight for the jth attribute.

AutoRank This is the (unnamed) model of Agrawal et al [2]. They used an

inverse document frequency (IDF) term for weighting, defined below for

query element qj as:

wj = log

 n∑n
k=1 exp(−1

2

(
dkj−qj
hj

)2
)

 (3.17)

where n is the number of items, and hj is a “bandwidth” parameter, chosen

by Agrawal as hj = 1.06σjn−
1
5 . This is combined in their overall scoring

function:

f(Q,Di) =
∑
j∈Q

wj exp
−1

2

(
dij − qj
hj

)2
 (3.18)

with items ranked by decreasing score.

CQAds Like AIMQ, CQAds [65] estimates relevance in a similar fashion but

with a different normalization, and without attribute-specific weights. In

our implementation of CQAds scoring, items are ranked by decreasing score

order, where the score of di is

f(Q,Di) =
∑
j∈Q

(
1− |qj − dij|

Rj

)
(3.19)

47

where Rj is an estimation of the range of the jth attribute, defined as the

mean of the ten greatest values minus the mean of the ten least values.

LexPref This is an alternative method of lexical sorting, by decreasing absolute

difference from the query value, in order, instead of by ascending or descend-

ing order. This is our implementation of the cascading ranking in preference

databases.

ProspectTheory We adapt prospect theory [41], to use as an alternative subu-

tility function, combining in linear combination like many of the models:

f(Q,Di) =
∑
j∈Q

wjθj|qj − dij|α (3.20)

where α is a constant controlling the curve of the subutility, Θ is an addi-

tional weighting adjustment, defined as:

θj =


1 for γjdij ≥ γjqj

−λ for γjdij < γjqj

(3.21)

where λ controls the rate of deprecation for poor outcomes, and Γ controls

whether low or high values are preferable for the particular attribute. For

Γ, only the sign matters, which we define as positive for departures (later

departures are preferable, with subsequent arrival times modeled separately)

and all others as negative. We use the parameter values originally derived

by Tversky and Kahneman, α = 0.88 and λ = 2.25, as reported in [59].

Skyline The skyline operator does not assume a particular scoring function;

rather, under the assumption of monotonicity, it returns the Pareto set

of all non-dominated results. In this domain, a ticket x dominates y if x’s

48

attributes are at least as good as y’s and better in at least one case. We

define “better” as a lower absolute difference from the query value when the

corresponding priority was nonzero, ignoring the attribute when the priority

is zero. We use the skyline operator progressively to rank the results (listing

non-dominated tickets first, then listing tickets non-dominated tickets in the

remaining set, etc.), with tickets in each equivalence class ranked arbitrarily.

VAGUE The VAGUE framework [54] provides a “similar-to” operator that cal-

culates a weighted Euclidean distance from the query point and the item.

The operator can use subutility functions, but none are prescribed, so we

choose the absolute difference divided by the standard deviation:

f(Q,Di) =

√√√√√∑
j

[
wj

(
|qj − dij|

σj

)]2

(3.22)

with items ranked by increasing score, using user-supplied weights like Sim-

pleMAUT.

LearnMAUT Finally, we also explore if it is possible to improve performance by

learning for a parameterized version of SimpleMAUT model as our exemplar.

Items are ranked by descending score order, where the score of di is given

by:

f(Q,Di) =
∑
j

wj×
[
1− max (λj [qj − dij] , γj [dij − qj])

max (|qj −⊥j|, |qj −>j|)

]
(3.23)

where λj, γj ∈ [0, 1] allow for different weights above and below the query

point, and with other variables are defined as before. We used a listwise

49

learning-to-rank approach to learn the parameters of the model. Our ap-

proach uses gradient descent on a smoothed version of the mean average

precision metric, as suggested by several authors [87, 20, 64]. The core in-

sight is to re-express the rank of an item by the sum of indicator functions of

greater score, comparing the item’s score to the others in the corpus. These

indicator functions are then approximated by a differentiable function, with

our formulation following that of Qin, Liu and Hang [64]. We use 20 fold

cross-validation to evaluate the learned model, with each fold corresponding

to the queries for a particular scenario. The model is trained for each fold

by using the data from the other 19 folds. This prevents results from the

same scenario from influencing the model, matching a realistic learning sit-

uation. However, given the difference in scenarios and the limited number

of responses, the learning problem is fairly difficult.

LearnSymmetricMAUT For comparison, this is the symmetric version of Learn-

MAUT, where the subutility function is symmetric on both sides of the query

value (i.e., ∀j : λj = γj). We include this version to isolate the effect of ad-

justing weights symmetrically versus asymmetrically, per attribute.

Data Used

We wanted to make our scenarios as representative as possible, so we reviewed

several relevant sources. We restricted our experiment to U.S. domestic travel,

using a ten percent sample of tickets gathered in 2006 [15] to model the distribution

of travel patterns. For each scenario, we randomly selected a ticket from this

sample and used its origin and destination for the scenario. Unfortunately, other

recorded aspects of the ticket were not useful, such as schedule, which was coarsely

recorded in a resolution of a quarter year. To compensate, we retrieved tickets from

50

Expedia.com (using dates of our choosing) with the same origin and destination.

These tickets were retrieved during the later months of 2011, with approximately

60 tickets retrieved for each scenario.

We consulted a survey from more than 26,000 U.S. households to capture who

travels by air and the reasons why [16]. We created twenty scenarios following

their breakdown, with 10 scenarios for pleasure, 8 for business, and 2 for personal

business. To make the scenarios slightly more compelling, we created somewhat

vague reasons for the trip (i.e., “attend a meeting”, “visit relatives”, “take a

vacation”). We chose arbitrary dates to match the scenarios, with personal trips

somewhat longer in duration. For the business trips, we would also randomly

sample time constraints from 9 AM to 4 PM (for meeting times); we also included

explicit time constraints one of the pleasure scenarios. Depending on the scenario,

these constraints would range from trivial to more restrictive, and we removed

constraints that universally satisfied. Conversely, tickets that did not match the

constraints were not removed from the corpus. For half of the remaining scenarios,

we listed other criteria (such as “get home early”), while leaving the others open-

ended. Finally, we also sampled demographic information from the same survey

(gender, age, income) to give more context.

Subject’s tasks and rewards

We developed a reward structure to motivate test subjects to take the task

seriously and put effort into choosing the best tickets. As previously mentioned,

Amazon Turk workers were our test subjects [3]. These workers are paid for their

efforts, and may receive additional payment at the discretion of the requester. We

used this bonus mechanism to entice good work. Work may also be rejected by

the requester. In our case, we also restricted the experiment to workers with high

51

completed work acceptance rates (95% or better).

We developed a game where workers would alternate between two ticket selec-

tion roles. In the first role, workers would play the role of a “ticket agent”. Their

task was to read the scenario and choose three tickets that they thought would

be most likely to be selected by the client. The workers playing “ticket agent”

would use the retrieval models in our user study. The other role was that of the

“client”, who would be presented a smaller subset of tickets, choosing only one. In

this role, the tickets were simply listed in random order with no search capability.

Each worker could complete a scenario in only one of the roles.

Workers would be randomly matched with another worker: ticket agent to

client, and client to client. The client matched with a ticket agent would see a

subset of tickets that included the three chosen by the ticket agent; if the client

chose one of the ticket agent’s suggestions, the ticket agent would be paid the

bonus. (The listing does not indicate which tickets were suggested by the ticket

agent.) Likewise, the client would be matched with another client who reviewed

the same subset of tickets; if their selections matched, the client would receive the

bonus. In short, we pay the workers to check each other’s work. The responses of

the client were only used for this mechanism and are not factored into our results.

Regardless of role, the workers were paid a modest base pay and given a

bonus twice this amount when their answers match, as described above. The

large bonus relative to base pay was designed to motivate the workers to try

hard. However, since workers were randomly matched, most likely there were

some inequities (i.e., some workers with good answers weren’t rewarded, and some

workers who didn’t try hard got lucky). To eliminate noisy ticket agent responses,

we filtered out roughly half, with 554 responses retained. For each scenario, we

calculated the median probability of being matched with another ticket agent who

52

selected at least one ticket in common. We discarded all responses that fell below

this median. The two groups (discarded and preserved) showed a statistically

significant difference on all our evaluation metrics consistent with more effort

according to a randomization test (also described below).

Evaluation Metrics

We compare the performance of the different retrieval models by several stan-

dard information retrieval quality metrics. We are focused on ad hoc retrieval

instead of interactive retrieval, and so we calculate these metrics only on the first

query issued. We use the tickets chosen by the test subject as the indication of

relevance for mean average precision (MAP). However, a test subject may be likely

to choose a higher ranked item when utility is roughly the same. This is irrele-

vant when comparing the retrieval models used directly by test subjects (“Live”

models), but could bias the results when comparing retrieval models in our post

hoc analysis. To compensate in that case, we break the bond between the test

subject’s query and ultimate selections by using the selections from the other test

subjects on the same scenario, which we refer to as the community evaluation,

evaluating each query separately on each set of chosen tickets (except from the

set chosen by the querier).

In addition, we also calculate several usage and user evaluation statistics for

the live models:

Mean Queries This includes the initial query and any subsequent query revi-

sions.

Mean Pages The number of pages viewed by the subject. Each page contains

ten tickets, except for the last page which may have fewer tickets.

53

Mean Time The total time spent on the task after issuing the initial query. We

excluded time spent issuing the initial query because we solicited information

that was unused by the SortedBoolean and Lexical models.

Mean Qualitative Each test subject was asked to evaluate the following state-

ment: “If my favorite ticketing Web site supported it, I would use this

method to search for tickets,” with responses ranging from 1 (strongly dis-

agree) to 5 (strongly agree).

We had an unbalanced distribution of retrieval models among the scenarios

after running the experiment and discarding responses with low inter-rater agree-

ment (see above). Some scenarios were more difficult than others, and so models

with a disproportionate number of responses from such scenarios could have ar-

tificially lower performance measures. We calculate two means for all metrics

to compensate. The first is the micro-average, which is the mean over all re-

sponses without respect to the scenario. The second is the macro-average, which

calculates an overall average from the mean of each scenario individually. The

macro-average compensates for the unbalance in scenario distribution but may

have higher variability, as scenarios with fewer responses are weighted the same

as those with more responses.

We use a randomization test [71] in two ways to calculate statistical signifi-

cance. The first method is used when comparing responses by different subjects in

the live experiment; no subject was allowed to respond to the same scenario more

than once. Our null hypothesis is that each test subject would have had the same

performance on either of the compared models, and so the observed difference is

merely a chance event stemming from random assignment of test subjects. The

second method is used when comparing different models on the same response:

here our null hypothesis is each method was equally likely to have produced the

54

Table 3.3: MAP of Live Models

Model micro macro
SortedBoolean 0.377 0.367

Lexical 0.435 0.418
Tradeoff 0.387 0.380

SimpleMAUT 0.542† 0.526†

Table 3.4: Community-evaluated MAP

Model micro macro
AIMQ 0.373 0.305

Autorank 0.452 0.381
CQAds 0.441 0.396
LexPref 0.441 0.363
Skyline 0.437 0.360

ProspectTheory 0.418 0.361
VAGUE 0.428 0.391

SimpleMAUT 0.483† 0.418†
LearnMAUT 0.532† 0.461†

LearnSymmetricMAUT 0.500† 0.425∗

observed difference. To test the null hypothesis, we randomly redistribute the re-

sponses or the differences, respectively, within the scenarios among the two models

one million times. The p-value is the fraction of times this redistribution produced

a difference for the metric that was at least as great as the actual observation.

Table 3.5: Community-evaluated MAP, comparing user weights

micro macro
User Binary User Binary

Model Weights Weights Weights Weights
LexPref 0.441† 0.393 0.363† 0.321

ProspectTheory 0.418 0.437† 0.361 0.370†
VAGUE 0.428 0.429 0.391 0.397

SimpleMAUT 0.483 0.484 0.418 0.417

55

3.2.3 Results

Table 3.3 shows the results for self-evaluated retrieval quality metrics (i.e.,

using that test subject’s choices) for the various models, with the overall best per-

formance bolded. The SimpleMAUT model performed best overall, a statistically

statistical difference. On the other hand, the SortedBoolean model performed the

worst, despite being the model in most common uses today, although the dif-

ferences were not always statistically significant. For the community-evaluated

MAP (table 3.4), the MAUT models performed best overall, with statistically

significant difference versus lower scoring models indicated by the dagger (†) and

likewise excepting against SimpleMAUT indicated by the asterisk (∗). We include

SimpleMAUT as a reference point, and to show the difference in scoring of the

querier’s MAP (given in table 3.3) and the community’s MAP. The relative suc-

cess of the learning methods show that a global weighting of criteria can lead to

better results. The improvement of LearnMAUT over it symmetric cousin leads

us to believe that the subutility functions are not symmetric, i.e., exceeding the

desired value is not the same as falling short. This is not entirely surprising, par-

ticularly when considering attributes such as price. However, it is not necessarily

true that more (conversely, less) is better: the only model with monotonically

increasing or decreasing subutilities, our adaptation of prospect theory, did not

perform particularly well.

Table 3.5 compares MAP when all non-zero user weights are set to one (“binary

weights”) with the originally provided weights (“user weights”) on the community

MAP, with the non-learning models that used such weights. In this case, the best

performer in each comparison pair (user versus binary weights on the same model)

is bolded and statistically significant differences are indicated by the dagger (†).

Surprisingly, the querier’s criteria weights hurt performance for all but LexPref,

56

Table 3.6: MAP: Constrained Scenarios

Model micro macro
SortedBoolean 0.382 0.361
SimpleMAUT 0.568† 0.543†

Table 3.7: Tickets Eliminated by Subject’s Restrictions

Candidate All Constrained Unconstrained
Ticket Scenarios Scenarios Scenarios
Chosen 134 (34%) 49 (34%) 85 (33%)

Not Chosen 3503 (50%) 1627 (61%) 1876 (44%)

though the difference was only statistically significant in the case of our use of

prospect theory. Importantly, LexPref is not affected by the weight ratios, using

them only as ordinals. At the very least, the use of user supplied weights may not

be worth the added user input complexity, and may actually hurt performance.

Table 3.6 shows results on scenarios with explicit constraints (35% of the tick-

eting scenarios), again with the searcher’s own selections. Surprisingly, though

restricting results is more effective on these scenarios, SortedBoolean is still outper-

formed by the unconstrained SimpleMAUT. Table 3.7 shows why; approximately

a third of the final selections had been eliminated by the test subjects’ initial

constraints. Though restricting the result set was more effective eliminating un-

wanted choices from the constrained scenarios, as expected, it also eliminated final

selections at almost the exact same rate for both constrained and unconstrained

scenarios. This further demonstrates the the hazard of using hard constraints to

approximate soft preferences, even when the user need also has hard constraints.

Several of the models (AIMQ, CQAds, Tradeoff and the MAUT variants)

scored items by a linear combination of absolute differences from the query point.

AutoRank, ProspectTheory and VAGUE also used linear combinations with some-

what different attribute scoring functions. A common problem for many of these

57

Table 3.8: MAP and MRR, Optimized

MAP MRR
Model micro macro micro macro

SortedBoolean 0.936 0.934 0.971 0.974
SimpleMAUT 0.721 0.716 0.835 0.832

Lexical 0.461 0.470 0.598 0.618
Tradeoff 0.695 0.687 0.829 0.829

methods (and often the only thing differentiating them) were the coefficients of

these linear combinations, which can be conceptually divided into two parts: a

scaling factor and a weight. The scaling factors are needed because the units of

the various attributes are not necessarily the same: ideally all would be rescaled

to some common unit, though this is not trivial in practice. Even when the scales

are identical, weights are needed to capture relative importance, for instance with

departure and arrival times which are measured on the same scale. AIMQ, CQAds

and VAGUE suffered because of these scaling factors, which assumptions about

relative magnitudes of the query and data values, number of outliers, and vari-

ability of the data. These may have held in the domains they were originally

evaluated in (if they were evaluated at all), but not in our domain. Overall, we

found it was not so critical to have a good scaling as to avoid having a bad one, as

in many cases the scaling lead to degenerate cases, leading to either no or excessive

differences in the evaluation of different items. Tradeoff had poor weights, and we

found users generally could not provide good weights. The subutility functions of

Autorank and ProspectTheory did not perform well. For AutoRank, the subutil-

ity often dropped off too rapidly. For ProspectTheory, changing the subutility so

that it always decreased with absolute distance from the query point brought the

performance in line with the leader, despite its lack of scaling.

We wanted to understand why the poorly performing explicit models (Sorted-

Boolean, Lexical, and Tradeoff) did not perform better. Did the test subjects have

58

Table 3.9: Queries and Pages Viewed

Mean Mean
Queries Pages

Model micro macro micro macro
SortedBoolean 2.112 2.104 4.030 4.170
SimpleMAUT 1.420 1.415 3.647 3.638

Lexical 1.513 1.574 3.875 4.062
Tradeoff 1.517 1.483 4.356 4.148

Table 3.10: Review Time and Qualitative Ratings

Mean Mean
Time Rating

Model micro macro micro macro
SortedBoolean 161.418 171.671 3.664 3.710
SimpleMAUT 136.653 138.104 3.533 3.511

Lexical 161.355 161.352 3.500 3.525
Tradeoff 165.576 159.720 3.169 3.132

difficulty effectively querying, or was the model not powerful enough? We used

a greedy optimization approach on each individual query to estimate an upper

performance bound for each model. Table 3.8 shows the results of this greedy op-

timization. The results for Lexical is the lowest of all four models, and not greatly

superior to the original queries. This indicates that the test subjects were fairly

adept at using the Lexical model, but the model itself is not powerful enough. In

contrast, the optimized SortedBoolean results are greatly improved, the best of

all models and nearly perfect. Apparently the SortedBoolean model can produce

excellent results, but the test subjects had difficulty creating optimal queries. Fi-

nally, the greedily optimized version of SimpleMAUT and Tradeoff have virtually

the same evaluations, unsurprising as it is possible to translate queries among

those two models.

Table 3.9 shows the number of queries issued and pages of tickets reviewed

for the various models, with SimpleMAUT having the fewest queries and pages

59

reviewed, with the query differences statistically significant at p=0.05. This in-

dicates that test subjects with SimpleMAUT found their chosen tickets with less

effort than the other models. The mean time in table 3.10 also shows Simple-

MAUT with a lower time spent, but this difference is not statistically significant.

The SortedBoolean has a higher mean qualitative rating than SimpleMAUT or

the other models, but in fact this is a statistical tie.

3.2.4 Summary and Contributions

In this chapter, we explored how concepts from multi-criteria decision making

theory could be applied to improve retrieval. In the first part, we applied rep-

resentative multi-criteria decision making methods to two significantly different

retrieval problems: airline ticket search and news filtering. We also compared

the results of these methods to the standard Boolean paradigm. Both multi-

criteria decision making methods performed consistently as well or better than

the Boolean paradigm, with the weighted sum method slightly outperforming the

more complicated outranking method, ELECTRE II.

In the second part, we developed an item retrieval model based on multi-

attribute utility theory, dubbed SimpleMAUT. We adopted an implicit query

model, akin to those in information retrieval, where the user provides a partial

description of what is desired, rather than an explicit specification of the result

set, contrasting to current de facto item retrieval methods. We established a tech-

nique to translate the user’s query and the item’s attribute value into subutility

estimations, which we combined into a single rating used to rank results.

We conducted a user study with Amazon Mechanical Turk to test this retrieval

model in an airline ticket search domain. For this crowd-sourced study, we devel-

oped a game-like experiment structure which used competition and incentives to

60

promote good work and reduce experimenter workload. We also included several

explicit retrieval models for comparison, including the common Boolean model, a

lexical (sorting) model, and an explicit tradeoff model, which uses the same un-

derlying formula as SimpleMAUT, but with explicitly specified model parameters.

We analyzed the performance of the explicit retrieval models to understand

why they did not perform better. Simply sorting results by (possibly multiple)

attributes is not powerful enough to accurately capture the user’s need. Eliminat-

ing items from the result set based on a user’s range restrictions is hazard-prone;

the sharp divisions created by the restrictions may not match the user’s own eval-

uations. Moreover, users are not effective at expressing a good relevance function,

as demonstrated by the Tradeoff model.

We also performed a post-hoc study with raw data gathered from our ticketing

experiment. We used a listwise learning-to-rank algorithm to learn the model pa-

rameters for our retrieval model, and compared the results to those from baselines

in the literature, primarily from database researchers, as well as an adaptation of

the utility model of prospect theory. Our learned model outperformed these mod-

els as well, although the formula were often similar. We found the other models

often made normalization choices that may have performed well in their initial

application, but not in a new domain.

To summarize, we have made the following contributions in this chapter:

• We evaluated the performance of representative algorithms from the two

main branches of multi-criteria decision making theory on two recommen-

dation tasks.

• We derived a novel method for retrieving items with numeric attributes,

SimpleMAUT, by applying concepts from multi-criteria decision making,

informed by our evaluation above. We later optimized the parameters of

61

this model using a listwise learning-to-rank model, LearnedMAUT.

• We showed that a linear combination over transformed criteria ratings can

produce the correct ranking when the mutual utility independence assump-

tion holds.

• We conducted a user study to evaluate item retrieval methods, using Amazon

Turk. We compared the results of our model against standard methods as

well as those in the literature, and identified causes for the differences in

performance.

• We developed game structure for the crowd-sourced experiment to motivate

good work and to reduce the need for quality control from the experimenter,

reducing the overhead and a potential source of bias.

62

Chapter 4

Learning Subutility Functions

In this section, we examine what form the subutility functions take in a re-

trieval setting. In the first part, we return to a more standard multicriteria prob-

lem, where the criteria are user-supplied ratings rather than attribute values. We

evaluate estimating a user’s overall rating using linear subutility functions, as we

have used in the Chapter 3, against nonlinear models, on two recommendation

tasks [83]. In the latter part, we incorporate our observations on the subutility to

a multi-criteria query framework [84]. As before, we evaluate this retrieval model

against retrieval paradigms commonly in use at the time of writing, as well as

several similar approaches proposed in the literature.

4.1 Criteria Subutility in Recommendation

In Chapter 3, we explored how multicriteria decision-making models might be

used to combine ratings from several criteria or attributes, without investigating

the relationship between the criteria and overall rating. Is the relationship linear

or nonlinear? If it is nonlinear, can we get some insight on form of the underlying

subutility function? Is there one basic subutility function, or does it vary across

63

criteria? To answer these questions, we perform our study within the context

of two very different recommendation tasks: news article recommendations — a

representative task for information filtering; and product recommendations (for

flat panel televisions) — a representative task for collaborative filtering. On the

two tasks, we test for the presence of nonlinear subutilities by comparing the mean

squared error (MSE) of learned linear and nonlinear user models for predicting

the overall item rating or recommendation.

4.1.1 Datasets

We used two recommendation datasets for our research. Each dataset had four

criteria and one overall rating defined. The range of these ratings are different

for different criteria, as the data were originally collected for other research. For

consistency, we have rescaled all ratings to have minimum and maximum values

of 0 and 1, respectively. After this rescaling, the ratings were either binary (0 or

1) or five-valued (0.0, 0.2, 0.4, 0.6, 0.8 or 1.0). For both data sets, we restrict

ourselves to user-item pairs with complete ratings (i.e., any items with missing

ratings were excluded from our study).

News recommendation

Our news recommendation data were provided by the University of California,

Santa Cruz and Carnegie Mellon University [91]. The data were previously col-

lected in a user study performed on the Yow-now news filtering system. Yow-now

was an information filtering systems that delivered news articles to users from

various RSS feeds. Approximately twenty-five users used the Yow-now system for

about a month, reading news for at least one hour each day, rating approximately

9000 articles in all, with an average of 383 articles rated per user (with a standard

64

deviation of 252.8). This allowed us to explore creating personalized user models

with the Yow-now dataset.

The users rated each article according to the following four criteria:

Authoritative : how authoritative the article appeared (binary).

Novel : the novelty of the article (five-valued).

Readable : the ease of reading the article (binary).

Relevant : the degree to which the article was relevant to the general subject

category of the article (five-valued).

The overall user rating of the article was given on a five-point scale.

Product Recommendation

Our product recommendation data came from a crawl of the Epinions.com

review site. Our dataset is restricted to flat panel television reviews. Approxi-

mately 1100 users reviewed 1200 items, with an average of 1 review per user (with

a standard deviation of 0.29). With such a small number of reviews per user, it

was clearly not possible to build personalized user models with this dataset.

The users rated each product according to the following four criteria:

Sound : The sound quality of the television (five-valued).

Ease of Use : Ease of use of the various features and menus (five-valued).

Picture Quality : All visual aspects of the television’s picture (five-valued).

Durability : Durability of the television set (five-valued).

The overall user rating of the article was given on a five-point scale.

65

4.1.2 Approach

To test for nonlinear subutilities in the final decision/rating process, we com-

pared the performance of two sets of models on a rating prediction task. The first

model is a linear combination of ratings on the criteria, so the subutility functions

themselves are linear, as we had assumed in Chapter 3. The second model as-

sumes that subutility is nondecreasing as the criterion rating increases, but does

not assume linearity. Both models take the user’s item rating on each criterion as

input, and output a prediction of the item’s overall rating.

In this experiment, we first used machine learning to estimate the model pa-

rameters from training data. We then compared the prediction accuracy of the

two sets of models on testing data. If the nonlinear model performed better, then

we would have expected similar results in practice under conditions comparable

to our study. On the other hand, if the latent subutility functions are linear, the

nonlinear model should have performed no better than the linear model on the

test set, and possibly worse due to overfitting. As mentioned earlier, we used MSE

as our evaluation measure, as is often done for similar recommendation problems.

4.1.3 Linear Model

The linear model is simply a linear combination over the ratings for each

criterion; the independent variables are the ratings on the criteria, plus a bias

term, and the dependent variable is the overall rating. If it was possible to select

the best nonlinear model in every case, the MSE of the linear model would serve

as a upper bound on MSE, as the linear model is a special case of nonlinear models

described below. However, due to overfitting, it is possible to select a nonlinear

model that is suboptimal and worse than the linear model. The MSE achieved by

the linear model is our baseline and a failure to improve upon it would indicate a

66

lack of evidence nonlinear subutilities. The linear model is simply:

fL (x) =
m∑
i=1

wixi + b (4.1)

where m is the number of criteria, x are the criteria ratings for an item, with b as

a bias term and w as an m-length vector of coefficients to be learned. We restrict

the weights to be non-negative.

4.1.4 Nonlinear Model

We modeled nonlinear subutility functions by creating derived binary features

that correspond to specific ratings on criteria in a linear combination:

fNL (x) =
m∑
i=1

|Vj |∑
j=1

wij [xi ≥ vij] + b (4.2)

where Vj is the set of distinct ratings possible for the jth criterion (so |Vj| is the

number of distinct possible ratings), [] is the Iverson bracket, m is the number

of criteria, x are the criteria ratings for an item, with b as a bias term, and wi

as an vector of coefficients to be for the corresponding criterion (with a separate

coefficient per possible rating) to be learned. As with the linear model, we restrict

the weights to be non-negative.

Our representation exploits the fact that there is a small number of possible

ratings for each criterion: for the news recommendation dataset, there are a total

of 2+5+2+5=14 weights to be learned (compared to 4 in the linear model); for

the product recommendation dataset, there are a total of 5+5+5+5=25 weights

to be learned (again, compared to 4 in the linear model). A larger set of possible

values would limit opportunities for generalization, and continuous valued ratings

would require infinitely many weights.

67

Sine the learned weights are non-negative, and the weights accumulate as the

ratings increase, the learned subutility functions are non-decreasing. For example,

consider a rating of 0.75 for sound on the product rating dataset. Let the learned

weights for sound ratings of 0.0, 0.25, 0.5, 0.75, and 1.0 be w1,1, w1,2, w1,3, w1,4,

w1,5, respectively. Since 0.75 is greater or equal to 0.0, 0.25, 0.5, and 0.75, the

subutility evaluation of a 0.75 rating would be w1,1 + w1,2 + w1,3 + w1,4. As an

aside, since each criterion rating is at least as much as the lowest possible rating,

we drop these from the model, absorbing them into the single bias term b, making

the formulation slightly different, though equivalent, to Eq. 4.2.

Regularization

Since both sets of models take a linear form (as we have represented the non-

linear form as a linear model on a new feature space, described above), we use a

non-negative least squares solver to find model parameters that minimize MSE on

the training data. However, our goal is to minimize MSE on the unseen testing

data, not the training data, and given the small training set size, some form of

regularization is needed to avoid overfitting. This is particularly important for

the more complex nonlinear model, as the increased complexity can lead to an

overly specific model that fits more of the noise in the data. We use Tikhonov

regularization, a special case of L2-norm regularization or ridge regression. The

analytical solution to the minimize MSE with regularization is:

W = (λI + XTX)−1(λW0 + XTY) (4.3)

where an exponent of T indicates matrix transposition, λ controls the amount of

regularization, I is the identify matrix, X is the instance matrix, Y is the vector

of target values, W0 is the regularization vector we specify and W is the vector

68

of coefficients we seek. Larger values of λ causes the solution to be closer to W0.

For the linear model, we biased towards the following regularization vector:

W0 =
[

0.25 0.25 0.25 0.25 0.0
]

(4.4)

where the last position is the constant bias term and the other terms are the

coefficients for the four criteria. We chose Wo such that all criteria would be

weighted evenly, and the minimum (maximum) overall rating would be predicted

when the minimum (maximum) rating was given on each criterion.

For the nonlinear models, we biased the model so that it would prefer more

linear subutilities and evenly weight all criteria as with the linear model. The

sum of all the weights for a criterion’s ratings sum to 0.25, so we have four sets

of repeated terms (one set per criterion), followed by the constant bias term:

W0 =
[

0.25
|V1| 0.25

|V2| 0.25
|V3| 0.25

|V4| 0.0
]

(4.5)

where Vj is the same as in Eq. 4.2. Since the number of unique criteria ratings

varies, the size of W0 also varies.

Tuning and Model Selection

The λ term in equation 4.3 controls the tradeoff between coefficients that mini-

mize MSE on the training set, and coefficients that are closer to the regularization

vector (W0) described above. Higher values of λ moves the solution closer to the

regularization vector, while allowing for higher MSE; lower values of λ do the

opposite. We choose λ by further dividing each training set into a 10% validation

set and another (sub-)training set from the rest of the data, which we use to train

the model with a given version of λ. The validation set is used to evaluate the

MSE for the corresponding value of λ. We repeat this for several values of λ,

69

Table 4.1: Mean Squared Error for Global Model

micro macro
Domain linear nonlinear linear nonlinear

News 0.5633 0.5629 0.5392 0.5385
Product 0.6506 0.6307† 0.6618 0.6408†

Table 4.2: Mean Squared Error for Personal Model

micro macro
Domain linear nonlinear linear nonlinear

News 0.4314 0.4241† 0.4668 0.4542

and having observed a peak value, we train a new model on the entire training

dataset using this value for λ. This process is repeated for each fold and used

independently for both the linear and nonlinear models.

4.1.5 Results

We evaluate the mean squared error by both a mean of means over users, a

micro-average and a macro-average. The microaverage is calculated by calculating

a mean squared error for the ratings from each user; each mean is weighted by

the number of responses for the corresponding user, and so the end result is the

same as the overall MSE without regard to the individual users. By contrast,

the macro-average weights each user equally, without regard to the number of

responses, calculating a mean of these means. In addition, we train a global

model for both news and product recommendation and a personalized model for

each news recommendation test subject. (The product recommendation dataset

average less than two reviews per user, so personalized models in this framework

was not feasible.)

Each model was trained as described in Section 4.1.2, with the personalized

models trained on each user’s data individually. Thus, the global models were

70

trained to minimize the microaverage of squared error, and the overall fit was

dominated by more prolific users. To test statistical significant with p=0.05, we

use a randomization test [71]. In this test, the null hypothesis is that the observed

difference between each model on a given response was equally likely to favor the

other model, and so the observed difference is due only to random chance. Thus,

we randomly reassign the observed difference on each response (flipping or not) for

all responses, calculate the observed difference, and repeat this process a million

times, recording the fraction of randomized responses that produce a difference

at least as large as that observed.

Table 4.1 shows the results for a universal model for all users, with the best

performer (comparing linear and nonlinear) bolded and statistical difference sig-

nified by the dagger (†). In all cases, the nonlinear model outperforms the linear

model, although the reduction in MSE is slight. For the news recommendation

domain, this difference is not statistically significant, but for the product recom-

mendation domain, both the resultant micro- and macro- average is significant.

For the news recommendation domain, we also train a personal model for each

test subject, with the results shown in Table 4.2. In this case, the microaverage

results are statistically significant, but the macroaverage results are not. Given

that the users with less data presumably have corresponding models with a less

accurate fit, this is not surprising.

Our results show that underlying subutility functions of criteria-based infor-

mation retrieval models are nonlinear, at least in some cases, as measured by

an observed reduction in MSE when fitting to nonlinear models. We observed

this reduction in both non-personalized and personalized models. However, the

amount of MSE reduced by exploiting non-linearity was slight in the datasets we

used. Moreover, there was not a consistent shape of subutility function we could

71

observe, nor an underlying structure. Most estimated subutility functions roughly

fit one of three shapes. Moving from right to left, in some cases the subutility

dropped rapidly and then leveled off; in others, it descended slowly at first and

then rapidly; and in yet others, it combined the two, at first decreasing slowly,

then dropping quickly, then slowly again, much like a Gaussian function. In no

case did it match a step function or exactly linear function.

Despite our use of regularization, overfitting remained a problem, as evidenced

by the occasional increase in MSE over the linear model. This could be expanded

to a Bayesian framework, using prior probabilities to avoid selecting less probable

models when there is not sufficient support in the data. Even without these

improvements, in our experiments we were successful in reducing the overall mean

MSE by exploiting nonlinearity in the underlying subutility functions.

4.2 Incorporating Nonlinear Subutility into Query-

based Retrieval

In this section, we expand on the retrieval framework we developed in section

3.2. Given our observation that underlying subutility functions can be better

modeled with nonlinear functions, we develop a parameterized form that can

represent the shapes of subutility functions we have observed. We also conduct a

user experiment using a new, more complex domain, that of daily meal plans. In

addition to providing a differing domain to test our ideas, meal plans also provide

important differences from airline tickets, leading to a more thorough evaluation

of our concept. First, meal plans naturally suggest specific and varying nutritional

targets, in contrast to booking airline tickets, which would mostly seek to minimize

values (such as price and duration). Second, meal plans are comprised of several

72

meals, each consisting of dishes, a thus are really a set of items, also referred to

as a package.

Package recommendation has received a fair amount of attention in the litera-

ture [38, 88, 74, 6, 61, 62, 60, 9, 5, 12]. In this approach, recommended packages are

generated on the fly subject to some hard constraints, typically an NP-complete

problem. Our package retrieval approach contrasts with these by selecting from

a fixed (though large) corpus of packages, eschewing constraints and explicitly

stated objective functions for estimations of utility. We compare our utility-based

approach to using hard constraints to find appropriate packages (meal plans). We

also investigate how to effectively aggregate multiple values for a given attribute

of a package.

4.2.1 Towards a model of subutility

In Chapter 3, we developed a simple retrieval model inspired by multi-attribute

utility theory (MAUT) [28], unimaginatively dubbed SimpleMAUT. To briefly

review, MAUT assumes mutual utility independence, which means that the utility

function takes either an additive or multiplicative form: we showed that a linear

combination exists that produces the same ranking, and so SimpleMAUT ’s utility

function is a linear combination of ratings:

f(Q,Di) =
∑
j

wj × gj(qj, dij) (4.6)

where j is the index of the jth attribute, wj is the priority (weight) given to the

attribute, Q are the desired attribute values, and Di is the ith item in corpus

D, with qj and dij the values of the jth attribute of Q and Di, respectively. For

SimpleMAUT, we assume a linear subutility function gj(qj, dij):

73

g(qj, dij) =
(

1− |qj − dij|
max (|qj −⊥j|, |qj −>j|)

)
(4.7)

where ⊥j and >j are the least and greatest values of the jth attribute in the

corpus, and other variables are as defined in Eq. 4.6.

However, the subutility estimation of numeric attributes in SimpleMAUT has

several limitations. First, the attribute ratings are normalized by the extreme

attribute values of the corpus, and so can be radically affected by corpus changes.

Second, it assumes a linear relationship between the attribute subutility and the

attribute value, implying a constant rate of subutility change as well as an under-

lying additive form. This has nonintuitive consequences, for instance, it implies

that reducing the price by $5 is just a compelling when for a $1000 item as it would

be for a $10 item, given the same desired price. Finally, as is, SimpleMAUT does

not have way to incorporate the subutilities of a multiply-valued attribute, which

we needed for the ratings of multiple dishes in the meal plans in our user study.

We made several changes in an enhanced version of our model, normalizing

numeric attribute subutilities with the standard deviation and including a scaling

factor for each subutility. We also developed a more flexible subutility function

based on several principles. First, the desired value should have maximal subu-

tility. Second, subutility should never increase as the absolute difference to the

desired value increases. Finally, the subutility function should be as flexible as

possible with a minimum number of parameters. Accordingly, we used an expo-

nential function, raised to a positive exponent, as our subutility function. It can

capture a variety of functions, from a point-like subutility, to gradually dimin-

ishing losses, to a bell-shape curve, and even to a boxcar function in the limit.

The enhanced model has separate subutility function parameter values above and

below the desired value, so that asymmetric subutilities can be modeled, given

74

the benefit of such that we observed in Chapter 3.

We can now present the revised numeric subutility function used by our en-

hanced retrieval algorithm, EnhancedMAUT :

gj(qj, dij) = [qj ≥ dij] exp

−(|dij − qj|
φ≥j σj

)ρ≥j 
+ [qj < dij] exp

−(|dij − qj|
φ<j σj

)ρ<j 
(4.8)

where σj is the standard deviation of jth attribute, [] is the Iverson bracket, ρ≥,

ρ<, φ≥ and φ< are model parameters, and others are defined as above.

Finally, we chose to aggregate multiply valued subutilities with a generalized

mean, which only applied to the rating of the component dishes in the meal plan

user study. The generalized mean takes a single parameter ψ and its argument, a

series of numbers x1, ..., xn:

M(x1, ..., xn) =
[

1
n

n∑
i=1

xψi

] 1
ψ

(4.9)

The generalized mean’s appeal comes from its flexibility, as particular values of ψ

will produce the arithmetic, geometric, and harmonic means, as well as minimum

and maximum. Thus, this one function allows us to model several reasonable

ways a user might evaluate a set of items. In our case, each xi is the estimated

subutility of the rating of a dish in a meal plan.

75

4.2.2 Learning

The AdaptiveMAUT model (Figure 4.1) has the same formulation as En-

hancedMAUT, but uses tuned model parameter values for the attribute weights

and shapes of the subutility functions, as described below. These are learned in a

pairwise learning to rank framework with Bayesian logistic regression, by placing

a logistic function in a hierarchical model. Given the utility function f() in Eq.

4.6, using the subutility function g() in Eq. 4.8, and the general mean (for dish

ratings only) in Eq. 4.9, the likelihood function L() is:

L(ρ≥,ρ<,φ≥,φ<,w, ψ;Q,D,R,U) =
∏

Q∈Q

∏
r∈R

∏
u∈U

(
b

2 + 1− b
1 + exp(−c(f(Q,Dr)− f(Q,Du)))

) (4.10)

where Q are the set of queries, R are the item indices chosen for query Q, U are

the indices of items not chosen for query Q, b and c are tuning parameters, with

others defined above. Parameter b (arbitrarily set to e−2 in our experiment, and

discussed below) limits the maximum loss from any pair, and c (unrelated to the

c in Eq. 3.9, and set to 10 in our experiment) affects gradient smoothness, with

results insensitive to small changes in either parameter.

The model parameters ρ≥, ρ<, φ≥, φ<, w and ψ are given prior distributions,

with ψ modeled as a standard normal distribution and the rest modeled with

gamma distributions. The hyperpriors λ≥ρ , λ<ρ , λ
≥
φ , and λ<φ are used to control the

modes of ρ≥, ρ<, φ≥, φ<, and are modeled as a modified gamma distribution that

corrects for a drift towards more compact distributions with smaller modes. These

hyperpriors and w were given a mode of 1. The gamma distributions’ parameters

were calculated to fit the mode and give good regularization.

76

yi

ρ≥ ρ< φ≥ φ< w

ψ

λ≥
ρ λ<ρ λ≥

φ λ<φ

j

i pairs

Figure 4.1: Hierarchical Bayesian model of AdaptiveMAUT

-1.0 -0.5 0.0 0.5 1.0

-1
0

-8
-6

-4
-2

0

Original Function

score difference

lo
g

lik
el

ih
oo

d

-1.0 -0.5 0.0 0.5 1.0

-2
.0

-1
.5

-1
.0

-0
.5

Revised Function

score difference

lo
g

lik
el

ih
oo

d

Figure 4.2: Log Likelihood

77

The tuning parameter b was included to limit model sensitivity to highly un-

likely pairs. Initially this parameter was not included (equivalently given a value

of zero), yielding a more conventional logistic function, but we found the proba-

bilistic model would gravitate towards fits where most pairs were slightly unlikely,

in order to avoid a lower overall probability where most pairs were likely but offset

but a few very unlikely pairs. Unfortunately, this meant that model was also mis-

classifying most pairs. Our solution was to have our utility function only describe

part of the data, modeling the data as a mixture of two processes, the other being

a random selection model. This also admits uncertainty into the model; at times,

a user may select a different item due to factors that are not captured by the

model. Figure 4.2 compares how the log likelihood changes for a single pairwise

comparison as their score difference changes, in the original and revised formula-

tion; note also the difference in scale. Since the overall log likelihood is the sum of

each pair’s likelihood, it is easy to see that the revised likelihood corresponds much

better with the overall classification accuracy. For our experiments, we arbitrarily

set the mixing parameter b to e−2 (≈ 0.14), noting that results were insensitive

to small changes in this parameter.

We used the Metropolis-Hastings algorithm to generate samples from the pos-

terior distribution, using the observed modes as the model parameter values. After

the user study, the initial queries and final selections from that study were sepa-

rated into 20 folds (for cross-validation), training a separate model for each fold,

using the other 19 folds for training data and the fold’s data for testing. We

partitioned the data into folds by scenario, to prevent selections from the test

scenario biasing the model. However, given the difference in scenarios, queries

and limited number of selections, the learning problem is fairly difficult. We eval-

uate the learned model in Section 4.2.4 using the mode of the resulting posterior

78

distributions.

4.2.3 Experiment

We follow the same general experimental framework we used in Section 3.2.2

to compare several models’ ranking of results and to compare the quality of pack-

ages found using the different retrieval models as well as to hand-built packages.

However, we make some improvements to the experimental protocol, adding a

head-to-head comparison, dropping the poorly performing Lexical and Tradeoff

baseline models while adding a Faceted model, and improving our model as de-

scribed in Section 4.2.1. Though SortedBoolean also performed poorly in our

previous study, we include it as the de facto retrieval model and to compare its

results with the also popular Faceted model.

User Interfaces

We developed different user interfaces to support models with different query

input (e.g., some supported ranges, some accepted sort orders, etc.). Some re-

trieval models had identical query input and differed only in the subsequent rank-

ing.

SortedBoolean Like the earlier ticketing user study, this interface allowed users

to restrict the result set by attribute ranges and to provide a sort order. In

this experiment, we allowed restriction on any attribute and up to four sort

orders. An example of the query interface is shown in Figure 4.3.

Faceted We created a basic faceted search model, inspired by those in use in

popular e-commerce sites today, to compare with our other models. All

attributes were split into a small number of equally sized facets, with seven

79

Figure 4.3: SortedBoolean search interface.

to twelve facets per attribute. Up to four sort orders could also be chosen.

An example of the query interface is shown in Figure 4.4.

Point The point-based user interface allows a user to specify single values for

each attribute, allowing the user to give specific attribute values of interest.

Partial specifications (attributes can be left blank) are acceptable, as with

other interfaces. This interface was used initially for EnhancedMAUT in

the user study, with the collected data re-used post-hoc for AdaptiveMAUT

and the baselines from the literature. The point-based interface is shown in

Figure 4.5

80

Figure 4.4: Faceted search interface.

Figure 4.5: Point-based search interface.

81

Retrieval Models

We used our proposed models, the de facto item retrieval methods of Boolean

and faceted search, we use the same models from the literature as our previous

study in Section 3.2.2, which we include again here. Variables are defined as in

Section 4.2.1 unless otherwise specified.

AIMQ AIMQ [56] estimates relevance using a different normalization and global

weights derived from functional dependencies. Items are ranked by decreas-

ing score order, where the score of di is defined as:

f(Q,Di) =
∑
j∈Q

wj

(
1−min

(
1, |qj − dij|

qj

))
(4.11)

where j ∈ Q indicates the jth attribute was given a desired value (not left

blank), and wj is the global weight for the jth attribute.

AutoRank This is the (unnamed) model of Agrawal et al [2]. They used an

inverse document frequency (IDF) term for weighting, defined below for

query element qj as:

wj = log

 n∑n
k=1 exp(−1

2

(
dkj−qj
hj

)2
)

 (4.12)

where n is the number of items, and hj is a “bandwidth” parameter, chosen

by Agrawal as hj = 1.06σjn−
1
5 . This is combined in their overall scoring

function:

f(Q,Di) =
∑
j∈Q

wj exp
−1

2

(
dij − qj
hj

)2
 (4.13)

with items ranked by decreasing score.

82

CQAds CQAds [65] estimates relevance much like AIMQ, but with a different

normalization, and without attribute-specific weights. In our adaption of

CQAds scoring, items are ranked by decreasing score order, where the score

of di is

f(Q,Di) =
∑
j∈Q

(
1− |qj − dij|

Rj

)
(4.14)

where Rj is an estimation of the range of the jth attribute, defined as the

mean of the ten greatest values minus the mean of the ten least values.

Faceted/SortedBoolean Faceted and SortedBoolean have the same retrieval

semantics with different user interfaces. Items that meet the constraints

given by the user are returned and ordered by any provided sort orders.

MAUTs EnhancedMAUT and AdaptiveMAUT were described in Sections 4.2.1

and 4.2.2, respectively. All model parameters for EnhancedMAUT were

chosen to be one for the user experiment, simplifying the subutility function:

gj(qj, dij) = 1
exp

(
|dij−qj |
σj

) (4.15)

where parameters are the same as in Eq. 4.8. Not coincidentally, these cho-

sen values are the mode for each prior distribution used by AdaptiveMAUT.

As the final form of EnhancedMAUT given here had not been developed at

the time of the user study, an earlier precursor was used that had a slightly

different subutility formulation: 1
1+
|dij−qj |

σj

. After the user study had com-

pleted, AdaptiveMAUT was trained and evaluated post-hoc as described in

Section 4.2.2.

83

VAGUE The VAGUE framework [54] provides a “similar-to” operator that cal-

culates a weighted Euclidean distance from the query point and the item.

This operator can use subutility functions, but none are prescribed, so we

choose the absolute difference divided by the standard deviation:

f(Q,Di) =

√√√√√∑
j

[
wj

(
|qj − dij|

σj

)]2

(4.16)

with items ranked by increasing score. As with the MAUTs above, uniform

weights in the meal plan study as we had dropped user-supplied weights

based on our earlier results.

Only EnhancedMAUT andAdaptiveMAUT were developed to support multiply-

valued attributes (our meal plans have a separate rating for each included dish), so

we use the (arithmetic) mean to aggregate such multiple values in the experiment,

except where otherwise noted.

AIMQ, CQAds, the MAUT-based models (EnhancedMAUT, and Adaptive-

MAUT), and VAGUE all accept the same query input, differing only in how they

rank results. Thus, only EnhancedMAUT were used during the user study, with

the others evaluated post hoc using only the first query from each session, as

subsequent queries are influenced by the search engine actually used. Addition-

ally, AdaptiveMAUT was trained with data after user study completion instead

of on-line.

Data Used

As with the ticketing study, we wanted test subjects to perform realistic tasks,

using appropriate real world data. Similarly, we developed twenty short scenarios

based on the literature. We consulted a popular nutritional resource [66] which

84

tabulated nutritional needs by age and gender, as well as modifications needed

for various diseases and lifestyles. In addition to these specific recommendations,

we also included a desired nutritional range in the form of Estimated Average Re-

quirement and Tolerable Upper Limit [81] when such are defined. We developed

twenty core scenarios, choosing a variety of conditions, genders, and ages. In ad-

dition, four meal plan attributes (tastiness and three randomly selected nutrients,

typically overlapping with any nutritional modifications) were emphasized to fo-

cus the test subject. In all, 119 scenarios were generated during the user study.

Figure 4.6 gives an example of one of the meal plan scenarios.

You are choosing meals for Emma, a 30 year old female.
Emma is concerned about her fat intake. She has read that
at most 30% of calories should come from fat, with at most
10% coming from saturated fat. Emma wants a daily meal
plan that follows the nutritional recommendations, with
an emphasis on delicious food, calories from fat, total
fat, and saturated fat.

Figure 4.6: Example Scenario for Meal Plan Study

We used the meal plan components (individual dishes) to create the corpus,

as large open collections of daily meal plans are not common. We downloaded

roughly fifty thousand recipes from the recipe-sharing website allrecipes.com to

serve as the building blocks of our meal plan corpus. Allrecipes.com recipes include

a variety of metadata (such as type of dish, meal, and cuisine) and nutritional

info, which made it ideal for building daily meal plans. From this, we used a

meal plan generator that selects appropriate main dishes for breakfast, lunch

and dinner, adding additional meal components (side dishes, drinks, appetizers

and desserts) with decreasing probability as the daily calorie count increases,

creating approximately a quarter million meal plans. Twenty of the attributes

were nutritional information (e.g., calories, vitamin A, etc, as in Figure 4.5) which

85

could be simply summed. The other attribute was allrecipe.com individual dish

ratings, which were preserved for each meal plan.

Subject’s tasks and rewards

We developed a game with rewards to motivate test subjects to take the task

seriously and put effort into choosing the best items. We used Amazon Turk

workers as our test subjects [3], restricting to workers within the United States

and with high completed work acceptance rates (95% or better). Several workers

would be given the same scenario and were asked to choose the selection(s) that

would be most likely to please the person described in the scenario. There were

two roles, the searcher and judge, as described below:

Searcher This role was used to generate queries and relevance judgments. The searcher

used a randomly selected search engine to search the corpus and select items.

These selections were entered into a “contest” and assigned a judge, with

the searcher receiving a bonus if their selection won the contest, as described

below.

Judge This role was used to validate work and provide bonuses. The judge selects

items from a randomly ordered list without the benefit of a search engine.

The judge would see the two meal plans entered by the two searchers, along

with two randomly selected meal plans, in a random order. When the judge

chooses a searcher’s entered meal plan, that worker is given a bonus. A

second judge would be given the same set to evaluate, and should the second

judge made the same selection as the first, both get a reward. The use of a

direct contest between two searchers using different search engines allowed

for results from different search engines could be directly compared (head-

to-head).

86

In addition, we asked each test subject (whether searcher or judge) to provide

a justification for their selection. Work was rejected when justifications were

inadequate and eliminated from our study, eliminating about 10% of the responses.

From the accepted work, 205 test subjects completed 321 tasks. As each task had

exactly one initial query and one item chosen, 321 initial queries and 321 final

selections were collected.

Evaluation Metrics

As mentioned in Sec. 4.2.3, we use only the first query from each session to

calculate mean average precision (MAP). However, a test subject may be likely

to choose a higher ranked item when utility is roughly the same. Moreover, given

a large number of items, the item ultimately chosen is affected by the retrieval

model’s ranking as not all items will be viewed. This is irrelevant when comparing

the retrieval models used directly by test subjects, but could bias the results when

comparing retrieval models in our post hoc analysis. To compensate, we break

the bond between the test subject’s query and ultimate selections by using the

selections from the other test subjects on the same scenario, which we refer to as

the community evaluation. Given the large number of meal plans, the combined

set of search results from any test subject’s session was such a small fraction of the

corpus that there was little to no overlap among sessions. Therefore, each query

was evaluated separately on each result set. We further only used result sets from

queries that won at least the median number of contests. Finally, we evaluate over

the subset of the corpus actually viewed by the test subject, sometimes referred

to as induced MAP, which has been shown to better correspond to the true MAP

value given incomplete judgements [90]. We assume that the user views meal

plans starting from the top until either the end of the result set is reached, or a

87

meal plan is selected.

As differences in response and acceptance rates per scenario gave us varying

amounts of data, we average our results in two ways. The first is the micro-

average, which is the mean over all responses without respect to the scenario. The

second is the macro-average, which calculates an overall average from the mean

of each scenario individually. The macro-average compensates for an unbalanced

distribution but may have higher variability, as scenarios with fewer responses are

weighted the same as those with more responses.

We use a randomization test [71] in two ways to calculate statistical signifi-

cance. The first method is used when comparing responses by different subjects

in the user study, using in-study models; no subject was allowed to respond to

the same scenario more than once. Our null hypothesis is that each test subject

would have had the same performance on either of the compared models, and

so the observed difference is merely a chance event stemming from random as-

signment of test subjects. The second method is used in our post-study model

evaluation. Here our null hypothesis is each method was equally likely to have

produced the observed difference. To test the null hypothesis, we randomly redis-

tribute the responses or the differences, respectively, within the scenarios among

the two models one million times. The p is the fraction of times this redistribu-

tion produced a difference for the metric that was at least as great as the actual

observation.

4.2.4 Results

We provide various results of our experiment below, with the leader bolded and

statistically significant difference (at p=0.05 or better) against all others indicated

by the dagger (†), and with the asterisk (∗) indicating a statistically significant

88

difference against all other models except VAGUE.

Table 4.3: Community-evaluated Induced MAP

MAP@10 MAP@25
Model micro macro micro macro
AIMQ 0.313 0.287 0.332 0.306

Autorank 0.218 0.193 0.252 0.230
CQads 0.337 0.314 0.355 0.332

VAGUE 0.323 0.324 0.343 0.343
AdaptiveMAUT 0.393† 0.382∗ 0.407† 0.396∗

Table 4.3 gives the community-evaluated induced MAP scores for models in

the meal plan user study. Qualitatively, the results are similar to the ticketing

user study despite differences in the domain and corpus size, with the Adaptive-

MAUT model outperforming the others. A unique feature of the meal plan domain

was the multivalued dish rating attribute, which we aggregate with a generalized

mean. The value of ψ in our experiment was close to the geometric mean (aver-

aging around −0.25 and varying by fold, where a value of 0 yields the geometric

mean). Changing the baselines to use the geometric mean (instead of arithmetic

as shown in Table 4.3) yielded better results, mostly by a statistically signifi-

cant differences; even so, the differences with the AdaptiveMAUT result remained

statistically significant.

Table 4.4: Searcher Success by Search Engine

Paradigm Win Rate Judge MRR
EnhancedMAUT 0.61† 0.65†

Faceted 0.44 0.17
SortedBoolean 0.45 0.11

Another way to evaluate search result quality is to see how often a model

was used to find the winning meal plan. Table 4.4 shows searchers using the

89

Table 4.5: Head-to-Head

Enhanced Sorted
MAUT Faceted Boolean
54† 29
35† 18

23 25

EnhancedMAUT search engine were very successful, beating the competition (i.e.,

searchers using a different search engine) nearly two thirds of the time. Moreover,

if we use the search engine to rank the contest entries (given as “Judge MRR”),

the advantage of the EnhancedMAUT model is even clearer. A direct comparison

is given in the “head-to-head” performance in Table 4.5, with each row in the

table listing the “victories” in matches between the pair of search engines in the

columns. For example, the EnhancedMAUT and Faceted search engines have

competed 53 times (i.e., entered into the same contest, as described in Section

4.2.3), with the EnhancedMAUT paradigm winning 35 contests and losing 18.

As with the other comparisons, the difference between EnhancedMAUT and the

others is statistically significant. In contests between a hand-built meal plan and

one found by any search engine, those found via search were preferred 18 times

to 9, even though it typically took five times longer to build a meal plan than to

find one.

Table 4.6: Turker Behavior

Paradigm Queries Time Parameters Orders
EnhancedMAUT 1.80† 2:43 4.50 0.0†

Faceted 3.48 2:34 2.00† 0.12
SortedBoolean 2.57 2:44 3.81 0.28

Table 4.6 provides various microaverages (average without respecting scenario

90

difficulty effects), with the leader bolded and statistically significant differences

indicated by the dagger (†). We assume smaller values are preferable throughout.

The meaning of the various averages follow:

1. Queries. Average number of queries issued per task. We did not try to

detect duplicate queries, i.e., re-issuing a query that had been issued before.

2. Time. The total time spent searching and reviewing the results. This does

not include time waiting for the search engine, which was minimal in any

case.

3. Parameters. The total number of meal plan attributes, per query, that

had constraints or criteria specified.

4. Orders. The total number of sort orders, per query. The EnhancedMAUT

paradigm does not allow for sort orders.

As can be seen from the table, searchers were able to find a desired item issuing

fewer queries when using the EnhancedMAUT paradigm, though the comparison

with Faceted is less meaningful as its queries are built progressively. Yet, there

was little difference in the average time taken to make a selection. Sorting was a

rarely used feature.

4.2.5 Summary and Contributions

In this chapter, we explored the subutility functions for our MAUT-based

model. In the first part, we tested our prior assumption the these functions were

linear on two recommendation tasks: product recommendation (specifically, tele-

visions) and news article filtering. As each task had a finite and small rating

domain, we were able to build a nonlinear subutility model capable of fitting any

91

nondecreasing subutility function. We evaluated the performance of this nonlinear

subutility model against a linear one on mean squared error, and found the nonlin-

ear model had superior performance, although the difference was only statistically

significant for the product recommendation task. We fit separate subutility mod-

els for each criterion, and found little commonality upon inspection, implying that

subutility may vary by criterion rather than taking a single, universal form.

Based on these observations, we built upon our earlier basic multi-criteria de-

cision making theory-inspired model, SimpleMAUT, to a more advanced model,

EnhancedMAUT. We extending the theory, incorporating a nonlinear subutility

function, and then developed a Bayesian graphical model around the core utility

model so we could tune the model parameters in a pairwise learning-to-rank frame-

work, dubbed AdaptiveMAUT. We evaluated the model in a nutritionally-based

user study conducted with Amazon Mechanical Turk. As before, we compared our

MAUT models with the de facto explicit retrieval models, where the user explic-

itly describes what to return and how to order it. We also compared our methods

to several implicit retrieval models found in the literature, where retrieval and

ranking is implied by the user’s description of what is desired.

Explicitly constraining the result set hurt the performance of SortedBoolean

and Faceted. Hard constraints are not well-suited to expressing preferences, and

we found that test subjects often ultimately selected items that were eliminated by

their initial restrictions. Though the user interfaces for SortedBoolean and Faceted

are quite different, the underlying query semantics are identical, and we observed

nearly identical retrieval performance. These models that required users to give an

explicit ranking, performing worse than EnhancedMAUT, which implicitly ranks

by attempting to glean query intent. As before, test subjects were most successful

using the implicit MAUT query model.

92

In the post-hoc analysis, the models that accept single attribute values instead

of ranges (AIMQ, AutoRank, CQAds, MAUT variants, and VAGUE) vary widely

in their performance, despite their similarities. AIMQ and AutoRank suffered

because of their estimated attribute weights; replacing these with uniform weights

improved performance. As with the study Chapter 3, the research baseline models

did not perform well in a new domain, with their parameters based from an

analysis of the corpus or from assumptions. In contrast, AdaptiveMAUT was

significantly better than other models in every category.

One of our user studies involved package retrieval, where a set of meals would

be returned as a daily meal plan. Although most of the attributes of the com-

ponent dishes could be summed up in the package, ratings could not. We found

that our learning model, AdaptiveMAUT, tended to prefer component attribute

aggregations closer to the geometric mean rather than the often assumed arith-

metic mean. Using the geometric mean in our baselines also improved retrieval

performance. We also found that searching a large corpus of packages was more

effective than creating a meal plan by hand. This may be an alternative to the

often explored approach of generating a package on the fly under constraints,

particularly when the problem does not have true hard constraints.

To summarize, we have made the following contributions in this chapter:

• We evaluated the performance of linear and nonlinear subutility functions

on two recommendation tasks.

• Continuing beyond the guidance of multiattribute utility theory, we devel-

oped a parameterized yet flexible subutility function from several principles,

yielding EnhancedMAUT. We later developed a graphical Bayesian model,

AdaptiveMAUT, using EnhancedMAUT as its core and learned the param-

eter values in a pairwise learning-to-rank model.

93

• We conducted another user study to evaluate item retrieval methods in a

new domain, again using Amazon Turk. We compared the results of our

enhanced model against standard methods as well as those in the literature,

and identified causes for the differences in performance.

• We explored how to combine multiple ratings given a group of items, and

compared the efficacy of searching for a package against generating one

manually.

94

Chapter 5

Extending the Retrieval Model

In this section, we explore how to extend the model to handle a wider range

of queries, including those of an actual item search site and those stemming from

natural language queries.

5.1 Extending to an Active Search Engine

Up to this point, we have evaluated our retrieval model under somewhat con-

trolled conditions. Our experiments have simulated realistic conditions, but out

of necessity, have had a limited number of user needs and ideal data conditions.

In this section, we take our evaluation out of the laboratory and explore applying

it to an existing vertical form-based search engine, the Exoplanets Orbit Database

(EOD) [36]. We extend our retrieval model handle the additional attribute types

of the EOD and evaluate retrieval performance against queries submitted to the

EOD.

95

5.1.1 The Exoplanet Orbital Database

The Exoplanet Orbit Database is produced and maintained by Professor Jason

Wright at Penn State University. Exoplanets are planets that occur outside of our

solar system. There may be a variety of reasons to study exoplanets, but the most

often cited (at least in non-scientific circles) is to find other planets that could

support life. Indeed, the popular interest in exoplanets has grown so much that

new discoveries are sometimes reported in the national news, as was the case for

TRAPPIST-1 and its bevy of temperate terrestrial planets in 2017. Nevertheless,

although the EOD is available to the public it is nonetheless quite technical, and

it is doubtful that anyone without an appropriate scientific background would be

able to query effectively or make much use of the results.

We adapted an existing database search engine to provide a form-based search

capability to aid in our research, with complementary set of strengths and weak-

nesses. In terms of strengths, the EOD is a completely natural search environment,

meaning users come to the website with their own needs and interests, so there

is no need to create scenarios, tasks, or other activities to induce searching. In

addition, the domain is scientific and quite technical, but appears to be used by

a community that has the appropriate background, so there is no need to develop

training materials or simplify the domain.

On the other hand, difficulties arise from any analysis of a search engine “in

the wild”. Users may have their own search needs when searching, but these

are not revealed directly to the experimenter, and the technical domain makes it

challenging to discern. Likewise, given this latent user need, what is relevant to

a query is hard to surmise. Also, nearly all data is available directly from the

search results (in tabular form), presumably decreasing clickthroughs that might

otherwise provide insight.

96

Figure 5.1: exoplanets.org Front Page Excerpt.

Figure 5.2: Form-based EOD Search Engine.

97

The EOD is not terribly large, in fact it is possible to download the entire

dataset in a comma-separated file, something the website makes easy. Given this,

it is perhaps surprising that search is used at all. The EOD also has its own

search and plot capability, the Exoplanet Data Explorer (EDE), developed by Dr.

Onsi Fakhouri. The EDE is quite powerful and supports complex queries with its

own query language, but does require some reading of the documentation. We do

not have access to any usage data of the EDE. Figure 5.1 shows the top part of

the EOD front page, with the EDE accessible from “Table” and “Plot” buttons.

Our form-based search engine is available via the “Search” button, with the search

form shown in Figure 5.2. The search form initially hides some of the attributes as

to not overwhelm new users; the other headers (such as Secondary Eclipse Depth)

can be clicked on to reveal corresponding form fields, and existing headers (such

as Discovery and Reference) can be closed to save screen space.

The Form-based Search Engine

The form-based search engine is straightforward. Its most important feature,

from our point of view, is the extensive logging of use. All user interactions are

logged, including queries, results, and any clickthroughs, along with additional

metadata such as request time, response time and IP address. The search sup-

ports constraints on three type of fields: numeric, text and enumerated. For

numeric fields, an lower and upper bound (both optional) can be given; only ex-

oplanets with values falling with the (possibly one-sided range) will be returned

(thus, those with missing values are excluded). No formulae are allowed, and any

nonnumeric query value in a numeric field results in an error message to the user.

Any value is allowed in the text and enumerated input fields, with the search

engine returning only records that contain the input. Likewise, Booleans are con-

98

trolled by a pulldown menu, and can either remain unspecified (the default) or a

Boolean value.

5.1.2 Characterizing the EOD and its Use

At the time of writing, the EOD contains 5307 total planets. The EOD is a

dynamic resource, so both the total number of planets and some of their attribute

values change over time. The EOD does not change rapidly, however, and in

our analysis we treat it as static. Table 5.1 gives the breakdown of the attribute

types the in EOD schema, which are either textual (either names or identifiers),

numeric, Boolean or enumerated fields. Values are unknown for many exoplanets

(“missing” values). Approximately half of the attribute values are unknown, and

varies widely by attribute type, with six attributes known for all exoplanets to

a low of only three known values each for two attributes. Error bounds are also

given for numeric attributes, but are not available as query parameters in our

interface.

Table 5.1: Attribute Types

Attribute Type Count
Numeric 60
Textual 19
Boolean 11

Enumeration 2

We collected approximately 3 years of search and usage logs, from 2015-08-10

to 2018-08-29. Two months of this data was unusable due to a bug in logging.

During this time, 29233 total queries were captured, averaging about 25 queries

per day. This total excludes invalid queries (e.g., queries that had non-numeric

values in numeric fields) and our own testing queries. We have not attempted to

99

eliminate queries from crawlers or other bots; we do assume, however, that such

automated programs will not fill out the query page.

We use clickthrough data as an approximate indication of relevance. Our form-

based search returns search results with attribute values in tabular form, providing

nearly all available information in the results page. This probably depresses the

clickthrough data, a problem that also occurs in popular search engines [48],

sometimes referred to as good abandonment. In response, we only analyze queries

with clickthroughs in their session, as we detail below, limiting our dataset to

11350 queries.

Queries are not necessarily isolated events but can be part of a series in a longer

information seeking activity. Therefore, we also group queries into sessions. For

simplicity, we define a session as all queries from the same IP address, ending the

session with any period of inactivity spanning and hour or more. In addition, we

terminate a session with any query that results in clickthroughs, presuming that

the information need has been met. Subsequent queries are then treated as a new

session. Sessions without clickthroughs are excluded from our analysis. Thus, in

this study a session consists of zero or more queries without subsequent clicks,

terminated by a single query where the user clicks on one or more results. 5472

such sessions were identified in our data set, with approximately 2 queries per

session on average.

Table 5.2 shows the top ten attributes queried. By far, the most common

field queried is the NAME field, with just over two thirds of all queries using this

field and only this field. The majority of these queries are presumably to find

data on a known exoplanet, rather than to discover new exoplanets of interest.

Consistent with findings in web search engines, queries tend to be short: 77% of

queries only constrained one field, with 2% not constraining any field. Of the rest,

100

Table 5.2: Top 10 Queried Attributes

Column Description Type Usage count
NAME Name string 8270
MASS Planet mass number 741
PER Orbital period number 633

STAR Star name string 589
MSTAR Mass of Star number 530

TRANSIT Transit across star Boolean 431
A Orbit semi-major axis number 420

OTHERNAME Other name string 355
TEFF Effective temperature of star number 281

BINARY Multiple star system Boolean 255

8% constrained exactly two fields, with 13% constraining more then two fields.

Almost one third of queries were “failing” queries, i.e., queries that produce an

empty result set.

5.1.3 Expanding to Other Attribute Types

We expand on our previous MAUT-based formulation from Chapter 4 to han-

dle non-numeric attributes. As before, MAUT allows us to model the overall

utility function be a linear combination of the subutility evaluations:

f(Q,Di) =
∑
j

wj � gj(qj, dij) (5.1)

where j is the index of the jth attribute, wj is the priority (weight) given to the

attribute, Q are the desired attribute values, and Di is the ith item in corpus D,

with qj and dij the values of the jth attribute of Q and Di, respectively. For non-

numeric attributes, only one desired value is allowed per attribute; for numeric

attributes, we expand the model to allow for a (continuous) range of attributes.

The subutility function differs according to the attribute type. For numeric

101

attributes, the subutility function is expanded from that in Eq. 4.8, replacing the

single attribute query value with a range from a low of qj to a high of qj:

gj(qj, qj, dij) =
[
qj > dij

]
exp

−(|dij − qj|
φ>j σj

)ρ>j 
+
[
dij ∈ [qj, qj]

]
+ [qj < dij] exp

−(|dij − qj|
φ<j σj

)ρ<j 
(5.2)

where σj is the standard deviation of jth attribute, [] is the Iverson bracket when

containing a test, [qj, qj] is the closed interval with limits qj and qj, ρ>, ρ<, φ>,

and φ< are model parameters, and others are defined as above. If only one side

of the interval [qj, qj] is given, the unspecified endpoint is taken as −∞,∞ for the

low and high limits, respectively. This is the fully parameterized form; however

for this experiment we use 1 for the model parameter values ρ>, ρ<, φ>, and φ<.

For textual attributes, a great number of possible text retrieval models could

easily be used, for example cosine similarity with TF-IDF, BM25, Divergence

from Randomness or a learning-to-rank approach. However, the text fields in

the EOD are short character strings typically representing a name of some type

(e.g., Kepler-107 d). Based on input from our EOD collaborators, the form-based

search engine uses a case-insensitive substring match, which we also use in this

experiment. We acknowledge this is an area that could use further improvement.

The subutility function for Boolean attributes is necessarily straightforward.

Since Boolean attributes may only have one or two values, each item (without a

missing value) will either have the desired value or the opposite value. Thus, the

subutility function for Boolean attributes is simply:

102

gj(qj, dij) = [qj = dij] (5.3)

where quantities are as defined above.

Finally, the subutility for enumerated attributes can be viewed as an extension

of that for Boolean attributes, as they too have a fixed set of possible values but

may have more than two possibilities. This makes the problem more complicated,

however. Given our assumption that subutility is maximal when an item has the

query value, what remains is to estimate, for each pair of attribute values, what the

subutility is when an item has an attribute value different than the desired value.

Indeed, this is the general subutility estimation problem (estimating subutility

given different attribute values), but given the finite number of possible attribute

values, only a finite number of subutility evaluations need to be estimated, leading

to:

gj(qj, dij) =
∑
vq∈Vj

∑
vd∈Vj

[vq = qj, vd = dij]ωvq ,vd (5.4)

where Vj is the set of possible values of the enumeration, ωvq ,vd is the estimated

subutility for vd when vq was desired, with [] again as the Iverson bracket and

other quantities defined as before. Since exactly one of the tests will be true,

the subutility will equal one of the ω estimations rather than the sum of several.

We can see that this reduces to Equations 5.3 for two attribute values, assuming

symmetry among the substitutions and absorbing minimal subutility into the

attribute weight in 5.1. The various values of could be developed from a domain

theory or learned from data; for this experiment, we estimate the subutility as 1

103

when vq = vd and 0 otherwise.

Missing values are one final issue that must be dealt with for all subutility func-

tions, a frequent issue with the EOD data. Depending on the domain, missing

values could be treated as a separate value with a separate subutility estimation,

or use a variety of value imputation methods to infer a subutility. In this exper-

iment, we take the former approach, assuming a missing value is the worst type

of outcome for an attribute of interest and should have a subutility of zero.

5.1.4 Results

We evaluate the ranking performance of several retrieval models on the query

and clickthrough data described in Section 5.1.2, once again using mean average

precision (MAP) as our metric.

Boolean In this model, the user’s query is interpreted as hard constraints: only

exoplanets that exactly match the user’s query is returned. This is identical

to the ScoredBoolean model in Chapters 3 and 4, except no user-specified

sort order is provided. Instead, returned items are ranked by default order,

in this case an internal identifier. This default order is also used to break

ties for the models below. The Boolean model was the only model used by

the users of the website, and so its results are identical to those returned

to the user during the search recording phase, with the exception of any

relevant changes to the corpus in the interim.

SoftBoolean The SoftBoolean model divides the corpus into to disjoint subsets:

those that match the constraints fully (exactly the results of the Boolean

model above), and those that do not. The entire corpus is returned, with

the fully matching subset ranked before the remainder, which each group

ordered by the default order.

104

ScoredBoolean The ScoredBoolean further orders the violating subset by scor-

ing all items in the corpus. The score for each item is the number of query

attributes matched, with the results ranked by descending order. As stated

above, ties are broken by the default order.

AIMQ As before, AIMQ’s [56] score uses global weights derived from functional

dependencies in a linear combination of per attribute similarity estimations,

ranking in decreasing order as:

f(Q,Di) =
∑
j∈Q

wj × AIMQ (qj, dij) (5.5)

where j ∈ Q indicates the jth attribute was given a desired value (not left

blank), and wj is the global weight for the jth attribute. AIMQ does not

appear to handle ranges, so we alter the numeric similarity formula in a

similar way as ExpandedMAUT :

AIMQ
(
qj, qj, dij

)
= 1−min

1,
max

(
0, dij − qj, qj − dij

)
qj

 (5.6)

Note that at most one of the terms in the max function in Eq. 5.6 will

be positive. AIMQ handles nonnumeric attributes by comparing associated

“supertuples”. The supertuple for an attribute value v is defined as the bag

of values from all other attributes for items in the corpus whose attribute

value is v. From this, the Jaccard similarity coefficient (with bag semantics,

rather than set semantics) is used:

AIMQ(qj, dij) =
|Sqj ∩ Sdij |
|Sqj ∪ Sdij |

(5.7)

105

Missing values are treated as with ExpandedMAUT, and are excluded from

the supertuples.

AutoRank This is the (unnamed) model of Agrawal et al [2]., motivated by the

classic TF·IDF weighting scheme. They conclude that term frequency is not

useful in this context, and so they rank items by the combination of inverse

document frequency (IDF) estimations:

f(Q,Di) =
∑
j∈Q

AR (dij, qj) (5.8)

in decreasing order. For numeric ranges, the formula used in Chapters 3 and

4 is expanded to the maximum over the range:

AR
(
qj, qj, dij

)
= wj max

v∈[qj ,qj]

exp
−1

2

(
dij − v
hj

)2
 (5.9)

where the weight is

wj = log

 n∑n
k=1 exp(−1

2

(
dkj−qj
hj

)2
)

 (5.10)

and n is the number of items and hj is a “bandwidth” parameter, chosen by

Agrawal as hj = 1.06σjn−
1
5 . For nonnumeric attributes, the estimation is a

more familiar version of inverse document frequency:

AR (dij, qj) = log
(

n∑n
k=1 [dkj = qj]

)
[dij = qj] (5.11)

where the brackets are the Iverson bracket. Missing values are treated as

with ExpandedMAUT.

106

CQAds– CQAds– is similar to AIMQ, albeit without attribute specific weights

and a different normalization. Items are ranked in decreasing score order,

calculated by the linear combination of attribute scores:

f(Q,Di) =
∑
j∈Q

CQ (qj, dij) (5.12)

For numeric attributes, the attribute score is calculated as:

CQ
(
qj, qj, dij

)
= 1−

max
(
0, dij − qj, qj − dij

)
Rj

(5.13)

where Rj is an estimation of the range of the jth attribute, defined as the

mean of the ten greatest values minus the mean of the ten least values.

CQAds [65] mined a general knowledge repository (Wikipedia) to develop

a term similarity measure and included an autocorrect feature. Given the

very domain-specific lexicon of the EOD, a general term similarity function

is unlikely to improve performance and could hurt it; on the other hand,

users often misspelt names, so a domain-sensitive spell correction feature

could boost performance. In any case, we did not implement either fea-

ture in our experiment, and so refer to this model as CQAds–. Instead, we

treat nonnumeric attributes the same as ExpandedMAUT, which amounts to

CQAds with a binary string similarity function (1 given a substring match,

0 elsewise) and original spelling. Missing values are treated as with Expand-

edMAUT.

VAGUE The VAGUE framework [54] uses the notion of metrics to develop a

“similar-to” operator. As a framework, many approaches are supported,

but none are prescribed, leaving choices to the implementor. Attribute dis-

similarity scores are combined in a Euclidean distance formula:

107

f(Q,Di) =
√∑

j

[wjV (qj, dij)]2 (5.14)

where wj is a user-supplied attribute weight (uniform in our experiment)

and V () is the attribute dissimilarity function. For numeric attributes, we

used the minimum distance to the range divided by the standard deviation:

V
(
qj, qj, dij

)
=

max
(
0, dij − qj, qj − dij

)
σj

(5.15)

treating missing values as infinitely dissimilar. VAGUE presumes that other

attributes are mapped to numbers, but does not give a method for doing

so. Thus, we use the same approach for other attribute values as we did

for ExpandedMAUT, scoring matches as defined by ExpandedMAUT with

zero and mismatches (including missing values) as one standard deviation.

Missing values are treated as with ExpandedMAUT.

ExpandedMAUT This is the expanded model described in Section 5.1.3. As

with the other models, any tie is broken by the default order.

Its worth noting that all models will first return all exoplanets that exactly

match the user’s query. For Boolean, no other exoplanets are returned. Since

the MAP metric never penalizes for including more items at the end of the result

set, Boolean cannot outperform any of the other models. This does not entail

that any differences will be statistically significant, though, or even that there is a

difference at all. Additionally, due to the assumptions we made in this experiment,

the ScoredBoolean and ExpandedMAUT models differ only in how they handle

numeric attributes: thus, they will have the same performance on all queries that

omit such attributes.

108

As with our other studies, we evaluate ranking results using mean average

precision (MAP), broken down by micro-average and macro-average. The micro-

average is merely the average over all responses, whereas the macro-average is

an average of averages, in this case the MAP evaluation for all queries of a ses-

sion. Thus, responses from each session are weighted evenly regardless of session

length. We use p=0.05 as the minimum value for statistical significance, using a

randomization test [71] to evaluate. In this test, the null hypothesis is that ob-

served difference in ranking performance between models on a given response was

equally likely to favor the other model, and the observed difference is only ran-

dom chance. Thus, we randomly reassign the observed difference on each response

(flipping or not) for all responses, calculate the randomly observed difference, and

repeat this process a million times and record the fraction of randomized responses

produce a difference at least as large as that observed.

There are a few quirks about the data that are worth mentioning before we

discuss the results. First, as noted earlier the majority of queries are simply short

“look-up” queries on the name of the exoplanet. Given the choices we made, all

models will return the exactly the same results for these queries. Secondly, the

data was gathered with a Boolean search engine, so in the end, users were not

able to click on anything outside a Boolean search result. Since all the search

engines we evaluate return this Boolean set first in the ranking, they will have

the same MAP performance on terminal queries. Finally, most sessions are short,

with almost a third consisting of just one query, but there is a long tail that pushes

up the average, with just over three-fourths of the sessions falling below the mean

length of just above six queries. As a result, differences in ranking performance

are greatly diluted by the large number of queries, and the microaverage can be

quite different from the macroaverage.

109

Table 5.3: All Queries: MAP

Model Micro Macro
Boolean 0.4412 0.6659

SoftBoolean 0.4506 0.6701
ScoredBoolean 0.4605 0.6743

AIMQ 0.4621 0.6737
AutoRank 0.4627 0.6755
CQAds– 0.4626 0.6755
VAGUE 0.4627 0.6755

ExpandedMAUT 0.4644‡ 0.6762‡

Table 5.4: All Differing Queries: MAP

micro macro
Compared Expanded Compared Expanded

Model Baseline MAUT Baseline MAUT
Boolean 0.006217 0.05967‡ 0.3196 0.3499‡

SoftBoolean 0.04542 0.1919‡ 0.2496 0.3444‡
ScoredBoolean 0.08774 0.1424‡ 0.2849 0.3264‡

AIMQ 0.09484 0.1328‡ 0.2543 0.3114‡
AutoRank 0.09076 0.1268‡ 0.2750 0.2980‡
CQAds– 0.06816 0.1181‡ 0.2727 0.2970‡
VAGUE 0.06140 0.1030‡ 0.2643 0.2908‡

Table 5.3 gives the micro- and macro- averaged MAP of the various models,

with the leader bolded and a statistically significant difference against all other

models indicated by the dagger (†). The ExpandedMAUT model outperforms

the others by a statistically significant difference, though the magnitude of this

difference is quite small due to identically performing queries, as noted earlier.

Therefore, we present the MAP evaluation only using queries that yield different

average precision evaluations over each pair of models in Table 5.4. Here, the

MAP differences are much more apparent, with the better performance again

bolded and statistical differences among the paired performance indicated by the

110

double dagger (‡). In this table, and those following that only use the differing

queries, entries in the same row can be meaningfully compared but not those in

the same column, as the differing queries are derived by model pair and may differ

across rows. That is why the ExpandedMAUT evaluation changes from column

to column – because the underlying set of differing queries is changes for each

compared baseline.

Table 5.5: Single Attribute Queries: MAP

Model Micro Macro
Boolean 0.4751 0.6800

SoftBoolean 0.4833 0.6845
ScoredBoolean 0.4833 0.6871

AIMQ 0.4849 0.6883
AutoRank 0.4842 0.6881
CQAds– 0.4842 0.6881
VAGUE 0.4850 0.6882

ExpandedMAUT 0.4851∗ 0.6886∗

Table 5.6: Differing Single Attribute Queries: MAP

micro macro
Compared Expanded Compared Expanded

Model Baseline MAUT Baseline MAUT
Boolean 0.001558 0.02522‡ 0.3233 0.3480‡

SoftBoolean 0.02371 0.1012‡ 0.2313 0.3256‡
ScoredBoolean 0.02371 0.1012‡ 0.2419 0.2949‡

AIMQ 0.01683 0.03009‡ 0.2254 0.2404
AutoRank 0.02321 0.2012‡ 0.2477 0.2738‡
CQAds– 0.06584 0.1983‡ 0.2389 0.2704‡
VAGUE 0.01763 0.0513 0.2293 0.2573‡

We analyze several subsets of the queries to be understand what factors might

be contributing to the differences in ranking performance. Table 5.5 shows the

111

performance for queries on exactly one attribute, with best performance indicated

as before, and the asterisk (∗) indicating a statistically significant difference ver-

sus all others save VAGUE for microaverage and AIMQ for macroaverage. Given

that there is only one attribute, combining multiple criteria is not of concern and

SoftBoolean and ScoredBoolean should have the same performance, which is true.

The soft constraints of SoftBoolean and ScoredBoolean are apparently advanta-

geous over the hard constraints of Boolean, and though not indicated in the table,

the difference is statistically significant. ExpandedMAUT on this subset differs

from SoftBoolean and ScoredBoolean only in how it handles numeric attributes,

and this is enough for a statistically significant albeit small difference. Table 5.6

zooms in on the subset of queries that have differing ranking evaluations, which

explains the difference: the Boolean models have rather poor performance on this

subset, whereas the ExpandedMAUT model has more reasonable performance.

The other models performed better than the Boolean models as well, though not

as well as ExpandedMAUT. In this table, statistically significant difference against

all other models are indicated by the dagger (†).

Table 5.7: Multiple Attribute Queries: MAP

Model Micro Macro
Boolean 0.2624 0.3850

SoftBoolean 0.2787 0.3959
ScoredBoolean 0.3401 0.4294

AIMQ 0.3422 0.4195
AutoRank 0.3493 0.4347
CQAds– 0.3484 0.4353
VAGUE 0.3453 0.4325

ExpandedMAUT 0.3556‡ 0.4385‡

Table 5.7 analyzes the complementary set of queries, those queries that use

multiple attributes, noting the leader and statistical significance as in Table 5.3.

112

Table 5.8: Differing Multiple Attribute Queries: MAP

micro macro
Compared Expanded Compared Expanded

Model Baseline MAUT Baseline MAUT
Boolean 0.02462 0.1958‡ 0.2244 0.3195‡

SoftBoolean 0.05067 0.2138‡ 0.2475 0.3420‡
ScoredBoolean 0.1098 0.1566‡ 0.2891 0.3191‡

AIMQ 0.1141 0.1581‡ 0.2596 0.3210‡
AutoRank 0.09674 0.1202‡ 0.2773 0.2925‡
CQAds– 0.07481 0.1094‡ 0.2739 0.2889‡
VAGUE 0.06179 0.1034‡ 0.2637 0.2902‡

As expected, performance on these queries are generally lower, and ScoredBoolean’s

ranking stratification by the number of satisfied constraints improves performance

over SoftBoolean by a statistically significant difference. ExpandedMAUT again

has the best performance, however, and this difference is magnified by evaluating

the queries with differing ranking performance in Table 5.8.

Table 5.9: Queries using Numeric Attributes: MAP

Model Micro Macro
Boolean 0.2957 0.4234

SoftBoolean 0.3038 0.4297
ScoredBoolean 0.3348 0.4460

AIMQ 0.3426 0.4418
AutoRank 0.3465 0.4543
CQAds– 0.3456 0.4543
VAGUE 0.3467 0.4540

ExpandedMAUT 0.3554‡ 0.4592‡

Finally, Tables 5.9 and 5.11 show the performance on queries using and not us-

ing numeric attributes, respectively, with the results on the differing queries given

in Tables 5.10 and 5.12. The asterisk (∗) indicates a statistically significant differ-

113

Table 5.10: Differing Queries using Numeric Attributes: MAP

micro macro
Compared Expanded Compared Expanded

Model Baseline MAUT Baseline MAUT
Boolean 0.02806 0.1646‡ 0.2276 0.3132‡

SoftBoolean 0.04687 0.1666‡ 0.2483 0.3303‡
ScoredBoolean 0.08774 0.1424‡ 0.2849 0.3264‡

AIMQ 0.09464 0.1351‡ 0.2543 0.3130‡
AutoRank 0.08955 0.1261‡ 0.2720 0.2940‡
CQAds– 0.06816 0.1181‡ 0.2727 0.2970‡
VAGUE 0.06140 0.1030‡ 0.2643 0.2908‡

Table 5.11: Queries not using Numeric Attributes: MAP

Model Micro Macro
Boolean 0.4751 0.6905

SoftBoolean 0.4848 0.6949
ScoredBoolean 0.4898 0.6981

ExpandedMAUT 0.4898∗ 0.6981∗

ence versus Boolean and SoftBoolean, but not ScoredBoolean, with other markings

as before. The difference between ScoredBoolean and ExpandedMAUT shows the

advantage of using Eq. 5.2 over a Boolean approach for numeric attributes. In

contrast, given our choices ScoredBoolean and ExpandedMAUT are identical in

the absence of numeric attributes, which is reflected in Tables 5.11 and 5.12. The

performance of the non-Boolean baselines are likewise nearly identical to Scored-

Boolean and ExpandedMAUT and are without statistically significant differences,

and so are not included in these tables.

114

Table 5.12: Differing Queries not using Numeric Attributes: MAP

micro macro
Compared Expanded Compared Expanded

Model Baseline MAUT Baseline MAUT
Boolean 0.001081 0.035‡ 0.3266 0.3485‡

SoftBoolean 0.0361 0.3543‡ 0.2254 0.3223‡
ScoredBoolean – – – –

5.2 Moving Beyond Structured Search Interfaces

In this section, we go beyond the search interface to evaluate our retrieval

concept with a more natural representation of the user need. Structured search

interfaces force the user to adhere to the accepted input (e.g., constraints and sort

orders for sorted boolean search). Thus, the evaluation of such search engines is

measuring both the efficacy of the retrieval model given the query, and the impact

of translating the user need into the query format. Can the cost of this translation

be eliminated?

NASA has long relied on database-like query languages or form-based search

(faceted or user-specified Boolean constraints) to allow researchers to search through

its vast data holdings (see the PDS Image Search1 as typical example). So far,

our search interfaces have followed the same design, even our MAUT-based search,

as the user can only search by adhering to the structure given in the presented

form-based interface.

Although this is not an uncommon approach for searching through data, less

specialized search interfaces supporting other tasks are more free-form: popular

search engines like Google2 and Bing3 use an open-ended text entry box; question-
1https://pds-imaging.jpl.nasa.gov/search/
2https://www.gooogle.com
3https://www.bing.com

115

answering has been an active research topic for years [58]; and recent advances

in natural language processing (NLP) has lead to intelligent assistants such as

Apple’s Siri [7] and Amazon’s Alexa [4], not to mention various chatbots and

conversional recommenders available on the World Wide Web. In addition to

ease-of-use, one advantage of the NLP approach for search is that it does not

impose a rigid query structure on the user, so that queries may presumably be

stated in a manner that more accurately reflects the latent user need. Would item

search be improved by leveraging these new developments?

5.2.1 Search Interface and Data Used

To answer these questions, we set up a new search engine that accepts natural

language queries entered into a text box. On the back end, we used SEMPRE

(Semantic Parsing and Execution) [10, 49], an open source toolkit that translates

natural language into logical forms, to convert the user queries into something

executable in our retrieval framework. A previous application of SEMPRE used

allrecipes.com data [79], as we also did in our experiment in Chapter 4, so we used

that same experiment structure with the hope of reusing the publically available

grammar developed for that previous application of SEMPRE. We briefly review

our prior experiment below, with more detail available in Section 4.2.3.

We developed twenty short nutritionally-based core scenarios from the liter-

ature, describing someone (often with a medical condition) and their nutritional

needs for one day. Recommended levels of each relevant nutrient was given, as

well as a range consisting of the Estimated Average Requirement and Tolerable

Upper Limit [81] when such are defined. The test subjects’ task was to chose an

appropriate meal plan (one day’s worth of meals) for the person described in the

scenario. We developed the corpus by using recipes from allrecipes.com as the

116

meal components. We wrote a meal plan generator that created approximately a

quarter million meal plans, describing each by total nutritional information (e.g.,

calories, vitamin A, etc.), as well as component dish names, ratings, and photos

when available.

In the end, the publicly available SEMPRE grammar that we had hoped

to use was not adequate for our experiment, so we developed our own gram-

mar. SEMPRE grammars are developed by associating phrases with logical

forms or executable code. Typically, these phrases are short, but can refer to

other phrases, and through this composition complex phrases may be successfully

parsed. Nonetheless, the designer of the grammar must anticipate what sorts

of statements will be encountered. SEMPRE has some useful natural language

processing but cannot parse arbitrary statements into the correct translation.

As before, we used Amazon Turk to run the experiment [3]. We accepted the

results of 69 test subjects before terminating the experiment. We had assumed

that since the domain and data was the same, the natural language queries would

resemble the sort of queries that had been given in our form-based interface of the

prior experiment (Section 4.2.3). This assumption was quite incorrect, and as a

result, the search engine did a poor job of satisfying the test subject’s intent, with

less than a third of the queries parsing correctly. We had assumed that the test

subjects would provide exact numeric values, but in fact the majority of queries

were open to interpretation. We classify the query constraints encountered into

five types below:

• Range. This is the type of constraint we had built our grammar to handle,

where the specific numeric values are given. Ranges could be bounded both

low and high, or just on one side (e.g., less than 2000 calories, with no lower

limit given).

117

• Equal. The quantity is given as a specific value (e.g., 2500 calories). Al-

though this appears to be a precise value, that may not match the user

intent well. After all, few if any items will have exactly the specified value.

• Low and High (e.g., high calcium). The intent behind such constraints seems

relatively clear, though exactly how it should be expressed numerically is

not (what quantity is high)? In addition, extreme values may not be what

the user desires, particularly since excessive nutrition may have negative

side effects (for example, high calcium may contribute to kidney stones).

• More and Less (e.g., less calories). The intent here is less clear, as the other

element of the comparison is not stated (less than what?). One possibility

is that this is reference to earlier results, but these constraints often arise in

the first query of the session, when there is no prior search results. Instead,

it may be that less is analogous to low, and more to high.

• Unspecified (just a nutrient, e.g., vitamin A). The intent of such queries is

quite uncertain. It could indicate a desire for items with significant amounts

of the nutrient, or simply that it is greater than zero.

Table 5.13 gives the co-occurence of these constraints types on the test subjects’

first queries, as well as the overall frequency on the diagonal. For the most part,

only one type of constraint was used per query– indeed, most queries only had a

single constraint.

5.2.2 Handling Imprecise Constraints

When we devised the grammar, we started with the query forms we knew how

to handle, and developed natural language phrasings that would correspond with

those queries. However, even given the focus of the scenarios, the test subjects

118

Table 5.13: Constraint Category Co-occurence on Initial Queries

range highlow moreless equal unspecified
range 21 0 0 1 0

highlow 0 24 0 3 0
moreless 0 0 4 0 0

equal 1 3 0 11 0
unspecified 0 0 0 0 11

favored different query forms whose intent is not clear, as detailed in the prior

section. For an effective natural language query capability, we must solve the

inverse problem, taking the users’ queries and translating that into something

executable. So how should these imprecise constraints be interpreted?

The problem decomposes on two dimensions. When an exact value is given,

as was the case with “range” and “equal” queries, a fairly precise user need is

described relating to that value. The question is whether it is a necessary require-

ment, or something the user might compromise on given other considerations.

When no value is given, the question has an additional dimension. Is there an

unspecified value that should be used, for example, an acceptable minimum value?

If so, we still must ask if this a hard constraint or not. If not so, then it would

imply a strict ordering, i.e., for high calcium, the higher calcium choice would be

preferred among any pair, with the highest calcium option preferred overall.

Interestingly, these possible interpretations easily lead us back to now familiar

retrieval models, as we detail below:

Boolean Like the Boolean model presented earlier in this chapter, all constraints

are treated as necessary conditions and without any sort order. The “range”

and “equal” constraints are taken as is, with only items meeting those con-

straints returned. For “highlow”, “moreless”, and “unspecified” constraints,

119

we arbitrarily choose some specific value to function as a range constraint.

We used the 10th percentile for a given attribute for “low”, and similarly

the 90th percentile for “high”. These are not necessarily optimal values for

all attributes, but we note other percentiles we tried did not offer better

performance. Furthermore, we interpreted “less” the same as “low” (i.e.,

10th percentile or less), and “more” and “unspecified” the same as “high”

(i.e., 90th percentile or higher).

SortedBoolean Analogous to the SortedBoolean models utilized in Chapters 3

and 4, this model combines hard constraints with a sort orders. Like Boolean

above, the “range” and “equal” constraints are taken as is, with only items

meeting those constraints returned. However, for “highlow”, “moreless”,

and “unspecified” constraints, no query value is assumed. Instead, these

are interpreted as sort orders, with “high”, “more”, and “unspecified” inter-

preted as a sort from high to low, and “low” and “less” interpreted as a sort

from low to high. Multiple sort orders are applied in an arbitrary order, but

in fact this has little effect on the results as very few queries had more than

one such constraint.

ExpandedMAUT Finally, the ExpandedMAUT uses the same range interpreta-

tions as Boolean above (using percentiles as appropriate), but interprets

these constraints as soft constraints. Specifically, the query results are

ranked according to Equations 5.1 and 5.2, as described in Section 5.1.3.

In addition, for “highlow”, “moreless”, and “unspecified” constraints, we

hedge our bets by combining Eq. 5.2 with a sigmoid function below:

120

gloj (qj, qj, dij) =
gj(qj, qj, dij)

1 + exp(dij−qj
σj

)
(5.16)

ghij (qj, qj, dij) =
gj(qj, qj, dij)

1 + exp(qj−dij
σj

) (5.17)

where gloj () is applied when lower values are desired, ghij () otherwise, with

quantities defined as before. These functions establish a preference for lower

and higher values, respectively, and will give the same ranking as Sorted-

Boolean for single constraint queries. The ranking for multiple constraint

queries will likely differ, however, as SortedBoolean is a noncompensatory

model and ExpandedMAUT is not.

5.2.3 Results

We evaluate the performance of the models above retrospectively, using the

micro- and macro- average of MAP and evaluating statistical significance using

a randomization test, as we have done earlier in this chapter and throughout.

We again turn to the community induced MAP of our earlier chapters. The test

subject’s selections are influenced by which results they see, particularly in a

large corpus where only a tiny fraction of the corpus will be seen. Therefore, we

use the selections of other test subjects on the same scenario – in other words,

evaluating the same user need – to avoid bias. However, in this case the test

subject’s selections were likely compromised by search engine’s failure to properly

interpret the natural language query, as noted in Section 5.2.1, so we discard the

121

selections from the NLP user study entirely and instead evaluate each NLP query

with the selections from each test subject in the analogous experiment in Chapter

4. Given that each query may be evaluated on several times, the macro-average

is over queries rather than scenarios.

Table 5.14: Community MAP

Expanded
Boolean SortedBoolean MAUT

Model micro macro micro macro micro macro
All 0.085 0.081 0.152 0.156 0.217† 0.209†

Range 0.103 0.113 0.103 0.113 0.232† 0.230†
Equal 0.001 0.001 0.005 0.011 0.279† 0.242†

Highlow 0.097 0.090 0.206 0.197 0.250† 0.238∗
Moreless 0.078 0.057 0.163 0.174 0.165 0.176

Unspecified 0.006 0.009 0.178 0.202 0.161∗ 0.173∗

Table 5.14 gives the results of our experiment, with the leader in each row

bolded and statistically significant differences versus the other two models indi-

cated with the dagger (†), and a statistically significant difference only against

Boolean indicated by the asterisk (∗), evaluated only for ExpandedMAUT. The

first row gives the performance over the entire dataset, with ExpandedMAUT

having the best performance and by a statistically significant difference. Overall,

the interpretation of the queries by ExpandedMAUT is superior to the others, but

the performance varies by category of query, so we also give the results separated

by query category in the latter rows. Sometimes multiple categories occurred in

the same query as noted in Table 5.13, which adds some noise to these results.

The Boolean and SortedBoolean models interpreted precise values identically,

as hard constraints, and have very similar performance on both categories, with

differences due to the inclusion of other categories in the query. Consistent with

our earlier experiments, this performance is inferior to that of ExpandedMAUT.

122

The performance of queries with “equal” constraints for Boolean and Sorted-

Boolean is quite poor, giving strong support for the position that users are not

seeking exact values in such cases, but something around the query value. This,

too, is consistent with our earlier results. Interestingly, ExpandedMAUT has its

best performance with these type of queries.

The Boolean and ExpandedMAUT models treated “highlow” and “moreless”

also as “range” queries, using the 10th percentile or 90th percentile values, as

appropriate, as the implied precise range endpoints. In contrast, SortedBoolean

treated these as sort orders instead of ranges. ExpandedMAUT again mostly

had the best performance, but the difference was statistically significant against

both models only for the “highlow” microaverage. In contrast, the SortedBoolean

model actually had the best performance overall; however, the difference versus

ExpandedMAUT is not significant.

5.2.4 Summary and Contributions

In this chapter, we extended the model in two ways. In the first part, we showed

how our retrieval method could be expanded to handle additional attribute types,

namely Boolean, enumerated, and textual attributes. In addition, we expanded

the numeric framework to handle ranges instead of just point values. We compared

this expanded version to Boolean search, also including a couple of soft Boolean

variants to isolate what effects our various assumptions have on performance, in

addition to our usual baselines. In contrast to our previous studies, we evaluated

our model with the queries of actual users of a space science vertical search website

rather than in a controlled user study.

Nonetheless, our results largely confirm what we have observed in our prior

studies. The Boolean retrieval model has the worst performance overall, as eval-

123

uated on MAP. A “soft” Boolean model that ranks non-matching results after

matching results performs better; a model that further ranks these by the num-

ber of matching constraints performs better still. However, all are bested by the

utility-based ExpandedMAUT model. Though this is in line with our previous

findings, it is nonetheless surprising to see in a scientific domain. Our previous

studies have been conducted in consumer domains, where it is reasonable to as-

sume that the users is willing to compromise on some aspects and maximize utility.

Science, however, is presumably much more objective, with crisp delineations and

not subject to the whims of humans. Nonetheless, we find that hard constraints

are still a poor model, and that more flexible models perform better. Perhaps the

Boolean model still is the best model for some uses, but where?

In the second part, we examined how to support natural language queries so

that we could get a more accurate description of the user need without imposing

a particular query structure, again using the meal plan domain from Chapter 4.

We had hoped to have test subjects use a natural language interface to query

directly, so we developed a grammar to handle natural language rephrasings of

the queries we captured earlier using the form-based interface. However, once

free of the structure imposed by the search form, most users chose to query in

unanticipated ways that our parser could not handle.

We analyzed the types of constraints the test subjects submitted and found

that they fell into five categories, of which only two had been anticipated. The

intent of most of these clauses was not clear, and so we speculated on possible in-

terpretations. Interestingly, these different interpretations readily led to retrieval

models we had experimented with before: Boolean, SortedBoolean and Expanded-

MAUT. We retrospectively evaluated the queries with these models and found Ex-

pandedMAUT performed the best, with a statistically significant difference overall

124

and on most categories.

One additional observation of note is that the retrieval performance was markedly

lower than with the form-based interface on the exact same user needs. This may

be the fault of the search engine, particularly if there are problems with the in-

terpretation as described above. The other possibility lies with the users. It may

simply be due to a lack of experience, as users have far more experience with form

based queries. Or it may be that the structure of the form forces the user to think

about the problem in a beneficial way. Or, conversely, it may be that a natural

language interface encourages bad habits. The queries tended to be less detailed

(fewer clauses), perhaps because of the additional typing needed, and often intro-

duced imprecision, which may not have been beneficial. We leave exploring these

considerations to future work.

To summarize, we have made the following contributions in this chapter:

• Expanded our retrieval model to handle non-numeric attribute types, as well

as numeric ranges, dubbed ExpandedMAUT.

• We evaluated the performance ExpandedMAUT using the queries and click-

through data gather from an active vertical space science engine. We com-

pared this performance to the Boolean model used in search engine, along

with two enhancements of the Boolean model.

• We collected natural language queries for the nutrition domain introduced

in Chapter 4, identified several unexpected categories of imprecise clauses.

• We formulated possible interpretations of these imprecise clauses that nat-

urally lead to the Boolean, SortedBoolean and ExpandedMAUT models we

had used earlier. We evaluated the performance of these interpretations

retrospectively on data gathered from the user study.

125

Chapter 6

Conclusion and Future Work

In this chapter, we summarize the main contributions of the dissertation, and

identify several opportunities for future work.

6.1 Contributions

We identify contributions to the main focus of this dissertation, supporting

item retrieval, as well as secondary contributions, in the following section.

6.1.1 Contributions to Items Retrieval

The main contribution of this dissertation is a method to rank items in response

to a user’s query, thus making the item retrieval problem more akin to information

retrieval than database retrieval, as is the norm at the time of writing. We can

break this down into several supporting contributions.

The first contribution is to develop the general framework for the item ranking

problem, which we did in Chapter 3. We chose to do this by casting the prob-

lem as utility estimation, estimating how well an item satisfies the user’s query.

Accordingly, we defined the query to be a (potentially partial) specification of

126

the desired item’s attribute values, rather than a set of constraints. Given this,

we used a straightforward mapping to criteria ratings, or subutilities, to generate

ratings on each attribute query value. Finally, we adapted principles of multi-

attribute utility theory to combine multiple attribute subutilities on each item

into a single utility estimation.

The second contribution is to develop a model of per attribute subutility, which

we did for numeric attributes in Chapter 4. After identifying several desirable

properties of a subutility function, we designed a flexible subutility function that

met these properties and could assume a wide variety of forms with only a few

parameters. We used this improved subutility function in our utility estimation

framework, embedding the model in a Bayesian hierarchical model so we could

infer parameter values from training data.

The third contribution is to expand the model so it could be applied to a wide

variety of item retrieval settings, which we did in Chapter 5. Having focused only

on the difficult challenge of numeric attributes, we extended the model to handle

other attribute types. We also extended the model to handle imprecise query

values, which we observed from users of a natural language query facility.

6.1.2 Contributions Beyond Item Retrieval

In addition to our main goal of supporting item retrieval, portions of this

dissertation may also benefit other areas.

Contribution to Information Retrieval We developed a method to estimate

the utility of an item based on a query consisting of desired attribute values.

However, the framework in general and could be applied to resolve other

multiple objective problems. For instance, many of the techniques could be

used to incorporate additional considerations when retrieving information,

127

for instance recency, novelty, etc. Indeed, in many ways this work was

inspired by earlier research into addressing such concerns.

Contribution to Multi-criteria Decision Making Theory Our utility esti-

mation method is rooted in multi-criteria decision making theory (MCDM)

and could be considered a MCDM algorithm in its own right. MCDM tech-

niques take as input ratings over multiple criteria for a set of options to

consider. Manually rating each option on each criterion is a difficult and

time-consuming process, which raises cost of using such methods and limits

the problems on which they can be applied. Since we estimate the ratings

(subutility) directly from the attribute values, our techniques could be used

to apply MCDM approaches to a wider range of problems.

6.2 Opportunities for Future Research

Finally, we identify several opportunities for future work, involving possible

improvements to our core utility framework, as well as new aspects that could

improve performance.

6.2.1 Improving the Core Framework

Throughout this work, we assumed mutual utility independence, an assump-

tion that was never tested. Although intuitive and appealing, it is difficult to

imagine situations where it might not apply, for instance given “deal-breaking”

attribute values or attributes that interact in some manner. Standard methods

exist for establishing or refuting mutual utility independence [28], but they as-

sume consistency and a testable decision maker. Instead, one could ask how often

the problem is correctly solved under an mutual utility independence assumption.

128

An inspection of the meal plan results in Chapter 4 show that the model solved

the problem just over a quarter of the time (i.e., correctly ranked the desired

item first), but perfection is generally rare in retrieval problems. Another possible

measure is how often does this assumption produce no worse than the current

standard of Boolean retrieval, either within a domain or across domains. Or one

could simply test the assumption directly, for instance by comparing performance

to a model that does not make this assumption, similar to our approach to testing

subutility linearity in Chapter 4. In any case, should mutual utility independence

be abandoned, a new model would need to be chosen. Such would diverge from

MAUT, so a more complex MCDM model could be adopted, such as the weighted

quadratic approach [29]. However, at this point we may be best served by beyond

the confines of MCDM, considering other function estimation or learning-to-rank

models while keep the general MCDM principals (if not approaches) in mind.

We also assumed that numeric subutility was invariant with regard to value

location, and used a parameterized model of subutility. The first assumption

is most likely incorrect: for example, a $5 discount on a $10 pizza is exciting,

but a $5 discount on a $1,000,000 house is not, even though the discount is the

same in both cases. Though our parameterized subutility formula is flexible,

it nonetheless cannot exactly fit any function, and may miss subtle features of

the underlying subutility. A universal function approximator could capture such

subtle features, though such would presumably require greater amounts of training

data. Finally, we had assumed specific interpretations for the imprecise query

values we observed in natural language queries. Similarly, more training data

could allow enable learning of global or attribute-specific substitute values, or

other possible interpretations.

129

6.2.2 Extending the Framework

There are also opportunities to incorporate new elements into the utility esti-

mation model. One appealing avenue is personalization. It’s easy to imagine that

different people will value particular attributes differently, for instance, in product

search, one person might put a greater emphasis on price, while another might

put more emphasis on ease of use. Personalization could easily be incorporated

into a Bayesian graphical model by incorporating latent variables for each person,

which are then influenced by the global latent variables currently in the model.

In addition to personalization, global preferences are likely to improve per-

formance. Upon examination of the queries in our user studies, it was evident

that many of the queries were underspecified. For instance, in an e-commerce

domain, it would be reasonable to assume that lower prices are preferable, even

when no price was provided in the query. This, too, could easily be incorporated

into our Bayesian framework, with an additional latent variable to represent the

unexpressed query value along with the other model parameters. Nor would this

global preference need to be truly global; as above, personalized values could be

learned.

There are also ample opportunities to use domain knowledge to improve re-

sults. Although we are staunch believers in letting the data guide us, this does

not preclude us from also using domain knowledge as a guide. Indeed, domain

knowledge led us to explore asymmetric subutility functions in the airline book-

ing experiment in Chapter 3, for instance reasoning that fares under the price

point were not as bad as those above it. Domain knowledge could lead to new

subutility functions, for instance, those with periodicity given diurnal schedules,

or relationships among criteria, for instance nutrients that are typically needed

in concert. Knowledge bases or ontologies may be used to complement intuition

130

or establish it in unfamiliar domains. The exoplanet domain explored in Chapter

5 has a particularly compelling possible area of exploration. We observed during

search log analysis that users sometimes entered references to other objects in

attribute fields, for instance Earth, in fields requiring other input, such as exo-

planet mass. A domain knowledge-enhanced search engine that could recognize

and resolve such entity references would likely be a great benefit, even more so if

natural language queries were accepted.

The impact of the user interface warrants more study. Throughout this dis-

sertation, we found that the MAUT-based model consistently provided better

retrieval performance than the standard Boolean (or faceted) model. Despite

this, when users were asked to evaluate the interfaces, the MAUT-based models

did not rate significantly better than the Boolean approach. Is this due to famil-

iarity, or is it because the Boolean result set is well defined and therefore easier

to understand? We also found that users employed vague constructs when pre-

sented with an open-ended natural language interface in Chapter 5. Was this a

better expression of the underlying user need? Is it more compatible with the way

people think? Or is it because it fits colloquial parlance, which tends to eschew

numeric constructs? The natural language queries tended to perform worse than

the form-based queries, which could have several possible explanations. It could

be from a loss of specification, as the queries tended to be less detailed, perhaps

to avoid a lot of typing. The introduction of vagueness into the query may have

hurt performance. Our interpretation of the vague queries may need further im-

provement. Or it may be that imposing a certain structure onto the query, for

instance with a form, may suggest more effective query strategies, even if this is

a less natural expression of the user need. These remain open questions.

Finally, we restricted the query attribute values to single values, or for numeric

131

attributes in our final extension of the model, a continuous range of values. In

some cases, it may be better to accept multiple values, or to allow for multi-modal

utility functions. As an example, some attributes such as time will have a periodic

quality, which may more accurately modelled with a multi-modal utility function.

Indeed, the form of the query input remains an open question, and users find it

natural to use expressions we have not anticipated, as we observed in our natural

language experiment.

132

Bibliography

[1] Rakesh Agrawal and Edward L. Wimmers. A framework for expressing and
combining preferences. In Proceedings of the 2000 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’00, pages 297–306, New
York, NY, USA, 2000. ACM.

[2] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and Aristides Gionis. Au-
tomated ranking of database query results. In Proceedings of the First Bien-
nial Conference on Innovative Data Systems Research (CIDR 2003), pages
888–899, 2003.

[3] O. Alonso and S. Mizzaro. Can we get rid of trec assessors? using mechanical
turk for relevance assessment. In Proceedings of the SIGIR 2009 Workshop
on the Future of IR Evaluation, 2009.

[4] Amazon.com, Inc. https://developer.amazon.com/alexa.
https://developer.amazon.com/alexa, accessed on March 13, 2018.

[5] S. Amer-Yahia, F. Bonchi, C. Castillo, E. Feuerstein, I. Mendez-Diaz, and
P. Zabala. Composite retrieval of diverse and complementary bundles. Knowl-
edge and Data Engineering, IEEE Transactions on, 26(11):2662–2675, Nov
2014.

[6] Albert Angel, Surajit Chaudhuri, Gautam Das, and Nick Koudas. Ranking
objects based on relationships and fixed associations. In Proceedings of the
12th International Conference on Extending Database Technology: Advances
in Database Technology, EDBT ’09, pages 910–921, New York, NY, USA,
2009. ACM.

[7] Apple Inc. https://www.apple.com/ios/siri/.
https://www.apple.com/ios/siri/, accessed on March 13, 2018.

[8] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

133

[9] Senjuti Basu Roy, Sihem Amer-Yahia, Ashish Chawla, Gautam Das, and
Cong Yu. Constructing and exploring composite items. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 843–854, New York, NY, USA, 2010. ACM.

[10] Jonathon Berant and Percy Liang. Semantic parsing via paraphrasing. In
Association for Computational Linguistics (ACL), 2014.

[11] G. Bordogna and G. Pasi. A multi criteria news filtering model. In Annual
Meeting of the North American Fuzzy Information Processing Society, pages
1–6, 2008.

[12] Horatiu Bota, Ke Zhou, Joemon M. Jose, and Mounia Lalmas. Composite
retrieval of heterogeneous web search. In Proceedings of the 23rd International
Conference on World Wide Web, WWW ’14, pages 119–130, New York, NY,
USA, 2014. ACM.

[13] Jean-Pierre Brans and Bertrand Mareschal. PROMETHEE methods. In
José Figueria, Salvatore Greco, and Matthias Ehrgott, editors, Multicriteria
Decision Analysis: State of the Art Surveys, pages 163–195. Springer, 2005.

[14] Bureau of Transportation Statistics. Airline on-time performance data.
http://www.transtats.bts.gov/Tables.asp?DB_ID=120, accessed on April
15, 2007.

[15] Bureau of Transportation Statistics. Airline origin and destination sur-
vey. http://www.transtats.bts.gov/Tables.asp?DB_ID=125, accessed on
April 15, 2007.

[16] Bureau of Transportation Statistics. America on the Go: Findings from the
National Household Travel Survey. U.S. Department of Transportation, 2006.

[17] Vannevar Bush. As we may think. The Atlantic, July 1945.

[18] Kurt A. Carlson and Lisa Klein Pearo. Limiting predecisional distortion by
prior valuation of attribute components. Organizational Behavior and Human
Decision Processes, 94(1):48–59, May 2004.

[19] Michael A. Casey, Remco Veltkamp, Masataka Goto, Marc Leman,
Christophe Rhodes, and Malcolm Slaney. Content-based music information
retrieval: Current directions and future challenges. Proceedings of the IEEE,
96:668–696, April 2008.

[20] Olivier Chapelle and Mingrui Wu. Gradient descent optimization of smoothed
information retrieval metrics. Information Retrieval, 13(3):216–235, June
2010.

134

[21] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum.
Probabilistic ranking of database query results. In Proceedings of the Thirtieth
international conference on Very large data bases - Volume 30, VLDB ’04,
pages 888–899. VLDB Endowment, 2004.

[22] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard Weikum. Integrat-
ing DB and IR technologies: What is the sound of one hand clapping. In
Proceedings of the Second Biennial Conference on Innovative Data Systems
Research (CIDR 2005), pages 1–12, 2005.

[23] Jan Chomicki. Logical foundations of preference queries. IEEE Data Eng.
Bull., 34(2):3–10, 2011.

[24] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. Image retrieval:
Ideas, influences, and trends of the new age. ACM Computing Surveys, 40:1–
60, 2008.

[25] Paul Demery. Most new e-commerce platforms designed with ‘faceted
search’, Venda says. http://www.internetretailer.com/2007/05/16/most-
new-e-commerce-platforms-designed-with-faceted-search, May 2007. Ac-
cessed on March 11, 2013.

[26] Anja Dieckmann, Katrin Dippold, and Holger Dietrich. Compensatory versus
noncompensatory models for predicting consumer preferences. Judgment and
Decision Making, 4(3):200–213, April 2009.

[27] S. Doan and S. Horiguchi. An efficient feature selection using multi-criteria
in text categorization. In Fourth IEEE International Conference on Hybrid
Intelligent Systems, pages 86–91, 2004.

[28] James S. Dyer. MAUT – multiattribute utility theory. In José Figueria, Sal-
vatore Greco, and Matthias Ehrgott, editors, Multicriteria Decision Analysis:
State of the Art Surveys, pages 266–295. Springer, 2005.

[29] Matthias Ehrgott and Margaret M. Wiecek. Multiobjective programming. In
José Figueria, Salvatore Greco, and Matthias Ehrgott, editors, Multicriteria
Decision Analysis: State of the Art Surveys, page 678. Springer, 2005.

[30] M. Farah and D. Vanderpooten. A multicriteria paradigm of relevance for
the web information retrieval problem. In IEEE Sciences of Electronic, Tech-
nologies of Information and Telecommunications, 2005.

[31] M. Farah and D. Vanderpooten. An outranking approach for rank aggregation
in information retrieval. In 30th annual international ACM SIGIR conference
on research and development in information retrieval, pages 591–598, 2007.

135

[32] José Figueria, Vincent Mousseau, and Bernard Roy. ELECTRE methods. In
José Figueria, Salvatore Greco, and Matthias Ehrgott, editors, Multicriteria
Decision Analysis: State of the Art Surveys, pages 133–162. Springer, 2005.

[33] Norbert Fuhr. A probabilistic framework for vague queries and imprecise
information in databases. In Proceedings of the 16th International Conference
on Very Large Databases, pages 696–707. Morgan, 1990.

[34] Norbert Fuhr. Salton award lecture information retrieval as engineering sci-
ence. SIGIR Forum, 46(2):19–28, December 2012.

[35] Michael Grossniklaus and Moira Norrie. ETH Zürich, lecture
notes: Object-oriented databases (version 2010), 2010. URL:
http://www.odbms.org/2010/01/object-oriented-databases-version-2010
Last visited on 2018/11/15.

[36] E. Han, S. X. Wang, J. T. Wright, Y. K. Feng, M. Zhao, O. Fakhouri, J. I.
Brown, and C. Hancock. Exoplanet Orbit Database. II. Updates to Ex-
oplanets.org. Publications of the Astronomical Society of Pacific, 126:827,
September 2014.

[37] Marti A. Hearst. Next generation web search: Setting our sites. IEEE Data
Engineering Bulletin, 23, 2000.

[38] Daniel Herzog and Wolfgang Wörndl. A travel recommender system for com-
bining multiple travel regions to a composite trip. In Proceedings of the 1st
Workshop on New Trends in Content-based Recommender Systems co-located
with the 8th ACM Conference on Recommender Systems, CBRecSys@RecSys
2014, Foster City, Silicon Valley, California, USA, October 6, 2014., pages
42–48, 2014.

[39] Katja Hose and Akrivi Vlachou. A survey of skyline processing in highly
distributed environments. The VLDB Journal, 21(3):359–384, June 2012.

[40] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k
query processing techniques in relational database systems. ACM Comput.
Surv., 40(4):11:1–11:58, October 2008.

[41] Daniel Kahneman. Maps of bounded rationality: Psychology for behavioral
economics. American Economic Review, 93(5):1449–1475, December 2003.

[42] Neda Kerimi, Henry Montgomery, and Dan Zakay. Coming close to the ideal
alternative: The concordant-ranks strategy. Judgment and Decision Making,
6(3):196–210, 2011.

136

[43] Werner Kießling. Foundations of preferences in database systems. In Proceed-
ings of the 28th international conference on Very Large Data Bases, VLDB
’02, pages 311–322. VLDB Endowment, 2002.

[44] Werner Kießling and Gerhard Köstler. Preference SQL: design, implementa-
tion, experiences. In Proceedings of the 28th international conference on Very
Large Data Bases, VLDB ’02, pages 990–1001. VLDB Endowment, 2002.

[45] Mounia Lalmas and Anastasios Tombros. Evaluating XML retrieval effec-
tiveness at INEX. SIGIR Forum, 41:40–57, June 2007.

[46] L. Lamontagne and I. Abi-Zeid. Combining multiple similarity metrics us-
ing a multicriteria approach. In Eighth European Conference on Case-Based
Reasoning, 2006.

[47] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-
based multimedia information retrieval: State of the art and challenges. ACM
Trans. Multimedia Comput. Commun. Appl., 2(1):1–19, February 2006.

[48] Jane Li, Scott Huffman, and Akihito Tokuda. Good abandonment in mobile
and pc internet search. In Proceedings of the 32Nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’09, pages 43–50, New York, NY, USA, 2009. ACM.

[49] Percy Liang. https://nlp.stanford.edu/software/sempre/.
https://nlp.stanford.edu/software/sempre/, accessed on March 13, 2018.

[50] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Boolean retrieval. In Intoduction to Information Retrieval, pages 1–18. Cam-
bridge University Press, 2008.

[51] N. Manouselis and C. Costopoulou. Analysis and classification of multi-
criteria recommender systems. World Wide Web, 10(4):415–441, 2007.

[52] Xiangfu Meng, Z. M. Ma, and Li Yan. Answering approximate queries over
autonomous web databases. In Proceedings of the 18th international confer-
ence on World wide web, WWW ’09, pages 1021–1030, New York, NY, USA,
2009. ACM.

[53] Patrick Meyer and Marc Roubens. Choice, ranking and sorting in fuzzy
multiple criteria decision aid. In José Figueria, Salvatore Greco, and Matthias
Ehrgott, editors, Multicriteria Decision Analysis: State of the Art Surveys,
pages 471–506. Springer, 2005.

[54] Amihai Motro. Vague: a user interface to relational databases that permits
vague queries. ACM Transactions on Office Information Systems, 6:187–214,
1988.

137

[55] Amihai Motro. A trio of database user interfaces for handling vague retrieval
requests. IEEE Data Engineering Bulletin, 12:54–63, 1989.

[56] Ullas Nambiar. Answering Imprecise Queries Over Autonomous Databases.
PhD thesis, Arizona State University, December 2005.

[57] Ullas Nambiar and Subbarao Kambhampati. Answering imprecise queries
over web databases. In Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 1350–1353. VLDB Endowment,
2005.

[58] National Institute of Standards and Technol-
ogy (NIST). http://trec.nist.gov/data/qamain.html.
http://trec.nist.gov/data/qamain.html, accessed on March 13, 2018.

[59] William Neilson and Jill Stowe. A further examination of cumulative prospect
theory parameterizations. Risk and Uncertainty, 24:31–46, January 2002.

[60] Aditya Parameswaran, Petros Venetis, and Hector Garcia-Molina. Recom-
mendation systems with complex constraints: A course recommendation per-
spective. ACM Trans. Inf. Syst., 29(4):20:1–20:33, December 2011.

[61] Aditya G. Parameswaran and Hector Garcia-Molina. Recommendations with
prerequisites. In Proceedings of the Third ACM Conference on Recommender
Systems, RecSys ’09, pages 353–356, New York, NY, USA, 2009. ACM.

[62] Aditya G. Parameswaran, Hector Garcia-Molina, and Jeffrey D. Ullman.
Evaluating, combining and generalizing recommendations with prerequisites.
In Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, CIKM ’10, pages 919–928, New York, NY, USA,
2010. ACM.

[63] Gabriella Pasi, Gloria Bordogna, and Robert Villa. A multi-criteria content-
based filtering system. In Wessel Kraaij, Arjen P. de Vries, Charles L. A.
Clarke, Norbert Fuhr, and Noriko Kando, editors, SIGIR ’07: Proceedings of
the 30th annual international ACM conference on research and development
in information retrieval, pages 775–776, New York, NY, USA, 2007. ACM.

[64] Tao Qin, Tie-Yan Liu, and Hang Li. A general approximation framework for
direct optimization of information retrieval measures. Information Retrieval,
13(4):375–397, August 2010.

[65] Rani Qumsiyeh, Maria S. Pera, and Yiu-Kai Ng. Generating exact- and
ranked partially-matched answers to questions in advertisements. Proc.
VLDB Endow., 5(3):217–228, November 2011.

138

[66] Carol Ann Rinzler. Nutrition for Dummies. For Dummies, second edition,
1999.

[67] Bernard S. Roy. Paradigms and challenges. In José Figueria, Salvatore Greco,
and Matthias Ehrgott, editors, Multicriteria Decision Analysis: State of the
Art Surveys, pages 3–24. Springer, 2005.

[68] Thomas L. Saaty. The analytical hierarchy and analytic network processes
for the measurement of intangible criteria and for decision-making. In José
Figueria, Salvatore Greco, and Matthias Ehrgott, editors, Multicriteria De-
cision Analysis: State of the Art Surveys, pages 345–407. Springer, 2005.

[69] Harrisen Scells and Guido Zuccon. Generating better queries for systematic
reviews. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, SIGIR ’18, pages 475–484, New York,
NY, USA, 2018. ACM.

[70] Yannis Siskos, Evangelos Grigoroudis, and Nilolaos F. Matsatsinis. UTA
methods. In José Figueria, Salvatore Greco, and Matthias Ehrgott, editors,
Multicriteria Decision Analysis: State of the Art Surveys, pages 297–343.
Springer, 2005.

[71] Mark D. Smucker, James Allan, and Ben Carterette. A comparison of statis-
tical significance tests for information retrieval evaluation. In Proceedings of
the sixteenth ACM conference on Conference on information and knowledge
management, CIKM ’07, pages 623–632, New York, NY, USA, 2007. ACM.

[72] M.A. Soliman, I.F. Ilyas, and K. Chen-Chuan Chang. Top-k query processing
in uncertain databases. In Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 896–905, April 2007.

[73] Weifeng Su, Jiying Wang, Qiong Huang, and Fred Lochovsky. Query result
ranking over e-commerce web databases. In Proceedings of the 15th ACM
international conference on Information and knowledge management, CIKM
’06, pages 575–584, New York, NY, USA, 2006. ACM.

[74] Chang Tan, Qi Liu, Enhong Chen, Hui Xiong, and Xiang Wu. Object-
oriented travel package recommendation. ACM Trans. Intell. Syst. Technol.,
5(3):43:1–43:26, September 2014.

[75] Evangelos Triantaphyllou. Multi-criteria decision making methods. In Multi-
Criteria Decision Making Methods: A Comparative Study, pages 8–9. Kluwer
Academic Publishers, 2000.

139

[76] Evangelos Triantaphyllou. Multi-criteria decision making methods. In Multi-
Criteria Decision Making Methods: A Comparative Study, pages 18–21.
Kluwer Academic Publishers, 2000.

[77] Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumula-
tive representation of uncertainty. Risk and Uncertainty, 5:297–323, October
1992.

[78] A. Veloso, J. Wagner Meira, M. Cristo, M. Gonçalves, and M. Zaki. Multi-
evidence, multi-criteria, lazy associative document classification. In 15th
ACM international conference on Information and knowledge management,
pages 218–227, 2006.

[79] Yushi Wang, Jonathan Berant, and Percy Liang. Building a semantic parser
overnight. In Association for Computational Linguistics (ACL), 2015.

[80] Gerhard Weikum. DB&IR: both sides now. In Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, SIGMOD ’07,
pages 25–30. ACM, New York, NY, USA, 2007.

[81] WikiMedia Foundation. Dietary reference intake, 2015.

[82] Shawn R. Wolfe and Yi Zhang. User-centric multi-criteria information re-
trieval. In James Allan, Javed Aslam, Mark Sanderson, ChengXiang Zhai,
and Justin Zobel, editors, SIGIR ’09: Proceedings of the 32nd international
ACM conference on research and development in information retrieval, pages
818–819, New York, NY, USA, 2009. ACM.

[83] Shawn R. Wolfe and Yi Zhang. Interaction and personalization of criteria in
recommender systems. In Paul De Bra, Alfred Kobsa, and David Chin, edi-
tors, User Modeling, Adaptation, and Personalization, pages 183–194, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[84] Shawn R. Wolfe and Yi Zhang. Item retrieval as utility estimation. In The
41st International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’18, pages 795–804, New York, NY, USA, 2018.
ACM.

[85] World Wide Web Consortium (W3C). SPARQL 1.1 Query Language.
https://www.w3.org/TR/sparql11-query/, Last visited on 2018/11/15.

[86] World Wide Web Consortium (W3C). XQuery 3.1: An XML Query Lan-
guage. https://www.w3.org/TR/xquery-31/, Last visited on 2018/11/15.

140

[87] Mingrui Wu, Yi Chang, Zhaohui Zheng, and Hongyuan Zha. Smoothing
DCG for learning to rank: a novel approach using smoothed hinge functions.
In Proceedings of the 18th ACM conference on Information and Knowledge
Management, CIKM ’09, pages 1923–1926, New York, NY, USA, 2009. ACM.

[88] Min Xie, Laks V. S. Lakshmanan, and Peter T. Wood. Comprec-trip: A
composite recommendation system for travel planning. In Proceedings of the
2011 IEEE 27th International Conference on Data Engineering, ICDE ’11,
pages 1352–1355, Washington, DC, USA, 2011. IEEE Computer Society.

[89] Min Xie, Laks V.S. Lakshmanan, and Peter T. Wood. Breaking out of the box
of recommendations: From items to packages. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys ’10, pages 151–158, New
York, NY, USA, 2010. ACM.

[90] Emine Yilmaz and Javed A. Aslam. Estimating average precision with incom-
plete and imperfect judgments. In Philip S. Yu, Vassilis Tsotras, Edward Fox,
and Bing Liu, editors, Proceedings of the Fifteenth ACM International Con-
ference on Information and Knowledge Management, pages 102–111. ACM
Press, November 2006.

[91] Yi Zhang. Yow user study data: Implicit and explicit feedback for news rec-
ommendation. http://www.soe.ucsc.edu/~yiz/papers/data/YOWStudy.

141

http://www.soe.ucsc.edu/~yiz/papers/data/YOWStudy

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Shortcomings of the Boolean Approach
	The Goal of Utility Estimation for Item Retrieval
	Contributions of the Dissertation
	Outline of the Dissertation

	Background
	Multi-criteria Decision Making
	Principles
	Ranking Models

	Behavioral Economics and Mathematical Psychology
	Multiple Criteria Approaches to Information Retrieval
	Search Methods for Items
	Metrics and Statistical Significance

	Leveraging Multiple Criteria in Item Retrieval
	Leveraging Criteria in Retrieval Problems
	Multi-Criteria Based Ranking Methods
	Retrieval Domains and Criteria
	Evaluation of Multi-Criteria Methods

	Translating Queries to Criteria Ratings
	A Unifying Relevance Model
	Experimental Design
	Results
	Summary and Contributions

	Learning Subutility Functions
	Criteria Subutility in Recommendation
	Datasets
	Approach
	Linear Model
	Nonlinear Model
	Results

	Incorporating Nonlinear Subutility into Query-based Retrieval
	Towards a model of subutility
	Learning
	Experiment
	Results
	Summary and Contributions

	Extending the Retrieval Model
	Extending to an Active Search Engine
	The Exoplanet Orbital Database
	Characterizing the EOD and its Use
	Expanding to Other Attribute Types
	Results

	Moving Beyond Structured Search Interfaces
	Search Interface and Data Used
	Handling Imprecise Constraints
	Results
	Summary and Contributions

	Conclusion and Future Work
	Contributions
	Contributions to Items Retrieval
	Contributions Beyond Item Retrieval

	Opportunities for Future Research
	Improving the Core Framework
	Extending the Framework

	Bibliography

