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Studies of the genetics of psychiatric disorders have become one of the most exciting and fast-
moving areas in human genetics. A decade ago, there were few reproducible findings, and now
there are hundreds. In this review, we focus on the findings that have illuminated the genetic archi-
tecture of psychiatric disorders and the challenges of using these findings to inform our
understanding of pathophysiology. The evidence is now overwhelming that psychiatric disorders
are ‘‘polygenic’’—that many genetic loci contribute to risk. With the exception of a subset
of those with ASD, few individuals with a psychiatric disorder have a single, deterministic
genetic cause; rather, developing a psychiatric disorder is influenced by hundreds of different ge-
netic variants, consistent with a polygenic model. As progressively larger studies have uncovered
more about their genetic architecture, the need to elucidate additional architectures has become
clear. Even if we were to have complete knowledge of the genetic architecture of a psychiatric dis-
order, full understanding requires deep knowledge of the functional genomic architecture—the
implicated loci impact regulatory processes that influence gene expression and the functional co-
ordination of genes that control biological processes. Following from this is cellular architecture: of
all brain regions, cell types, and developmental stages, where andwhen are the functional architec-
tures operative? Given that the genetic architectures of different psychiatric disorders often
strongly overlap, we are challenged to re-evaluate and refine the diagnostic architectures of psychi-
atric disorders using fundamental genetic and neurobiological data.
Introduction
Psychiatric disorders are the most enigmatic maladies in medi-

cine. Although their existence has been known for millennia

(Porter, 2002) and their impact on public health well-docu-

mented, remarkably little is known about their causal risk factors

and fundamental neurobiology despite a considerable corpus of

research. In the past century, many have applied the best tools

then available but, until recently, without reproducible suc-

cesses. The lack of success using approaches that were fruitful

elsewhere is attributable an inadequate toolkit and the intrinsic

complexity of the brain. Psychiatric disorders impact higher

cortical functions (mood, behavior, perception, and cognition),

which are far more difficult to localize, quantify, and model

than more basic neurological functions. In addition, psychiatric

disorders are defined based on self-report and observation of

cognition and behavior rather than on direct measurement of

an etiological factor, making them syndromes rather than single

diseases. These features strongly suggest diverse and complex

etiologies.

Despite these challenges, there has been remarkable prog-

ress in the past decade in elucidating the genetic underpin-
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nings of psychiatric disorders with numerous findings that

meet modern criteria for significance and reproducibility

(Geschwind and Flint, 2015; Sullivan et al., 2018). In this

Review, we focus on the findings that have illuminated the

‘‘genetic architecture’’ of psychiatric disorders and the chal-

lenges of using these findings to inform our understanding of

pathophysiology. Genetic architecture refers to the overall

composition of the implicated risk variants in the population—

the total number of variants and, for each, the frequencies in

those afflicted and in the general population and the degree

of risk conferred (Timpson et al., 2018). The concept of genetic

architecture is applicable to any trait (e.g., Huntington’s disease

is caused by a rare, deterministic variant). Knowledge of

genetic architecture can help optimize gene discovery (e.g.,

study design, ascertainment, choice of genotyping technology)

(Timpson et al., 2018; Visscher et al., 2012). Genetic architec-

ture can inform prospects for clinical utility: although many

deterministic monogenetic conditions are predicted or diag-

nosed using genetic testing, application to most psychiatric

disorders traverses far more murky, probabilistic terrain (Timp-

son et al., 2018).
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Figure 1. Relationship of the Levels of Disease Architecture to Different Stages of Analysis
Genetic studies identify the loci and causal variants that impact disease and thereby its genetic architecture. The subset of causal variants in coding regions are
typically directly assignable to genes. Asmany loci are non-coding, regulatory regions and the genes they regulate need to be empirically defined and identified—
such studies render the functional architecture of disease. As psychiatric disorders all appear to be polygenic, it is also necessary to consider the implicated
genes in the context of biological networks and pathways. Sets of genes and networks can be placed in specific developmental stages and cell types to generate
more precise understanding of their effects on brain regions and circuits. Diagnostic architecture—the structure of the interrelationships between psychiatric
syndromes—is subsequently refined by increased knowledge at each of these levels.
The evidence is now overwhelming that psychiatric disorders

have a ‘‘polygenic’’ basis—that many genetic loci, mostly with

small effect sizes, contribute to risk (Visscher et al., 2017). In

this respect, psychiatric disorders are broadly similar to other

common biomedical diseases. The polygenic concept allows

for the fact that some individuals can harbor genetic variants of

far larger effects. This is particularly salient for autism spectrum

disorder (ASD), where a large effect variant is present in �15%

of cases, along with smaller proportions of individuals with

Tourette’s syndrome (TS), attention-deficit hyperactivity disor-

der (ADHD), and schizophrenia (SCZ) (Iossifov et al., 2012;

Sanders et al., 2012; Satterstrom et al., 2018b; Singh et al.,

2016; Willsey et al., 2017). A polygenic model can include

weak and strong genetic effects, as well as non-genetic influ-

ences (e.g., the impact of environmental exposures and life

events [e.g., chronic fear], the impact of individual choices). A

key empirical finding is that genetic risk can be non-specific

and shared to varying extents across many adult- and child-

hood-onset psychiatric disorders (Antilla et al., 2018; Cross-Dis-

order Group of the Psychiatric Genomics Consortium, 2013;

Schork et al., 2019).

As progressively larger studies of psychiatric disorders have

uncovered increasingly more about their genetic architecture,

the need to elucidate additional architectures has become

clear (Figure 1). Even if we were to have complete knowledge

of the genetic architecture of a psychiatric disorder, full under-

standing requires deep knowledge of the functional genomic

architecture—how these loci interact in the nucleus (often

across large distances), how gene and isoform expression

are coordinated for many genes, and how these affect net-

works. Second, following from this, is cellular architecture—

of all brain regions, cell types, and developmental stages,

where and when are the functional architectures operative,
and what circuits do they influence? Finally, the data used to

diagnose psychiatric disorders consist of signs and symptoms

determined during patient-clinician interactions that infre-

quently have recourse to objective biomarkers to support or

refute a diagnosis. Furthermore, the internationally accepted

definitions of psychiatric disorders were crafted by experts

and influenced by traditions dating back a century or more.

Given that the genetic architectures of different psychiatric

disorders can strongly overlap, we are challenged to re-eval-

uate and refine the diagnostic architectures of psychiatric

disorders with respect to fundamental genetic and neurobio-

logical data.

Psychiatric Disorders and Genetics
Definitions

Many psychiatric disorders are internationally recognized (World

Health Organization, 1993). In this Review, we focus on the 10

psychiatric disorders that have been the subject of the greatest

scrutiny by geneticists and all are the focus of working groups in

the Psychiatric Genomics Consortium (PGC) (Sullivan et al.,

2018). We do not cover dementia and intellectual disability (ID),

which are often considered neurological conditions with promi-

nent psychiatric manifestations, but recognize the inherent

arbitrariness of following this conventional delineation. Table 1

contains brief definitions of each condition, along with lifetime

prevalence rates and twin heritabilities. The essence of each dis-

order is a persistent, pervasive, and pathological pattern of

abnormal mood (as in mania or major depression), perception

(e.g., auditory hallucinations in SCZ, bizarrely distorted body

image in anorexia nervosa [AN]), behavior (e.g., repetitive

hand-washing in obsessive-compulsive disorder [OCD], inju-

rious ethanol consumption in alcohol dependence [ALC]), or

higher-level cognition (e.g., delusions in SCZ). People with
Cell 177, March 21, 2019 163



Table 1. Descriptive Features of 10 Psychiatric Disorders

Abbreviation Name

Lifetim

Prevalence

Twin

Heritability

SNP

Heritability

GWA

Cases

GWAS

Loci Essential Characteristics Notable Impacts

ADHD attention-deficit

hyperactivity disorder

0.053 0.76 0.216 20,183 12 persistent inattention,

hyperactivity, impulsivity

costs estimated at

�$100 billion USD per year

ALC alcohol dependence 0.125 0.51 0.090 14,904 2 persistent ethanol use

despite tolerance,

withdrawal, dysfunction

most expensive psychiatric

disorder (total costs > $225

billion/year)

AN anorexia nervosa 0.009 0.58 0.110 16,992 8 dangerously low weight

from self-starvation

notably high standardized

mortality ratio

ASD autism spectrum

disorder

0.017 0.74 0.118 18,381 5 abnormal social interaction

and communication

beginning before age 3

wide range of function, from

complete care to exceptional

achievement

BIP bipolar disorder 0.010 0.85 0.213 29,764 30 manic-depressive illness,

episodes of mania usually

with depressive episodes

nearly as disabling as SCZ

MDD major depressive

disorder

0.162 0.37 0.087 135,458 44 unipolar depression,

persistent dysphoria with

physical/cognitive

symptoms

top five in burden of disease

globally

OCD obsessive-compulsive

disorder

0.011 0.47 0.280 2,688 0 uncontrollable, persistent

thoughts (obsessions) and

repetitive behaviors

(compulsions)

top 10 globally for lost income

and decreased quality of life

PTSD post-traumatic stress

disorder

0.068 0.46 0.038 23,212 2 trauma-related

re-experiencing, avoidance,

negative thoughts, and

hyperarousala

high medical and psychiatric

comorbidities (suicide,

substance depdence)

SCZ schizophrenia 0.004 0.81 0.244 40,675 145 longstanding delusions

and hallucinations

life expectancy decreased

by 12–15 years

TS Tourette’s syndrome 0.005 0.37b 0.350 4,819 1 vocal or motor tics (stereotyped,

involuntary movement

and utterances)

comorbid psychiatric

disorders cause more disability

than tics

All definitions aremademore restrictive by requiring persistence over time (e.g., the criteria for SCZ requireR6months of symptoms), presence in different contexts (e.g., for ADHD, inattention at

home, school, and in peer interactions), and significant impairment. See Table S1 for data and citations. Updated from Sullivan et al., (2012).
aPTSD is distinctive in requiring traumatic exposure to death, injury, or sexual violence.
bHeritability from national pedigrees is higher (0.77).
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Figure 2. Prevalence and Impact of Psychi-

atric Disorders Compared to Other Major

Diseases
Looking at both measures allows evaluation of
how common and how impactful a psychiatric
disorder is. These data are from global surveys,
and we have included other major classes
of disease. Prevalence (x axis) and disability-
adjusted life years (DALYs, y axis) for 10 major
classes of disorders. DALYs are a measure of
overall disease burden due to the number of years
lost due to poor health, disability, or premature
mortality, here expressed as the proportion of total
global DALYs. Psychiatric disorders rank fifth and
account for 6.7% (females are the open diamond
and males are the closed diamond) (GBD 2016
Disease and Injury Incidence and Prevalence
Collaborators, 2017).
See also Table S1.
serious psychiatric disorders are often acutely aware that their

symptoms and behaviors ‘‘don’t make sense’’ and have made

exhaustive attempts to ameliorate their illness.

Each of these disorders has an explicit operational definition

based on symptoms (reported by a person or an informant)

and signs (observed by a clinician). Many diagnostic features

from laboratory testing, brain imaging, or pathology have been

evaluated, but few have acceptable positive and negative pre-

dictive values to support routine clinical use. One exception is

the measurement of intelligence, which defines ID and which is

an important clinical stratifier for many psychiatric disorders

(particularly ADHD and ASD). Thus, these conditions are disor-

ders or syndromes, not diseases due to their descriptive/syn-

dromic definitions without objective defining features based

on etiology. All are idiopathic with rare exceptions (single-gene

disorders with prominent ASD features like MECP2 and Rett

syndrome).

Impact

Psychiatric disorders are among the conditions with the greatest

impacts (GBD 2016 Disease and Injury Incidence and Preva-

lence Collaborators, 2017), ranking fifth globally in causes of

disability (Figure 2). These disorders are associated with consid-

erable morbidity and increased rates of mortality due to suicide

and ill health (e.g., 10- to 15-year reduction in life expectancy for

SCZ) and cost (due to health care, disability, and lost income).

The human impact of a severe mental illness on the lives of the

people afflicted and their families and communities is not readily

condensed into a statistic but is nonetheless often profound. In

addition, empirical studies have demonstrated the effectiveness

of social, psychological, and/or pharmacological therapies for all
of these disorders. These are treatable

conditions, and treatment often leads to

marked improvements in symptoms and

quality of life. However, particularly for

severe psychiatric disorders, current

therapies may only mitigate symptoms.

Therapeutic failure is common.

Commonalities

Four clinical features of psychiatric disor-

ders are notable. First, there is consider-
able clinical variability. For example, individuals with ADHD or

OCD can have mild, transient symptoms in childhood or lifelong,

incapacitating symptoms. People with ASD can have profound

impairment requiring lifelong care, as well as high academic/

occupational achievement (despite impairments in social rela-

tions and behavioral flexibility). Features of many psychiatric dis-

orders are on a continuum: depressed mood is a normal human

experience but becomes major depressive disorder (MDD) if

present continuously for weeks or months. Second, many psy-

chiatric disorders are chronic illnesses: MDD often begins in

adolescence and recurs throughout adulthood. SCZ frequently

begins in early adulthood and is often life altering. Most people

with ASD in childhood continue to have ASD in adulthood (Bill-

stedt et al., 2007; Howlin and Magiati, 2017). Third, given the

syndromic nature of the definitions, it is unsurprising that these

conditions are commonly comorbid (e.g., many people with AN

or ALC also meet criteria for MDD, AN overlaps considerably

with MDD and OCD, about half of people with ASD have

ADHD symptoms) (de Bruin et al., 2007).

Finally, the neurological impact of psychiatric disorders can be

subtle. Some individuals have important neurological impair-

ments (e.g., epilepsy and motor or sensory abnormalities) or

neurological ‘‘soft signs’’ (deficits in sensory integration, coordi-

nation, and complex motor sequencing). However, most people

with a severe psychiatric disorder have little if any neurological

impairment (e.g., consciousness, sensation, motor function, lan-

guage, many aspects of memory). Individuals who are at the

worst point in their illnesses—floridly hallucinating, severely

manic, profoundly melancholic, or starved down to a body

mass index of 10—usually have normal neurological exams
Cell 177, March 21, 2019 165



and unremarkable or only non-specific structural and functional

brain-imaging findings. This again suggests relatively subtle and

heterogeneous etiological processes.

A Brief History of Genetic Studies

For over 150 years, researchers have applied the best available

methods to try to find the causes of serious psychiatric disor-

ders. Many of these methods had been informative for other

medical disorders but unsuccessful for psychiatric disorders.

The most reproducible single clue that emerged was the ten-

dency for psychiatric disorders to ‘‘run’’ in families—as estab-

lished by 50+ years of twin, family, and adoption studies (sum-

marized in Table 1) (Polderman et al., 2015). This observation

logically led to attempts to identify the specific locations in the

genome conferring risk. The progression of genetic studies mir-

rors technology development since the 1960s: single-protein

biomarkers, small numbers of restriction-fragment-length poly-

morphisms, genome-wide panels of microsatellite markers for

linkage analysis, small numbers of selected SNPs, arrays con-

taining 105–106 genome-wide SNPs, and resequencing of genes

and then exomes andwhole genomes.Whenever a new technol-

ogy emerged, a prominent early success was strongly influential.

Examples include identification of a genomic region for Hunting-

ton’s disease using linkage analysis of 12 markers in 1983, the

association of common variation in APOE with Alzheimer’s dis-

ease in a candidate gene study of 30 cases in 1993, identification

of CFH as a risk factor for age-related macular degeneration

using SNP arrays in 96 cases in 2005, and exome sequencing

identifying the cause of Miller syndrome in four cases in 2009.

These early successes were a form of ‘‘winner’s curse’’ (Ioan-

nidis, 2005) that led to gross underestimation of the efforts that

would ultimately be required (we note that geneticists working

on most other complex human diseases were similarly misled).

Linkage analysis is poorly powered for complex traits (Risch

and Merikangas, 1996). Compared to current knowledge, the

reproducible yield of candidate gene-association studies is

negligible (Farrell et al., 2015). Linkage and candidate gene

studies led to many claims of gene discovery (e.g., COMT,

DISC1,DTNBP1, andNRG1 for SCZ) that were not subsequently

supported (Border et al., 2019; Farrell et al., 2015). Psychiatric

genetics was bedeviled by reproducibility problems.

Global Consortia

The failure of simple models led to widespread acknowledgment

of a need for sample sizes that were beyond the reach of any sin-

gle group to achieve power to detect generalizable findings. The

need for unprecedented levels of cooperation became widely

recognized (Cichon et al., 2009; Fischbach and Lord, 2010;

Geschwind et al., 2001; Lajonchere and AGRE Consortium,

2010; Moldin, 2003; Psychiatric GWAS Consortium Steering

Committee, 2009). Many consortia emerged to combine efforts

across research groups to elucidate reproducible genetic risk

factors for psychiatric disorders. For adult-onset disorders, this

began with transient efforts (e.g., GAIN, ISC, SGENE). For child-

hood-onset disorders, these efforts began in ASD with smaller

consortia, such as the IMGSAC and PARIS, during the linkage

era (International Molecular Genetic Study of Autism Con-

sortium, 2001; Philippe et al., 1999). Subsequently, the formation

of the Autism Genetic Resource Exchange (AGRE) enabled

expansion to include multiplex families (Geschwind et al.,
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2001; Lajonchere and AGRE Consortium, 2010). The largest

consortium in psychiatric genetics is the PGC, which began in

2007 (http://www.med.unc.edu/pgc/) (Sullivan et al., 2018) and

has spearheaded many of the major genetic advances in the

field. The PGC has 800+members from 40+ countries and work-

ing groups for 11 psychiatric disorders. The PGC is amega-anal-

ysis consortium that allows highly harmonized analyses, rigorous

quality standards, and significance thresholds that maximize

reproducibility. A feature of most consortia is making summary

results freely available, along with paths for other researchers

to get access to individual data or biological samples for inde-

pendent research.

As whole-exome andwhole-genome sequencing (WES,WGS)

have become mainstream, the Whole Genome Sequencing for

Psychiatric Disorders consortium is adopting a similar approach

as the PGC but for modern resequencing (Sanders et al., 2017).

Investigators conducting WES for ASD have formed multiple

consortia. The Simons Simplex Collection focused on discovery

of de novo variation via WES and played a major role in acceler-

ating gene discovery in ASD (Fischbach and Lord, 2010). The

SPARK initiative is conducting WES on 50,000 ASD cases, a

rapid data-release policy (Spark Consortium, 2018). The Autism

Sequencing Consortium rigorously harmonizes ASD resequenc-

ing data from multiple studies (Buxbaum et al., 2012), and

combining data from multiple cohorts has enabled major ad-

vances (De Rubeis et al., 2014; Sanders et al., 2015).

Genetic Architecture
We review here what we have learned about the genetic archi-

tectures of the 10 psychiatric disorders in Table 1. Because

some of the basic techniques may be unfamiliar, we provide in

Table 2 brief definitions and accessible introductions to these

topics that are beyond the scope of this Review. The results to

date indicate that psychiatric disorder risk is imparted by many

common variants of individually small effects, and several disor-

ders also have contributions from rarer variants with larger

impact on risk (Geschwind and Flint, 2015; Sullivan et al., 2018).

Background

Knowledge of genetic architecture is fundamental to rational

study design and genotyping technology choice. For many de-

cades, this was debated with various authors speculating archi-

tectures inferred from indirect clinical or epidemiological data.

The extreme positions were the common-disease/common-

variant model (psychiatric disorders result from the cumulative

effect of many common variants of small effect) and the multi-

ple-rare-variant model (strong genetic impacts on single genes

cause psychiatric disorders, with each case having a different

causal mutation). Neither model can explain all of the genetic

risk, and many possible genetic architectures lie between these

extremes.

Genetic variation lies on a continuum from common to

extremely rare: a risk variant might be present on half the chro-

mosomes in a population or be observed only once in 1 million

people. We can consider a frequency continuum from ultra-

rare (present once in a large sample, frequency <0.001%) to

rare (present in a pedigree or in descendants of a recent

ancestor, <0.1%) to uncommon (0.1% to 1%) to common

(>1%). In general, rare variants arose recently, and common

http://www.med.unc.edu/pgc/


Table 2. Brief list of ‘‘Omic’’ Technologies Used to Understand Psychiatric Disorders.

Initialism

or Acronym Reversed Description

GWAS genome-wide

association study

Genomics: usually a case-control comparison of common genetic variation revealed by SNP

arrays (prespecified set of reliably measured biallelic genetic markers

selected for good performance and coverage of the genome). Can achieve coverage

of >90% of common variants in the genome. Can also identify rare CNVs. Many studies of

psychiatric disorders (Corvin et al., 2010; Sullivan et al., 2018; Visscher et al., 2017).

WGS whole-genome

sequencing

Genomics: ab initio resequencing of the genome. In concept, can identify all types of genetic

variation. Increasingly used clinically for rare genetic syndromes. Few studies

of psychiatric disorders to date (Wray and Gratten, 2018).

WES whole-exome

sequencing

Genomics: a version of WGS focused on the protein-coding parts of the genome (�3%)

using one of several methods to pull down all known exons. This provides a focused

and less expensive way to identify gene-disrupting or missense variants

in exons. WES has identified �100 genes for ASD and an increased ‘‘burden’’ of rare,

protein-altering genetic variation differing between cases and controls in SCZ and a

few other disorders (Biesecker and Green, 2014; Warr et al. 2015).

– epigenomics Unlike the (usually) static, body-wide nature of genomics (GWAS, WGS, WES), multiple

readouts that capture changes that do not affect DNA sequence but act to alter the

functional state of cells and tissues. These include DNA methylation,

histone tail modifications, etc. Initial approaches required large numbers of cells, but

improved versions can increasingly be applied to single cells. Epigenomic changes

can be highly specific to a cell or tissue or common across the body; they generally reflect

cell differentiation and function. (Ecker et al., 2012).

OC open chromatin Epigenomic: regions of the genome that are not histone bound in cell nuclei and thus open to gene

regulatory processes. Main methods are ATAC-seq and DNase-seq (Ecker et al., 2012).

ChIP-seq chromatin

immunoprecipitation

sequencing

Epigenomic: a class of methods to identify functional modifications to specific genomic regions.

Many focus on changes to the N terminus tails of histone proteins.

Such changes are part of the histone code that can dramatically alter gene expression. Examples of

histone marks strongly associated with functional chromatin states include acetylation at the 27th

lysine of the histone H3 protein (H3K27ac) and trimethylation of the 4th lysine of the histone H3

protein (H3K4me3) (Ecker et al., 2012).

Hi-C none Epigenomic: one of several chromosome-conformation capture methods that can capture

genomic regions that are near each other in cell nuclei. Hi-C does this in an

all-to-all manner, whereas other methods target more specific interactions. A

subset of these DNA-DNA contacts these can mediate regulatory interactions

between regions that are located far apart (Dekker et al., 2017; Rowley and Corces, 2018).

RNA-seq RNA sequencing Genomic: identify the amount of all RNA molecules in a cell or tissue, a transcriptomic

technology. RNA-seq can also capture splicing and isoform level

information. (Hardwick et al., 2017).

eQTL expression

quantitative trait loci

Genomic and epigenomic: identify genetic predictors of gene expression. Essentially,

GWASs for every variable transcript in a tissue (�50,000) to identify genetic variants associated

with RNA abundance. Many are highly tissue or stage specific (Conesa et al., 2016;

Nica and Dermitzakis, 2013).
variants are far older. Given what we know now, common vari-

ants generally have small effects on disease risk (odds ratio

[OR] < 1.15), and rare variants typically have larger effect sizes

(>2.0), are more likely to be deleterious, and tend to be removed

by natural selection (Fu et al., 2013; Nelson et al., 2012; Zeng

et al., 2018). This is not an invariant rule, as rare variants may

have a continuum of risk (Marouli et al., 2017), and a fraction of

common variants have large effects (e.g., APOE and Alzheimer’s

disease).

Technology

Two main technologies have emerged for capturing germline

genetic variation in individual subjects: resequencing and SNP

arrays. Resequencing determines anew many types of genetic
variation in the immediately accessible genome. It captures

many types of genetic variation—SNPs, insertion-deletions,

copy-number variation (CNV)—across the frequency spectrum,

from ultra-rare to common. In concept, resequencing is the

method of choice for psychiatric genomics. Costs for WGS

have declined considerably ($800 per sample), but analyzing

WGS data remains challenging. Most resequencing studies to

date used WES, reducing expense and analytic burden via a

focus on protein-coding regions, where the functional impact

of variants is easier to interpret than in the non-coding genome.

Study designs are usually either standard case-control compar-

isons or family-based methods. For the latter, trios of unaffected

parents and an affected offspring are popular, as they enable
Cell 177, March 21, 2019 167



Figure 3. The Yields of GWAS
(A) Overview of common-variant gene discovery for the psychiatric disorders in Table 1. Sources and label definitions are in Table 1. The x axis is the log10 of the
number of cases in the largest current GWAS. The y axis is the number of genome-wide significant and LD-independent loci. The color of each point reflects twin
heritability per the scale on the right. For BIP,MDD, and SCZ, the graph includes published and in preparation/in press results (connected by a line). Sample size is
the major determinant of discovery. We thank PGC colleagues for allowing us to present pre-publication results.
(B) Density plot of genetic risk scores (GRSs) in 4,932 SCZ cases (red) and 6,210 controls (blue) from Sweden (training set is from the PGC 2014 SCZ paper
excluding Swedish samples; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). The x axis shows the standardized GRS and the

(legend continued on next page)
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identification of de novo variation (i.e., present in an affected

child but absent in parents), which can improve power to detect

high-impact variants. Other resequencing technologies can

focus on the less-accessible parts of the genome (repetitive re-

gions or regions with variable structure and gene content).

Although very expensive and technically complex, single-cell re-

sequencing of nuclei from a tissue can identify somatic muta-

tions that arose during development (these changes are not her-

itable but may contribute to illness in some individuals) (Evrony

et al., 2016; McConnell et al., 2017). The largest resequencing

studies of psychiatric disorders have fewer than 25,000 cases,

but this will change in the next few years.

SNP arrays commonly include 700,000 or more readily geno-

typed biallelic genetic variants. These SNPs are preselected for

reliability and capacity to capture 90% or more of common ge-

netic variation in a population either directly or indirectly by capi-

talizing on linkage disequilibrium (LD, the strong tendency for

nearby genetic variants to be co-inherited). In effect, direct

assessment of <1 million SNPs can be leveraged to accurately

estimate genotypes for 5–10 million or more common, uncom-

mon, and even rare genetic variants. SNP arrays are inexpensive

($35 per sample) and have been applied to very large numbers of

people. Array technology can also identify large, rare CNVs (Luo

et al., 2012; Marshall et al., 2017; Sanders et al., 2011; Sebat

et al., 2007).WGSprovides substantially more genome coverage

and resolution, especially with regard to certain forms of chro-

mosomal structural variation (Redin et al., 2017), but at an order

of magnitude cost more than SNP arrays. SNP-array studies of

readily measured human traits (e.g., height, educational attain-

ment, lipid levels) now routinely exceed sample sizes of 1 million,

and studies of psychiatric disorders have 10,000–130,000

cases. These studies do not directly capture causal genetic vari-

ation necessitating substantial follow-up to identify the causal

variants and genes affected (Gusev et al., 2018; Sekar et al.,

2016; Wang et al., 2018a).

Key issues in all of these studies are rigorous quality control,

careful assessment and control for multiple types of bias, and

correction for multiple comparisons. A large number of statistical

tests are conducted, requiring correction for multiple compari-

sons. For example, for SNP array studies, an accepted threshold

is p < 5 3 10�8, akin to correcting a =0.05 for 1 million

comparisons.

Common-Variant Association Studies of Psychiatric

Disorders

Most genetic studies of psychiatric disorders in the past decade

have used SNP arrays to assess the role of accessible common

variation (also known as genome-wide association studies

[GWASs]). The common-variant findings for psychiatric disor-

ders are summarized in Figure 3A. Studies in SCZ and MDD

have yielded >100 loci; bipolar disorder [BIP] has 53 loci; and

ADHD, AN, and ASD have 5–12 loci. The crucial determinant of
y axis shows the smoothed density, a prediction of the proportion of cases or con
group. The group means differ by over 2/3 of a standard deviation (0.686) and are
and 5 ancestry principal components [PCs]). The two curves overlap substantial
(C) Depiction of GRS described in (B) but showing the proportions of cases (red) a
10%GRS). x axis is the proportion within each decile. The proportions of cases in
of cases in the lowest decile and controls in the highest decile.
the number of loci discovered is the number of cases; as sample

sizes increase, more loci will be identified (Geschwind and Flint,

2015; Sullivan et al., 2018). As a common disorder with relatively

low twin heritability (Levinson et al., 2014), MDD has had notable

difficulties with genetic discovery, but focusing on severe cases

(CONVERGE consortium, 2015) and increasing sample sizes has

been particularly fruitful (Wray et al., 2018).

Across all disorders, 241 loci have a significant association

with the 10 psychiatric disorders in Table 1 with 22 loci associ-

ated with R2 psychiatric disorders. Although most loci are dis-

ease specific, many loci increase risk for multiple disorders.

These loci together implicate�76Mb of the genome, as contain-

ing common genetic variants involved in the etiology of these

disorders. We speculate that many loci contain multiple func-

tional elements that contribute to risk. Around 400 protein-cod-

ing genes lie in these loci. Traditionally, genomic location is

used to assign SNPs to genes; however, as discussed more fully

below, this practice yields an incomplete portrait. If we overlay

functional genomic data from human brain (e.g., expression

quantitative trait locus [eQTL], regulatory chromatin interac-

tions), about 50%of the time, genes located in loci are also impli-

cated by functional data. Crucially, recent studies have shown

that genes located far outside of a locus are often implicated

(see Functional Architecture section below) (Wang et al.,

2018a; Won et al., 2016).

Although the effects of any individual variant may be small,

they can nonetheless point to biological processes that may be

highly relevant to therapeutics. For example, GWAS results for

SCZ (Schizophrenia Working Group of the Psychiatric Genomics

Consortium, 2014) and MDD (Wray et al., 2018) are enriched for

genes that encode proteins known to interact with pharmacolog-

ical targets of antipsychotics and antidepressants.

Genetic Risk Scores, SNP Heritability, and Genetic

Correlations

In the past decade, GWASs provided the impetus for several

methodological developments. Thesemethodswere partlymoti-

vated by the failure of early genetic studies to identify common-

variant associations with SCZ (sample sizes, 250–1000 cases).

First, based on ideas from animal breeding genetics, genetic

risk scores (GRSs) initially appeared as part of a SCZ GWAS

(Purcell et al., 2009). A GRS captures the number of inherited

common-risk variants as a normally distributed number and

can be compared to a population mean (e.g., a person might

have a standardized SCZ GRS of 2, indicating inheritance of

SCZ risk alleles in the top 2–3 percentiles). Computing a GRS

requires a sizable external training set and can be applied to

new individuals of similar ancestry. GRSs can use significant,

nearly significant, and non-significant SNP associations and

have clearly indicated that more common variants will be

discovered as sample sizes increase (Purcell et al., 2009).

Indeed, GRS differences between cases and controls are
trols with a given GRS value. The dashed vertical lines show the means of each
highly significantly different (p = 1.13 10�254, controlling for genotyping array
ly, but there are 48 controls with GRS >2 and 24 cases with GRS <�2.
nd controls (blue) in each SCZ GRS decile (y axis, 1 = lowest 10%, 10 = highest
crease steadily from lowest to highest. However, there are substantial numbers
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now so widely replicated that GRSs are used for quality control

(the absence of a difference often indicates a basic problem

with a dataset). Inheriting a notably large number of SCZ risk

alleles (e.g., being in the top versus bottom 10% for GRSs)

carries more than a 10-fold increased risk of SCZ (Schizo-

phrenia Working Group of the Psychiatric Genomics Con-

sortium, 2014).

For example, Figure 3B shows the distributions of SCZ GRSs

in a set of SCZ cases and controls. There is a highly significant

mean difference between groups, but the distributions overlap

substantially. Figure 3C depicts the same data but shows the

proportions of cases and controls in each GRS decile. Intrigu-

ingly, there are many controls in the top decile and many cases

in the lowest decile. Detailed investigations of these observa-

tions are underway (e.g., do controls in the upper decile have a

subclinical form of SCZ or have strong protective factors? are

cases in the lower decile phenocopies or more likely to have a

strong-effect genetic variants?).

GRSs have emerged as a potentially important output from

psychiatric genetics and may help guide future precision-med-

icine approaches. In other areas of medicine, GRSs provide

new ways to evaluate risk and to stratify patients (e.g., for pros-

tate cancer, breast cancer, cardiovascular disease, and type 2

diabetes mellitus) (Grönberg et al., 2015; Khera et al., 2018;

McCarthy and Mahajan, 2018; Shieh et al., 2016). For psychiat-

ric disorders, considerable research is in progress; the potential

is that, for the cost of an inexpensive SNP array, GRSs could

assist in differential diagnosis, therapeutic selection, outcome

prediction, and patient stratification. Multiple clinical questions

could be addressed: for an individual with multiple comorbid-

ities (ADHD, ASD, OCD), do the three GRSs indicate that one

is the logical focus of treatment? Should this person with

MDD and a high BIP GRS receive a mood stabilizer, as well

as an antidepressant? Can we identify people with post-trau-

matic stress disorder (PTSD) at first presentation who are at

high risk of a pernicious course of illness? Can information

from genes in biological pathways be used to develop ‘‘mecha-

nistic GRSs’’ that could then be used to identify an antipsy-

chotic with the greatest chance of clinical response? We would

like to add an important caveat: although GRSs are conceptu-

ally straightforward, their creation and use requires consider-

able care and sophistication to derive secure and reproducible

findings (Lewis and Vassos, 2017; Torkamani et al., 2018). As

just one example, incorrect inference can readily occur if the

GRS training and target datasets are from different ancestries

(Martin et al., 2017).

Second, several methods can calculate the heritability of a trait

using SNP array data (Bulik-Sullivan et al., 2015; Yang et al.,

2011). These provide assessments of heritability based on

genome-wide genotypes and improve upon traditional heritabil-

ity measurements given their basis in direct genetic measure-

ments. SNP heritability can be estimated for traits that are diffi-

cult or impossible to assess using twins (e.g., antipsychotic

adverse drug reactions). Indeed, SNP heritability estimates are

available for thousands of traits (Zheng et al., 2017). Table 1

shows SNP-heritability estimates, and these tend to follow tradi-

tional heritability. These provide exceptionally strong indications

that common genetic variation is important for all complex psy-
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chiatric disorders, and more will be discovered with increasing

sample sizes.

In almost all instances, SNP heritability is less than twin/pedi-

gree heritability. If reviewed critically, indirect twin/pedigree her-

itability estimates are often upwardly biased, and the degree to

which SNP heritability is different from indirect measures is un-

clear. For any real difference between SNP and twin/pedigree

heritability, the major reasons are (1) imperfect assessment of

common variation (i.e., missing common variation in hard-to-

genotype or impute regions), (2) complex, non-SNP common

genetic variation whose identification requires resequencing or

specialized methods, and/or (3) poor measurement of rare ge-

netic variation with current sample sizes and technologies. It is

important to note that the goal of genetic studies of psychiatric

disorders is to generate clinical and biological insights and not

to align different conceptualizations of heritability.

Third, we can now readily estimate the genetic correlations be-

tween traits using SNP array data (Bulik-Sullivan et al., 2015;

Yang et al., 2011). These methods have provided insights into

the fundamental basis of these disorders. A similar construct

could be assessed using twin or pedigree data but with lesser

power and precision. Notably, the major psychiatric disorders

have significant and often sizable genetic correlations (Lee

et al., 2013). A more comprehensive effort of 25 psychiatric

and neurological disorders showed that most psychiatric disor-

ders had significant genetic intercorrelations, but there were

far fewer for neurological conditions (Antilla et al., 2018). Impor-

tantly, comparison of SCZ results between European and East

Asian samples indicated that the genetic correlation was indis-

tinguishable from one, strongly indicating that the common-

variant genetic basis of SCZ is highly similar across these global

populations (Lam et al., 2018). Under a set of specific assump-

tions, we can also apply Mendelian randomization (MR) to sug-

gest causality; for two traits with sufficient numbers of significant

associations, MR can assess the plausibility of whether one trait

has a causal relation with another (e.g., lower educational attain-

ment and higher body mass were putatively causal for MDD)

(Wray et al., 2018).

Rare-Variant Association Studies of Psychiatric

Disorders

Resequencing studies that implicate ultra-rare and de novo vari-

ation have the major advantage of pinpointing risk variants in

specific genes. Compelling results can leverage the extensive

neuroscience toolkit for experimental modeling of specific

genes. Until relatively recently, identifying rare variants for psy-

chiatric disorders was mainly limited to large structural variants

(De Rubeis et al., 2014; Iossifov et al., 2012; Marshall et al.,

2017; Sebat et al., 2007). As noted above, resequencing technol-

ogies enable rare-variant discovery in ever-larger samples, and

we know now that ultra-rare and de novo single-nucleotide var-

iants contribute to risk (Genovese et al., 2016; Sanders et al.,

2015; Satterstrom et al., 2018a; Singh et al., 2016; Wang et al.,

2018b; Willsey et al., 2017). Rare-variant association tests

require the aggregation of rare, deleterious mutations at a partic-

ular locus (usually in protein-coding exons or annotated regula-

tory regions) in cases compared to controls (Zuk et al., 2014).

At present, the largest resequencing efforts are for ASD and

SCZ. Rare-variant discovery has been most successful in ASD



where WES for rare, de novo, protein-truncating variants (PTVs)

in mutation-intolerant genes has identified around 100 high-con-

fidence connections to specific genes (Satterstrom et al.,

2018a). Although each gene accounts for only a small fraction

of cases, rare de novo variation is predicted to account for

�15% of ASD cases (Iossifov et al., 2014). Most of these muta-

tions also decrease IQ, and ID is an important comorbidity of

ASD (Buja et al., 2018; Iossifov et al., 2014), which is consistent

with previous work identifying dozens of known severe, rare

medical genetic syndromes associated with ASD (reviewed in

Abrahams and Geschwind, 2008; Geschwind, 2009).

The yield of resequencing in ASD is markedly higher than for

other psychiatric disorders. WES has implicated only two genes

for SCZ (Singh et al., 2016; Steinberg et al., 2017) at sample sizes

that yielded dozens of associations for ASD. In TS, a role for de

novo gene disrupting and missense variants has been estab-

lished (Willsey et al., 2017), and two high-confidence genes for

TS were recently identified (Wang et al., 2018b). Sizable WES

of ADHD and BIP are underway. For the other psychiatric disor-

ders in Table 1, major resequencing efforts are at more nascent

stages. There is debate in the field as to whether resequencing

efforts are worth the 10–153 greater cost, particularly for later-

onset disorders that are not associated with ID or neurological

impairment. The sobering experiences in SCZ and type 2 dia-

betes suggest a limited role of large-scale resequencing in adult

disorders until the costs decline substantially.

Identification of rare, genic mutations can be extremely infor-

mative. They directly implicate specific genes and are amenable

to experimental modeling. At the same time, interpretation of

these models is a formidable task. While some of these genes

are relatively specific to a disorder like ASD, many confer

broader phenotype risks (Abrahams and Geschwind, 2008; Ro-

nemus et al., 2014; Satterstrom et al., 2018a). Pleiotropy is more

the rule: most mutations increase risk for a range of neurodeve-

lopmental outcomes (e.g., ID, ASD, epilepsy, psychosis). These

pleiotropic large-effect mutations may work by disrupting key

neurodevelopmental processes rather than specifically causing

one defined clinical disorder (Geschwind and Levitt, 2007).

Even for a highly significant gene identified from resequencing,

precisely which human phenotype is being modeled and with

what specificity may be uncertain (i.e., ID and/or ASD). Another

question from these findings is whether genes that harbor

large-effect mutations causing ASD and ID affect biological pro-

cesses different from those that cause ASD that are not comor-

bid with ASD. Indeed, some gene-network analyses suggest the

existence of molecular processes that distinguish ASD from ID

(Parikshak et al., 2013; Satterstrom et al., 2018a).

The relative contributions of rare de novo missense or in-

herited mutations to psychiatric disorders are not quite as well

established as de novo PTVs. However, both rare missense

and inherited mutations have been shown to contribute to

ASD, simply with smaller effect sizes than de novo variants

(Ruzzo et al., 2018; Sanders et al., 2015). Furthermore, the ef-

fects of PTVs can be assessed in a functional and evolutionary

context (loss of one copy of the gene and the degree of

constraint) (Samocha et al., 2014), while the functional impact

of individual missense mutations is harder to determine. One

approach to this problem integrates prior information, such as
gene or protein-protein interaction (PPI) networks to boost the

signal of missense variation (Parikshak et al., 2013). The detec-

tion of inherited variation may be further hindered by ascertain-

ment bias from study designs that favor detection of de novo

variants. It is illustrative that studying families having multiple

children with ASD significantly reduced the signal from de

novo variation compared to singleton families while enhancing

that from inherited variation to identify risk genes (Ruzzo et al.,

2018). Consistent with a role of rare, inherited variation in risk

also comes from a recent WES of ASD and ADHD that excluded

cases with ID or comorbidity (Satterstrom et al., 2018b). These

investigators found that rare PTVs in mutation-intolerant genes

occurred with equal frequency in both ASD and ADHD and that

the genes impacted significantly overlapped. Larger samples

are needed to determine if genes with statistically significant as-

sociation with each disorder are shared and whether the muta-

tions have similar molecular impact. For example, even if muta-

tions increasing risk for ASD and ADHD were in the same gene,

they might impact different isoforms that could have different

functional consequences. Emerging data from RNA sequencing

(RNA-seq) from brain show remarkable isoform diversity in par-

allel with distinct protein interactions and cell-type specificity

(Gandal et al., 2018b), further highlighting the importance of un-

derstanding mutational consequences in an isoform context.

Copy-Number Variation

CNV refers to structural chromosomal variants greater than 1 kb

in size that lead to an increase or decrease in the DNA sequences

encompassed by the CNV (e.g., fewer ormore than two copies of

an autosomal region). Approximately 4% of the genome com-

prises such structural variation, much of which is common, in-

herited, and relatively benign with regards to imparting disease

risk (Brand et al., 2014; Conrad et al., 2010; Mills et al., 2011; Se-

bat et al., 2004). Larger de novo CNVs, especially ones that

disrupt genes or change gene dosages, can carry major risks,

particularly for neurodevelopmental disorders (Malhotra and

Sebat, 2012; Sebat et al., 2007).

Several dozen rare CNVs are known to confer relatively strong

risks for psychiatric disorders, most commonly in ASD and SCZ

and less frequently in BIP, TS, and ADHD. Most known patho-

genic CNVs increase risk for multiple disorders (de la Torre-

Ubieta et al., 2016; Kirov, 2015; Lowther et al., 2017; Malhotra

and Sebat, 2012). These recurrent CNVs usually arise de novo,

mainly via non-allelic homologous recombination in regions

flanked by low copy-number repeats.

CNVs associated with psychiatric disorders share several

commonalities: (1) they usually contain multiple genes (with a

few exceptions; Bucan et al., 2009; Talkowski et al., 2011); (2)

they are usually >500 kb in size (although many we expect that

many smaller CNVs will be found using WGS), and the major

pathogenic mechanism is presumed to be dosage-sensitivity

of genes in the CNV, although distal regulatory effects on genes

outside of the CNV are also plausible (de la Torre-Ubieta et al.,

2018); (3) many CNVs are associated with partial disruption of

a range of developmental programs and impact multiple organs

(cardiac, gut, immune, and endocrine, as well as brain); (4) most

CNVs confer increased risk for multiple psychiatric disorders,

including ID, ASD, ADHD, and psychotic disorders (Kirov,

2015; Lowther et al., 2017); and (4) penetrance can be highly
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Figure 4. Establishing the Functional and Cellular Architectures Based on Genetic Findings
To begin, genetic analyses identify significant associations with one or more psychiatric disorders. Common variation is usually detected using GWAS and SNP-
array technologies. Rare variation capitalizes on CNVs or resequencing via WES or WGS. Some causal variants alter protein structure or function and thereby
directly point at specific genes. However, most genetic variation discovered to date is in non-coding regions, which can have highly diverse regulatory functions
(e.g., enhancer or repressor activity or regulation of splicing or alternative promotor usage). Assigning non-coding regulatory variants to genes is imprecise, as
gene regulation often occurs at a distance and does not necessarily involve the nearest gene. Instead, one can identify candidate target genes impacted by non-
coding disease-associated genetic variation using a range of functional genomic data. For example, quantitative mapping approaches can identify how a
particular variant affects open chromatin, histone tail modifications, gene expression, splicing, and DNA methylation. These methods integrate DNA-based
genetic variation with multi-level ‘‘omic’’ data—RNA sequencing (eQTL or splicing QTL [sQTL]), methylation analysis (methylation QTL [mQTL]), or chromatin
immunoprecipitation (ChIP)-seq (histone QTL [hQTL])—to identify the quantitative impact of genetic variation on these molecular phenotypes. Other biochemical
methods identify active/open chromatin (ATAC-seq, DNase-seq) or 3D chromatin structures such as enhancer-promotor loops (Hi-C, ChIA-PET), which provide
additional information on the relationship between regulatory regions and specific genes with which they interact. Many functional genomic readouts are tissue
specific, highlighting the need for comprehensive studies of the human brain across development. When combined, these methods can identify the likely
functional impact of disease-associated variation on specific genes, which can then be experimentally validated. Molecular pathways can be identified using
pathway or gene-network analysis. Sets of disease-associated candidate genes can be tested for cell-type enrichment to define the cellular architecture.
A similar approach can be applied to identified regulatory regions to define functional regulatory networks or the cell types impacted by disease associated
regulatory variation.
variable, ranging from subtle effects detectable by neuropsycho-

logical tests to mild degrees of anxiety/ADHD to co-occurrence

of severe psychiatric disorders (Kendall et al., 2017; Stefansson

et al., 2014; Ulfarsson et al., 2017). Emerging evidence suggests

that among other factors, some of this pleiotropy may be due to

modification GRSs, because even in those with ASD or SCZ car-

rying large effect de novo mutations, there appears to be an ad-

ditive effect of common variation on phenotypic expression

(Tansey et al., 2016; Weiner et al., 2017).

Synthesis

In the past decade, major papers from the PGC and other con-

sortia have conclusively shown that all of the psychiatric disor-

ders in Table 1 have an important contribution from hundreds

or thousands of common genetic variants of relatively subtle ef-

fect. Exactly how these variants influence gene expression in the

context of biological networks is generally unknown but has

highlighted critical gaps in our knowledge of gene regulation.

Work in progress on the functional architecture and cellular/

tissue architecture will, we believe, yield the needed insights.

The impact of rare variation is less studied. Empirical data

show that rare genetic variation plays a role in some of these psy-
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chiatric disorders (ASD and SCZ, in particular, but also TS and

ADHD). However, direct comparisons of the contributions of

common and rare genetic variation show that common variation

dominates heritable risk for SCZ and ASD (Gaugler et al., 2014;

Purcell et al., 2014). Still, rare variants that disrupt genes provide

a clear starting point for mechanistic studies, and identification

of large effect mutations in patients is of substantial clinical util-

ity. Finally, many disorders are early in the discovery process.

Consistent with the documented clinical and epidemiological co-

morbidity, there is also important genetic overlap, including sub-

stantial components of genetic variation that increase risk for

multiple disorders—both of which necessitate consideration of

diagnostic architecture.

Functional Architecture
Moving from common-variant findings to genes, molecular path-

ways, and cells requires comprehensive genomic analysis.

Table 2 contains additional definitions and references to impor-

tant background that is beyond the scope of this Review. Figure 4

presents a schematic of how we can systematically evaluate the

implications and impacts of genetic architecture findings.



Table 3. Many Regulatory Interactions Are Distal

Distance from Regulatory Element to TSS

eQTL ATAC-seq HI-C

127 kb 407 kb 394 kb

Distribution of eQTL Distance from TSS

<10 kb >10 kb >100 kb

24% 76% 29%

Average distance from regulatory elements defined by eQTL, ATAC-seq,

and Hi-C in fetal brain is shown, as well as percentage of eQTL in >10 kb

(distal) and <10 kb (proximal) bins from the transcription start site (TSS) of

genes in fetal brain. Data from de la Torre-Ubieta et al., (2018), Poliouda-

kis et al. (2018), Won et al. (2016), and Walker and Geschwind (Walker

et al., 2018). eQTL are generally closer to the TSS than the biochemically

defined putative regulatory regions, which is expected, especially given

the limited (10 kb) resolution of Hi-C.
From Variant to Gene

Becausemost genetic variation that contributes to commonpsy-

chiatric disorders is not in protein-coding regions, a crucial step

in understanding disease mechanisms is pinpointing the genes

impacted by risk variants (Thurman et al., 2012; Visel et al.,

2009). This requires functional annotation of non-coding re-

gions—the goal of consortia like ENCODE (ENCODE Project

Consortium, 2011), Roadmap (Kundaje et al., 2015), and GTEx

(Battle et al., 2017), which produced genome-wide regulatory

maps and transcriptional profiles across spectrum of cells and

tissues. However, around half of non-coding regions have regu-

latory functions that are shared across tissues, meaning that

about half of the regulatory elements in a given tissue may be

relatively specific to a tissue, cell type, or developmental stage

(Liu et al., 2017a; Kundaje et al., 2015; Won et al., 2016). This

is particularly important for brain, which has higher cellular het-

erogeneity and longer developmental trajectories compared to

other tissues. The need for brain-specific functional genomic

data led to PsychENCODE (PsychENCODE Consortium, 2018)

(http://resource.psychencode.org/), which has produced and in-

tegrated multiple types of functional genomic data from human

brain (Gandal et al., 2018b; Li et al., 2018; Wang et al., 2018a).

Its goals are to complement the work of these other consortia

by producing accurate regional, cell-type-, and stage-specific

annotation of gene regulation and transcription at tissue and

cellular levels in brain from healthy individuals and cases with

major psychiatric disorders. This effort is complemented by the

BRAIN single-cell atlas of cell types and gene expression in hu-

man and mouse (Ecker et al., 2017).

These resources essentially provide maps for interpretation

of genetic variation implicated in psychiatric disorders in the

context of genes, their regulation, and the effects on biological

pathways. A complicating factor is that assigning even well-an-

notated genomic regions to specific genes is not as simple as

choosing the closest gene or genes containing variation that is

highly correlated with the associated SNPs, which is usually

the default approach (Whalen et al., 2016; Won et al., 2016).

Rather, as suggested by studies of brain eQTL (Battle et al.,

2017; Hauberg et al., 2017) and chromatin structure (de la

Torre-Ubieta et al., 2018; Won et al., 2016), nearly half of the
target genes of human regulatory variation are not in genomic

loci defined by linkage disequilibrium (LD) (Whalen and Pollard,

2018) (Table 3). Thus, ‘‘4D mapping’’ of chromatin interactions

(i.e., brain regions across developmental time) is critical for un-

derstanding the functional relationships of regulatory regions to

genes (Dekker et al., 2017).

Functional genomic data include gene expression surveys,

open chromatin, eQTLs, chromatin QTLs, methylation QTLs, his-

tone marks, and regulatory chromatin interactions, initially for

bulk tissues or sorted types of cells but increasingly at the

single-cell level. As illustrated in Figure 4, these data can be

combined to define candidate enhancer-promoter interactions

(from locus to gene) whose accuracy can then be assessed in

a biological system. Most published brain eQTL data have

n < 1,000 and contain only a fraction of presumed regulatory re-

lationships. Chromatin capturemethods such as Hi-C can define

chromatin structure in brain nuclei (Dekker et al., 2013) and can

predict functional interactions defined by eQTL and enhancer-

mRNA relationships (Won et al., 2016). Although integration of

functional genomic data from brain yields empirically based hy-

potheses about regulatory relationships, experimental validation

is required. Techniques such as self-transcribing active-regula-

tory-region sequencing (STARR-seq) permit large-scale valida-

tion (which suggests enhancer functionality) (Arnold et al.,

2013; Liu et al., 2017b), while analysis in an appropriate cell

type with epigenome-editing technologies can confirm target

identity (de la Torre-Ubieta et al., 2018; Won et al., 2016).

Currently, it is wise to be conservative and rely on regulatory in-

teractions identified by multiple methods (e.g., eQTL/Hi- C, Gu-

sev et al., 2018; or ATAC-seq/Hi-C, de la Torre-Ubieta et al.,

2018). These distinct data types—often derived in different labo-

ratories in different samples—show significant overlap in regula-

tory predictions (Gusev et al., 2018). This is in contrast to com-

parisons relying on LD blocks or the assignment by the closest

gene, where the overlaps with methods that directly assess

chromatin are less substantial (Short et al., 2018; Whalen and

Pollard, 2018).

Application of functional genomic approaches to define regu-

latory regions and target genes has yielded important albeit

tentative clues as to the developmental and cell type architecture

of psychiatric disorders. One example comes from studies that

partition disease heritability defined by genome-wide SNP gen-

otyping, or by mapping putative causal variants across the

genome, to identify regions of enrichment, and ask in what tis-

sues and what stages are these regions active (de la Torre-

Ubieta et al., 2018; Finucane et al., 2018; Skene et al., 2018;

Won et al., 2016). As discussed more fully below, these studies

have implicated specific development epochs and brain regions

in risk for several psychiatric disorders and cognitive pheno-

types. These initial studies demonstrate that creation of these

gene regulatory maps with multiple methods that address

different molecular processes, developmental stages, and brain

regions is a critical step in understanding how disease risk bio-

logically unfolds.

From Genes to Networks

To understand how genes contribute to psychiatric disorders,

we are faced with the task of measuring and understanding phe-

notypes across a hierarchically organized complex system,
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connecting genes to behavior. Few genes act in isolation but

rather affect the function of other genes to influence a particular

phenotype via in-cellular networks or pathways (Barabási et al.,

2011; Geschwind and Konopka, 2009). This challenge is exacer-

bated by the polygenic nature of psychiatric disorders. To under-

stand how genes contribute to CNS phenotypes, many groups

have applied an analytical framework at a gene-network level

involving coordinated regulation of gene expression (Parikshak

et al., 2013, 2015). Network analysis can interrogate multiple

levels of molecular organization and enable integration with

other information, including known pathway annotations.

Furthermore, when hundreds of genes are involved, network

analysis provides an organizing framework that can divide large

gene sets into biologically coherent modules for prioritization

(Parikshak et al., 2013, 2015) or add power to GWASs (Horn

et al., 2018). Combining network approaches with systems

neuroscience permits the methodical connection of heteroge-

neous genetic risk factors to brain mechanisms (Gandal et al.,

2016; Geschwind and Konopka, 2009).

Two general network approaches have been used in psychiat-

ric genomics based on literature-curated pathway databases

(e.g., Gene Ontology, KEGG) or data-driven tissue-specific ap-

proaches based on transcriptomic, proteomic, or other ‘‘omic’’

data (Parikshak et al., 2015). The former approach has many

biases, including weighting highly studied genes, non-CNS

functional annotations, or very non-specific annotations (e.g.,

‘‘synaptic function’’) and lack of tissue specificity (missing tis-

sue-specific interactions or emphasizing those observed in other

tissues). Curated pathway-based studies using combinations

of multiple methods and data sources are far more convincing

than those using single sources and have yielded evidence for

common pathways across psychiatric disorders (Network and

Pathway Analysis Subgroup of Psychiatric Genomics Con-

sortium, 2015) but still do not fully overcome biases inherent in

literature curation. This illustrates a weakness in current func-

tional annotations that are broad or biased with regards to

neuronal annotation methods. Gene-network approaches can

identify presumed functional modules in an unbiased manner,

but understanding what these modules mean beyond broad an-

notations remains a major stumbling block for the field and will

require efforts connecting gene expression to neural cell biology

and physiology.

Despite these limitations, several studies in ASD and SCZ

highlight the power of using transcriptional networks based on

normal human brain tissue across development or brain regions

ormore generalized PPIs (Hormozdiari et al., 2015; Li et al., 2014;

Lin et al., 2015) to identify molecular pathways, developmental

epochs, or brain circuits enriched for genetic variation. Despite

clear genetic heterogeneity, both ASD risk and SCZ risk

converge on shared molecular pathways (Network and Pathway

Analysis Subgroup of Psychiatric Genomics Consortium, 2015;

Parikshak et al., 2015). In ASD, these pathways involve regula-

tion of transcription and chromatin structure during neurogene-

sis and subsequent processes of synaptic development and

function during early fetal cortical development (Parikshak

et al., 2015). A small study implicated similar stages during the

developmental of the prefrontal cortex in SCZ risk (Gulsuner

et al., 2013), consistent with several decades of neuroanatomical
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studies (Glausier and Lewis, 2018; Piper et al., 2012). Impor-

tantly, these findings emerge from different methods, including

PPIs (Lin et al., 2015; O’Roak et al., 2012); integration of protein,

gene expression, and phenotype data (Gilman et al., 2011; Hor-

mozdiari et al., 2015); and chromatin marks (Sun et al., 2016).

These efforts point at similar pathways and/or convergence of

risk loci on similar biological processes (Corominas et al.,

2014; Gilman et al., 2012; Li et al., 2014).

One caveat in the interpretation of these studies is that they are

based on current knowledge of genetic contributions. In ASD,

this is heavily biased toward rare, de novo PTVs identified in sim-

plex families, which could impact different pathways than those

affected by inherited variation. Although there is likely a role for

rare inherited variation in ASD (Krumm et al., 2015), few studies

have identified significant signals based on inherited risk variants

for specific genes. A recent study ofmultiplex ASD families found

that inherited risk impacts pathways similar to those for de novo

variation (Ruzzo et al., 2018). Similarly, the developmental trajec-

tories of risk genes implicated by rare and common variation

appear to overlap, particularly for the fetal period for ASD risk.

Transcriptomic Networks Define Disorder-Associated

Molecular Pathology

Psychiatric disorders are not generally associated with brain pa-

thology on gross or microscopic examination. The development

of methods to capture the brain transcriptome led to studies of

differential expression in cases versus controls and evaluation

of convergent molecular pathology (Parikshak et al., 2015). To

organize these data, network/pathway approaches have been

applied to brain tissue from subjects with most major psychiatric

disorders, including SCZ,MDD, and ASD (Parikshak et al., 2015).

However, any changes detected in postmortem brain could be

causal or reflect disease consequences. Integration of these

data with genetic risk variants provides an opportunity to identify

a causal foothold. In ASD, these analyses, replicated using

different methods and samples, implicate synaptic and neuronal

signaling pathways overlapping with other causal gene-based

network methods (Parikshak et al., 2016; Voineagu et al.,

2011). Similar network analysis based on gene co-expression

identifies transcriptional networks dysregulated in SCZ,

including co-expressed neuronal genes enriched for both com-

mon and rare SCZ-associated variants (Fromer et al., 2016).

Transcriptomic findings for ASD, SCZ, BIP, and MDD suggest

shared and disorder-specific gene expression changes (Gandal

et al., 2018a). Notably, cross-disorder transcriptome correla-

tions parallel genetic correlations, consistent with common

causal biology (Gandal et al., 2018a).

Several genes that cause rare forms of ASD (e.g., FMR1,

CACNA1C, TCF4) regulate expression or splicing of many genes

associated with psychiatric disorders (Tian et al., 2014; Weyn-

Vanhentenryck et al., 2014). FMR1 in particular interacts with

the mRNA of many ASD- and SCZ-risk genes (Iossifov et al.,

2014; Parikshak et al., 2013; Schizophrenia Working Group of

the Psychiatric Genomics Consortium, 2014). Analysis of tran-

scriptional (Cotney et al., 2015; Sugathan et al., 2014), splicing

(Berto et al., 2016; Fogel et al., 2012; Weyn-Vanhentenryck

et al., 2014), or signaling (Tian et al., 2014) networks indicates

that at least some of the rare major gene forms of psychiatric dis-

orders impact pathways that are more generally related to risk in



the population. This further highlights the relevance of rare forms

of psychiatric disorders to understanding common genetic

variation.

Tissue and Cellular Architecture
As with gene network analyses to identify biological pathways, it

is possible to apply similar methods to identify empirically the

brain regions and developmental stages in which the genetic

findings are enriched. These analyses are important in a general

sense—are these disorders rooted in early fetal development,

childhood, adolescence, or adulthood?—but also because of

neuroscience tools that can manipulate increasingly specific

brain cell types in space and time.

Two general approaches are used to determine cell-type or

stage specificity. The first assigns genes implicated by risk var-

iants directly to cell types based on transcriptomics (Polioudakis

et al., 2018; Skene et al., 2018). The second partitions genetic

risk across non-coding regions and compares the predicted ac-

tivity of these regions across cell types and developmental

stages, which to date have been primarily based on tissue-level

open chromatin rather than single cells (de la Torre-Ubieta et al.,

2018). Development of robust single-cell methods for chromatin

analysis promises to be important (Cusanovich et al., 2018a,

2018b). At present, many psychiatric GWASs are under-pow-

ered to accomplish these intentions (Skene et al., 2018).

This lack of power for common-variant analyses is certainly

the case for ASD, where studies have relied primarily on

measuring expression enrichment or de novo PTVs. These

studies have demonstrated that ASD risk variants are enriched

in cortical glutamatergic neurons expressed during neurogene-

sis and neuronal migration during fetal cortical development in

human and mouse (Parikshak et al., 2013; Willsey et al., 2013).

Examination of the laminar patterns of expression in primate indi-

cated that ASD risk genes are enriched in upper- relative to

lower-layer neurons. This may be important for understanding

circuit-level architecture, because upper-layer neurons form

the primary direct connections between cerebral hemispheres

and cortical regions (Parikshak et al., 2013), and lower-layer neu-

rons primarily, but not exclusively, project to subcortical regions.

A recent study of single-nuclei RNA-seq from human fetal and

adult brain has validated the enrichment of genes harboring

large-effect de novo mutations associated with ASD in fetal glu-

tamatergic neurons (Polioudakis et al., 2018). These detailed

transcriptomic profiles provide nuance, especially for individual

genes, identifying genes expressed broadly across neurons or

with relative specificity for inhibitory neurons, neural progenitors,

or non-neural cells (Polioudakis et al., 2018). The importance of

the fetal period for ASD is supported by GWAS results integrated

with regulatory chromatin interactions and gene expression,

which show enrichment of enhancer marks in the fetal brain

and higher expression of ASD target genes during fetal cortico-

genesis (Grove et al., 2019). Comparisons across brain regions,

both prenatally and in adult, confirms prenatal cerebral cortical

enrichment over other brain regions, both prenatally and relative

to adult expression levels.

For SCZ, although earlier developmental stages are important

for the action of risk variants (de la Torre-Ubieta et al., 2018),

considerable cell-type specificity emerges in the adult brain.
The most comprehensive analysis to date used single-cell and

single-nuclei RNA-seq from multiple brain regions in mouse

and human (Skene et al., 2018). Distinct patterns of enrichment

were identified for different disorders, often mirroring known

biology (e.g., multiple sclerosis and Alzheimer’s disease risk

were enriched in microglia). Common-variant genetic findings

for SCZ showed enrichment in a limited set of major cell types:

pyramidal neurons in cortex and hippocampal CA1, striatal me-

dium spiny neurons, and cortical interneurons. MDD risk was

clustered in cortical interneurons and embryonic midbrain neu-

rons (these findings replicate in multiple new datasets, Bryois

et al., 2019). Orthogonal functional genomic data are consistent

with these findings, as open chromatin in neuronal nuclei

(NeuN+) from 14 regions from human adult brain showed signif-

icant enrichment of SCZ GWAS findings in cortex and striatum

(Fullard et al., 2018), and open chromatin inmouse cortical layers

showed SCZ enrichment in excitatory neurons in layer V (Hook

and McCallion, 2018).

Although these studies are not yet definitive, we highlight

emerging points of consistency. Genetic risk for SCZ appears

to be more widespread in 4D (Li et al., 2018) and somewhat

more specific to adult brain (particularly pyramidal neurons,

striatal medium spiny neurons, and cortical interneurons), but

also with strong effects during fetal cortical development (de la

Torre-Ubieta et al., 2018; Won et al., 2016). MDD risk is enriched

in adult cortical interneurons (Skene et al., 2018), but also with

fetal enrichment in midbrain neurons (Skene et al., 2018) (consis-

tent with theories of catecholaminergic cortically projecting

brainstem systems in MDD). Genetic risk for ASD appears to

act primarily in fetal periods, involving cortical glutamatergic

neurogenesis and early development. While ASD risk converges

on glutamatergic neuron development, by nomeans is every risk

gene expressed exclusively in these neurons (Polioudakis et al.,

2018). These findings broaden and refine the neuronal classes

where ASD risk genes act are supported by other analyses (Sat-

terstrom et al., 2018a). The implication of fetal neurogenesis in

childhood- and adult-onset disorders may highlight a critical

period in early brain development for multiple psychiatric disor-

ders (Geschwind and Rakic, 2013). As knowledge of gene regu-

lation at a single-cell level increases, the precision of assigning of

genetic risk to specific cell types will establish a solid framework

for the circuit architecture of these disorders.

Diagnostic Architecture
Psychiatry is one of the few areas in medicine that lack of objec-

tive biomarkers of illness. Other areas of medicine have

frequently updated diagnostic classifications as new biological

data and increased understanding of etiopathology emerge. In

the absence of objective diagnostic features from laboratory

testing, brain imaging, or pathology, the definitions of psychiatric

disorders are necessarily based on descriptive data collected via

human interactions and organized by expert panels. A long-

standing tension is whether psychiatric disorders are better

considered as fewer broad categories or more numerous refined

categories. In the past 30 years, psychiatric nosology has tended

toward the latter position.

For almost all psychiatric disorders, genetic data are the

most fundamental biomarker yet discovered (recalling that
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humans are exposed to their genomes from conception and

given the plausible absence of reverse causation). Given the

well-documented and extensive patterns of comorbidity, it is

perhaps unsurprising that genetic results show fundamental

overlaps betweenmany adult and childhood disorders. For com-

mon variation, SCZ has significant positive genetic correlations

with BIP, MDD, ADHD, ASD, and AN (Antilla et al., 2018), and

MDD has significant positive genetic correlations with anxiety

disorders, ASD, ADHD, BIP, and AN (Wray et al., 2018). Neuro-

logical conditions, in contrast, have far fewer significant genetic

correlations (and largely for clinical subtypes like migraine with/

without aura). Moreover, the lifetime presence or absence of

many psychiatric disorders have positive genetic correlations

with quantitative measures of symptoms—e.g., lifetime MDD

has a genetic correlation of 0.98 with depressive symptoms

(Wray et al., 2018). Similar results have been reported for ASD,

ADHD, and OCD (Martin et al., 2018a). Similarly, for rare varia-

tion, as described above, there are pleiotrophic effects for

most rare CNVs and exon variants of strong effect, as many

such variants increase risk for multiple neurodevelopmental con-

ditions.

Given the emerging genetic findings, one might naturally

wonder about clinical genetic testing—what are the standards

for technological readiness, and precisely which findings are

ready for clinical use in psychiatry? A full treatment of this com-

plex topic is beyond the scope of this Review, and the answers

also depend on national laws, local ethical standards, and ac-

cess to genetic testing technologies. On the scientific side, we

think that the available data support three uses in clinical psychi-

atry. (1) For severe, childhood-onset neurodevelopmental disor-

ders (particularly severe ID and ASD), genetic evaluation of large

CNVs and rare mutations that disrupt the protein sequence of

genes important to neurodevelopment is indicated. We note

that this is now done routinely in many academic centers. The

utility is mostly diagnostic for the child and relevant to family

planning for the parent; some variants will also be medically

important and lead to a change in clinical management. (2) Large

CNVs in severe psychotic disorders (SCZ and schizoaffective

disorder) will be present in 3%–5% of cases. The utility is diag-

nostic and in ameliorating medical morbidity given that most

CNVs are multi-system disorders carrying additional medical

risks. (3) Unusual cases—individuals with a wide range of

single-gene disorders can initially present with prominent psy-

chiatric features. Instead of a primary psychiatric disorder, the

behavioral features are secondary to a biological process that

has been disrupted by a strong-effect mutation. Classic exam-

ples include Wilson’s disease and Huntington’s disease, which

can present with psychotic or mood symptoms. The utility here

is diagnostic and possibly therapeutic (e.g., copper chelation

therapy for Wilson’s disease can markedly improve outcomes

if not delayed due to a missed diagnosis).

In many countries, genetic tests can be used by consumers

without having rigorous evaluation of analytical validity, clinical

validity, and clinical utility (again, there are complex and coun-

try-dependent issues). However, there are abundant examples

of genetic tests that are now being used clinically that have a

weak scientific basis. This is problematic, but such testing has

been allowed to occur due to failures of regulatory processes.
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The fundamental database is not sufficiently complete to

draw unambiguous conclusions—research in progress by

many groups is combining epidemiological, clinical, and genetic

risk factors in historically large samples. However, we posit that

the genetic results are consistent with a tentative position: based

on significant genetic overlap between most childhood- and

adult-onset psychiatric disorders and their intercorrelations

with cognitive ability and personality, substantial components

of inherited liability are shared by many psychiatric disorders.

But with the exception of BIP and SCZ, most liability appears

more disease specific. When the scientific database is more

mature, revision of psychiatric nosology based on combining

clinical with rare- and common-variant genetic results may well

be warranted.

Conclusions and Future Directions
Complete Genetic Discovery

In the past decade, genetic approaches to psychiatric disorders

have yielded more reproducible insights into etiology than any

other prior approach. We now know vastly more about the

fundamental causes of these impactful disorders than ever

before. What we know now is incomplete and inadequate. We

need to complete genetic discovery, and we believe that this

should be an international priority in this area. Inexpensive SNP

arrays canmeasure the contributions of the vastmajority of com-

mon variation and be efficiently assessed in large populations

now. To measure the full spectrum of rare variation and less-

accessible common variation, we will need resequencing efforts

of similar magnitude, but this will likely have to wait for more effi-

cient platforms and improved functional annotations.

Genetic Architecture in Individuals

We have described multiple architectures for psychiatric disor-

ders. The ultimate goal is understanding as fully as possible the

etiological process in individuals with a severe psychiatric disor-

der. How does knowledge derived from large populations

contribute to illness in an individual? For example, in those with

ASD who harbor a rare de novo PTV, is that variant sufficient to

cause the disorder, or are additional genetic or environmental

risk factors required? The answers will likely vary depending on

the gene, but already, there are multiple hints that risk profiles

in individuals are likely to be complex, even in those harboring

large-effect mutations. For instance, few large-effect mutations

are specific to adisorder, suggesting apossible role for additional

genetic, environmental, and stochastic factors. Although some

large-effect CNVs associated with ASD or SCZ have effects on

fecundity, when discovered in population surveys in individuals

without regard to disease status,many have relativelymodest ef-

fects on the ability to have offspring compared with those having

the disease diagnosis (Stefansson et al., 2014). In the instances

where this has been studied directly, polygenic risk acts addi-

tively with major mutational burdens (Gaugler et al., 2014; Niemi

et al., 2018; Purcell et al., 2014; Weiner et al., 2017).

The model that we prefer is that many (but not all) large-effect

mutations sensitize an individual to manifest a developmental

neuropsychiatric disorder. We recognize that there are rare

large-effectmutations that show clear preferential effects toward

a disorder, as is the case for some CNVs and rare protein-

altering mutations. However, the effects on brain development



and function of many de novo or Mendelian mutations are so

large as to be non-specific with respect to any single disorder

(e.g., epilepsy, ASD, SCZ, ID). The resultant phenotype in an in-

dividual is dependent on the impact of environmental factors

and/or the additive effects of other rare-variation and polygenic

risk. This model may also help explain the high unaffected carrier

rate for some inherited mutations, if one presumes that the

parent carrying the mutation lacks the polygenic risk that has

accumulated in the child. However, we are still a long way from

being able to confidently predict disorder phenotypes frommea-

surement of genetic risk.

As noted above, the basic data remain incomplete, and further

genetic discovery efforts are needed to derive secure and

enduring answers to these fundamental questions. We do note

that the concept of individual architecture also spans multiple

other architectures described in this Review, which will be

essential to understanding mechanisms and focused therapeu-

tics in the individual.

Sex Differences

The genetic and pathophysiological explanations for sex differ-

ences in psychiatric disorders remain poorly understood, but

the advances in gene discovery described here provide a new

foundation to fuel studies in this important area. Many psychiat-

ric disorders show a different prevalence or onset in males and

females (Seedat et al., 2009). For example, marked sex differ-

ences in lifetime risk are apparent for ADHD, AN, ASD, MDD,

and SCZ (Hudson et al., 2007; Martin et al., 2018b; Philippe

et al., 1999). Whether sex differences are due to differential

vulnerability, diverging behavioral/cognitive manifestations,

and/or observer bias is not knownwith clarity but is likely to differ

across diagnoses. For example, in ASD, genetic and functional

genomic evidence suggests the presence of female protective

factors based in brain function and structure (Robinson et al.,

2013; Werling and Geschwind, 2013; Werling et al., 2016),

whereas in MDD or ALC, social factors likely may have a larger

role (Riecher-Rössler, 2017). Understanding the basis of sex dif-

ferences may provide critical clues for pathophysiology and

could inform diagnosis and treatment.

What’s the Endgame?

It is essential to consider what is required to improve the diag-

nosis and treatment of individuals with severe psychiatric disor-

ders. An extreme possibility is that achieving this intention could

require a full understanding of the development of the human

brain. Achieving this intention is unlikely to occur in the foresee-

able future. However, there are indications from other areas of

medicine that full understanding of a pathological process is

not required to improve therapeutics. For instance, the causes

of melanoma are not fully worked out, but the advent of check-

point inhibitors—based on several key pieces of the melanoma

puzzle—has markedly improved outcomes for disseminated

disease.

A reasonable, and not overly optimistic, answer is that a solid

beachhead is needed—a definite, reproducible, and clear iden-

tification of a neurobiological process conferring risk or protec-

tion for a psychiatric disorder. With such knowledge, the field

changes markedly: beachheads become lodgements, lodeg-

ments become full theaters of engagement, and manifest prog-

ress becomes achievable. Instead of discovering medicines by
accident and happenstance (as with virtually all prototypic med-

ications used in clinical psychiatry), the power of modern rational

drug design can be implemented.

To achieve this end, we suggest the need for a concerted

global effort.Weare far frombeing able to confidently predict dis-

order phenotypes from measurement of genetic risk. Given the

marked progress to date, we believe it sensible to continue large

and comprehensive gene-discovery efforts. Such efforts are now

clearly incomplete, but definable stopping points can be articu-

lated (e.g., either where genetic discovery reaches an asymptote

or if new discoveries only replicate known functional and cellular

architectures). This will require working with groups traditionally

underrepresented in psychiatric research to attain an inclusive

and complete understanding of the contribution to disease in in-

dividualswith non-European ancestries. Discovery efforts across

multiple architectures are warranted to understand the individual

architecture that underlies disease risk and pathophysiology.
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