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Abstract

Existing concept formation systems employ diverse
representation formalisms, ranging from logical to proba-
bilistic, to describe acquired concepts. Those systems are
usually evaluated in terms of their prediction performance
and/or psychological validity. The evaluation studies,
however, fail to take into account the underlying concept
representation as one of the parameters that influence the
system performance. So, whatever the outcome, the per-
formance is bound to be interpreted as representation-
specific.’” This paper evaluates the performance of INC2,
an incremental concept formation system, relative to the
language used for representing concepts. The study
includes the whole continuum, from logical to probabilis-
tic representation. The results demonstrate the correctness
of our assumption that performance does depend on the
chosen concept representation language.

Introduction

Concepts lie at the core of human thought, perception,
speech, and action. Consequently, the issue of concept
formation represents an important research problem of
interest to researchers from diverse disciplines, including
psychology, philosophy, linguistics, and artificial intelli-
gence. The section on concept formation partially sum-
marizes past work in the above disciplines.

One of the far-reaching decisions to be made by every
investigator/system designer is the language(s) for
representing concepts and instances. The representation
language defines not only how easily a concept can be
learned, but, more importantly, what kind of concept can
be acquired. Also, it seems plausible that the same
representation cannot be equally well suited for different
tasks in different application domains under different cir-
cumstances. Therefore, the goal of this paper is to evalu-
ate the relationship between performance and representa-
tion language in concept formation systems. The *Concept
Representation” section provides a brief overview of

*This work was supported by the grants from the College of
Engineering and the Office of Academic Affairs, UNCC.
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different representation formalisms, while the following
section explains the specifics of two evaluation methods,
i.e., prediction accuracy and psychological validity.

The experimental (ool used in this process is INC2
(Hadzikadic and Elia, 1991; Hadzikadic and Yun, 1989),
an incremental, similarity-based concept formation sys-
tem. The INC2’'s architecture, briefly explained in the
"Representation Continuum’ section, allows us to easily
modify its representation language both statically and
dynamically in order to understand a potential corrclation
between performance and representation.

The remaining sections of the paper summarize the
results of our analysis with respect to both prediction per-
formance and psychological evaluation.

Concept Formation

Concept formation refers to the incremental process of
constructing a hierarchy of concept descriptions
(categories) which characterize objects in a given domain.
A system which can accomplish this task can be used both
as an aid in organizing and summarizing complex data and
as a retrieval system which can predict properties of previ-
ously unseen objects. Such a system will be useful in
domains where knowledge is incomplete or classifications
and/or human experts do not exist.

Most existing concept formation systems use hill-
climbing methods to find suboptimal clusterings of objects
to be characterized. Six existing systems which share all
of the above features are COBWERB (Fisher, 1987), CLAS-
SIT (Gennari, Langley, and Fisher, 1989), UNIMEM
(Lebowitz, 1987), CYRUS (Kolodner, 1984), WITT (Han-
son and Bauer, 1989), and INC2 (Hadzikadic and Elia,
1991).

Researchers from disciplines other than computer sci-
ence, e.g., psychology, philosophy, and linguistics, have
been very active in this area as well. For example,
Wittgenstein's research (1953) is associated with the ideas
of family resemblance. Family resemblance introduces the
idea that members of a category may be related to one
another without all members having any properties in
common that define that category.

Brown (1958) begins the study of what will later
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become known as basic-level categories. Basic-level
categorization places the cognitively basic categories in
the 'middle’ of a general-to-specific hierarchy. Generaliza-
tion and specialization, then, proceed upward and down-
ward, respectively, from the basic level.

Finally, Rosch and her collaborators (1976) suggest that
thought in general is organized in terms of proiotypes
('best’ examples) and basic-level structures. Their work
establishes research paradigms in cognitive psychology for
demonstrating family resemblance and basic-level
categorization.

Concept Representation

The system that established the field of conceptual cluster-
ing, CLUSTER/2 (Michalski and Stepp, 1983) used a
logic-based representation to represent both instances and
concepts. The concepts were represented as conjunctions
of necessary and sufficient features (logic expressions).
The membership in a class was defined as all or none,
depending on whether the instances possessed the required
features or not.

In contrast, many researchers (as indicated in the previ-
ous section) have suggested that some instances are better
examples of the concept than others, and that instances of
the concept are distributed all over the space defined by
the concept features. The best example (prototype) is the
center of that space, with 'good’ examples gravitating
toward the center, while the "bad” ones lie at the concept’s
periphery. Clearly, a logic-based representation, in its ori-
ginal form, cannot capture such distributional information,
Probabilistic concept representations (Smith and Medin,
1981), however, handle this problem easily by associating
a probability (weight) with each feature of a concept
definition. This weight is usually implemented as the con-
ditional probability p(f 1C) of the feature fs presence,
given category C. In literature, it is often referred to as
category validity of the feature. The retrieval and predic-
tion, using probabilistic concepts, are usually based on the
comparison between the sum of the feature weights and a
given threshold (Smith and Medin, 1981). Both
COBWEB and INC2 systems are based on a hierarchical
probabilistic representation of concepts, where the
hierarchical structure eliminates the weakness of simple
probabilistic representations, namely their inability to cap-
ture non-linear correlations among features.

Probabilistic representations are more general than the
logic-based ones in a sense that the former can simulate
the latter by dropping all features with the category proba-
bility of less than 1.0. In addition, it is easy to imagine a
continuum of probabilistic representations which differ in
the value of their feature drop threshold. The drop thres-
hold will range from 0.0 (initial probabilistic representa-
tion) to 1.0 (logic representation).
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Performance Tasks

The choice of the drop threshold (and ultimately the
representation) may influence the performance of the sys-
tem. Prediction and psychological validity are the two
performance tasks most frequently used in concept forma-
tion systems.

Prediction refers to the process of drawing inferences in
regard to the category membership of previously unseen
instances. It assumes existence of two key components: (1)
a set of concepts known to the system, and (2) a domain-
independent heuristic which indicates the likelihood of
each concept being the target category. Concept formation
systems usually rely on heuristics developed in psychol-
ogy to guide the classification process. For example, INC2
utilizes the contrast model (Tversky, 1977) to compute the
similarity between two objects/concepts and family resem-
blance (Wittgenstein, 1953) to decide whether to place an
object into the category or not. On the other hand,
COBWEB makes use of category utility (Gluck and
Corter, 1985) to find the optimal clustering at each level of
the hierarchy.

Psychological validity, on the other hand, emphasizes
the importance of psychological findings (human subject
studies) and measures the extent of their overlap with the
results of the concept-formation systems. These findings
include typicality, basic level categories, and intra- and
inter-category similarity. More often than not, concept
formation systems rely on their heuristic evaluation func-
tion (category validity in COBWEB; contrast model and
family resemblance in INC2) to demonstrate 'human-like’
performance as a side effect.

Representation Continuum

The experimental tool used in this evaluation study is
INC2, an incremental concept formation system which
builds a hierarchy of concept descriptions. The leaves of
the hierarchy are objects (singleton concepts). The root of
the hierarchy has associated with it a description which is
a summary of the descriptions of all objects seen to date
by the system.

In addition to features and hierarchical pointers, each
concept description contains an estimate of its cohesive-
ness, given in the form of family resemblance (Wittgen-
stein, 1953). Family resemblance is defined as the average
similarity between all possible pairs of objects in a given
category. The similarity function used by INC2 represents
a variation of the contrast model (Tversky, 1977), which
defines the similarity between an object and a category as
a linear combination of both common and distinctive
features. As a result, INC2 implements a hill-climbing
strategy which encourages advancement toward the maxi-
mal improvement of the hierarchy as measured by the
increase in the family resemblance of the host concept.



INC2 uses a probabilistic representation to store con-
cept descriptions, A description of each concept C is
defined as a set of features f (attnbute-value pairs). Each
feature has a conditional probability p (f | C) associated
with it. Thus, representing the color feature of red apples
would take the form (color red 0.75). The 0.75 means that
members of this category are red 75% of the time. Since
members of a given concept may reside in distinct portions
of the hierarchy, the adopted representation formalism is
referred to as a distributed probabilistic concept hierar-
chy.

The only threshold introduced in INC2 is a drop thres-
hold. This threshold allows for concept descriptions to be
either probabilistic or logical. It can be set anywhere
between 0.0 and 1.0, and means that any feature with the
conditional probability below this threshold should be
dropped' from the concept description. The value of 1.0
for this threshold would yield a logical concept descrip-
tion. Itis easy to imagine systems with different values for
the drop threshold, e.g., 0.75 (each instance should have at
least 3/4 of the features in common with other instances of
the category), or 0.5 (at least 1/2 common features).

The drop threshold is static in nature, i.e., the same
value is used at every level of the hierarchy and for all
instances, no matter what their time of arrival or path of
incorporation happens to be. However, the nature of
classification calls for a dynamically adjusted threshold
rather than a fixed one. For example, all features are
important at the top level of the hierarchy, no matter how
low their probabilities might be, due to the diversity of
objects in the domain as well as the potential noise in
object descriptions. Therefore, the drop threshold should
be set close to 0.0. At the lower levels of the hierarchy,
however, certain patterns have been detected, resulting in
high conditional probabilities for 'relevant’ features and
low probabilities for the ones not significantly present in
those patterns. Since all categories at the lower levels
have few members, all the features found in their descrip-
tions will bave relatively high conditional probabilities.
To avoid the interference of irrelevant features with the
retrieval process, the drop threshold should be set close to
1.0. The intermediate categories will, then, require the
drop threshold somewhere between 0.0 and 1.0, depending
on the level of the hierarchy (the lower the level, the
higher the drop threshold).

In order to accommodate this type of reasoning, INC2
relies on family resemblance to provide an estimate of the
drop threshold value. Family resemblance is naturally set
close to 0.0 at the root (summarizing the whole universe)
and to 1.0 at the leaves. Consequently, INC2 automatically

! This happens only temporarily since new object acquisitions
may bring that feature back into the concept description.
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sets the drop threshold to the value of the family resem-
blance of the parent category during both classification
and retrieval. That value increases with the object travers-
ing the hierarchy downward. INC2, therefore, performs a
context-sensitive classification/retrieval due to its adaptive
behavior that changes from level to level of the hierarchy.
In that process, INC2 uses different representations to
describe objects/categories at different levels of the hierar-
chy, possibly moving from the probabilistic representation
(drop threshold = 0.0) at the top level to the logical one
(drop threshold = 1.0) at the leaves.

The idea of a dynamically adjusted drop threshold, cou-
pled with the fact that features are only dropped tem-
porarily (until the changing environment will have brought
them back into the foreground of the system’s attention),
effectively emulates the idea of tracking concept drift (i.e.,
adapting to concepts that change over time) as advanced
by Schlimmer and Granger (1986).

Prediction Performance Evaluation

At this point, the reader should have a sufficient under-
standing of INC2's representation formalism to appreciate
the context in which the probabilistic-vs-logical-
representation experiment has been carried out. We will
briefly describe, next, the domain of clinical audiology in
which the experiment took place, and then the experiment
itself.

The audiology domain consists of 200 cases, 58
features, and 24 ideal categories’. The distribution of
cases across the categories varies from one to 48 per
category. Half of the categories are represented by only
one or two cases. Such a distribution certainly makes
learning almost impossible for those categories that are
under-represented. The cases include noise in the form of
incorrect and/or missing features. On average, each case
has only 11 features with known values.

The probabilistic-vs-logical-representation experiment
involved four different sizes of the training set (20, 50,
100, and 150) and six different values for the drop thres-
hold (variable, 0.0, 0.25, 0.5, 0.75, and 1.0). The size of the
test set was kept constant at all times (45 objects -- 22.5%
of the total object set). Figure 1 summarizes the percen-
tage of correct responses, averaged over five runs with ran-
domly chosen objects, for all of the above cases.

2provided by Prof. Jergen from the Baylor College of Medicine
and Bruce Porter of the University of Texas at Austin.
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Figure 1: Prediction performance for both variable and
fixed drop thresholds.

In the case of the set with a low number (20) of input
objects, the variable drop threshold was outperformed by
all the fixed-version values except for 1.0. The picture,
however, changed for larger sets (e.g., 50, 100, and 150).
The variable threshold clearly outperformed both proba-
bilistic and logical representations, while scoring compar-
ably to the 0.75 case. At the same time, the probabilistic
representation consistently demonstrated better perfor-
mance than the logical one, though not decisively so.

Unexpected results, however, came from the strong per-
formance of the 0.25 and 0.5 cases, which clearly proved
to be the best choice in our experiments. The 0.5 per-
formed better than the 0.25 in the experiments with a low
number of training objects (actually, even the 0.75 case
was as good as the 0.25 under those conditions), while the
0.25 demonstrated its strength in the cases with a large
number of input objects. These results seemed to indicate
that neither storing all features nor 'forgetting” those that
do not hold for all instances of the concept maximizes the
performance of the system or provides a clear advantage
over one another.

In addition, the results demonstrated the need for ’for-
getting’ those features that were irrelevant for the category
membership. It remained unclear, however, how to "recog-
nize" them. Forgetting the features that do not hold for at
least a balf of the concept instances proved to be beneficial
for the low number of training instances. An increased
number of training objects provided some new evidence
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about the importance of certain featres, and the drop
threshold had to be lowered in order to improve the system
performance. This evidence is in line with the reasoning
behind the variable drop threshold, which adopts higher
values for the nodes closer to the leaves (summarnizing but
a few input cases) and lower values for the nodes closer to
the root (those that accumulate higher levels of experi-
ence).

Psychological Evaluation

In addition to its prediction performance, INC2 has been
evaluated in terms of the psychological validity of its
results. There are three issues of special interest here: typi-
cality, basic level categories, and intra-category similarity
vs. inter-category dissimilarity.

Due to the uneven distribution of instances, two classes
(cochlear age and cochlear unknown) accounted for 70%
of all retrievals. In order to evaluate the quality of
retrieved objects in this domain, we decided to closely
examine the objects from one of those classes, cochlear
age. First, we calculated the average similarity of each
object with all other members of the category. The similar-
ity ranged from 0.0 to 0.527. The objects with the similar-
ity greater than or equal to 0.5 were considered to be
'good’ examples of the category. Then, we reviewed the
list of often-retrieved objects and noticed that over 60% of
them were among the examples regarded as "good.” This
finding was consistent with the prototype theory.

In addition, we reviewed all objects retrieved at least
once, and for each such object calculated its average simi-
larity. As expected, the frequency of retrieval was roughly
proportional to the average similarity of the object. Con-
sequently, we can conclude that the INC2-generated
hierarchies demonstrate typicality effects similar to those
generated by human subjects.

Due to the strategy adopted in its concept formation
algorithm (place an object into the category if it increases
the family resemblance of the category), INC2 always
incorporates the object at its basic level. While traversing
the hierarchy, and before it will have reached the basic
level, the object encounters more and more familiar
objects and categories, i.e., the ones it has more features in
common with than with any previously encountered
object/category. That will stop at the basic level, however,
since the remaining objects/categories will begin having
more and more differing features due to their increased
specialization within the hierarchy. It is important to
notice that objects may have their basic level at different
levels of the hierarchy (depending on the order of objects
and local context), thus leading to the notion of a distri-
buted basic level.

Finally, the issue of intra-category similarity vs. inter-
category dissimilarity is addressed implicitly in INC2,



again through its algorithm. Namely, the system will
place an object into the category which maximizes the
increase in the category’s family resemblance (compact-
ness). Consequendy, the category that receives the object
will pull its instances somewhat closer to its imaginative
center, thus positioning itself away from other gravitation
points’ in the instance/category space. This process will
automatically reduce the force (similarity) between the
category and the surrounding concepts.

Summary

This paper has evaluated the relationship between perfor-
mance and adopted category/object representation. We
varied the representation from probabilistic to logical, and
compared their corresponding performance on the predic-
tion task. An alternative approach, variable representa-
tion, was evaluated as well. It was characterized by the
constant switching among different representation schemas
according to the value of the compactness of the
categories stored at different levels of the hierarchy. The
variable-threshold approach worked consistently better
than either the probabilistic or the logical representation. It
did not, however, match the success of the fixed, middle-
of-the-road-valued drop threshold.

This last observation represents our research agenda.
We will continue to search for the ways to automatically
set the optimal value for the variable drop threshold. In
addition, we will extensively evaluate the system in terms
of the cost/accuracy trade-off as it moves from probabilis-
tic to logical representation.
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