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VECTOR CURRENTS AND CURRENT ATGEERA.
'I. DUALITY AND ZERO-WIDTH MODELS
Richard C. Brower and J. H. WéisT
Lawrence Radiation Laboratory>
University of California

Berkeley, California

June 20, 1969
ABSTRACT

This is the first in a series of papefs investigating the
properties of vector currents consistenf with the hadron bootstrap,
assuming duality and zer§ resonance widthé. First; on general grounds
and independently of cqrrent algebra, we show that two currentvamplitudes
must have fixed singularitieé in the.anéular momentum plane.“Then we
discuss some general consequences for current amplitudes of duality and
the zero-width approxiﬁétion. Throughout we treat amplitudes for one

or two vector currents and an arbitrary number N of spinless hadrons.
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I. INTRODUCTION

This is the first in a series of paperé in which we initiate an
investigation of ampliﬁudés for currents éonsiétént with the'hédron boot -
strap assuming duality and zero.resoﬁance Widths.; In such an approach
to currents, as first diséussed by Dashen and F:r‘autschi,g’3 one assumes
a bootstrap solution of the strong interaction problem and then investi-
gates the consisteﬁcy requirements imposed on the nonstrong (cufrent)
amplitudes by this solution along with analyticity and unitarity. Receht
progress made in the hadron model based on infinitely rising Regge trajec-
tories aﬁd zerc resonance widths;originally proposed by Mandelstam,
Vprovidgs a new baSis fqr this investigation; In particular, the

5

o é
generalization of the four-body Veneziano” amplitude to N-body amplitudes

_provides an important new starting poiht for the investigation of currents.’

In this paper we discuss the géneral pfoperties of amplitudes for
one or two véctor currents when duality and the zero-width approximation
are assumed. These results provide the framework for our explicit
investigation of currents in the N-point beta-function model6 of the

7

meson bootstrap in the following paper. There we shall find consistency
. g | ‘
of the Gell-Mann current algebra with that particular model of the hadron

bootstrap in first approximation (single poles in form factors and

~ factorization on leading trajectories). As yet, however, we have no

definite answer to the quéstion of whether current algebra‘is a consequence
of, consistent with, or'perhaps inconsistent with the hadron bootstrap.
In these papers we concentrate on the construction of amplitudes’

for conserved isoscalar and isovector vector currents consistent with
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current algebra; we discuss only oécasionall& the question of the unigueness
of currents with such qpantum‘numbersvahd commutation relations. However,
we believe fhat both the uniqueness and existence questions can eventually
be fully answered, at least in the :‘N-point : beta—fuhction ﬁodei. Further
we suggest the new possibility ﬁﬁét the coﬁsiétéﬁéyvproblem‘for currents
has a particularly simple solution (and current algebra is valid) only in.
dual iero—width models with linearly rising trajectories°

The chief dynamiéai constraint on current ampliﬁudeé.is factoriza~-
Ltion, since in the zero~width approximation factqrizatién is the chief -
remaining consequence of unitaritytg The powef of tﬂe factorizatidn
constraints is seeﬁ clearly in the model of II. Factorizétion may or
may not be enough to uniquely determine the éurrent amplitudes; if it is
not, current algebra may be required as;an édditional constraint., We
also make the dynamicai assumptiop that all energy variaﬁles have Regge
behavior exceEt when they are required on general grounds to have fixed—
pdﬁer behavior~(see Sec. II,B).

-Throughoﬁt we treat currents from an S-matrix point of view. We
deal only with the covariant tehsor amplitudes_which are directly related

to physical transition rates. We do not need to assume the existence of

v 0 : .
local current density operators.l Furthemmore, asymptotic properties are most

conveniently expressed‘ih'terms of the éovariant amplitudes; for example,
the angular momentum plane structure (movingvpoles, fixed poles, Kronecker
deltas, ete.) can easily be deduced from theif asymptotic behavior.

As an important technical convenienée we discuésialways amplitudes

for an arbitrary number N of &pinless hadrons. Such amplitudes give a
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convenient way of handling the important factorization constraints. It

- is also much easier to handle the kinematics of high-spin mesons by

_‘extracting the amplitudes for such particles from the residues of poles

in many-particle amplitudes. A probable extension.of our approach to
fermions is to-muitiply our amplitudes by spinors for half-intégral spin
fermions. ‘Finally,we ﬁote that;in the zero;width‘appfoximation, a
solution of curreﬁt algebra in terms of N-body amplitudes is equivalent
to the saturation by single-particle states propoéed by Dashen and Gell;Mann
since the singularities in any variable are simple poles. |

In Section II wé_ discuss some ' general properties of current

'amplitudes independent of duality or the zero-width'approximation. We

discuss in some detail the consequences of the existence of a physical

photm, . since they imply important boundary conditiohs at the point q? = 0,

The chief result of the section is a proof that the two~-current amplitude

must have fixed-power behavior (and hence fixed poles) independently of
any consideration bf current algebra.12 Ih SectionlIII we define ouf‘
concépt of duality and discuss the consequencés of duality for currenf
amplitudgs. We shall find that the amplifudes musﬁ have & particular

form as the momentum ’qu of a current goes to zero. The absence of

- exotic resonances and su(2) internal symmetry imply that only isoscalar
and isovector charges exist. The required properties of current amplitudes

in zero-width models are listed in Section IV and their interrelationships

are discussed.

We shall asume SU(E) symmetry for the ﬂadron bootstrap; the

extensipn to SU(B)_or other symmetries is in most instances straightforward.
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II. GENERAL PROPERTIES OF CURRENT AMPLITUDES
 In this section we discuss some relevant properties of (A) single- .
current amplitudes and (B) twofcurrent amplitudes that follow from‘Loréntz
invariance and the usuval analyticity and unitarity assumptions of S-matrix

thebry..

. ' A, single-Current Amplitudes

The descfipﬁion of the physical photon as the zero-mass limit
(ZML) of a massive vector particle is very usefﬁl in cénstructing photon
amplitudes with the cérrecﬁ kinematic properties.lj The £ransformation
‘law of the physical massless photon follows from that’éf the "massive

photon"” if the condition

my/Hb(q) > 0 - as m, >0 3 | (2.1)

0

helicity zero amplitude (the hadron momenta have been suppressed). The

holds, where my is the photon mass, g its momentum, and H. the

condition (2.1) -assures that the physical (helicity one) amplitudes
- transform indepéndently of the unphysicél(helicity zero)amplitude. The "
.Wigner rotation of the massive photoﬁ then'goes over into a pure =z
rotation of the proper amount.lh The discontinuous change in little- -
group structure at my = 0 often obscures the smoothneés of amplitudes
in m7~ | _

If the condition (2.1) is satisfied, the helicity-one amplitudes
will yield charge conservation and the low energy theoremsg since these
folléw-frqm their transformation laW'lB’15 (e;g., on—mass-éhell éauge

invariance). The undesiréd amplitude HO can wmerely be ignored. However,
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for physically reasonable off-mass-shelliamplitudes, one would expect
HO to vanish as q2 ~ 0, éince a finite‘ HO would correspond to a ;pin-
zero photon, in contradiction with experiment.

The'off-mass-shell amplitudes Hx(q) can be obtained from the

eiectron scéttering amplitﬁde, A. This requires, of course, a complete

knowledge of the electron form factor, the factorization at the J =1

" fixed photdn singularity, and the weak coupling'of.the photon. The
projection of HK(Q) from a diparticle (e.g. electron-electron) state

gives a sqparé—root kinematical singularity in HO. In general the

projection shows how the kinematic singularities associated with high
spin can be derived ffom analytic amplitudes for many spinless particles.
If A is to be analytic in q? and if HO is to be bounded, we must

therefore have
Hb(q) = o[(qe)l/é] . - (2.2)

This is a nontrivial'constraint on the off-shell amplitudes.
It is traditional and indeed convenient to introduce a covariant

tensor (four-vector) amplitude for the photon through the expression

mla) = e 0v0) ™(a) . N I

The polarization vector € (\,q) .is the standard one for massive

-1/2

particles; for g = 0 it is 2"1/2(0, -1, -i, 0), 2 (0, 1, -i, 0) ,

~and (0, 0, O, l) for M= +1, -1; and O respectively.

The condition (2.2) for physical photons implies

Cq, ™M@ = od) . )



UCRL-19221
-6-

This is the strongest conservation law demanded by fhe'physical
' 2
interpretation of the photon. For q # O - the tensor TH may be

written as

. N u L

™) = W) + LHs@, (2.5)

. . q : .
where the conserved (J =nl)'part is

Vl-l _ @V(q) Tv , ,‘ | . ‘ . .. (2;6)
with _ o | _

| wey o g L 2
q - g - "' q_2 2.

and the scalar (J = 0) part is
.l
S = - T .
qu ‘

In general, the two parts of (2.5)‘have compenSating singularities at

Q
il

0 and the decompoSition into nonsingular parts is impossible when
q2 = 0 (ihe axial curfent'provides an example of such a phenomenon).

The importance of (2.4) is that it removes this singularity in WV .

The scalar part S of neutral vector currents ie not measured
in ‘electron scattering. However, the scalar part of charged vector
currents can be measured in the weak interactione (e+v, _u+v; ete. probes).
Hence the conserved vector current hypothesis'(CVC) has a direct
empirical consequence. Further ¥ meke the usual CVC assumption that
the charged vector currents of weak interactions are part of the same
ieospin multipleﬁ as the isovector part of the electromagnetic current..
' Because of their physical interest we shall‘for the most part study

conserved vector currents and hence denote them by V“ .
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For single'current amplitudes there is no rigorous necessity for

: : ' L2 v
~non-Regge behavior. Dashen and Frautschi® have shown that pure Regge

behavior is a consequence of the COnsistencyvconditidns,Regge'behavior

. for the hadron. bootstrap, and unsubtracted dispersion relations in q .

In Sec, IV we shall see that this conclusion follows particularly

-simply in the zero-width approximation.

B. Two-Current Amplitudes and Non-Regge Behavior
Two current tensor amplitudes, Muv(ql,qe)_ (covariant current

correlation tensors),can be constructed from doubly nonstrong leptonic

amplitudes in the same way.as the single-current.amplitudes. It is.

- convenient to define the combinations

M‘(+)“v(q.i: % )

'%f[Mab“V(qi,qg) t*’Mba“V(él,ée) E (2.7)

where ‘a and ib are the»internalvquantum-numbers of the currents and

are usually suppfessed (as on the left-hand side). We also suppress the

uv

hadron momenta p;» 'i=1,<+-,N. Due to Bose statistics, M+ and

v . , _ v _
M_H are respectively symmetric and antisymmetric under the interchange

(Qi:H)ﬂE—;>(q2,V). We note that for isoscalar and isovector currents only

. : _ 1 :
. the I =1 combination of two isovector currents is antisymmetric, —~ and

physical prhotons contribute only to symmetrié amplitudes.
For physical5photons, the arguments in (A) can be repeated to

obtain the divergence conditiong

A Gy

_M“?(ql’q2> - 0(q,?), MFV(ql,qé)qZV = o(g,) . (2.8)
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On the otherjhand, since there is no physical maSsless.charged particle
corresponding to the charged currents of the weak interacfions we cannot
directly obtain such divergence’conditions for amplitudés involving these
currents. Moreover, CVC does not imply (28) since M"Y is only indirectly
related to current operators (if they exist). In fact, we can easily show
that q), ¥ "’ is nonvanishing as q) = 0. In this limit only the

soft poles due to the coupling of the current to an external line can

contribute and one can easily show.that as qlu -0,
4, My (a,59,) Vi +a,) | (2.9)
but N
' : uv N o ‘
U, M) (40%) 0. . ) (2-19)

Roughly speaking, the nonvanishing of the divergence is due to the lack

)2 _ q22

corresponding to. the softvpolé coupling to the second currént. In lieu

of an internal pole in the current channel at ﬁ = (q1'+ q2

Of sﬁch an unphysical é? fdependent exchaﬁge pdle, currént.algebra has
an "exchanged" curreht. Tt corresponds to Kroneckef delta and fixed pole
singularities in the angular momentum plane rather than'an ordinagy
physical particle pple.

| The'divérgen&?vconditions (2.9) and (2.10) are far less than
that aséumed'by current density algebra, since they.are restricted to
the special point qlg = 0. 1In fact (2;9) and (2.10) are eguivalent to
only the charge-current deﬁsity a1gebra. Since in (2.9) all the "over-
lapping variables” q,'p; are fixed at zero,it provides no evidence‘for

fixed power behavior.  However, we can extend the nonvanishing of the
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ai ‘ t 5‘tr | for 2.0 éhd 2.t Before
ivergence to arbitrary ql 12 . 4 = 9 = .
stating and proving this important theorem let us first discuss briefly
the variables in MHV. There are. 3N-6 independent hadronic variables
P, ‘P, (t is included among these by energy momentum conservation,
N ' .
o} i q2u + 2: p.M = 0). . There are N-1 overlapping variables
1 i1t | -

) 'Py’ but for fixed pi.pj only two (denoted vy and ve) are

indepehdent. The others are linearlx related to them. There are thus

o the ‘correct number (3N-4) of on-mass-shell variables plus q_l2 and fqeg.:

‘A graphic Way of visualizing the variables 1is to.go'to the two.current

center of- mass (called the t channel); The fixed hadronic momenta
provide a éoordinate éystém;- t, ql% and q22 determine the length

of the relative three-momentum and v, and v, determine its polar

1 2
angles.
’ 12 noo A
We now state the theorem: " If M(_) is analytic on the
physical sheet of ‘vl -and v2,17 except for singularities due to normal’

threshold cuts and bound state poles'in the overlapping variables, and

if OVC holds for V", then M\’ has fixed power behavior in the

| overlapping variables. It then directly follows that there are fixed poles

~or Kronecker delta singularities‘(or both) in the angular momentum plane

of the two-current (t) channel at J = 1.

Welfirst‘note thét CvC implies‘tﬁat the diécontinuity of Vit
aéfdss thé normal‘threshold éut in any overlapping variable has vanishing
divefgence. -TS prove this‘one uséS»unitarity to express the discontinuity
as a (finite) sum over intermediate states in the givenléverlapping variable.

Eaéh teérm in the sum is the product of two single-current amplitudes and

thus by CVC has vanishing divergence; Hence,

\,
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q. |Disc M (g )} = 0, all i. © (2.11)
iy a4y "y 1’ % 4 v _

We now examine the divergence ql ( )“v at fixed s 'Pj’ qlE,QéQ,
and t. Equation (2.11) and our assumption 1mply that 9, M( gv has no
singularities in vl and Vs and is therefore a polynomial in these
variables. From (2.9) one sees that the constant coefficient is non-

'vanishing at q12 = OA and q22_; t ~and therefore 4, M(_ﬁv has a
nonvanishing.fixed power (constant)'behavior inethe'overlapping variables.
The amplitude M( g must ‘then also have fiied power-behavior.

We have thus proved that the two current channel cannot have _
only moving poles in the J plane; there are fixed poles and (or) ‘
Kronecker delta singularities.at Jd = 1. This is the heart ofkthe
problem of finding coneistent two current amplitudes.

We note that we have shown that q1 (~§v has a nonvanishing

- . .

2 v : .
contributlon at ql = O, q2 = t which is.a constant in ?1 and VE.

We have not obtained any infornation about higher;order terme in vy
'and 'v2 Whlch may in general be present. Also we do not iearn'anything
about contributions proportional to ql, since (2. 9) gives information
only at qlu = 0.. Thus without further information»We do not have a

- detailed knowledge of the actual fixed power behavior.

' v
However, if local current operators exist the divergence of MP

v 8
is determined for all q,l ‘and q2 by the current commutation relations.l

In particular the Gell-Mann current algebra gives16
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1V
M
Dp (=)

(a50,) = Vg +a), - (2a2)

b P n _ ’ (2.13)

.
ey (e

which one sees is the simplest behavior consistent with the theorem and

(2.9) and (2.10).19 Similar expressions hold for the q,, divergence.

‘Eqpatidn (2.12) clearly is a very nontrivial relation between the one- énd

two-current amplitudes.
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III. DUALITY

In the Veneziano model5 for'four-body‘ampiitudés, the full

amplitude is decomposed.into a sum of three terms [B(-as, -at), B(-at, -au)"

and B(Adu, 418)], one for each permutation of the external particles
.(excluding cyclic and anticjclic pérmuﬁétions).””A!similaf-decomﬁosition
is used in ﬁhe N-point beta function model6 for N-body -amplitudes. For
- each permutafiop of the external particles (excludingvcyclic and.ahti;
cyglic perﬁutations) there is a separate term giééntw“ah-N—point beta
function. Eacﬁ such function has poles ét Tixed (reél) values of sub-
energies of adjacent lines [e;g., B(pl, pe,;;‘;pN) with particleIOrdering
1, 2,++-,N has poles in s.. = (pi Pt ;.f + Pj)2 ] and also haé

14

Regge behavior .in these subenergieé [e.g. B ~ (sij)q as Sij - oo J.

These functions are hence dual in the sense that poles are generated by

20 1y this

divergences in sums over poies in overlapping variables.
section, we consider some genefal consequences for curreﬁt amplitudes of a
concept of duality based on this décomposition.r. | |

| There is an iﬁtergsting corréspondence between the terms in this
decomposit;on and the set; of planar (Cutkosky or Feynman) diagrams for

various fixed permutations of the external lines. The set of planar

diagrams for a fixed permutation has cuts (and bound state poles) in

precisely those variables for which the corresponding N-point beta function

has pbles. In this sense each beta function approximates an infinite
set of planar diagrams.by an infinite set of tree diagrams. The decom-
position of the set of all planar diagrams into its subsets for the
various permutations of thevexternal lines correspondsito the decombo-

sition  of the amplitude in terms of beta functions. We suggest that an-
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appropriate name for this type of duality is planar duality since it

"assumes that each term in such a decompositiOn'of the amplitude is self-

: 2
dual. 1

At present, the most successful Reggeized zero-width models for

. hadrons exhibitvplanér duality. Besides this pragmatic justification'

for studying its general consequences we can give some crude arguments

‘why it might be a good approximation. Whereas Feynman diagrams provide

no reliable estimafe_of the relati?e importance of pianar and nonplanar
diagfams’in.hadron ;mplitudes, the multipéripheral modei enables Qné to
make such an.éstimaté,at least in a restricted kinematic region,and so
far the iﬁdicationé are that the planar diagrams dominate.22 Also

25 has constructed Vénéziano-iike amplitudes correspdnding to
nonplanar diagrams with moré than foﬁr externai lines and has concludéd.

that thesé have a more degenerate and hence less desirable hadron spectrum.

. In the remaihderFOf this section wé shall assume planar duality.for

‘current amplitudes and investigate the consequences of the "dual decompo-

sition" into & sum.of terms, one for each permutation of the external
momenta, each of whichfhés singularitieslénly in subenergies of adJjacent
lineé (and is itself dual).. Moét of the discuséion deéls with the poles
fhgt conﬁribute»at qu = 0, since‘they'haveva distihguished ro}e in current
amplitudes. We call such sth.pole terms external line insertions (ELI)--
see Fig. 1. Fina;ly, we nofe that in the zero.widﬁh aﬁprgximgtion where‘
the only singularities in _q?' are polés,-duality for‘véctor meson
amplitudés implies dUaliﬁy for singleacurrent amplitudes.

-
-



UCRL-19221
-1k~

A. Single Current Amplitudes

For simplicity we first neglect isospin symmetryiand consider

the amplitude V' (q) for a single photon and N hadrons. This

amplitude has the dual decomposition.

1,P i,

V@) - ooy W@, (5.1)
| 1, (P} | |
where V? P(q) corresponds to the permutation  P. of the hadron momenta

(pl, pg;—-‘,pN)'and the photon momenta g to the left of p,.

As we have seen in Sec. II.A, We must have qH>Vu(q)_= 0. Each _v

term iﬁ‘the dual decomposition (3.1) has right-hand singularities.in a
differeﬂt set of fariableg,and thus there is nb possibility of cancella-
tioﬂ between them in the diﬁefgence. Since duality fules out terms_
without singuiarities in the'full,set of variablés,»wé-have>the important
COnditionA. | | | | o | o

o W@ = 0. (3.2)

From now on we consider only the hadron ordering pi,---,pN -and drop
the subscrip‘t P,

‘The term 'Viu has only two SOft_phoﬁon pole terms (ELI); i.e.,

o . . 2 2
those corresponding to P, . apd p, at (q + Pi-l) =m and
- 2 2 ' S
(q + Pi) =m . Since for q_u - 0 these are the only possible

contributions to (3.2), the residues of these poles must be equal and

opposite,
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2p.u +.qu

(q +lp ) - m° u '
ﬂ ot 1 (3.3)

Yoy
v, (q) ®

el +a

- - A
\ (g + pi_l)? —'mi;l ’
whérev_A: is ﬁhé purely hadronic amplifude for sty - - From now on
ﬁhe Viu will alWayé be understdod to have their ELI poles normalized
as in (3.5) (e.g., unit coupling of the current to the external lines
‘at ”q?_= 0). With‘this‘normalization we rewrite (3.1) as
N . _

o) - BT AL CYIN o R

| =1 i
We:notévthe néfmaiizafion condition (3.3) aPplieSVOnly to the soft poles,
‘and hence in'(B;h) any contribution not.é;ntaining any such poles néed
1pot 5e proportional to._’Q,i . _ : |

From (3.3), (5.4), and the definition of the charge e, of the

ith hadron we easily obtain the condition

€1 = Qi = Qi+1 - . | (3.5)
From (3.5) charge_coqservation; o ' . v

tfivially follows as it must because V“ is divergenceleSS»(see Sec. II.A).
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A natural diagramﬁatic representation of the photon amplitude is
immediately suggested b& (5.5)--see Fig; é; The liqes indicate a flow
~of charge and show clearly how (3.5) and (3.6) are satisfied. The v
diagram also shows that in Viu,,the phoﬁon couples to Qi. One is thgs |
led naturally to diagrams strikingiy similar to the "duality diagramsﬁ

drawn by several authors.eb"25

Finally we note that the solution of (3.5) \
is defined only up to the translation Qi_* Qi + C. The constant C
corresponds to an additional closed loop in‘Fié. 2 which does not connect

to the external lines. .Such a translation gives an additional contribution

or P 4o (5.4), where

. : N . _ ' .
#E(q) - Z v(a) . G.1)
The vi“ in (3.7) may be entirely different functions from.those.in (3.4),

they are COnstfained only by the conditions (5.3).

We now assume SU(2) symmetry and discuss arbitrary conserved
vector currents. First ﬁe describé a partiéularly convenient way of
handling the isospin indices. We may represent the {sospin-fepresentation
and state of each external particle, pi; in the hadronic amplitude A‘

as a direct product of isospin one-half spinors--"quarks or antiquarks,"

(k)

)

; ' : . :
i.e. lower indices ai, ai ,"',ai and upper indices’ ' “
' ¢) o - |
Bi,'Bi','--, Bi( ) (one may require some. symmetry and tracelessness in
these indices but we may ignore this inessential complication). The

amplitude A may thus be labeled

' (2) , |
ABlBI oo By (
' (k) . 3.8)
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The number, M, of upper and lower indices can always be made equal by

using the raising and lowering matrix Qd?- We note that in this notation

the requirement of isospin invariance for infinitesimal transformations

© yields

() | - @) 4

aluooaxoa.aN‘ — aln.faN y

| a B ou;ﬁ . : . B ...5 --.B
, X 1 N »_ 1 y N 'y
Z o~ A L, (¥) Z A ()
qu L

= 0, for a =1, 2, 3, (3.9)

‘ where Ta are the usual Pauli maﬁrices;

B

Since 8, is tﬁe only invariant tenmsor in SU(2), A can
always be expanded ia swm of terms, each consisting'of a productvof M
5's and an isospin invariant arnpl:i.in;tde.’21‘L Each term has.the natufal
.¢hggmmatic representation éhown in Fig. B(a). Each term ih‘the dual
decomposition of A has a similar expansion. For these it is' 

convenient to draw the lines around the periphery of the diagram by

introdﬁcing extra S‘S,uSing the trivial identity

compare Figs. 3(a) and 3(b).

The isospin factors for current amplitudes can be treated in the
same way. Consider first for simplicity an isovector current with spinor
indices a and B. There are now :ﬁ'+ 1 8's in eéch internal symmetry.
factor and the iSOSPin_One-current.iswobtained by using the

projection operator E:‘ ( T, )qe . Note that (3.9) assures that
. : ;! S o

1
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(z)
BBy
q Vu (k) = 0
Qul...aN .
for a,” 0 since the ELI's are'givenvby.
v**ﬁl"'%“_) s _° piu';“qu N\ -('rlf). ai(m) .Aal”‘BN(k)' B
"oy ® el -ag |l ) o @ Ty g @) )
ABl."Ei‘(n)"}sN(k)',( ) | Bi(n) .
) 4 | k) 2’z (n)
| (n) al."aN( o : By B
L
(3.10)

We now consider a particular isospin invariant amplitude. For
R - ‘ . Fy . Bj B . P o
definiteness suppose it corresponds to & - qa : qak eee D,

where only the ©&'s  involving the currents have been explicitly shown

k

isospin inVariant amplitude has a dual décomposition of the form (5.1)

and @, and .Bj are any indices for pk and pj respectively. This

and (3.2) hoids'fbr eééh term."Thus by (3.3) each term must have equal
and opposite confributioné>Trom its ﬁwo ELi-as q - 0. This condition
and the requlrement that the full ELI residue be given by (3 lO) can
‘eas1ly be shown +to 1mply that thls term has the form
(k1 N
5 ere (1) doos 1) Vi”(q)' + C V“(Z)(q) ; © (3.11)

i=]
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‘where V“(Z) is of the form (3.7) aﬁd'has no ELI. In terms of diagrams,
this means that in -Viu the current couples (by' Ta)'to ¢ach "éparkn

, and p;, as shown in Fig; 4. As seen in
(3.11), for each guark line in the iia_.gram.{:here‘is' t_he possibility of
an'arbitrary contribution from a closed loop which dbes not change the
ELI. Thésé_arguments may be repeated for'isoscalar currenté With’the
repia;ement (Ta)aa - 6&3 .

The above results leg., Eqs (3.4) and (3.11)] apply rigorously

v'_only,for the ELI at q2‘= 0. However, wvhen the dual nature of the

‘amplitudes is fully takem into aécdunt wé5expect similar results for the

. full amplitude, since the soft poles are closely related to the full

amplitude (for example, they lie on Regge_trajectories). In II we shall

find that results like (3.4) and _(3.11) do indeed hold for the full
amplitude.

Exotic currents with isqspin greater than one may be introduced
straightforwardly by addihg further indices al, B;, ete. However, if
we_aééume that there are no exotic resonances in the_hadron spéctrum,‘
exotic qurrents sre exéludéd. .The absence of exotic resqnan¢es_forbids
the pregéﬁC¢ of more than ohé quark liné between each adjacent pair of

25,27

external manenta“ and requires all C's to be zero. This applies
equally well to amplitudes with currents, and thus only isoscalar and
\isovector currents can be formed. If the zero-width approximation is -

made this result is completely trivial, since only vector mesbns'with

these quantum numbers exist.
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'The presc‘riptiones’é7 for ellmlnatlng exotlc resonances is
easily extended to SU(n), and we see that it leads satlsfylngly to the
existence of»only n? conserved currents transforming according to the,
ng-l dimensional adjoint representation of'SU(n).plus the trivial |
' representation. Thesevame Just ﬁhe currenfs whose charges generafe'

precisely the symmetry SU(a), and no smaller or larger one.

B. TWO Current Amplitudes

With the restrlctlon of the hadron momenta to the permutatlon '

Py ---,pN, the dual decompos1t10n of M (ql,qg) is glven by

w, . _'= : ﬂV: v _ v
M (gypa,) = E C;5 Mij(aoa,) + g i1 M (ap59,)
| ifj R o -

7 Thy, ' o
+ .- . Cii M ii(q'l,q?) J . (3~12)
uv
where M, (ql,qg) corresponds to the permutatlon
1S PRRAFS YR TR TR JYRLEPS 2 7 9 P gt by (or similarly for 1 < 3)
and the adjacent~current terms for the two dlfferent orderlngshave been
3expllcltly exhibited. (Mii is the term with 9 to the left of qg,
1 . ' o
and M .. dis the term for q, to the rlght of q2f)
_ There is an important new feature which has to do with the
adjacent isovector currents and the ELI poles for Q- First we note
. v _ .
that the M?j for i # Jj Hhave two ELI's, as in A . They may thus be

taken to be 1nd1v1dually divergenceless;. in fact, if the dlvergence has
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only fixed poles in the two current (t) channel where they are necessary

by the theorem of Sec. II.B (and as is the case in current algebra),

they must be divergenceless. However, the adjacent .current terms have
) pv, ‘ T Y

only one ELI each; both Mii(ql’q2) and M ii(ql’qE) are needed to

supply the usual two ELI on P, 1 and pi . This .implies, following

the method of (A) and suppressing constants C , Tthe condition

' ByceeB N(J&) Bl...gN(") .
uv
Uu Y18 oy (k) (a359,) 93—( a a ’ i;b o ...%_,%(k)(ql " qz)
OC
X

N 3

N Y 51...5...5N v
- Yy v ¥ (a, + g (1)
ish (k) R AN
%-" Gty Py
v y

(5.15') |

as qiu - 0, where the sums are over all quark lines between ‘pi—l and

P, - Since M?i satisfies the assumptions :of the theorem of Sec. II.B,

. we may conclude from (3.1%3) that it has fixed power behavior at least

for ql2 =0 and q22_= t (i.e., q_lalq2 = 0). This result imposes an

. Y :
important boundary condition on the Mii ;3 it is more restrictive than

the general theorem [see‘(2.9)'and (2.10)], as it requires fixed poles

in these térms for both symmetfic and antisymmetric amplitudes. Note,
however, that it does not require fiked poles in the full stmetric‘

amplitude, since the contributions of the two adjacent diagrams cancel.
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" The isospin aﬂalysis proceeds very similarly to A, and we
shail'not give the details. We remark only that there are three free
constants for each quark line,‘one assoéiated‘with its coupling to each
current individually and one-associated with its éoupling.to both
currents. For example, for physical photbns we hévq -
C‘j = (Qi + Cl)(Qj + 02) + C.  For éonsistency the constents C aﬁg

i 1

C, should be those corresponding to V“(qi) and ny(Qé) respectively.

Finally, for futufe reference we State:the divergence conditions
(3.13) for isovector currents assuming no exotic resonancés(see.Fig. 5),

In this case, in order to satisfy Bose statistics, M?;(ql,qg) and -

1[_],'V ¢ - . . o .
M ii(ql’q2) must be rglated by the 1nterchapge _(ql,u)<%—}(q2,v),
TRV o VH, . » ' :
Hence with fhe unit coupling of the currents'to_fhe,éxternal lines at

& =0 [see Eq. (3.3)], we obtain

e M§§<q1eq2>' = Viv(qi * q2>’v"v o | - v, (3.152)

_M’i”;(qg,ql)qlu - viv(q1_+ a,) o o " (3.150)

t; possiblé additional terms on the right-hand

2 S
for ql = 0 and q22

sides which vanish as 9 - 0 have begn suppressed. The q2v

K

divergence conditions are now equivalent to (3.15a) and (3.15b) under
the interchange (qj,n) € (qyv). We find this "signature" decomposition
‘of the adjacent current terms very useful, particulary in the exchange-

degenerate (i.e, no exotic resonances) model of II. There one needs only

v

construct a single function M?i

(ql,qg)_and extract the symmetric and anti-
symmetric part to obtain both M“Xj .

(
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IV. ZERO-WIDTH MODELS |
Invthe zero-ﬁidth approximation all singnlarities are represented
by simple poles. In other words the amplitude is approximated by a sum of

tree diagrams. In this section we list‘and discuss.the properties of (A)

single «<current amplitudes and (B) two-current amplitudes in Reggeized zero-

" width models.

A. Single-Current Amplitudeé
We'require the following properties: |
(i). Divergence Condition:
q, W(q) = o, i.e., CVC hypothesis.
(41) Generalized Vector-Meson Dominance (GVMD);
The only singularities in q? arevsimple poies and their

residues completely determine V“ (no subtractions in ,q?
dispersion relations)., The residue of the pole at q2 = my e
is & prodnct of the vectof meson (Vh)' seattering amplitndg
and.a current-veetof meson coupiing constant ,(fV );
(iii) Regge Asynptotics: ?

2
v has Regge behavior in all subenergies Sy X = ('Pi +Pj T '+Pk) .

jl."
(iv) Particle Spectrum:

The dnly singuiarities in- s are simple poles With polyno-

ij”’k
mial residues in overlapping variables. Each pole is located at
a fixed positive and real. value of some invariant (Sij--'k ='m?).

| (v) TFactorization:

At any pole in s the residue of V" factorizes into a

ijee-k
current amplitude_with fewer hadrens and a pureiy hadronic amplitude.

Not all the above properties are ;ndependent. The Regge

behavior, particle spectrum, and factorization of the vector meson
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amplitudes and the no-subtraction assumption (ii) directly imply the

28 _
properties (iii) - (v). Hence the self-consistency conditions2 can
be rather easily satisfied.

'The couplings £ of the Vﬁ to the vector current are

v
arbitrary in the sdlutioélto the single-currernt problem. This is the
analog of the freedom discussed by Dashen énd Frautschi2 in specifying
the q2 dependeﬁce of ﬁheir_self-consistent currents. 1In their language,
if we assume én infinite'family of Vh, there,will be an infinite

number of undetermined constants in the solution to the Omnes equatioh.»

One can hope to find constraints on the fV © only by studying amplitudes
n

involving more than one current.
Finally, we note that in constructing a GWD amplitude one cannot

just write

, 2. -1 ) o

Y g

po o S oty
v ol 47 Oy q _ n

where AVV  is the purely hadronic on-shell amplitude for V. If
; |

(4.1) is viewed as a dispersion‘relation in q? for a fixed‘independent

set of the 8550k’ it is clear that for N > 2 some singularitieé in

29

o) .
q due to singularities in the dependent s have been omitted,

ij"‘k3

thus causing a violation of (iv). One may, however, collect together -
all terms from the dispersion integral corresponding to a given: Vh and

regard the resulting q?-dependent object as an off-shell continuation

v L
of A v Also in order to satisfy (i), the constraint

n



B

v
q = 0. - This requires that A
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-1 v 2y
: A = 0
fo g, Ay C
n n
Sp—_—1
n

- must be imposed in order that’ V‘Ll not have a spurious singularity at

2 v depend upon q?. As we shall see
n.

"in II, the N-point beta function model provides a natural way of

handling these complications.

B. Two Current Amplitudes

We require the following properties:
(1) Divergence Conditions:

(a) Charge-Current Density Algébra;
qlu M%:)(Qi;qg) = 0,
2, MOype) = Vi +e)
for ‘qlu_'* 0 .

fb) Photon Correspondence:
» Hy 3 .2

and similarly for qg.v
- (ii) Generalized Vector Meson Dominance:
The only singularities in q_l2 and 'qéz are simple poles
. 2 2 2 N :
‘and the residues at gq,° = th (or Q" = th ) gre,s1ngle

current amplitudes for the production of Vh,
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(iii) Regge Asymptotics:

uv

M~  has Regge behavior in all s, except possibly

ijee-k
those invariants qi-pi' that oveflap the two current channel.

\

(iv) Particle_Specﬁrum:

The only singularities in sij;;.k' are.simplé_pé;es’with
bolynomial residues in overlapping vafiables., Each pole
isrlocated_at_a.fixed, positiyé and realﬁ.ﬁalue éf some
invariant.i |

(V) 'Factorizétion: S o : ,v _ -
The amplitude factorizes as ihdicated in Fig. 6;

(¢) "Hadronic Factorization,” at poles in s,

Cije..k not

overlapping 'tv,

) Joao‘k
Comparison o©of this list of properties with the list A shows that

(B) ”Curfent Factorization,"agrnle;jh 5 .overlappihg,t.
there are eséentially two new featires: (ié),nonvanishing divergences and
(vb) qurfent factorization. These iead tdlnontrivial connéctiéns'between
ﬁwo-cﬁrrent and one-current amplifudes and prbbably give the crucial:
dynamical constraints On'the'_q? dependence of férm.factors._

In Séc. II.B we have shown ﬁhat the condition (ia),which is a
consequence Qf kinematics and internal symmetries,.cah.be extended
to all .qluv with qu = 0 and q22 ='t, to within terms that vanish
as qlu - 0. We should like to give a»rigoroué eXample of our proof
of this statement in the zero-width approximetion. This is possible

since the factorization property (Wb ) is a consequence of the umitarity
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assumed in Sec. II.B.H_One simply notes that at a pole in kql'pi’ Vi
factorizés into a product‘of single current_amplitudes; The contribution

of this pole to theé divergence is required to be zero by cve. Tn ‘the

A.vzero-width model these poles are the only possible singularities‘in the

ql-pi plane, ahd héhcevthere_must be pure polynomial behavior in‘this

variable., Hence (ia), (vb) and CVC rigorously imply fixed power behavior .

for M%Y>.  Thus (ia ) holds for q12_= 0 and qe2 =t to within tefms

vaniéhing at qlu =0 (é.g., proportional to qlv, ql'pi; ete. ).

The above discussion indicates the importance of the factorization

. constraints and especially current factorization (vb). This is further -

illustrated in IT where we find that {vb) is the most difficult condition

" %o satisfy. If the hadron bootstrap in fact uniguely determines the
'diVergences (i.e., the currentAalgebra), we expect the crucial constraint

_ is.(Vb).
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FIGURE CAPTIONS

\

Fig. 1. An external line insertion (ELI) for the particle X.
Fig. 2. Duality diagram for.»Vi“(q).

Fig. 3. (a) Diagram for the hadronic isospin factor

Each line represents a o.

(b) Modified diagram. Each cusp represents a sum, e.g.

Fig. 4. Diagram for isovector current.

) ) ) W, ‘ ny
Fig. 5. Duality disgrams for (a) Mij(ql’qQ) and (b) Mii(ql,qe). -

Fig. 6. (a) Hadronic Factorization; (b) Current Factorization.
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