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Experimental Verification of Discretely Variable Compression
Braking Control for Heavy Duty Vehicles

Ardalan Vahidi Phil Farias
Anna G. Stefanopoulou Tsu Chin Tsao

Abstract

In this report a recursive least square scheme with multiple forgetting factors is proposed for on-line
estimation of road grade and vehicle mass. The estimated mass and grade can be used to robustify many
automatic controllers in conventional or automated heavy-duty vehicles.

We demonstrate with measured test data from the July 26-27, 2002 test dates in San Diego, CA,
that the proposed scheme estimates mass within 5% of its actual value and tracks grade with good
accuracy. The experimental setup, signals, their source and their accuracy are discussed. Issues like lack
of persistent excitations in certain parts of the run or difficulties of parameter tracking during gear shift
are explained and suggestions to bypass these problems are made.

Finally, the steps taken for developing the compression brake map, transmission map and tuning a
controller for coordinated use of service and compression brake are explained. Using the data from the
July 26-27, 2002 test dates in San Diego, CA, we show in simulation that the inclusion of the splitting
torques scheme resulted in a service brake use decrease of 90 percent.

Keywords

Advanced Vehicle Control Systems Speed Control
Parameter Estimation System Identification



Executive Summary

This report describes vehicle parameter estimation, system identification and tuning of a controller for
coordination of compression and service brakes based on the data acquired during open-loop road tests.

In the first part of the report, development and verification of a parameter estimation scheme for
online estimation of vehicle’s mass and road grade are described. First a survey on related literature and
patents is provided. We then propose a recursive least square scheme with forgetting for estimation of
mass and time-varying grade. We demonstrate, both with simulated and test data, that the proposed
scheme estimates mass and grade with good accuracy provided persistent excitations. The experimental
setups, signals, their source and their accuracy are discussed. The real life issues like lack of persistent
excitations in certain parts of the run or difficulties of parameter tracking during gear shift are explained
and suggestions to bypass these problems are made.

In the second part of the report, the steps taken for developing the compression brake map, trans-
mission map and tuning a controller for coordinated use of service and compression brake are explained.
The goal was to limit the use of the service brakes on heavy duty vehicles by implementing a splitting
torque scheme that uses the compression brake in conjunction with the service brake to maintain a de-
sired speed. With data acquired from the July 26-27, 2002 test dates in San Diego, CA we were able
to develop a mathematical model the compression brake that gave the negative braking torque available
as a function of the current engine speed. We constructed a transmission map of the vehicle that we
used to approximate its shifting schedule and both were added to the vehicle dynamics model that was
identified in part one. We then tuned a fixed gain PI controller for velocity tracking and came up with a
braking algorithm that decided when and how to use the compression brake. These were cascaded with
the vehicle model to give our closed loop system for the vehicle that tracked a reference velocity as it
went through the available road profile. In this simulation, the inclusion of the splitting torques scheme
resulted in a service brake use decrease of 90 percent.
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Chapter 1

Parameter Estimation

1.1 Introduction

The linear parameter estimation problem arises in a broad class of scientific disciplines. In systems and
control specifically, it is widely used in open-loop applications like plant modelling and in closed loop for
applications like adaptive control. It can be viewed also in the context of system identification where the
key steps are selection of the model, experimental design, parameter estimation and validation. Parameter
estimation techniques can be used in direct system identification before the control design process. An
online estimation scheme appears explicitly as a component of self-tuning regulator. Also in adaptive
control scheme an online estimation method occurs implicitly [3]. It tracks time-varying parameters or
estimates external disturbances to the system.

In vehicle control, many control decisions can be improved if the unknown parameters of the vehicle
model can be estimated. Weight of the vehicle, coefficient of rolling resistance, and drag coefficient are
among these unknown parameters. Road grade is a major source of external loading which is normally
unknown.

A transmission control logic can use grade estimates for improved gear change scheduling and to avoid
“gear hunting”. An anti-lock brake controller relies on an estimate of mass and road grade for calculating
vehicle’s cruise speed which is necessary for estimation of wheel slip. In longitudinal control of platoons
of vehicles, precise spacing is necessary for ensuring the stability of the string of vehicles and therefore
reliable estimation of external loads and vehicle parameters is important. For heavy vehicles mass and
grade are even more important. The mass of a heavy duty vehicle can vary as much as %400 depending on
the load it carries. Mild grades for passenger vehicles, are serious loadings for heavy vehicles. Therefore
estimation of mass and grade is particularly critical for heavy duty vehicles. Online estimation schemes
which can estimate mass, grade or both have been investigated before, but the problem remains open as
each of the existing algorithms has its own shortcomings.

In this chapter after a review of the existing schemes for mass and grade estimation we investigate
implementation of a recursive least square (RLS) method for simultaneous online mass and grade esti-
mation. We briefly cover the recursive least square scheme for time varying parameters and review some
key papers that address the subject. The difficulty of the popular RLS with single forgetting is discussed
next. For estimation of multiple parameters which vary with different rates, RLS with vector-type for-
getting is previously proposed in a few papers. We analyze this approach and propose an extension with
intuitive appeal. We demonstrate, both with simulated and test data, that incorporating two distinct
forgetting factors is effective in resolving the difficulties in estimating mass and time-varying grade. The
experimental setups and particular issues with experimental data is also discussed.
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1.2 Mass and Grade Estimation: State of the Art

Vehicle parameter estimation, specifically mass and grade estimation for heavy vehicles, has been visited
by researchers in industry and academia. The proposed schemes can in general be classified in two
categories: sensor-based and model-based methods. In sensor based methods some type of extra sensor is
used on the vehicle to facilitate estimation of one or more parameters. Model-based schemes use a model
of the vehicle and only the data that is available through the CanBus for estimation. Since longitudinal
dynamics of the vehicle depends on both mass and grade, knowing one will facilitate estimation of the
other. Therefore some suggest estimating the grade which is in general time varying with some type of
sensor and then estimating the mass with conventional parameter-adaptive algorithms [14],[29].

Bae et al. [4] use GPS readings to obtain road elevation and calculate the grade using the measured
elevations. With the grade known, they estimate the mass with a simple least square method based
on the longitudinal dynamics equation. In [21] using an on-board accelerometer is proposed for grade
estimation. The mass is estimated based on a good approximations of the grade.

The problem however is the cost of additional sensors and the increased effort necessary to process
the data measured by these sensors. For example accelerometer-based schemes are highly susceptible to
noise and in many occasions the recorded data may not be useful.

One approach [12] which has been patented and has been used in industry is estimation of mass based
on the velocity drop during a gearshift. The idea is that since the gearshift period is short, the road load
can be rendered constant. The change in velocity before and during gearshift can be used to calculate an
estimate for the mass based on the longitudinal dynamics equation. However based on a fair amount of
trial, we observed that the velocity drop is normally minor during a gearshift and this limits the accuracy
of the method. Besides this approach does not address estimation of the grade.

Within an adaptive control scheme Druzhinina et al. [10] provide simultaneous mass and road grade
estimation without additional sensors. They demonstrate convergence in estimates for constant mass and
piecewise constant grade. This method is an indirect estimation method since estimation is achieved in
closed-loop and as a by-product of a control scheme. In general the grade is not piecewise constant and
it can vary linearly during slope transitions. Moreover many times estimates independent of a controller
are required. In other words a direct estimation scheme is more appealing.

In the rest of this chapter we will investigate a direct approach for simultaneous estimation of mass
and time-varying grade. Throughout the derivations and analysis we will point to the advantages and
difficulties of the scheme.

1.3 Formulation of the Estimation Problem

Our estimation approach is a model based approach. That is, we rely on a physical model of vehicle’s
longitudinal dynamics and use this model and the data that is recorded from the vehicle’s CanBus for
estimating mass and grade and possibly other unknown parameters which affect vehicle’s longitudinal
motion. Therefore we first formulate the vehicle longitudinal dynamics equation.

1.3.1 Longitudinal Dynamics Equation

A vehicle’s acceleration is a result of combination of engine and braking torques and the road loads on
the vehicle. When the torque convertor and the driveline are fully engaged we can assume that all the
torque from the engine is passed to the wheel. Further assuming that there is no wheel slip, which is a
good assumption for most part of the motion, the longitudinal dynamics can be presented in the following
simple but accurate form:

Mv̇ =
Te − Jeω̇

rg
− Ffb − Faero − Fgrade (1.1)

In this equation M is the total mass of the vehicle, v is the cruise velocity and ω is rotational engine
speed. Te is the engine torque at the flywheel. If engine is in fuelling mode the torque is positive and if it

5



is in the compression braking mode the torque is negative. If the transmission and the torque convertor
are fully engaged then most of the torque is passed to the wheels as assumed in the above equation.
To model the possible torque losses, engine torque can be scaled down by a coefficient of efficiency. Je

is the powertrain inertia and therefore the term Jeω̇ represents the portion of torque spent on rotating
the powertrain. Ffb is the generated friction brake (service brake) force at the wheels. The force due to
aerodynamic resistance is given by

Faero =
1
2
CdρAv2

where Cd is the drag coefficient, ρ is air density and A is frontal area of the vehicle. Fgrade describes the
combined force due to road grade (β) and the rolling resistance of the road (µ). It is given by

Fgrade = Mg(−µ cosβ − sin β),

where g is gravity. Here β = 0 corresponds to no inclination, β > 0 corresponds to uphill grade and β < 0
represents downhill.

We are interested in using this equation along with the data that is obtained from vehicle’s CanBus for
online estimation of mass and grade. Eq. (1.1) can be rearranged so that mass and grade are separated
into two terms:

v̇ = (
Te − Jeω̇

rg
− Ffb − Faero)

1
M

− g

cos(βµ)
sin(β + βµ) (1.2)

where tan(βµ) = µ. We can rewrite the equation in the following linear parametric form,

y = φT θ, φ = [φ1 φ2]T θ = [θ1 θ2]T (1.3)

Where

θ = [θ1, θ2]T = [
1
M

, sin(β + βµ)]T

is the parameter of the model, which we try to estimate and

y = v̇, φ1 =
Te − Jeω̇

rg
− Ffb − Faero, φ2 = − g

cos(βµ)

can be calculated based on measured signals and known variables.
Had the parameters θ1 and θ2 been constant, a simple recursive algorithm, like recursive least squares,

could have been used for estimation. However while θ1 which depends only on mass is constant, the
parameter θ2 is in general time-varying. Tracking time-varying parameters needs provisions that we will
discuss next.

In the next sections we first discuss the recursive least square problem and subsequently the concept
of forgetting for tracking time varying parameters.

1.3.2 Recursive Least Square Estimation

At the end of the eighteenth century Karl Freidrich Gauss proposed the simple and brilliant method
of least squares and used this principle to determine the orbits of planets. He stated that the unknown
parameters of a model should be chosen in such a way that the sum of the squares of the difference between
the actually observed and the computed values, weighted by their degree of precision, is a minimum [3].
For a linear system that translates into finding the parameter(s) that minimizes the following “loss-
function”,

V (θ, t) =
1
2

k∑

i=1

(
y(i)− φT (i)θ

)2
(1.4)

6



Solving for the minimizing parameters we get the closed form solution as follows:

θ̂ =

(
k∑

i=1

φ(i)φT (i)

)−1 (
k∑

i=1

φ(i)y(i)

)
(1.5)

Most of the time we are interested in real-time parameter estimation. Therefore it is computationally
more efficient if we update the estimates in (1.5) recursively as new data becomes available online. The
recursive form is given by:

θ̂(k) = θ̂(k − 1) + L(k)
(
y(k)− φT (k)θ̂(k − 1)

)
(1.6)

where
L(k) = P (k)φ(k) = P (k − 1)φ(k)

(
1 + φT (k)P (k − 1)φ(k)

)−1
(1.7)

and
P (k) =

(
I − L(k)φT (k)

)
P (k − 1) (1.8)

P (K) is normally referred to as the covariance matrix. More detailed derivation can be found in books
on parameter estimation such as [3]. For convergence proof see for example the book by Johnson [15].

Eq. (1.6) updates the estimates at each step based on the error between the model output and the
predicted output. The structure is similar to most recursive estimation schemes. In general most have
similar parameter update structure and the only difference is the update gain L(k). The scheme can be
viewed as some type of filter that averages the data to come up with optimal estimates. Averaging is a
good strategy if parameters of the model are constant in nature. However many times the parameters
that we are estimating are time-varying and we are interested to keep track of this variations. Next
section will discuss the generalized RLS for time-varying parameters.

1.3.3 Recursive Least Square Estimation with Forgetting

If the change in the parameters of a system is abrupt, periodic resetting of the estimation scheme can
potentially capture the new values of the parameters. However if the parameters vary continuously but
slowly a different heuristic but effective approach is popular. That is the concept of forgetting in which
older data is gradually discarded in favor of more recent information. In least square, forgetting can be
viewed as giving less weight to older data and more weight to recent data. The “loss-function” is then
defined as follows:

V (θ, t) =
1
2

k∑

i=1

λk−i
(
y(i)− φT (i)θ(k)

)2
(1.9)

where λ is a positive parameter smaller than 1 and is called the forgetting factor. It operates as a weight
which diminishes for the more remote data. The scheme is known as least-square with exponential
forgetting and θ can be calculated recursively using the same update equation (1.6) but with L(k) and
P (k) derived as follows:

L(k) = P (k − 1)φ(k)
(
λ + φT (k)P (k − 1)φ(k)

)−1
(1.10)

and
P (k) =

(
I − L(k)φT (k)

)
P (k − 1)

1
λ

. (1.11)

The main difference with the classical least square method is how the covariance matrix P (k) is updated.
In the classical RLS the covariance vanishes to zero with time, losing its capability to keep track of changes
in the parameter. In (1.11) however, the covariance matrix is divided by λ < 1 at each update. This slows
down fading out of the covariance matrix. The exponential convergence of the above scheme is shown in
some textbooks and research papers (See e.g. the proof provided in [6] or [15]) for the case of unknown
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but ”constant” invariant case. In general exponential convergence in the constant case implies certain
degree of tracking capability in the time varying case [7]. However rigorous mathematical analysis of
tracking capabilities of an estimator when the parameters are time-varying are rare in literature and many
properties are demonstrated through simulation results. Campi [7] provides some rigorous mathematical
arguments that if the covariance matrix of the estimator is kept bounded the tracking error will remain
bounded. Ljung and Gunnarsson present a survey of algorithms for tracking time-varying systems in [18].

The RLS with forgetting has been widely used in estimation and tracking of time-varying parameters
in various fields of engineering. However when excitations to the system are poor this scheme can lead
to the covariance “wind-up” problem. During poor excitations old information is continuously forgotten
while there is very little new dynamic information coming in. This might lead to the exponential growth of
the covariance matrix and as a result the estimator becomes extremely sensitive and therefore susceptible
to numerical and computational errors [11]. This problem has been investigated by many researchers in
the field and several solutions, mostly ad hoc, have been proposed to avoid covariance “wind-up”. The
idea of most of these schemes is to limit the growth of covariance matrix for example by introducing an
upper bound. A popular scheme is proposed by Fortescue et al. [11] in which a time-varying forgetting
factor is used. During low excitations, the forgetting factor is closer to unity to enhance the performance
of the estimator. In another approach, Sripada and Fisher [27] propose an on/off method along with a
time-varying forgetting factor for improved performance. The concept of resetting the covariance matrix
during low excitations has been also investigated in [26]. Both papers provide good discussions about
behavior of the system during low excitations. Kulhavy and Zarrop discuss the concept of forgetting from
a more general perspective in [17].

One other popular refinement to the RLS with forgetting scheme is the concept of “directional forget-
ting” for reducing the possibility of the estimator windup when the incoming information is non-uniformly
distributed over all parameters. The idea is that if a recursive forgetting method is being used, the infor-
mation related to non-excited directions will gradually be lost. This results in unlimited growth of some
of the elements of the covariance matrix and can lead to large estimation errors. Implementation of the
concept of directional forgetting is again ad hoc and is reflected in updating the covariance matrix, P (k).
That is, if the incoming information is not uniformly distributed in the parameter space the proposed
schemes perform a selective amplification of the covariance matrix. Hagglund [13] and Kulhavy [16] have
developed one of the early versions of this algorithm. Bittani et al. discuss the convergence of RLS with
directional forgetting in [5]. Cao and Schwartz [8] explain some of the limitations of the earlier directional
forgetting scheme and propose an improved directional forgetting approach.

The estimator wind-up can also occur if we are estimating multiple parameters that each (or some)
vary with a different rate. This scenario is of particular interest in the problem of mass and grade
estimation where mass is constant and grade is time-varying. It will be shown by simulation later in this
chapter that the single forgetting algorithm is not be able to track parameter with different variation
rates. Therefore it is desirable to assign different forgetting factors to different parameters. This problem
is somehow similar but not equivalent to the case when excitations are non-uniform in the parameter
space. In the author’s opinion even when all the modes are uniformly excited, different rate of variations
of parameters can cause trouble in estimation. An ad hoc remedy to this problem has been suggested in
a few publications and is known as vector-type forgetting [24], [25] or selective forgetting [22]. The idea
is again implemented in the update of covariance matrix. Instead of dividing all elements by a single λ,
P is scaled by a diagonal matrix of forgetting factors:

P (k) = Λ−1
(
I − L(k)φT (k)

)
P (k − 1)Λ−1 (1.12)

where
Λ = diag[λ1, λ2, . . . , λn]

in an n-parameter estimation and λi is the forgetting factor reflecting the rate of the change of the ith

parameter. The author has found this method an effective way of keeping track of the parameters that
change with different rates. The few examples of application of this scheme, to the best knowledge of the
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author, can be found in [30], and [20]. Yoshitani and Hasegawa [30] have used a vector-type forgetting
scheme for parameter estimation in control of strip temperature for the heating furnace. For a self-tuning
cruise control Oda et al. [20] propose using vector-type forgetting for detecting step changes in the
parameters of a transfer function.

Like most other modifications to RLS with forgetting, mathematical proofs for tracking capabilities
of the method, to the best knowledge of the author, do not exist. However a proof for convergence
to constant parameter values can be found in [23]. In [23] a general class of RLS with forgetting is
formulated and vector type forgetting is also included as a special case. Exponential convergence to
constant parameter values is proved for this general class of estimators.

Before employing the vector-type forgetting, and to remedy the problems associated with various
rates of variations, the authors had formulated a multiple forgetting method which has similarities to
and differences from the above-mentioned schemes. It has shown very good convergence and tracking
capabilities in simulation and experiments and the way it is formulated makes an intuitive sense. Since
it provides some motivation on the concept of multiple forgetting, we discuss the formulation and the
structure of the problem in the next section.

1.3.4 A Recursive Least Square Scheme with Multiple Forgetting

When working on the particular mass and grade estimation problem, the author noticed that the difficul-
ties in RLS with single forgetting stem from the following facts: 1. In the standard method it is assumed
that the parameters vary with similar rates. 2. In the formulation of the loss-function defined in (1.9)
and subsequently the resulting recursive scheme, the errors due to all parameters are lumped into a single
scalar term. So the algorithm has no way to realize if the error is due to one or more parameters. As a
result if there is drift in a single parameter, corrections of the same order will be applied to all parameters
which results in over-shoot or undershoot in the estimates. If the drift continues for sometime it might
cause poor overall performance of the estimator or even the so-called estimator “wind-up” or “blow-up”.
It is true that we are fundamentally restricted by the fact that the number of existing equations is less
than number of parameters which we are estimating, but in a tracking problem we can use our past
estimation results more wisely by introducing some kind of “decomposition” in the error due to different
parameters. Therefore, our intention is to“separate” the error due to each parameter and subsequently
apply a suitable forgetting factor for each. Without loss of generality and for more simple demonstration,
we shall assume that there are only two parameters to estimate. We define:

V (θ̂1(k), θ̂2(k), k) = 1
2

∑k
i=1 λk−i

1

(
y(i)− φ1(i)θ̂1(k)− φ2(i)θ2(i)

)2

+

1
2

∑k
i=1 λk−i

2

(
y(i)− φ1(i)θ1(i)− φ2(i)θ̂2(k)

)2

(1.13)

With this definition for the loss function the first term on the right hand side of (1.13) represents only
the error of the step k due to first parameter estimate, θ̂1(k) and the second term corresponds to the
second parameter estimate, θ̂2(k). Now each of these errors can be discounted by an exclusive forgetting
factor.

Here λ1 and λ2 are forgetting factors for first and second parameters respectively. Incorporating
multiple forgetting factors provides more degrees of freedom for tuning the estimator, and as a result,
parameters with different rates of variation could possibly be tracked more accurately. The optimal
estimates are those that minimize the loss function and are obtained as follows:

∂V

∂θ̂1(k)
= 0 ⇒

k∑

i=1

λk−i
1 (−φ1(i))

(
y(i)− φ1(i)θ̂1(k)− φ2(i)θ2(i)

)
= 0 (1.14)
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Rearranging (1.14), θ̂1(k) is found to be:

θ̂1(k) =

(
k∑

i=1

λk−i
1 φ1(i)2

)−1 (
k∑

i=1

λk−i
1 (y(i)− φ2(i)θ2(i))

)
(1.15)

Similarly θ̂2(k) will be:

θ̂2(k) =

(
k∑

i=1

λk−i
2 φ2(i)2

)−1 (
k∑

i=1

λk−i
2 (y(i)− φ1(i)θ1(i))

)
(1.16)

For real time estimation a recursive form is required. Using the analogy that is available between (1.15),
(1.16) and the classical form (1.5), the recursive form can be readily deduced:

θ̂1(k) = θ̂1(k − 1) + L1(k)
(
y(k)− φ1(k)θ̂1(k − 1)− φ2(k)θ2(k)

)
(1.17)

where
L1(k) = P1(k − 1)φ1(k)

(
λ1 + φT

1 (k)P1(k − 1)φ1(k)
)−1

P1(k) =
(
I − L1(k)φT

1 (k)
)
P1(k − 1)

1
λ1

.

and similarly,
θ̂2(k) = θ̂2(k − 1) + L2(k)

(
y(k)− φ1(k)θ1(k)− φ2(k)θ̂2(k − 1)

)
(1.18)

where
L2(k) = P2(k − 1)φ2(k)

(
λ2 + φT

2 (k)P2(k − 1)φ2(k)
)−1

P2(k) =
(
I − L2(k)φT

2 (k)
)
P2(k − 1)

1
λ2

.

In the two aforementioned equations θ̂1(k), θ̂2(k), θ1(k), and θ2(k) are the unknowns. As is customary
in similar problems, θ1(k), and θ2(k) can be replaced with their estimates, θ̂1(k) and θ̂2(k).1 Upon
substitution for θ1(k) and θ2(k) and rearranging (1.17) and (1.18) we obtain:

θ̂1(k) + L1(k)φ2(k)θ̂2(k) = θ̂1(k − 1) + L1(k)
(
y(k)− φ1(k)θ̂1(k − 1)

)
(1.19)

L2(k)φ1(k)θ̂1(k) + θ̂2(k) = θ̂2(k − 1) + L2(k)
(
y(k)− φ2(k)θ̂2(k − 1)

)
(1.20)

For which the solution is,

[
θ̂1(k)
θ̂2(k)

]
=

[
1 L1(k)φ2(k)

L2(k)φ1(k) 1

]−1

 θ̂1(k − 1) + L1(k)

(
y(k)− φ1(k)θ̂1(k − 1)

)

θ̂2(k − 1) + L2(k)
(
y(k)− φ2(k)θ̂2(k − 1)

)

 (1.21)

The determinant of the matrix [
1 L1(k)φ2(k)

L2(k)φ1(k) 1

]

1Note that we could have introduced the loss function as follows instead:

V (θ̂1, θ̂2, k) =
1

2

kX
i=1

λk−i
1

�
y(i)− φ1(i)θ̂1(k)− φ2(i)θ̂2(i)

�2
+

1

2

kX
i=1

λk−i
2

�
y(i)− φ1(i)θ̂1(i)− φ2(i)θ̂2(k)

�2

.
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is always nonzero and therefore the inverse always exists. With some more mathematical manipulations
(1.21) can be written in the form of (1.6):

θ̂(k) = θ̂(k − 1) + Lnew(k)
(
y(k)− φT (k)θ̂(k − 1)

)
(1.22)

where Lnew(k) is defined as follows:

Lnew(k) =
1

1 + P1(k−1)φ1(k)2

λ1
+ P2(k−1)φ2(k)2

λ2

[
P1(k−1)φ1(k)

λ1
P2(k−1)φ2(k)

λ2

]
(1.23)

The proposed method incorporates different forgetting factors for each parameter. To this end, it does
what the vector-type forgetting method does. Eq. (1.22) is similar in form to the standard update of
(1.6). However the gains of the standard and the proposed form are different. Specifically the former has
a crossterm P12(k − 1), while the latter does not. In other words the covariance matrix of the proposed
method is diagonal. This will result in update of the two parameters proportional to P1(k) and P2(k).

In short, introduction of the loss-function (1.13) with decomposed errors and different forgetting
factors for each have two distinct implications:

1) Parameters are updated with different forgetting factors. That is done by scaling the covariances
by different forgettings. This is more or less what is done in the RLS with vector-type forgetting as well.
However this approach is based on minimization of a loss-function.

2) It decouples the updating step of the covariance of different parameters. This is different from
standard RLS or RLS with vector-type forgetting. The author believes that when the parameters are
independent of each other this makes an intuitive sense.

The above equations can be generalized to cases with more than two parameters. This can be done
with tedious recalculation of the gains or by just inferring from the two-parameter case.

The proposed scheme has the added advantage that it reduces the computational burden of inverting
the covariance matrix which its size grows with the number of unknown parameters.

This scheme did well in both simulation and experiments of mass-grade estimation. The performance
is very similar to the RLS with vector forgetting when similar forgetting factors are used. However if
the value of the forgetting factors are picked in a way that mismatches real rate of variations of the
parameters, it was observed that RLS with vector forgetting sometimes winds up. In such a situation the
estimator was excessively sensitive to noise. On the other hand, the proposed scheme always behaved
well and mismatch between forgetting and true rate of variations did not cause the windup behavior. In
the following section we carefully select the forgetting factors of the vector-type forgetting RLS so that
the response compares favorably with the decoupled vector forgetting that we proposed.

1.4 Simulation Analysis of Single and Multiple Forgetting Meth-
ods

We first use simulated data to test a recursive scheme for estimation of mass and grade. The simulated
data was generated using the vehicle dynamics model given in (1.2) and by assuming different road
grade profiles and feasible mass and parameters for a heavy duty vehicle. A feasible fuelling pattern was
chosen. Variation of fuelling is important in exciting all modes of the system and consequently allow
better estimation results. Therefore in generating the fuelling command this was taken into account.
The engine torque was then readily calculated based on fuelling rate and engine speed by using the
engine torque map. At this stage we assumed that no gear change occurs during the estimation process.
In the next sections, we will discuss the issue of gear change and explain how it can be incorporated
in experimental estimation. We use a recursive least square scheme for estimating and tracking the
parameters. For initialization, we employ a direct least square on a batch of first few seconds of data.
This initializes the estimates and the P matrix.
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Figure 1.1: Estimation of mass and grade using RLS with a single forgetting factor of 0.8 when grade is
piecewise constant.

First we used the RLS with single forgetting for estimation of mass and tracking grade. For the reasons
explained in previous sections of this chapter the results were not promising at all. First we considered
a constant mass and step changes in grade. The data that we used was clean from any noise. Figure 1.1
shows the estimation results. We observe big overshoots or undershoots in both mass and grade estimates
during step changes in grade or fuelling. Nevertheless we see a relatively fast convergence back to the
real parameter values after the deviations. That is in line with the proofs of convergence of RLS with or
without forgetting to constant parameter values. To this end, despite the local misbehavior we can still
get some estimates for both parameters. The main difficulty of the approach appears when one of the
parameters, here the grade, starts varying continuously (as opposed to staying piecewise constant). The
algorithm shows very poor tracking performance in such a scenario.

Figure 1.2 shows the estimator performance when grade variations are sinusoidal. The well-known
phenomenon of estimator “blow-up” or “wind-up” can be seen during grade changes. Errors in both mass
and grade estimates become very large. The estimates converge back to the real values only when the
grade becomes constant. Here a forgetting factor of 0.9 is chosen. We noticed that reducing the forgetting
factor will only worsen the problem. When noise is introduced in the data, the performance is sacrificed
even more. As explained in the formulation of the problem, the reason for the poor performance is
that when an error is detected the estimates for both parameters are updated without differentiating
between the ones that vary faster and those that do not vary as often or are constant. This causes
overshoot/undershoot in the estimates. If one parameter continues drifting, the estimation errors add up
to result in what was seen in the previous figures.

We carried out simulations using RLS with multiple forgetting factors and showed that this scheme
can resolve the problems encountered with single forgetting. Figure 1.3 shows the performance of the
estimator when grade goes through step-changes. In this example forgetting factors of 0.8 and 1.0 are
chosen for grade and mass respectively. Unlike estimation with single forgetting, the estimation is very
smooth and the estimates converge much faster during step changes. Because a forgetting factor of 1.0
is chosen for mass, the mass estimates are not as sensitive to changes in grade.

We also tried sinusoidal variations in grade. The results are shown in Figure 1.4. The grade is tracked

12



0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

Time, s

G
ra

de
 [

de
g]

Estimated Grade
Actual Grade

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10
x 10

4

Time,s

M
as

s 
[k

g]

Estimated Mass
Actual Mass

Figure 1.2: Estimation of mass and grade using RLS with a single forgetting factor of 0.9 when grade
variations are sinusoidal.
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Figure 1.3: Estimation of mass and grade using RLS with multiple forgetting factors of 0.8 and 1 respec-
tively for grade and mass.
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Figure 1.4: Estimation of mass and grade using RLS with multiple forgetting factors of 0.5 and 1 respec-
tively for grade and mass.

Scenario Single Forgetting Multiple Forgetting

Constant grade
Constant mass good estimation good estimation

Step changes in grade
Constant mass Some overshoots in estimates Estimates well

Linear change of grade
Constant mass Bad estimation Estimates well

Sinusoidal change of grade
Constant mass Bad estimation Estimates well

Sinusoidal change of grade
Linear variations of mass Bad estimation Estimates with some lag

Table 1.1: Comparison of the performance of single and multiple forgetting RLS algorithms

very well and with very small lag. The rate of change shown for the grade is much faster than the norm on
the roads. Even with a much higher speed of variations, the estimator does not ill-behave. In simulation
we observed that if the forgetting factors are chosen so that they roughly reflect relative rate of change
of parameters, parameter changes are tracked well.

A summary of some other scenarios is shown in Table 1.1. The results shown in this table are based
on numerical data that is not noisy. Simulations with data that was contaminated by noise, showed
that noise worsened the performance of the single forgetting estimation. The multiple forgetting scheme
showed much better robustness in presence of noise. We mentioned in the previous section that, unlike our
proposed scheme, RLS with vector-type forgetting might perform poorly if the forgetting factors do not
reflect the relative rate of variations of the parameters. To demonstrate this behavior, we compared the
two schemes in estimating a constant mass and time-varying grade when the same forgetting factor of 0.98
is chosen for mass and grade. Figure 1.5 shows the outcome when RLS with vector-type forgetting was
used. We see that the estimator winds up due to bad choice of forgetting factors. Figure 1.6 demonstrates
a much better performance when our proposed scheme was used.
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Figure 1.5: Estimation of mass and grade using RLS with vector-type forgetting. Forgetting factor of
0.98 was used for both mass and grade.
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Figure 1.6: Estimation of mass and grade using our proposed scheme. Forgetting factor of 0.98 was used
for both mass and grade.
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1.4.1 Numerical Problems in Presence of Signal Noise

Direct implementation of (1.2) in least square estimation requires differentiation of velocity and engine
speed signals. In a noisy environment, differentiation is not very appealing. It will magnify the noise
levels to much higher values and the differentiated data may not be useable. In order to circumvent this
problem we will first integrate both sides of (1.2) over time and apply the estimation scheme to the new
problem. Assuming that mass and coefficient of rolling resistance are constant integration of both sides
yields:

v(tk)− v(t0) =
1
M

∫ tk

t0

(
Te(t)− Jeω̇(t)

rg(t)
− Ffb(t)− Faero(t))dt− g

cos(βµ)

∫ tk

t0

sin(β + βµ)dt (1.24)

We can rewrite the above equation in the form of (1.3),

y = φT θ, φ = [φ1, φ2]T , θ = [θ1, θ2]T

where this time
y(k) = v(tk)− v(t0)

θ = [θ1, θ2]T = [
1
M

,

∫ tk

t0
sin(β + βµ)dt

(tk − t0)
]T

and

φ1 =
∫ tk

t0

(
Te − Jeω̇

rg
− Ffb − Faero)dt, φ2 = − (tk − t0)g

cos(βµ)

Notice that φ2 is multiplied by (tk − t0) and θ2 is divided by it. This is to keep the unknown parameter
θ2 away from growing fast with time. In this fashion if the grade, β, is constant, θ2 will remain constant
as well. Employing integration instead of differentiation helped avoid some serious issues related to signal
noise.

1.5 Experimental Setups: Open-Loop Experiments

To examine the ability and efficiency of the estimation algorithm in a real scenario we planned experiments
on the newly acquired Freightliner trucks by California PATH. Besides, before the longitudinal control
design, we needed to identify the unknown parameters of the new trucks. This could be done in open-loop
road tests on the truck. The experiment planning required consideration of many different issues. We
needed to gain the maximum possible information in a single trip and few testing hours. Understanding
practical restrictions in testing was important. Communicating first with the on-site PATH research
engineers, we determined which signals would be available to us and that how they were measured.

The signals are measured through different interfaces. The CanBus, which is available on the vehicle,
is responsible for communication between the engine and powertrain controllers. Many of the signals
are obtained by accessing the CanBus. The signals are transferred under certain standards set by SAE,
Society of Automotive Engineers. Currently the J1939 [1] and its extensions like J1939-71[2] are standard
for heavy duty vehicles. Older equivalents are SAE J1587 for powertrain control applications. Other
sources are EBS, GPS and customized sensors installed by PATH staff. The EBS is the electronic brake
control system and measures signals like wheel speed. A GPS antenna is available on the PATH truck
that provides, longitude, altitude and latitude coordinates as well as the truck’s cruise speed. PATH has
installed a few sensors on the truck including accelerometers in x, y and z directions, tilt sensors,and
pressure transducers for measuring brake pressure at the wheels.

Based on the requirements and constraints a test plan was finalized. The first part targeted identifi-
cation of certain dynamics of the truck and the second stage was designed to gather data for mass and
grade estimation. The experiments were conveniently combined with a larger experiment plan by PATH
researchers for identification of new truck and early preparations for Demo 2003.
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The road tests were carried out on a part of HOV lane of Interstate 15 north of San Diego at the site
of Demo 2003. Within the two days of test, various driving cycles were completed in a number of round
trips on a twelve kilometer stretch of highway. Each run concentrated on gathering data required for
identification of one or more components such as service brakes, compression brake, gear scheduling, etc.
For successful identification we made sure that the dynamics is sufficiently excited, many times by asking
the driver to pulse the commands like throttle and braking. To generate different loading scenarios, the
loading of the trailer was decreased gradually from full to empty in stages during the test by PATH staff.
At each stage the total mass of the truck was known. Also the test route included some overpasses with
steep grades. This grade was later determined using the road plans and later served as a comparison
with the estimated grade.

The real time QNX operating system was used for data acquisition. The system was wired to the
Canbus and other sensors and data was sampled at 50 Hz. A computer specialist monitored the flow of
data and logged the instructions and actions by the driver and other researchers in a text file that was
available to us after the test. The whole test was carried out open-loop except for some periods when
cruise control was activated. The driver applied the throttle pedal or service brakes or activated the
engine brake or transmission retarder using the front panel. The transmission retarder, once activated
by the driver, was applied by a hand pedal by one of the other people on the truck. Abundant amount of
data in distinct driving scenarios was obtained during the two days of test. A complete list of recorded
signals can be found in the Appendix. In the next sections we explain how the data was used for system
identification and parameter estimation.

1.6 Experimental System Identification

In this section we first discuss the accuracy of the test data and the source of various signals. We will
then explain how certain parameters are determined by matching the model with test data.

1.6.1 Measured Signals

Numerous signals are recorded during the experiments, based on different sensors, each with certain degree
of accuracy, and different levels of noise. The update rates and sampling rates for the signals might also
vary from one to the other based on the sensors and the port they are read from. It is important that we
first gain a general understanding of the degree of accuracy of the measured signals and therefore know
the limitations before our deductions are based on them. In this section we first discuss the source and
accuracy of data. Then we proceed to estimate the parameters based on this measured data.

Velocity is available from J1939 as well as the EBS sensors which measure the wheel speed. GPS also
provides an accurate measure of the velocity. Engine speed is known from J1939 with good accuracy.
Engine torque, compression brake and transmission retarder torques are available through the J1939 port.
These engine and compression torques are calculated based on static engine maps and do not reflect the
very fast dynamics of the engine. However they are fast enough for our purpose. Pressure transducers
are installed to measure the brake pressure at the wheels. Determining the actual force developed by
service brakes will depend on a model that translates the pressure into a torque. At this stage we do
not have such a model and therefore in our analysis we will dismiss portions of data in which service
brakes were activated. The transmission status is available form J1939. That determines if the driveline
is engaged and whether the torque convertor is fully engaged or if a shift is in process. The driveline
is always flagged engaged when not in neutral. The torque convertor was shown engaged whenever the
vehicle was in the third or a higher gear. Shift in process denotes the period of a gear shift when the
transmission controller is in effect. The gear number could not be accessed through J1939 at the time of
the test. So the J1587 port was used to get the gear numbers. Each gear ratio and the final drive ratio
were available from the transmission manufacturer and were verified by comparing the engine and wheel
speed.
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Accelerometers in all three principal directions are installed on the truck. However the signals recorded
from them were noisy and therefore we decided not to use these signals for obtaining accelerations. Also
two tilt sensor were installed on the vehicle which could have potentially been used in determining the
road grade. However the signals coming out of these sensors had a small signal to noise ratio and therefore
we could not investigate possibility of using tilt sensors for measuring the road grade. The road grade
was extracted from the profile plans of the road.
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Figure 1.7: Digitized road elevation and grade.

The road grade was not measured during the experiment. One possibility for obtaining the grade is
to postprocess the elevations recorded by GPS. However the accuracy of this approach may not always
be enough for our purpose. The most accurate source for the road grade is the actual as-built plans
available for roads and highways. Therefore we obtained the as-built profile plans of the experimental
track from Caltrans 2. We then carefully digitized the plans and determined the grade based on the
elevations. Figure 1.7 shows the digitized elevation and grade. Note that the grade is either constant or
varies linearly with distance. That is a natural result of highway design where the transition between
slopes are parabolic. We used the information from GPS to determine the starting point of each test run
on the digitized elevation map.

1.6.2 Determining Unknown Parameters

In the longitudinal dynamics model (1.1) there are a few unknown parameters: Drag coefficient, coefficient
of rolling resistance, engine and driveline inertia. A range for values of drag coefficient and coefficient of
rolling resistance for different vehicles is available in handbooks of vehicle dynamics (e.g. [28]). To select
the values that fit the available data we used the vehicle longitudinal dynamics equation (1.1) and tuned
the parameters of the model to make the outcomes roughly match the experimental data. The model
used the engine or the retarder torque, the road grade and the selected gear that were recorded during
the test and based on these inputs the accelerations were calculated. The accelerations were compared
to the accelerations obtained from the test data. The drag coefficient and rolling resistance were tuned

2California Department of Transportation
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Figure 1.8: Comparison of the model and real longitudinal dynamics.

in the feasible range so that calculated and actual accelerations roughly matched each other. We found
coefficient of rolling resistance of 0.006 and drag coefficient of 0.7 suitable candidates that result in good
match between experiments and simulation. The results for one of the test runs are shown in Figure 1.8
showing good match for most part of the trip. During gear changes experiments and simulation results
do not have a good match. This is due to the fact that the gear shift dynamics is not considered in the
longitudinal dynamics model. In the model we have assumed that velocity and engine speed are always
proportionally related and that transmission is always engaged. These assumptions only result in local
mismatch between model and experiments and in general the model represents the longitudinal dynamics
adequately well.

1.7 Performance of the Estimator with Experimental Data

In the previous sections of this chapter, the estimation problem was formulated, a solution was proposed
and it was shown in simulations that it performs well in estimating mass and keeping track of time-varying
grade. The demonstration was either in a noise-free environment or when white noise was added to the
signals. In a real scenario the situation can become more challenging due to higher level of uncertainties.
The signals are potentially delayed and many times the signals are noisy and biased in one direction
rather than being only affected by pure white noise. Moreover, the delay or noise level in one signal is
normally different from the other signals. Finally, note that what is available from sources like J1939 is
normally not the true value of an entity but an estimate of the true value through the vehicle/engine
management system. Unmodelled dynamics of the system might result in poor estimation.

The signals in a natural experimental cycle may not always be persistently exciting. As discussed
before lack of good excitation results in poor estimates or even cause estimator windup. In our case, if
the acceleration is constant and there is no gear change, we are not able to observe enough to determine
both mass and grade. In this case the longitudinal dynamics equation represents essentially a single
mode, making it literally impossible to estimate the two unknowns. Therefore it is important that in
online estimation, rich pieces of data are detected and used for estimation of both parameters. Once a
good estimate for mass which is constant is obtained tracking of variations of grade would be possible
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even during low or constant levels of acceleration.

1.7.1 Estimation in Normal Cruise: No Gearshift

We first evaluate the estimation scheme with experimental data when the gear was constant. Similar
to the approach in simulations we used a batch in the first few seconds of estimation to initialize the
estimation scheme. Good initial estimates are obtained only when the chosen batch was rich in excitations.
Better estimates can be obtained with a smaller batch when the acceleration has some kind of variation
during the batch. The RLS with multiple forgetting was used during the rest of the travel for estimation
and tracking.

To reduce the high frequency noise, the torque and velocity signals were passed through a second
order butterworth filter before they were used in the estimation. The sampling frequency is 50 Hz, and
therefore the Nyquist frequency is 25 Hz. We use the cutoff frequency of 25 Hz for the filter, to ensure that
aliasing will not occur. Figure 1.9 shows the estimation results for more than five minutes of continuous
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Figure 1.9: Estimator’s performance during normal cruise when the gear is constant. Forgetting factors
for mass and grade are 0.95 and 0.4 respectively. RMS error in mass is 350 kg and RMS grade error is
0.2 degrees.

estimation. The gear was constant throughout this period. The initial four seconds of data was processed
in a batch to generate the initial estimates. For the recursive part forgetting factors of 0.95 and 0.4 were
chosen for mass and grade respectively. While mass is constant, a slight forgetting acts as a damping
effect on the older information and makes the mass estimate a little more responsive to new information.
This showed to result in further convergence of mass to its true value. In this estimation the root mean
square (RMS) error in mass is 350 kg and the maximum error is 2.8 percent. During the recursive section
the error in mass reduces down to a maximum of 1.7 percent. The RMS error in grade is 0.2 degrees. It
can be seen that grade is tracked well during its variations.

Next we will remedy the estimation problem when gear changes occur.
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1.7.2 Estimation Results During Gearshift: Problem and Recommended So-
lution

In the longitudinal dynamics Eq. (1.1) we assume that engine power passes continuously through the
driveline to the wheels. This assumption is valid only when the transmission and torque convertor are
fully engaged. During a gear change, transmission disengages to shift to the next gear and during this
time the flow of power to the wheels is reduced and in the interval of complete disengagement no torque
is passed over to the wheels. Moreover the assumption that vehicle speed is proportional to the engine
speed by some driveline ratio is not in effect during this transition and the engine speed goes through
abrupt changes while the change in vehicle velocity is much smoother. Therefore relying on (1.1) for

180 200 220 240 260 280 300
−1

0

1

2
x 10

5

E
ff

ec
tiv

e 
E

ng
in

e 
T

or
qu

e,
 N

m

180 200 220 240 260 280 300
0

0.5

1

Sh
if

t i
n 

Pr
og

re
ss

180 200 220 240 260 280 300
10

15

20

25

V
eh

ic
le

 v
el

oc
ity

, m
/s

180 200 220 240 260 280 300
100

150

200

E
ng

in
e 

Sp
ee

d,
 r

ad
/s

Time, Seconds

Figure 1.10: The performance during a cycle of pulsing the throttle

estimation will result in very big deviations during gearshift. The bigger the deviations are the longer it
takes the estimator to converge back to the true parameter values.

Modelling the dynamics during a shift is not simple due to natural discontinuities in the dynamics.
Besides the period when the transmission is in control does not take more than two seconds and therefore
it is not really necessary to estimate the parameters during this short period. Therefore we decided to
turn off the estimator at the onset of a gearshift and turn it back on a second or two after the shift is
completed. The estimates during the shift are set equal to the latest available estimates. Also the new
estimator gain is set equal to the latest calculated gain. This approach proved to be an effective way
of suppressing unwanted estimator overshoots during gear shift. Figure 1.10 shows the engine torque,
shift status, vehicle velocity and engine speed during part of an experiment. We had asked the driver to
pulse the throttle off and on and therefore as seen in the torque plot, the torque is either at its maximum
or drops down to zero. Also two gear shifts occur during this time window. As mentioned before the
variations in velocity are smooth but the engine speed has jump discontinuities both during gear shift
and during the throttle on/off. Upon using the estimator with no on/off logic we observed big overshoots
in the estimates during both the gearshift and the throttle on/off. The results are shown in Figure 1.11.
The root mean square error is mass is 210 Kilograms and the RMS grade error is 0.8 degrees which is
certainly a large error. We then used the estimator with the on/off logic. The results are shown in figure
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Figure 1.11: Estimator’s performance when it is always on. Forgetting factors for mass and grade are
0.99 and 0.4 respectively. The RMS errors in mass and grade are 210 kg and 0.8 degrees respectively.
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Figure 1.12: Estimator’s performance when it is turned off during shift. Forgetting factors for mass and
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??. The estimation has improved considerably due to the estimator deactivation during the shifts. The
deviations due to throttle pulsation exist as before but the magnitude of these deviations are small and
they fade away quickly. In this estimation the root means square error in mass is 160 kilograms and the
RMS grade error is 0.23 degrees which are quite improved due to the employed estimator logic.

1.7.3 Sensitivity Analysis

Earlier in this chapter the coefficient of rolling resistance and the drag coefficient were calculated based
on matching the model outcomes and experimental results. We mentioned that these estimates are rough
estimates that meet our needs. We are in general interested to know how much the mass and grade
estimation results are sensitive to these parameters. In other words we want to analyze the sensitivity of
the estimation scheme with respect to these parameters.

For this analysis we vary the rolling resistance and drag coefficient one at a time and observe the
performance of the estimates and based on these results provide a sense on the sensitivity of the system.
Figure 1.13 shows the sensitivity of the estimates with respect to drag coefficient and rolling resistance.
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Figure 1.13: Sensitivity of the estimates with respect to drag coefficient and rolling resistance. Forgetting
factors for mass and grade are 0.95 and 0.4 respectively.

Variations in the coefficient of rolling resistance only affect the grade estimate. That is because the
rolling resistance and grade affect the longitudinal dynamics in the same way. In a realistic range, a %50
variation of the coefficient of rolling resistance caused, in the worst case, less than %25 change in the
RMS error of grade estimates. The drag coefficient selection influenced both mass and grade estimates.
Here %25 change in drag coefficient within a feasible range, cause less than %25 change of error in grade
and mass estimates. These observation led us to believe that the estimation is robust to small variations
in rolling resistance and drag coefficient.

1.8 Conclusions and Discussions

Parameter estimation with a particular automotive application is the focus of this chapter. Simultaneous
estimation of vehicle’s mass and road grade is a challenging problem. It is explained that previous work
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concentrated on either estimating only one or assumed existence of additional sensors on the vehicle
which could be used to estimate one of the unknowns. We are looking to find a way to estimate and
track both parameters reliably with the least added cost. The initial formulation of the problem led us
to apply the recursive least square scheme with forgetting. We show that a single forgetting factor could
not address estimate and track parameters with different rates of variations. We summarize some of
the bulk of the research that has been done on the RLS scheme with forgetting, the problems and their
proposed solutions that are most of the time on an ad hoc basis. In a part of this chapter we outline the
relevant and essential research done in this regard including time-varying forgetting, directional forgetting
and vector-type or selective forgetting. We demonstrate that vector-type forgetting is applicable to our
problem. Moreover, we a proposed a modification to RLS method with multiple forgetting to strengthen
the estimation of multiple parameters with different rates of variations. The decoupled covariance update
in the proposed scheme turns out be an advantage in computational complexity.

The least square with single forgetting and least square with multiple forgetting are compared in
simulations for mass and grade estimation. It is demonstrated that with a single forgetting the estimation
can go totally wrong when grade varies. While when we used multiple forgetting, tracking a realistic time
varying grade was not a problem.

Also discussed in this chapter are the experimental setups on a PATH heavy vehicle and the tests
that were carried out on Interstate 15 in San Diego with other researchers in the August of 2002. The
experimental data is used for model validation, determining the parameters of the model and finally
verification of the mass and grade estimation scheme. The experiment setup, the measured signals and
their source and issues like sampling rate and accuracy are briefly discussed. Using this data we verify that
the vehicle model captures the longitudinal dynamics accurately for most part of travel and discrepancies
are mostly during gearshift which is not modelled. We tuned the coefficient of rolling resistance and the
drag coefficient within their expected range such that a good match between the model and experimental
data was observed.

Results of estimation of mass and grade with experimental data are then shown. The real life issues
like lack of persistent excitations in certain parts of the run or difficulties of parameter tracking during
gear shift are explained and suggestions to bypass these problems are made. The RLS with multiple
forgetting which is successful in simulations proved effective with the experimental data as well. Without
gear shift and in presence of persistent excitations mass and grade are estimated with good precision and
variations of grade are tracked. When gearshifts takes place, the estimator shows large overshoots and it
takes a few seconds for these deviations to damp out. We proposed turning off the estimator during and
shortly after a gearshift. The estimation results are improved by this provision.

Sensitivity analysis demonstrates that estimation is not sensitive to uncertain parameters of the system
including drag coefficient and rolling resistance. Also with persistent excitations, the choice of forgetting
factors does not change the ultimate convergence of the estimates. However it is shown that it is important
to reflect the relative rate of variations of different parameters in the corresponding forgetting factors or
the estimates are not accurate while bounded. Besides, while a lower forgetting factor for a parameter
helps faster convergence, it makes the estimates more susceptible to noise. If the noise levels are high
this means that convergence of the method might be jeopardized by selecting a forgetting factor which
is very small. The vector type forgetting turns out to be more sensitive to such a situation than multiple
forgetting method.

The RLS with multiple forgetting which is proposed in this chapter has similarities to the existing
methods and specifically to the vector-type forgetting scheme. However the differences in the way the
loss-function is chosen results in decoupled covariance update for different parameters. This aspect of
the scheme is found to be useful in simulations. However a more rigorous mathematical analysis of the
scheme and its tracking capabilities compared to its equivalents remains open for a future work.

The proposed scheme for the particular problem of mass and grade estimation was validated in a
number of experiments and its capabilities and limitations were discussed. At its present form it can
be employed in a real-time application. However there is room for including some more logical checks
and routines that can make the algorithm more robust to a variety of operating situations. Inclusion of
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a logic to detect areas of high or low excitations is one example which can save the estimator from a
potential windup. In the author’s opinion, with the added robustness the proposed scheme can be used
alone or along with other sensor or model based schemes for online estimation. We are planning to test
this scheme in conjunction with the longitudinal control module and analyze potential improvements to
the heavy duty vehicle automation.
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Chapter 2 
 
Compression Brake Characterization 

 
2.1 Introduction 
 
The motivation of this portion of the project as described by Moklegaard et. al. [11], is to 
limit the use of the service brakes on heavy duty vehicles by using the compression brake 
in conjunction with the service brake to maintain a desired speed.  To demonstrate the 
potential benefits of incorporation of the compression brake, simulations were run to see 
how the use of the compression brake lessened the use of the service brakes while 
tracking a reference velocity through a known grade.  Before any simulations could be 
run four main steps needed to be taken to build the overall system model: 1) Develop an 
accurate characterization of the compression brake when engaged in both high and low 
modes to incorporate into the existing vehicle model, 2) Build a Transmission Map to 
give an shifting schedule that approximates that of the truck to add to the vehicle model, 
3) Construct and tune a fixed gain PI controller to track a reference velocity, 4) 
Implement a braking algorithm to decide when to use the compression brake and in 
which modes, 5) Combine the vehicle model with the PI controller to close the loop to 
see how inclusion of the compression brake can reduce the service brake usage. 
 
 
2.2 Compression Brake Model 
 
The compression brake model was developed using the data acquired on the July 26-27, 
2002 testing dates on HOV I -15 in San Diego, California.  One of the data signals 
available was negative percent* torque generated by the compression brake.  With this we 
can determine the amount of braking torque that is being generated by the compression 
brake when it is engaged as a function of the current engine RPM.  We plotted torque 
generated versus engine RPM and curve fit the graph to garner a numerical model that 
approximated the torque generated as a function of the current engine RPM. 
A small problem encountered was that there was no data signal to show whether or not 
the engine brake was engaged in high or low mode.  To ensure that the retarding force 
being generated was credited to the correct mode, the run descriptions that were written 
during the test runs were consulted to isolate the runs where only the high or low mode 
was engaged.  Using these runs, the engine rpm vs. torque generated was plotted and 
curve fit to give a numerical model. The high mode was fit with a second order 
polynomial and the low mode was fit with a linear model.   
The models developed were: 
                                                 
* Percent of the maximum reference torque, 1400N-m. 
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  T x                                                               2( ) 0.0003 0.0347 162.84high eng xω = − +

   T ( ) 0.2353 1.8568low eng xω = −                                                       (2.2) 

(2.1) 

 
and is shown in Figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2.1: Compression brake map depicting the amount of negative torque available by the 

compression brake in high or low mode for a given engine speed.  
 
 
 
 
2.2.1 Model Validation Test 
The developed model was only based on single test runs.  A valid model would 
accurately predict the torque that could be generated for every run.  To see if the 
compression brake model developed above could do this we compared to the actual data 
of other test runs to verify its accuracy.  This was accomplished by plotting the actual 
torque generated and predicted torque vs. engine RPM of different runs.  It was seen from 
these plots that the high mode model was underestimating the amount of torque available.   
A more accurate high mode model was then calculated to be:   
   T x                                                                 2( ) 0.0003 0.0347 142.84high eng xω = − +
It is important to note that in developing a model for the compression brake, it was 
necessary to make sure that the model developed did not overestimate the amount of 

(2.3) 
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negative torque available for a given engine RPM.  By doing this, we assured ourselves 
of creating a model that would not exceed the physical limitations of the compression 
braking system.  Because the low mode exhibits a linear relationship with the engine 
speed, its model is very accurate for the entire range of RPMs.  On the other hand, the 2nd 
order approximation of the high mode results in approximation errors at higher RPMs. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Compression brake model validation.  The model was tested to see how well it predicted the 
compression brake outputs for various test runs.  

 
2.3 Transmission Model and Map 
 
A map of the shifting schedule was needed to provide a more accurate vehicle model.  
With a shifting map that can approximate which gear the truck should be in, it is easier to 
simulate driving conditions such as high acceleration or traversing an incline.  The 
transmission shifting schedule was modeled as a function of output shaft speed and 
accelerator pedal position and a 3-D plot was generated in MATLAB.  Using this plot, 
and its associated 3-D table of values, the gear that the truck should be in for a given 
output shaft speed and accelerator pedal position can be predicted.  In Figure 2.4, the 
model was compared to the actual shifting progression of the vehicle to and it was seen 
that it gave a rough approximation of the shifting schedule.  This was accomplished by  
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Figure 2.3: Transmission map that is based on data acquired from test runs.  The gear number is plotted 
as a function of accelerator pedal position and output shaft speed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Comparison of the predicted gear of the vehicle as determined by the transmission shifting 
model and the actual gear the vehicle was in. 
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sending the accelerator pedal position and engine output shaft speed data from an actual 
test run into the model and seeing what the model predicted.  We then compared the 
predicted shifting to the gear number data that was acquired on board. 
 
 
2.4 Integrated Friction and Compression Brake Control Scheme 
 
Keeping in mind the overall goal to limit the use of the service brake, we developed a 
fixed gain PI controller for the truck that will track a reference velocity while the vehicle 
went through the HOV I-15 road grade profile.  The output of the PI controller, u , is the 
torque desired, T .  If T  (Tdesired 0desired > desired fuelT= ), then more torque is needed to speed 
up the vehicle and reach the reference velocity.  If T 0desired <  (Tdesired brakingT= ), then 
negative torque needs to be applied (i.e. braking) in order to slow the vehicle down.  In 
the case of a negative torque being required, a braking algorithm is used to determine 
how much negative torque is to be applied by the compression brake and service brakes, 
respectively.  This is the “splitting torques” scheme first suggested in [29] but with some 
distinct differences and adaptations.   
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2.4.1 Brake Control Algorithm 
 
Given the braking torque desired, T , the current engine speed, braking engω and that T  
(T or T ) and 

compression

high low serviceT  is the amount of braking torque supplied by the compression 
brake and service brakes respectively and that he amount of braking available by 
compression braking in the high mode and low modes are: 

 T x  2( ) 0.0003 0.0347 142.84high eng xω = − +

 T x( ) 0.2353 1.8568low engω = −  
The braking algorithm is as follows: 
 

If  then Tbraking lowT T< braking serviceT=   (only the service brakes are applied), else: 

If  then braking lowT > T service braking low

comp low

T T T
T T
= −

 =
 else: 

 

  then braking highT T> service braking high

comp high

T T T
T T
= −

 =
 

 
The latter two cases represent the “splitting torques” scenario where the torque required 
is split between the compression brake (in low or high mode) and the service brake.  The 
outputs of the braking algorithm, T and comp serviceT are then given as inputs to the vehicle 
dynamics model. 

Adding the braking algorithm created some problems for our simulation.  The 
largest problem we ran into was extreme chattering in the system whenever the algorithm 
had to decide between whether to use T or or whether to use the compression brake 
at all.  This can be shown through a numerical example.  Say the engine is at 1700 RPM 
and T .  The algorithm determines that 398.13 Nm can be supplied via the low 
mode of the compression brake and turns it on and the remaining 1.87 Nm is supplied by 
the service brake.  This braking slows the vehicle down and then in subsequent times 
through the loop the braking torque required is less and less and eventually T T .  
When this happens the algorithm turns the compression brake on and all of the required 
braking torque is supplied by the compression brake.  But the next time through the loop  

high lowT

400braking =

braking low=

brakingT is slightly less than T and the compression brake is not used.  This chattering 
between turning the compression brake on and off stalls the simulation because it cannot 
come up with a clear cut decision.  To avert this issue we added a “backlash” as well as a 
“dead zone” block from MATLAB.  The dead zone block allows you to create a dead 
zone of values for which if the input falls in that zone the output is zero (the controller 
does nothing).  Adding the dead zone made it so that the system would not react to such 
small differences and therefore not chatter when the required braking torque value 
approaches the threshold between turning the compression brake on or off or deciding to 
be in high or low mode. The “backlash” block acts as a hysterisis and allowed us to set a 
“bandwidth” that allows an amount of play in the system.  Once these blocks were added 

low
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to the system model, we no longer experienced the extreme chattering that led to stalling 
of the simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6: An example of how the braking algorithm would vacillate between service brake usage and 
compression brake usage resulting in the simulations stalling. 

 
2.4.2 PI Control Tuning 
 
The PI controller was tuned to give the best velocity tracking available for the system at 
hand.  The final values used were a proportional gain of 1300pK =  and an integral gain 
of .  A major consideration in tuning the controller was to make sure that the 
controller did not call for torques that would exceed the physical limitations of the 
vehicle.  We did not want to construct a controller that constantly called for maximum 
fueling torque or maximum braking as this would not be detrimental to the vehicle.  This 
was accomplished by placing saturation blocks on the engine speed (2700 RPM), the 
fueling torque (1900 NM), and the braking torque  (10000 Nm)

40IK =

*.  We also added delays 
in the model to approximate the time it would take for the service brakes to be engaged as 
well as the time it takes for the compression brake to engage**.  Adding the physical 
constraints results in a controller that is not as aggressive or as fast as we desired.  It is for 
this reason that we feel the controller can be further refined to achieve more desirable 
characteristics and stay within the bounds created by the physical limitations through 
more research and simulations.   
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* Physical limitation values were estimated based on the data that was acquired from the test dates.   
** The delay for the compression brake was based on information provided by Cummins. 



2.4.3 Vehicle Dynamics Model  
 
The compression brake and transmission map were added to an existing vehicle dynamics 
model previously developed in [19].   
 
The acceleration of the vehicle is given as: 

effective

total

M
a

F
=                                                                                 

2( ) /effective e gM M I r= + ,                effective mass                                    

total wheel sb r aF F F F Fβ= − − − − F , total forces on the vehicle                  

) 

driveline
wheel

g

TF
r

= ,                           traction at wheel                                 

driveline fuel compT T T= − ,                    torque at driveline                             

service
sb

g

TF
r

= ,                                 service brake force                           

sin( )F Mgβ β= − ,                        gravitational force due to grade 
cos( )rF Mgµ β= − ,                     force due to rolling resistance 

2(
2
d v

a
C AF r )g e

ρ ω= ,                    aerodynamic force 

w
g

t fd

rr
g g

= ,                                   total gear ratio 

 
 
The effective mass is the mass of the vehicle, M plus the reflected load of the
inertia, eI .  The total force on the vehicle is the traction generated at the whee
gravitational force due to the grade as well as the rolling resistance force and 
aerodynamic force.  The traction generated at the wheel depends on the total d
torque, T , and the gear ratio, total gr .  The total driveling torque is the differenc
torque provided by fueling, T  and the negative torque supplied by the com
brake, T .  The gravitational force due to the grade, 

fuel

compression β , is denoted by F
rolling resistance force, , depends on both the grade, rF β  and the rolling resi
The aerodynamic force, , depends on the drag coefficient, aF DC , the frontal a
vehicle,  and the air density, vA ρ .  The gear ratio depends on the wheel diam
and the transmission and final drive gear ratio, , and , respectively.  Tab
shows the origin of the values. 

tg fdg
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Variable Value [dim]  

M, vehicle mass 25958.36 kg Provided by PATH (Dan Empey) 

g , gravitational accel. 9.81 
2

sec
m  Constant 

µ , rolling resistance 0.007 Constant for given vehicle 

ρ , mass density of air 
1.2 3m
kg  Constant for air (assumed T C) 20= °

DC , Drag coefficient 0.6 Provided by PATH  

vA , Frontal Area of Truck 8.5 m  2 Provided by PATH  

β , road grade Varies Interpolated from Digitized Road Map as a 

function of position 

eI , engine inertia 2.82  2secNm − Calculated 

wr , wheel radius 0.51  m Calculated   

gr , gear ratio Varies Calculated as function of output shaft speed and 

input shaft speed 

fdg , final gear drive ratio 4.63 Provided by PATH (Xiao-Yun) 
 Table 2.1: Table of values used in vehicle dynamics model and their origin

 
 
 
 
 
Once the acceleration is calculated it is integrated once to give the vehicles’ velocity and 
twice to give the position.  The velocity is sent back to the controller to complete the 
feedback loop as well as to the transmission map to determine the expected gear of the 
vehicle.  The velocity is also used to calculate the engine speed, engω , which is sent to the 
compression brake model.  The distance is sent to the digitized grade profile so the grade 
can be updated to give β .  Figure 2.7 gives a detailed picture of the vehicle dynamics 
equations and how the vehicle dynamics were calculated 
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   Figure 2.7: Vehicle Dynamics Model

 
 

Figure 2.8: Complete Closed Loop System
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Figure 2.9: Velocity tracking through the grade for models with and without the transmission map
.5 Conclusions  
nce we had a model of the compression braking characteristics and the transmission 
ap, simulations of the vehicle traversing the HOV I-15 grade were run.  The first 

imulation ran was to track a reference velocity of 25 m/sec and compare the vehicle 
odel that had the transmission map to the model that did not have the updated 

ransmission map.  The advantage of the transmission map is that it allows the simulation 
o shift gears as a driver would.  For cases such as climbing an incline the operator may 
ownshift to create more driveline torque.  This is not the case with the constant gear 
odel and the detriment of the model can be seen in the results.  We see in Figure 2.9 

hat when the incline it at its highest grade, the variable gear model continues to steadily 
ncrease its velocity towards the reference of 25 m/s.  But the constant gear model hits a 
ull and slows all the way down to 20.6 m/s before recovering and then climbing to the 
eference velocity.  It should be noted that this quick recovery is most likely a result of 
he fact that the uphill grade ended and that the vehicle was now on a downslope.  Once 
he initial grades were traversed we find that the two simulations are nearly identical.  

Another expected result of adding the transmission map is that there would be less 
se of the brakes for that simulation.  It is commonly known that an effective way of 
lowing a vehicle that is going downhill is to downshift, but if the model is constrained to 
ne gear it cannot do this and must rely solely on the brakes slow down.  We found that 
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the simulation with the transmission map required a total of 48,727 Nm of braking torque 
whereas the simulation without the transmission map required 57,819 Nm, a difference of 
9092 Nm or 16%.   
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  Figure 2.10: Integrated values of braking usage through the grade 

 

r main interest lies in how the addition of the compression brake affected the service 
ake usage.  In both cases it can be seen that the compression brake definitely reduces 
 use of the service brake.  The model with the transmission map gives very 

couraging results. Of the 48,727 Nm of braking torque required, 42,562 Nm of it is 
pplied by the compression brake -- an 87.3% decrease in use of the service brake!  
ere are only 5 distinct spikes in the service brake plot indicating sustained service 

ake usage.  The rest of the time the compression brake is accounting for the torque 
uired.  Even the case of the model without the transmission map shows that the 
lusion of the compression brake has beneficial results, albeit on not as large of a scale.  
r that model, 57,819 Nm of torque is required and 26,980 Nm is supplied by the 
mpression brake -- a 46.7 % decrease.  Here, the compression and service brake are 
sentially splitting the torque equally and the service brake is engaged continuously for 

ost the entire duration of the braking period.  To show this we isolated the portion of 
 run where the braking occurs and plotted the total braking required as determined by 
 controller with the amount supplied by the compression and service brakes (Figures 
1 and 2.12).  In addition to showing that the compression brake can alleviate the 
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service brake usage, this model exemplifies the advantage downshifting has for slowing 
down a vehicle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.11: Braking distribution for the model with transmission map.
Figure 2.12: Braking distribution for the model without transmission map.  
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2.5.1 Future Work 
 
We have many goals we wish to accomplish in the upcoming months.  Among them are: 
1.) Further refinement of the transmission shifting schedule model.  As seen, the 
transmission model is only a rough estimate of the vehicle and further work must be done 
to have an accurate model.  Through closer examination of the data we have already 
acquired we feel we can develop a shifting algorithm that would model that of the vehicle 
and greatly improve upon the current vehicle model.   2.) Characterization and 
incorporation of a transmission retarder model.  Another mechanism that is currently on 
the vehicle that can be used to alleviate the service brake usage is the transmission 
retarder.  Similar to how we characterized the compression brake, we wish to develop a 
working model of the transmission retarder to include in our overall vehicle model and 
see the potential benefits of using both the compression brake and the transmission 
retarder.  3.) Continue to develop and tune a controller that can lead to better velocity 
tracking.  We would also like to investigate what affect the addition of a derivative term 
would have on our controller to see if we can get a more aggressive controller while 
staying within the bounds of the vehicles’ physical constraints.   4.) Experiment with 
various braking algorithms.  By altering the braking algorithm it may be possible to come 
up with a more effective way of tracking a velocity while continuing to limit the service 
brake usage.  5.) Work in conjunction with PATH engineers to create a user interface so 
what we have discovered can be implemented into heavy duty vehicles.  
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Chapter 3

Appendix

A list of signals that were acquired during roads test on July 27 and 28 on Interstate 15 was provided to
us by PATH researchers. The list follows in the next pages
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MATLAB variable name Column Signal Type Units 
hour  1 QNX time of day  
minute  2 QNX time of day  
second  3 QNX time of day  
accel_temp  4 accelerometer 8.25 mV/deg K 
x_acc  5 accelerometer typical 420 mV/g 
y_acc  6 accelerometer typical 420 mV/g 
yaw  7 turn rate gyro ±2.5V for ±100 deg/sec 
x_tilt  8 tilt sensor 35.022 mV/deg (small 

angle) & 2.546 @ 0 deg 
y_tilt  9 tilt sensor 34.767 mV/deg (small 

angle) & 2.549 @ 0 deg 
throttle_pedal  10 analog (wire from 

pedal) 
 

brake_pedal1  11 EBS, pulse width 
modulated 

 

brake_pedal2  12 EBS, pulse width 
modulated 

 

front_brake  13 EBS, unknown 
signal type 

 

rear_brake  14 unconnected  
trailer_brake  15 EBS, unknown 

signal type 
 

wheel_speed1  16 EBS, pulse width 
modulated 

 

wheel_speed2  17 EBS, pulse width 
modulated 

 

wheel_speed3  18 unconnected  
wheel_speed4  19 unconnected  
brake1_digio  20 unconnected  
brake2_digio  21 unconnected  
utc_time  22 GPS  
latitude  23 GPS  
longitude  24 GPS  
altitude  25 GPS  
speed_over_ground  26 GPS  
gyro_rate  27 GPS  
enable_brake_assist_status  28 J1939 Boolean 
engine_retarder_torque_mode  29 J1939 Integer code 
engine_retarder_percent_torque  30 J1939 Negative percent 

reference torque 
output_shaft_speed  31 J1939 RPM 
MATLAB variable name Column Signal Type Units 
input_shaft_speed  32 J1939 RPM 
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shift_in_progress  33 J1939 Boolean 
torque_converter_lockup_engaged  34 J1939 Boolean 
driveline_engaged  35 J1939 Boolean 
actual_engine_percent_torque  36 J1939 Percent reference torque 
engine_speed  37 J1939 RPM 
accelerator_pedal_position  38 J1939 Percent 
nominal_friction_percent_torque  39 J1939 Percent reference torque 
wheel_based_vehicle_speed  40 J1939 meters/second 
fuel_rate  41 J1939 cm3/second 
brake_switch_1  42 EBS, digital Boolean 
brake_switch_2  43 EBS, digital Boolean 
brake_prv_sensor  44 EBS  
brake_trailer_sensor  45 EBS  
brake_pressure_1  46 analog, pressure 

transducer 
0-10V -> 0-100psi 

brake_pressure_2  47 analog, pressure 
transducer 

0-10V -> 0-100psi 

brake_pressure_3  48 analog, pressure 
transducer 

0-10V -> 0-100psi 

brake_pressure_4  49 unconnected  (noise follows other 
pressure signals) 

trans_enable_brake_assist  50 J1939 Boolean 
trans_retarder_torque_mode  51 J1939 Integer code 
trans_retarder_percent_torque  52 J1939 Negative percent 

reference torque 
engine_torque_mode  53 J1939 Integer code 
percent_load_current_speed  54 J1939 Percent max load current 

speed 
clutch_switch_ccvs   55 J1939 Boolean 
brake_switch_ccvs   56 J1939 Boolean 
cruise_control_active  57 J1939 Boolean 
cruise_control_set_speed  58 J1939 meters/second 
transmission_retarder  59 analog, from wire  
kickdown_active  60 J1939 Boolean 
boost_pressure  61 J1587 kilo Pascals 
transmission_range_selected  62 J1587 gear number (0 is neutral, 

reverse -1) 
transmission_range_attained 63 J1587  gear number (0 is neutral, 

reverse -1) 
   
Configuration messages from the engine retarder (jake brake) and engine that give the reference 
torques needed to interpret some of the J1939 data fields appear on the following page. 
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Engine retarder (jake brake) configuration message on Blue Truck, Jul 9, 2002 
Field name Field value  Comment (from J1939 docs) 
Retarder location  0 (Engine Compression Release Brake, engine RPM) 
Retarder type  3 (Compression release - engine retarder) 
Retarder control steps  3  
Engine speed  850.00 at idle, point 1 
 2100.00 at maximum speed, point 2 
 1500.00 point 3 
 1700.00 point 4 
 2100.00 peak torque, point 5 
Percent torque -122.00 at idle, point 1 (out of range?) 
 -19.00 at maximum speed, point 2 
 -100.00 point 3 
 -53.00 point 4 
 -100.00 peak torque, point 5 
Reference retarder torque  1475.00  
 
Engine configuration message from the Blue Truck, Jul 9, 2002: 
Field name Field  value  Comment (from J1939 docs) 
Engine speed 600.00 at idle, point 1 
 2130.00 at point 2 
 1100.00 at point 3 
 1220.00 at point 4 
 1500.00 at point 5 
 2318.50 at high idle, point 6 
 2500.00 maximum momentary engine override speed, point 

7 
Percent torque 75.00 at idle, point 1 
 80.00 at point 2 
 99.00 at point 3 
 99.00 at point 4 
 99.00 at point 5 
Gain endspeed governor -255.00 (not available) 
Reference engine torque 1966.00  
Maximum momentary engine 
override time limit 

2.00  

Requested speed control range  600.00  lower limit 
 2500.00 upper limit 
Requested torque control 
range 

0.00 lower limit 

 99.00 upper limit 
 



Bibliography

[1] Recommended Practice for a Serial Control and Communications Vehicle Network. Society of Au-
tomotive Engineers, 1998.

[2] Surface Vehicle Recommended Practice; Vehicle Application Layer. Society of Automotive Engineers,
1998.

[3] A. Astrom and B. Wittenmark. Adaptive Control. Addison Wesley, second edition, 1994.

[4] H.S. Bae, J. Ryu, and J. Gerdes. Road grade and vehicle parameter estimation for longitudinal
control using GPS. Proc.of IEEE Conference on Intelligent Transportation Systems, 2001.

[5] S. Bittani, P. Bolzern, and M. Campi. Convergence and exponential convergence of identification
algorithms with directional forgetting factor. Automatica, 26, 5:929–932, 1990.

[6] S. Bittani, P. Bolzern, M. Campi, and E. Coletti. Deterministic convergence analysis of RLS estima-
tors with different forgetting factors. Proceedings of the 27th Conference on Decision and Control,
pages 1530–1531, 1988.

[7] Marco Campi. Performance of RLS identification algorithms with forgetting factor: A Phi-mixing
approach. Journal of Mathematical Systems, Estimation and Control, 4, 3:1–25, 1994.

[8] Liyu Cao and Howard M. Schwartz. A novel recursive algorithm for directional forgetting. Proceedings
of the American Control Conference, pages 1334–1338, 1999.

[9] M. Druzhinina, L. Moklegaard, and A. Stefanopoulou. Compression braking control for heavy-duty
vehicles. Proceedings of American Control Conference, 2000.

[10] M. Druzhinina, A. Stefanopoulou, and L. Moklegaard. Adaptive continuously variable compres-
sion braking control for heavy-duty vehicles. ASME Dynamic Systems, Measurement and Control,
124:406–414, 2002.

[11] T.R. Fortescue, L.S. Kershenbaum, and B.E. Ydstie. Implementation of self-tuning regulators with
variable forgetting factors. Automatica, 17, 6:831–835, 1981.

[12] Thomas A. Genise. Control method system including determination of an updated value indicative
of gross combination weight of vehicles. US Patent No 5,490,063, 1994.

[13] T. Hagglund. Recursive estimation of slowly time-varying parameters. Proceedings of IFAC, pages
1137–1142, 1985.

[14] P. Ioannou and Z. Xu. Throttle and brake control systems for automatic vehicle following. PATH
Research Report UCB-ITS-PRR-94-10, 1994.

[15] C.R. Johnson. Lectures on Adaptive Parameter Estimation. Prentice Hall, 1988.

44



[16] R. Kulhavy. Restricted exponential forgetting in real-time identification. Proceedings of IFAC, pages
1143–1148, 1985.

[17] R. Kulhavy and M.B. Zarrop. On a general concept of forgetting. International Journal of Control,
58, 4:905–924, 1993.

[18] Lennart Ljung and Svante Gunnarsoon. Adaptation, tracking and system identification - a survey.
Automatica, 26,1:7–21, 1990.

[19] Lasse Moklegaard, Maria Druzhinina, and Anna Stefanopoulou. Longitudinal control of commercial
heavy vehicles with variable compression brake. Technical Report TO 4200, PATH, 2001.

[20] K. Oda, H. Takeuchi, M. Tsujii, and M. Ohba. Practical estimator for self-tuning automotive cruise
control. Proceedings of the American Control Conference, pages 2066–2071, 1991.

[21] H. Ohnishi, J. Ishii, M. Kayano, and H. Katayama. A study on road slope estimation for automatic
transmission control. JSAE Review, 21:322–327, 2000.

[22] J.E. Parkum, N.K. Poulsen, and J. Holst. Selective forgetting in adaptive procedures. Proceedings
of the 11th Triennial World Congress of the IFAC, 2:137–142, 1990.

[23] J.E. Parkum, N.K. Poulsen, and J. Holst. Recursive forgetting algorithms. International Journal of
Control, 55, 1:109–128, 1992.

[24] Steiner Saelid, Olav Egeland, and Bjarne Foss. A solution to the blow-up problem in adaptive
controllers. Modeling, Identification and Control, 6, 1:36–39, 1985.

[25] Steiner Saelid and Bjarne Foss. Adaptive controllers with a vector variable forgetting factor. Pro-
ceedings of the 22nd IEEE Conference on Decision and Control, pages 1488–1494, 1983.

[26] Mario E. Salgado, Graham C. Goodwin, and H. Middleton Richard. Modified least squares algorithm
incorporating exponential resetting and forgetting. International Journal of Control, 47, 2:477–491,
1988.

[27] N. Rao Sripada and D. Grant Fisher. Improved least square identification. International Journal of
Control, 46, 6:1889–1913, 1987.

[28] J.Y. Wong. Theory of ground Vehicles. John Wiley and Sons, third edition, 2001.

[29] M. Wuertenberger, S. Germann, , and R. Isermann. Modelling and parameter estimation of nonlinear
vehicle dynamics. Proceedings of ASME Dynamical Systems and Control Division, 44, 1992.

[30] Naoharu Yoshitani and Akihiko Hasegawa. Model-based control of strip temperature for the heating
furnace in continuous annealing. IEEE Transactions on Control Systems Technology, 6, 2:146–156,
1998.

45


	PathreportUCLA.pdf
	Chapter 2
	2.2.1 Model Validation Test
	2.4.2 PI Control Tuning

	2.4.3 Vehicle Dynamics Model
	2.5 Conclusions





