Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
INTERDIFFUSION IN TWO-PHASE TERNARY SOLID SYSTEMS

Permalink
https://escholarship.org/uc/item/709595p1

Author
Roper, G.W.

Publication Date
1980-10-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/70q595p1
https://escholarship.org
http://www.cdlib.org/

LBL-11689 & ;;W%.

Preprint

Submiﬁted,te Metal Science

INTERDIFFUSION IN TWO-PHASE TERNARY SOLID SYSTEMS

G.W. Roper and D.P. Whittle

;GCtober'lQSG

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Depariment of Energy under Contract W-7405-ENG-48




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LBL-11689

INTERDIFFUSTION IN TWO-PHASE TERNARY SOLID SYSTEMS

G. W. Roper’ and D. P. Whittle®

The pseudo-binary approach to diffusion in twoe phase ternary systems
is discussed. In particular, the circumstances under which virtual diffu-
gion paths arise are highlighted. Despite the imprecision inherent in
virtual paths, it is recognised that they have an advantage over, so-called,
real paths {(which simply run along phase boundaries) in that they include
information about the relative proportions of the phases present in two-
phase regions. The term Composite Diffusion Path is introduced, which re-
taing this advantage of a virtual path, but avoids its short-comings by not
being based on the assumption of pseudo-binary behavior. The composite
diffusion paths are derived Ffrom Ffirst principles for two model diffusion
couples, each comprising a single phase (0) alloy annealed in contact with
a two phase (0a+f3) alloy.

Comments are also made on the interrelationship between diffusion co-
efficient data and the shapes of phase boundaries in ternary systems; results
being presented which suggest that conclusions about one can be made on the

basis of information about the other.

+Shell Research Center, Thornton, Near Chester, England

*Materials and Molecular Research Division Lawrence Berkeley Laboratory,
and Department of Materials Science and Mineral Engineering, University
of California, Berkeley, Calif. 94720, U.S.A.






1. INTRODUCTION

Many of the practical situations where diffusion is imporant in-
volve aystems of more than one phass and so an understandiﬁg of the na-
ture of diffusion in such systems is lmpeortant. Unfortunately, the
theoretical complexities of diffusion in multiphase systems have so far

~ion.

prevented the attainment of complete elucid

Various authors have attempted to explain specific multiphase
phenomena in terms of the pertinent diffusion data. For example, shatyn-~
ski, Hirth and Rapp [1] have attempted to interpret obhservations on the
formation and growth of intermetallic compounds in binary systems in
terns of the diffusion behaviour of the system, while various workers have
discussed diffusion controlled precipitate growth in ternary systems
including Coates [253] and Randich and Goldstein £4;5j® Another impor-
tant phenomenon involving diffusional interactions between phases is the
high temperature oxiéation and hot corrosion of alloys. Important con-
tributions in this field include those by Kirkaldy Iﬁ]i Dalvi and Coates
[7] and wnittie [8].

The following theoretical discussion of multiphase diffusion is
intended as no more than a contribution to this extremely complex and
relatively unexplored field. In particular, it highlights the cluse rela-

tionship between the phase diagram of a system and its diffusion behaviour.

2. PSEUDC-BINARY APPROACH

-,

By making certain assumptions about the variation of diffusion co-

‘Ficients with composition, it is possible to solve the diffusion egquation
14

for an infinite diffusion couple of a single phase terxnary system 5930

This procedure reveals the solute concentration profiles across the couple

after a particulay diffusion anneal. PFurther, since the concentrations



of both solutes in such a system can be expressed as uniqgue functions of
a single parameter A (equal to x/t%, where x = distance and t = time),

it is possible to eliminate A between the two solute concentration pro-
files to generate a diffusion path, which shows the variation of composi-
tion across the couple. (The diffusion path, so defined, is a convenient
way of presenting diffusion data since it is independent of distance and
time, but the fact that diffusion paths are devoid of spatial and kinetic
information can also be a weakness.)

For a system of more than one phase, however, things are much less
straightforward because concentration profiles, and the diffusion egua-
tions defining them, are no longer smooth and continuocus across the couple.
Phase boundaries move as the diffusion process takes place and this com-
pounds the difficulties of modelling such a system.

It is possible to cope with phase boundary movements in a binary
gystem because the Phase Rule prohibits the development of composition
gradients through two phase regions, with the result that phase boundaries
remain stable and planar. Since phase boundary movements are diffusion
controlled, changes of position of a planar boundary are confined to the
dimension of diffusion and to a parabolic rate that can be simple defined.

In ternary systems, on the other hand, the additional component gives
an additional degree of freedom, which means that ¢ and R phases, for
example, can co-exist at equilibrium over a range of compositions even when
pressure and temperature are fixed. This means that non~-planay interfaces
and/or internal precipitates can arise. If this were to occur, concentrar
tion gradients in the vicinity of the interface would no longer be restricted

to the single dimension of the macro-gradient of composition, which destrovs
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the condition for parabolic behaviour of the phase interface [10], i.e.
its movement would no longer be a function of A only. Precise determina-
tion of concentration profiles and diffusion paths from known diffusion
data is impossible under such circumstances. In addition to this limita-
tion, theve is another consequence of the development of concentration
gradients (and hence activity gradients) through two phase regions of
ternary systems, namely the creation of a driving force for diffusion
through such regions. 'Thus, when attempting to derive the concentration
profiles across a multiphase ternary diffusion couple by solving the
diffusion equation, allowance must be made for the possibility of dif-
fusion through two-phase regions. 7This complication does not arise in
binary system.

Consider, for example, an infinite diffusion couple comprising dif-
ferent single phase (0 and B) of the same ternary system. An approximate
approach to this problem is to treat the system as a pseudo-binary, by
assuming that interphase boundaries remain planar and therefore parabolic
in behaviour. It is then possible to match solutions to the diffusion
equation on either side of the phase boundary by means of flux continuity
relations. The diffusion path determined in this way is then plotted on
the appropriate isctherm of the system's ternary phase diagram from which
it is pogsible to see if the path runs through any two phase regions. If
the only incursion to a two phase region is straight across a tie-line,
as for example at the assumed planar junction between ¢ and $ phases,
then the calculated diffusion path is a stable solution, i.e. the assump-

tion of planar interfaces is wvalid. If, however, the calculated diffusion



path loops into two phase regions, cutting across tie-lines to create a
finite region of supersaturation, then the solution is unstable because
supersaturation is not usually tolerated in a real systen.

When a calculated diffusion path tuxns out to be of this tvpe it
cannot be the same as that obtained in practice because the existence
of a non~planar interface or precipitate was not taken into account in
the original analysis. Kirkaldy and Brown [10] have called such umstable
calculated diffusion paths Virtual Paths. Despite the fact that virtual
pathg frequently bear little resemblance to reality, they provide a useful
means of determining whether or not phase boundaries in a system remain
planar on annealing. An interesting feature of a virtual path is that,
for any point in the two phase region, it contains information regarding
both the compositions of the two phases present (given by the end points
of the relevant tie-line) and also their relative proportions (by means
of the lever rule). The so-called real diffusion path, on the other hand,
lacks the latter feature because it does not cross the two phase region
and merely runs along the phase boundaries. It is felt by the authors
that a third type of diffusion path can be usefully defined for dealing

with multiphase systems and the suggested title is Composite Path. The

composite path has the same format as the virtual path and therefore con-
tains information regarding the proportidns of the two phases at any
point in addition to their compositions. However, unlike the virtual
path, the composite path describes the. real situation and is not derived
on the false assumption of pseudo-binary behaviour. In the following
section, it is shown how composite diffusion paths through the two phase

region of a ternary system may be obtained.



Consider the ternary system ABC and further consider a diffusion
couple between two alloys of this system : X in the A rich solid solu-
tion {(0) and ¥ in the adjacent phase field (B). Suppose now that the
diffusion path for this couple is valculated on the bases of a planavr
boundary between the phases and that this calculated path 1s plotted on
the appropriate isothexm of the ternary phase diagram to produce Figure
L {in which the phase diagram isotherm is shown in rectangular co-ordinates
for convenience).

Since this diffusion path is seen to loop into the two phase (o+B)
regime, it ig in fact virtval. The section of the path shown as a broken
line runs along a tiémline and corresponds to the assumed planar intex-
face of the couple.

Kirkaldy and Brown have shown that, where a portion of a {composite]
diffusion path passes into a two pvhase region from a single phase region
at an angle to the tie-lines, the morphology of the resulting two phase
zone 1s dependent on the way in which that path exists from the two phase
region of the phase diagram. Exit to the same single phase region describes
a zone of isolated precipitation in the diffusion couple, while exit into
another phase represents a non-planar interface (possibly with associated
igolated precipitation). If the shape of a calculated virtual diffusion
path is broadly similar to the composite path which it represents, then
this conclusion of Kirkaldy and Brown can probably be applied to the
virtual path as well (in fact tﬁis was assumed without comment by Kirkaldy
and Brown). Therefore, length PO of the diffusion path in Figure 1
corresponds to a region of isolated precipitation while length RS is

associated with a non-planar interface.
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. ALTERNATIVE T0 THE PSEUDO~BINARY APPROACH

[#%]

As described above, the pseudo-binary approximation for a ternary‘
multiphase system (i.e. that no concentration gradient can occur at
equilibrium through a two phase region) is a satisfactory expedient for
describing a diffusion couple between two alloys of the system compris-
ing different single phases, providing that phase interfaces all remain
planar. If this proviso is not valid then a virtual path 1s the result.

Consider now an infinite diffusion couple between two alloys of
the ternary system ABC, in which component A is the majority element, or
gsolvent, and components B and C are the minority elements, or solutes;
one of the alloys comprising single phase ¢ and the other a mixture of
o and B phases. Here a two phase region is in existence from the start
and for any real ternary system concentration gradients through it arve
bound to occur. For such a system, therefore, it is more sensible to
develop an analysis in which account is taken of concentration gradients
through the two phase region rather than relying on the virtual path
approach. The diffusion paths determined from such an analysis will be
Composite Paths.

It is assumed that the o+B alloy lies on the O rich side of the two
phase region such that o ig the majority or matrix phase. Further it is
assumed that all diffusion thyvough the two phase region is via the o phase
and none through the B. Eguilibrium between the ¢ and B in the two phase
region is maintained by dissolution or growth (including precipitation)

of B.



The diffusion eguations for the distribution of components B and C
throughout the two phase region may be obtained from the multicomponent

version of Fick's 2nd Law:-

= n'. k] ’ P
9 Di%3 93¢y C i o= 1 te (ne1) (1)
ox | dx

Where n = 3 for a ternary system.

Since no diffusion occurs through the B phase, the concentration
gradients on the vight hand side of egquation (1) refer only to the O
phase. The texrm on the left hand side, however, describes the nett accumu~
lation or depletion of B or €, which must take account of the inexrt reser-
volr of components in the B phase sincé it maintains equilibrium with

the 0. On expansion, therefore, equation (1) becomes:-

;@_m Em(x@ CBOL + (1“%) CBB] = ,,L {DBBQ BCBCXJ] + 8 DBCG 8@(: (2 }
ot ox ox T

gm EEXQCC@ 4 (1-mgy) CCB] == 'ém) {bCB°8CBQ} 4 EMQ{?CCQBCCQ {33
at BX B BX ;aﬂzzi !

Where =
my and mg (=l~my) are the mass fractions of & and B phases respectively.
CBOé and CBB are the concentrations of B in o and B phases respectively.

CC@ and CCB are the concentrations of C in o and B phases respectively.
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In the general case, the complexity of these equations defiesg
gsolution., However, by considering a special case, simplification can
be effected. The case to be considered is that described by Figure 2
with an ¢ phase boundary parallel to the B axis.

The diffusion couple of interest is that between points X and Z.

As will be described later, in the section on "Phase Boundaries and
Diffusion Coefficients", a system whose phase diagram resembles Figure 2
wmight reasonably be expected to have a very low value of the cross dif-
fusion coefficient D in the o phase region. Therefore, consistent

CB

with this, it is assumed that D for the system under consideration is

s

zero, not only in the single phase O region, but also in the two phase
region since diffusion is confined to the o phase therein.

Because of the orientation of the O phase boundary on the eguili-
brium diagram, the concentration of C in the O phase vemains constant

throughout the two phase region.

ie. oc % = 0 and constant (4)

o

Taking this into consideration, together with the fact that DCB

is zero, equation (3) becomes:-

oo & e Yo By L
9 [mu .+ ma} o 1 = o (5)

ot

o
As stated above, C g

is also
C

is constant and therefore, if CC
constant, equation (5) becomes:-

Ce¥ ttmy = B edmy

ot ot
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The solutions to this eguation are

either CC@ = :@5 ; i.e. no two phase region on the phase
diagram.
or & dmy = 0
~5T
my = constant (6}

If the B phase boundary on the phase diagram ig also parallel to
the B axis then the condition of constancy for CCB is met and the asbove
solution (6} is valid. Therefore, under these ciycumstances the pro-
portions of o and B remain constant throughout the two phase region and
the appearance of the composite diffusion path on the ternary isctherm
of the phase diagram (assuming the tie-lines to be parallel to the C axis)
is shown in Figure 3.

Since the C concentrations of 00 and £ in eguilibrium with each
other are fixed, the constancy of my results in the overall concentration
of C remaining invariant throughout the two phase region, as shown in
Figure 3 (line ZH). The broken line HG yuns along a tie-line and corres-
ponds to a step change in concentration in the diffusion couple.

Figure 3 shows the diffusion path through the two phase region of
the diffusion couple, but this gives no clue as to the nature of the B
concentration profile. To determine this consider equation {2) taking

account of equation (4} :-

%
Because of the assumption that tie~lines are parallel to the C axis,

3 Imgecp® + (L-my)ecgB] = ML[DBBc@CBO‘] (7)
ot %

0 and B phases must have the same B concentration in orvder to co-exist in
equilibrium. Therefore, since it was specified that local equilibrium be
maintained between o and B throughout the two phase region, the conclusion

is reached that at all points in the two phase region i~
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£ ()I; Pl X3 Py
o = b = (8)

9y = 9 Dpp°oCy (9)

ot ox x

This is now the simple form of Fick's 2nd ILaw és for a binary sin-
gle phase system. Therefore, it appears that, with respect to diffusion,
component B sees no two phase structure at all. However, this is not
strictly true since the presence of the B phase affects the kinetics of
the system. For example, the B phase boundaries may act as fast diffu~
sivity paths which may be important under cerxtain circumstances. Also,
the fact that no diffusion can occur through the B phase means that the
B particles act as obstacles to the diffusion flux of B, effectively
reducing the cross sectional area of the system with respect to diffu-
sion.

The extent to which the flux through the two phase region is affec-
ted, by these and other kinetic effects of the B presence, depends on the
volume fraction and morphology of the B phase and is difficult to guantify.
However, account may be taken of these effects by incorporating an addi-
tional factor in the diffusion coefficient Dgy in equation (9). Thus, al-
though diffusion in the two phase region is restricted to the O phase, the
coefficient Dpyp in equation (9) is not equal to that pertaining to single
phase 0 of the same composition. Instead it egquals DBB& multiplied by
some factor to account for the kinetic influence of the B phase on the

diffusion flux. Since this additional factor depends on the volume frac-

tion of B, it is a function of mg-



It is frequently a good approximation to assume that dirvect diffusion

agpefficients, like Dpp. are independent of composition {(11). However, it

is now seen that when dealing with a two phase sys

£

aem, such as the one des-—

cribed above, it is important to ensurxe that mg is also constant with com-

position before making this approximation. For the model system described
63

above, it was shown {(eguation 6) that m, and hence mB are in fact, constant

acrogs the two phase region. Therefore, it is probably reasonable to ass-

ume that Dpp is constant so that eguation {9) can be w

o en2
0Cy = Dpp §w§%

3t a%?

(10}

Bguation {10} has a simple erxvor function solution.

To summarize, for an 0/0+8 type diffusion couple of the ternary sys-
tem ABC, for which : both ¢ and B phase boundaries vun parallel to the B
axis, tie-lines run parallel to the C axis, Dpp equals zero and no diffusion
occurs through the B phase, the concentrations of C in both o and B phases
vemain constant across the two phase region, while the concentration pro-
file of component B is as defined by equation (10).

This, of course, only deals with the two phase region in isolation.
To obtain the complete concentration profiles for the couple, and hence
the diffusion path as shown in Pigure 3, it is necessary to also consider
solution to the B and C diffusion eguations in the single phase 0 region
according to, for example, one of the models discussed in {(9). The solu-
tions in the single and two phase regions must then be matched by consider-
ing the flux balance across the interface between the two. By this pro-
cedure, the whole diffusion path, i.e. XCHZ on Figure 3, would be deter-

mined.
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So far, attention has focused on a single simplified ternary system.
However, the potential exists for extension of this method of analysis to
more complex systems. As an illustration, consider a ternary system ABC
gimilar to the one considered above except that the stability range of
the single phase B region on the pertinent isotherm of the ternary phase
diagram is infinitessimally small, as shown in Figure 4,

All other assumptions about the system are as previously., Thus, the
diffusion eguation for component C in the twe phase rvegion can be reduced
to equation (5) -

W,%timwcc@ + (Lemg) Pl = o (5)

The vertical O phase boundary leads to the conclusion that Cca is con-
stant. Further, since there is only one stable B composition (CBB, CCB)
which must be maintained constant throughout the two phase region, egquation
(5) becomes :=-

ccte Bmy = o o By
ot dt

Hence, as before, providing that a real two phase system exists on the
phase diagram, the result is 3~

m& = consStant

Thus, assuming that the tie-lines radiate vegularly from the single
phase B region, the diffusion path resembles that shown on Figure 4 i.e.
JRIM. As before the C concentration of both o and B phases vemain con-
stant throughout the two phase region. To obtain the B concentration pro-
file, consider the relevant diffusion eguation (2) with my constant, CCQ

constant and CBB equal to zerc :-



e,
[
ol

g

My o 0CgY = géé’DBB{?SCB& J
uﬂ‘é%,w_‘,% bid -

t

Assuming that the diffusion coefficient D,

R is constant acroess the

two phase reglon (taking account of the effect on the flux of the inext

B  phase) equation (1l) becomes :-

3.0 = p__ e 3%C. 0O

B BB B {12
2

ot m, 0%

LN

Thus the diffusion of B through the two phase yegion 1s like that

through a binavry single phase system, but with a modified diffusion co-
efficient.

In summary, it can be saild that a two phase region of a ternary
system, unlike that of a binary, can accommodate a composition gradient.
To develop such a composition gradient, either the relative proportions
of the two phases or their compositions or both must vary across the two
phase region of the system. The concept of the composite diffusion path
is verxy useful for such a system since it illustrates the variation of
both proportions and compositions of the two phases.

It so happens that for the two simplified model systems discussed
above it was found that the proportions of the two vhases (as described
by my and mg) were constant throughout the two phase region. However,
this result stems from the particular assumptions made in the analyses

and 1s not generally true.
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4. PHASE BOUNDARIES AND DIFFUSION COBFFICIENTS

In the determination of sclute concentration profiles across a
two-phase {e.g. 0/B) ternary diffusion couple, solutions to the diffu-
sion eguation on each side of the phase boundary are matched by means
of flux continulty relations. This procedure reguirves knowledge of the
system's phase diagram, since it is necessary to be able to relate the
solute concentrations to each other at the phase boundary. However, this
presupposes that the position of the phase boundary is independent of the
values of the diffusion coefficient matrix, which is not strictly true
since they share a thermodynamic ancestry.

The thermodynamic element of the practical diffusion coefficients
(i.e. D coefficient) of a multicomponent system is described elsewhere
(see [12] for example). The important point to note here is that the
cross diffusion coefficients contain information on the wvariation of the
chemical potential of one element with the concentration of another. Thus,
in the ternary single phase system ABC, with A as solvent, the coefficient
Dpe is proportional to SUB/SCC, where Uy is the chemical potential of com-
ponent B, etc. A large value, then, of Dy implies that the chemical poten-
tial of B changes rapidly as the concentration of C(CC) varies. Therefore,
since the value of Ug contributes to the free energy of the system as a
whole, this too must vary strongly with Co. Now, in general, if the free
energy of a given phase changes rapidly with any given parameter, then the
range of that parameter over which the phase concerned is stable is likely

to be small. Hence, a large value of Dpn~ for a phase implies that its

stability range with C concentration is narrow.
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The subject of phase equilibria is, of course, a complex field in
itself and it would be wrong to assume From theAavae paragraph that it
is possible to predict the positions of phase boundaries simply from a
knowledge of diffusion coefficient data or vice versa. However, even
this shallow understanding of the relationship between phase equilibria
and diffusion data can be of some value in making general predictions
about one on the basis of firm knowledge concerning the other Ffor a
particular system. It is likely that a deeper understanding of the link
between these hitherto largely unconnected branches of scientific know-
ledge would be of great value and would therefore be a profitable field
for future research.

Bvidence has been obtained for the sort of interdependence described
above between the values of diffusion coefficients and the shapes of phase
boundaries. Measurements made on cobalt solid solution of the ternary
substitutional alloy system cobalt =~chromium - aluminum at 1100°C [13]
have shown that the walue of the cross diffusion coefficient DAlcOCr is
very low compared with the values of the other coefficients, This means
that the chemical potential of aluminum shows very little dependence on
chromium concentration, which suggests that theve is little chemical inter-
action between chromium and the rest of the system. Following the argu-
ments outlined earlier, this leads to the conclusion that the 0 phase boun-
dary of the Co-Cr-Al system runs almost parallel to the chromium axis.
Unfortunately, the complete phase diagram of the Co-Cr-Al system is not
available, but szome information was obtained by analysing (by EPMA) the
o phase of the two phase alloy 3 Co 25;7 wt% 11.7 wtgdl, This alloy
had previously been annealed in wvacuo for 5 days at 1200°C and quenched,
20 that o and B phase compositions should have been at either end of a

tie-line on the 1200°C isotherm of the phase diagram.
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The 0 phase was found to have the composition : Co 27.2 wt%Cr 5.6 wt%Al,
which may be compared with the positions of the o phase boundary at 1200°C
in the binary system cobalt-aluminum [14], i.e. Co 6.5 wt3Al. Thus it

is seen that at 1200°C (and therefore, probably at 1100°C also) the o
phase boundary in the Co-Cx-Al system does in fact run almost parallel

to the chromium axis over a wide range of chromium concentrations.

Kirkaldy and Brown [10] have discussed the possibility of making a
diffusion couple of which both terminal alloys lie in the szame single
phase field, but whose diffusion path loops into adjacent two phase and
and even single phase regions. Consideration was given to the possibility
of observing this effect in the Co-Cr-Al system. In particulax, the
guestion of whether a region of the O phase (based on CoAl) could be
"grown" in a diffusion couple made up of two alloys in the cobalt solid
solution (0) was seriously investigated.

The reason for this interest lies in a problem that besets superalloy
development, i.e. that optimisation of high temperature mechanical strength
is incompatible with the maintenance of adequate environmental resistance.
In oxder to circumnavigate this problem, attempts have been made to separate
these conflicting requirements by designing an alloy with good mechanical
properties and then applying a coating to resist oxidation and hot corro-
sion. One of the most important such coating procedures is aluminizing,
whereby the surface of the superalloy is enriched in aluminum (to produce
a layer of CoAl in the case of cobalt-based superalloy). Unfortunately,
such coatings deteriorate in service as a rvesult of (amongst other things)
interdiffusion with the substrate. Thus, not only is the alloy's ability
to maintain a protective oxide diminished, but also the mechanical proper-

ties of the substrate may be impaired by the influx of aluminum from the

coating and by the loss of strengthening components to the surface.
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Attemots to suppress the effect by the interposition of a physical diffu-

ion barrvier between the coating and the alloy s

up o now
proved largely unsuccessful.

It was considered that a possible answer to this problem might have

]

{

been to manipulate the wmetal chemistry of the superalloy surface 30 as
to maintain a protective aluminide by the mechanism described above, i.e.
growing a rvegion of protective B phase by havnessing diffusional inter-
actlons in a otherwise gingle phase O system. However, it soon became
apparent that in the case of the Co-Cr-Al system, at least, this would
not be feasible because of the low value of the cross diffusion coeffi-
cient DA1COCr coupled with the fact that the o phase boundary is almost
parallel to the chyromium axis. »As described earlier, these two faabures
are probably manifestations of a single characteristic of the system.

To illustrate the reason why diffusion path looping out of the sin-
gle phase O region is not possible, the assumption is made that the
Co=-Cr=Al system closely approximates to the model svstem ABC, in which
D%B is zero and the O phase boundary ig pavallel to the B axis, i.2. as
shown in Figure 2.

Consider a couple between W and ¥. In oxder that any B phase be
formed, the diffusion path wmust loop into a region of higher C concen-
tration than that of alloy W.  However, as described in [o], this is

impossible if Dep is zero because under these clroumstances the B con~

centration gradient has no influence on the diffusion of C and so C
bound to diffuse down its own concentration gradient. This argument
applies even in the case of a diffusion couple between alloy compositions
W and ¥, the diffusion path of which turns out to be simply a vertical

line between the two tevminal compositions.
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Figu‘re» 1. Calculated Diffusion Path for Couple XY.
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Figure 2. Isothermal Section of ABC Phase Diagramn.
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Figure 3. Composite Diffusion Path of Couple XZ.
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Figure 4. Composite Diffusion Path of Couple JM.








