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Optimal Mixing Enhancement in 3-D Pipe Flow
Andras Balogh, Ole Morten Aamo, Member, IEEE, and Miroslav Krstić, Fellow, IEEE

Abstract—We design a Lyapunov based-boundary feedback
controller for achieving mixing in a three-dimensional (3-D) pipe
flow governed by Navier–Stokes equations. We show that the con-
trol law maximizes a measure related to mixing (that incorporates
stretching and folding of material elements), while at the same
time minimizing the control effort and the sensing effort. The
penalty on sensing results in a static output-feedback control law
(rather than full-state feedback). We also derive a lower bound on
the gain from the control effort to the mixing measure. Further-
more, we establish input–output-to-state-stability properties for
the open-loop system. These results show a form of detectability of
mixing in the interior of the pipe from the chosen outputs on the
wall. The effectiveness of the optimal control in achieving mixing
enhancement is demonstrated in numerical simulations.

Index Terms—Lyapunov methods, mixing, optimality, output
feedback, partial differential equations.

I. INTRODUCTION

THE PROCESS of mixing is encountered frequently in en-
gineering applications, with the mixing of air and fuel in

combustion engines being a prime example [8], [3]. Approaches
to analyzing mixing range from experimental design and testing
to modern applications of dynamical systems theory (see [24],
[25] for thorough reviews). The latter was initiated by Aref [4],
and followed by [5], [13], [17], [31], and [28]. A framework in
which to analyze mixing properties of (nonperiodic) finite-time
flow fields, was developed in [9]–[12], and applied to geophys-
ical flows in [22] and [27]. Another method for identifying re-
gions in a flow that have similar finite-time statistical properties
based on ergodic theory was developed and applied in [19]–[20].
The relationship between the two methods mentioned, focusing
on geometrical and statistical properties of particle motion, re-
spectively, was examined in [26]. Rigorous application of con-
trol systems theory to problems in mixing appeared for the first
time in [6] and [7], and more recently in [23]. For a more elab-
orate review of these works, see [1].

In [1], we applied active feedback control in order to enhance
existing instability mechanisms in a two-dimensional (2-D)
model of plane channel flow. By applying boundary control intel-
ligently in a feedback loop, mixing was considerably enhanced
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with relatively small control effort. Wall-normal suction and
blowing was used for actuation, and the pressure difference be-
tweenoppositepointson thewall for sensing.Thecontrol lawwas
decentralized and designed using Lyapunov stability analysis.

In the current work, these efforts are successfully extended
to three-dimensional (3-D) pipe flow, which, in the uncon-
trolled case, has a parabolic steady-state solution (known as
Hagen–Poiseuille flow). With mixing in mind, we quantify the
flow perturbations (away from the Hagen–Poiseuille flow) in
terms of the norm of their first-order spatial derivatives.
This norm is a volume integral over the entire flow domain. It
explicitly incorporates stretching of material elements, and due
to the boundedness of the domain, and the fact that the flow
field satisfies the Navier–Stokes equations, folding is implicit
in the measure. Since stretching and folding are key ingredients
in mixing, the measure appears to be strongly related to mixing.

We design a Lyapunov based control law and show that it
maximizes the measure of mixing described above, while at the
same time minimizing the control effort and the sensing effort.
The penalty on sensing results in a static output-feedback con-
trol law (rather than full-state feedback). We also derive a lower
bound on the gain from the control effort to the mixing measure.

In separate results, we establish input–output-to-state-sta-
bility properties for the open-loop system. These results show a
form of detectability of mixing in the interior of the pipe from
the chosen outputs on the wall.

The effectiveness of the optimal control in achieving mixing
enhancement is demonstrated in numerical simulations of the
full, nonlinear, Navier–Stokes equations for 3-D pipe flow at
Reynolds numbers 10, 2100, and 5000. To quantify mixing,
massless particles are placed into the flow, simulating passive
tracer dye. Visualizations compare perturbation energy, en-
strophy, vorticity, and dye distribution for the uncontrolled and
controlled cases.

The feedback system designed in this work stands a good
chance of being realizable, due to its simplicity: sensing and
actuation are restricted to the pipe wall; and the feedback law
is decentralized and static. Furthermore, simulations show that
the spatial changes in the control velocity are smooth and small,
promising that a low number of actuators will suffice in practice.

This paper is organized as follows. In Section II, we present
the governing equations. In Section III, we introduce our choices
of sensing and actuation. In Section IV, we define two measures
of the fluid flow field which are instrumental to the theoretical
analysis. In Section V, we provide an energy analysis resulting
in two technical lemmas that are frequently used in the analysis.
In Section VI, we present the main result on control design and
optimality. In Section VII, we discuss detectability of mixing. In
Section VIII, numerical simulations are presented, and finally,
in Section IX, we offer some concluding remarks.

1063-6536/$20.00 © 2005 IEEE
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Fig. 1. Geometry of the pipe flow.

II. NAVIER–STOKES EQUATIONS FOR 3-D PIPE FLOW

The nondimensionalized Navier–Stokes equation is given by

Re
(1)

(2)

where denotes the gradient operator, denotes the Laplace
operator, and div is short for divergence.
is the velocity of the fluid, is the pres-
sure, and Re is the Reynolds number. The Reynolds number is
defined as Re , where and are the density and
viscosity of the fluid, respectively, and and are character-
istic length and characteristic velocity of the problem. The pipe
radius is chosen as characteristic length, and the center velocity
of the steady flow (Hagen–Poiseuille flow, given by (3) below)
is chosen as characteristic velocity. The domain, , for the 3-D
pipe flow is most easily defined in terms of cylindrical coordi-
nates , configured as shown in Fig. 1. The domain is, thus,
given by , where is
the length of the pipe. In the angular direction, the boundary
conditions are clearly periodic. In the streamwise direction,
we also use periodic boundary conditions. That is, we equate the
flow quantities at 0 and , and at 0 and . In
the radial direction we impose the boundary conditions that
the velocity be finite at 0, and at the wall we will
eventually specify the flow velocity as a boundary control law,
but for now we use no slip. Under these boundary conditions, one
may verify that the velocity field, , and pressure , defined by

Re
(3)

is a steady-state solution of (1)–(2), where , and are the
velocity components in the radial , angular , and stream-
wise directions, respectively. Equations (1)–(2) in terms of
perturbation variables, defined as

and (4)

becomes

Re
(5)

div (6)

In cylindrical coordinates, we will denote the perturbation vari-
ables

and

(7)

We will frequently need volume integrals over the domain ,
as well as area integrals over the boundary, which we denote

Fig. 2. Actuation is symmetric about the pipe centerline.

. In view of the periodic boundary conditions in the angular
and streamwise directions, the boundary is simply the pipe wall,

. The volume and area integrals are
denoted in the usual manner as

and (8)

respectively. The equivalent integrals in cylindrical coordinates
are

and (9)

III. SENSING AND ACTUATION

As mentioned in the previous section, the boundary condi-
tions on the wall of the pipe incorporate our actuation. The fluid
velocity at the wall is restricted to be normal to the wall, that is,

, and ,
where is the control input. Thus, on ,
where is the outward pointing unit normal vector. We also im-
pose on the control input that it satisfies

(10)

which states that if suction is applied at a point on the
pipe wall, then an equal amount of blowing is applied at the
opposite point . This is illustrated in Fig. 2. It is clear
that condition (10) ensures a zero net mass flux across the pipe
wall, and therefore it is a natural condition to impose from a
mass balance point of view. The measurement available is the
pressure drop, denoted , from any point on the pipe wall
to the opposite point . That is

(11)

We also define the instantaneous control effort and sensing effort
as

(12)

and

(13)

respectively.
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IV. MEASURES OF MIXING

There are two key ingredients to effective mixing. The fluid
flow field must inflict extensive stretching to material elements,
and the stretching should be accompanied by folding. In this
paper, we define two measures of the fluid flow field that are in-
strumental to our development below. One is the kinetic energy
of the perturbation, termed turbulent kinetic energy in the fluid
mechanics literature, defined as

(14)

and the other is a measure of spatial velocity gradients, defined
as

(15)

The latter measure (15), which is related to the dissipation func-
tion via the factor Re, appears to be stronger connected to
mixing. While it is clear that stretching of material elements
is explicit in a measure of spatial gradients of the flow field,
folding is implicit in the measure due to the boundedness of
the flow domain, and the fact that satisfies the Navier–Stokes
equations. It is recognized that flow fields having poor mixing
properties and large exist, but we postulate that such flow
fields will not be hydrodynamically stable under the control ac-
tuation to be designed below. Thus, our objective becomes that
of designing a feedback control law, in terms of suction and
blowing of fluid normally to the pipe wall that is optimal with
respect to some meaningful cost functional related to .

V. ENERGY ANALYSIS

Before giving the main result on controller design and opti-
mality, we state two key lemmas that are needed frequently in
what follows. The first lemma is a Lyapunov type result and it
relates the time derivative of to . The second
lemma provides a bound on the crossterm between the pertur-
bation and the Hagen–Poiseuille steady state flow, originating
from the nonlinear convective terms in the Navier–Stokes equa-
tion. This term is called the instantaneous production in the
fluid mechanics literature. Proofs of the lemmas are provided
in Appendix.

Lemma 1 (Balance for the Turbulent Kinetic Energy): For
wall-normal actuation, satisfying (10)

Re Re
(16)

along solutions of system (5)–(6), where

(17)

Lemma 2 (Bound for the Instantaneous Production): If
, then solutions of system (5)–(6) satisfy

(18)

for arbitrary positive constants and .
The conditions of Lemma 1 and 2 are assumed to hold

throughout the analysis that follows. That is, actuation is
wall-normal and satisfies (10).

VI. OPTIMALITY

The following theorem incorporates the control design and
optimality result.

Theorem 3: The control

(19)

with Re and Re arbitrary, maximizes the cost func-
tional

(20)

where

Re
and

Re

Re
(21)

Moreover, the solutions of system (5)–(6) satisfy

(22)

for arbitrary values of the control , and with

Re
(23)

and

Re
(24)

Proof: By Lemma 1, we can write (21) as

Re

Re
(25)
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Inserting (25) into (20), we get

Re

Re

Re Re

Re

Re

Re
(26)

The maximum of (20) is achieved when the integral in (26) is
zero. Thus, (19) is the optimal control. Inequality (22) is ob-
tained by applying Lemma 2 with and , to
(21).

The objective of applying the control input (19) is to increase
the value of . That this objective is targeted in the cost
functional (20), is clear from inequality (22), which gives an
upper bound on in terms of . Thus, cannot be
made large without making large, so the cost functional
(20) is meaningful with respect to our objective. The cost func-
tional also puts penalty on the output. Since the output is fed
back to the control input, the output penalty works in conjunc-
tion with the input penalty to minimize control effort.

The next theorem writes the result of Theorem 3 on a form
that puts emphasis on signal gains.

Theorem 4: For all Re and solutions of system (5)–(6)
satisfy

(27)

where

(28)

(29)

(30)

and

(31)

Furthermore, the maximum is achieved with the optimal control
(19), for which solutions of the closed-loop system satisfy

Re
(32)

Proof: Integration of (29) with respect to time, and adding
to each side, gives

(33)

The two first terms on the right hand side of (33) is
(without the limit), so inserting (26) we get

Re Re

(34)

Dividing both sides of (34) by

assuming , taking the limit as , and then taking
the maximum value over , we obtain

(35)

where

Re
(36)

Since the numerator of the last term in (35) is nonnegative, and
the denominator is strictly positive, the maximum on the right
hand side of (35) is attained when the numerator is zero, which
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is for the optimal control (19). Thus, we obtain (27). Inequality
(31) follows from (29) and (22). Inserting the optimal control
into (34) by writing in terms of using (19), we obtain

Re
(37)

Inserting for , as defined in (24), and using (31), we get (32).
The result (27) was inspired by the work on optimal destabi-

lization of linear systems reported in [21]. In view of (31), by
maximizing the ratio in the curly brackets of (27), we make sure
that the input and output signals are small compared to the in-
ternal states. This is equivalent to obtaining a large closed-loop
gain. In addition, the theorem gives a lower bound on the states
in terms of the control input for system (5)–(6) in closed loop
with (19). Thus, it establishes the fact that the states cannot be
small without the control input being small, and the control input
cannot be made large without making the states large. As we
shall see in our simulation study, this will lead to good mixing
with low control effort.

VII. DETECTABILITY OF MIXING

Achieving optimality with static output feedback of is re-
markable. In this section, we explain why this special output is
strongly related to mixing and allows its enhancement. The next
theorem establishes an open-loop property of system (5)–(6)
that is reminiscent of an integral variant of input–output-to-
state-stability (IOSS) for finite dimensional nonlinear systems.

Theorem 5: If Re , then solutions of system (5)–(6)
satisfy

Re
(38)

for all and for arbitrary values of the control , with

Re
Re

and
Re
Re

Proof: From (20), (21), and (26), we get for all

Re

Re
(39)

Using Lemma 2, we obtain

Re

Re

so it follows that:

Re

Re

Rearranging the terms, we obtain

Re

Re

which is (38) for and Re Re .
The significance of inequality (38) is that it provides a notion

of detectability of internal states from the output . In particular,
if is large, must be large as well, or if is small, so is

. This is reminiscent of an integral variant of the IOSS
property for finite-dimensional nonlinear systems, as presented
in [15] (and motivated by earlier results in [29], [30]). In the
case of (38), we have an integral-to-integral property (iiIOSS)
with as a measure of the states, so the “energy” of the
states is bounded above by the “energy” of the input and output
signals. With as a measure of the states, we can also find a
uniform upper bound (as opposed to an “energy” upper bound)
in terms of the input and output signals. That is, system (5)–(6)
has the IOSS property, as stated formally in the next theorem.
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Theorem 6: For Re , solutions of system (5)–(6) sat-
isfy

(40)

for all and for arbitrary values of the control , with

Re
Re
Re

and
Re

Re Re

Proof: From (67), (68) and a similar derivation for , we
have

(41)

and therefore

(42)

From Lemma 1 and (42) we get

Re

Re

so that

Re

Re

Setting

Re
Re

we obtain

(43)

with

Re
Re
Re

and
Re

Re Re

Inequality (40) now follows from the comparison principle
([16], Lemma C.5) [and the triangle inequality applied to the
two last terms in (43)].

In Theorem 6, the notation denotes the essential
supremum taken over the finite time interval . The de-
tectability properties stated in Theorems 5 and 6 indicate that
our choice of sensing, , is appropriate.

VIII. NUMERICAL SIMULATIONS

A. Computational Scheme

The simulations are performed using a flow solver that is
based on a second-order staggered grid discretization, second-
order time advancement, and a Poisson equation for pressure,
based on a scheme designed by Akselvoll and P. Moin [2]. The
length of the cylinder is and the radius is . The
grid is structured, single-block with cylindrical coordinates. It is
uniform and periodic in and with Fourier-modes 64 and 128,
respectively, and linearly spaced with ratio 8:1 in the radial di-
rection in order to achieve high resolution at the wall. The adap-
tive time step was in the range of 0.01–0.08 with constant CFL
number 0.5 and constant 1 volume flux per unit span. Numer-
ical results corresponding to three different Reynolds numbers
are presented here. The lowest Reynolds number is Re 10
which is a stable, and perhaps nonphysical flow, but it is a good
test case for the effectiveness of the control design. The second
Reynolds number we used was Re 2100 which is slightly
higher than the limiting number Re 2000 for self-sustained
turbulence. Finally for the case of Re 5000 we compare nat-
ural and controlled turbulence.

We started both the controlled and the uncontrolled case from
a statistically steady-state flow field with control gain 0.1 in
the controlled case. The initial flow field was obtained from a
random perturbation of the parabolic profile over a large time
interval using the uncontrolled case. All the measured quanti-
ties were scaled to unit surface or unit volume, whichever was
appropriate.

B. Measuring Mixing

We start our comparison with the spatially averaged perturba-
tion energy and enstrophy defined as

and (44)

respectively, where denotes the volume of region . While the
perturbation energy is part of the cost functional (20) and is also
one of the simplest quantities to measure in our numerical sim-
ulation, enstrophy provides us with a measurement that is more
closely related to mixing. Fig. 3 shows that in the Re 2100 case
our control results in an approximately 25% increase in the per-
turbation energy and 65% almost instantaneous increase in the
perturbation enstrophy. For the Re 5000 case these numbers
are smaller: approximately 15% and 40%, respectively. One sees
the largest control effect in the Re 10 case: “infinite” % in-
crease in the perturbation energy and enstrophy. Intuitively these
differences are easy to understand. In a laminar flow Re 10),
there is no mixing, hence, this case can be dramatically improved
with control. The Re 2100 case corresponds to self-sustained
turbulence already, but it is not far from the laminar Re 2000)
case. In this border case, it is expected that our control can easily
tip the scale toward increased turbulence and mixing. In the fully
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Fig. 3. Perturbation energy and perturbation enstrophy.

turbulent Re 5000) case, we cannot expect dramatic changes,
but the increase in the measured quantities would be considered
significant in applications. The instantaneous streamwise vor-
ticity along a cross section of the pipe (Fig. 4) also shows some
promise for increased mixing with higher values of vorticity and
more complex vortex structures in the controlled case than in the
uncontrolled case. Vorticity is increased not only near the wall
but everywhere in the pipe.

The method we use to quantify and visualize mixing is the
tracking of dye in the flow. We consider the problem of mixing
of a single fluid (or similar fluids) governed by the stretching and
folding of material elements. We introduce passive tracer dye Fig. 4. Streamwise vorticity at Re = 2100.
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Fig. 5. Initial particle distribution.

Fig. 6. Length of dye as a function of time.

along the center of the pipe represented by a set of 100 parti-
cles (Fig. 5). We trace the position of these particles using a par-
ticle-line method [14], [32]. The distance between neighboring
particles is kept under 0.1 by introducing new particles to halve
the distance if necessary to obtain a connected dye surface at all
time. As shown in Fig. 6, the number of particles, that is, the
length of the dye, increases in the controlled case at a much higher
rate than in the uncontrolled case. Adding particles is not fea-
sible computationally for an extended period of time. We stopped
adding particles when their number reached two million (
in the controlled case and in the uncontrolled case), but we

Fig. 7. Particle distribution Re = 2100.

Fig. 8. Parts of functionalm(w) for Re = 2100.

continued tracing them. Fig. 7 shows the distribution of particles
inside the pipe. In the controlled case, we obtain more uniform
particle distribution even for smaller time.
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Fig. 9. Parts of functionalm(w) for Re = 5000.

We compare the nine different parts of functional for
different Reynolds numbers in Figs. 8 –10. In these figures, we
omit the integral signs as well as the square signs in order to
simplify notations. In all the cases, the terms can be divided into
two groups: one dominant group and another group with terms
more than a magnitude smaller.

We start the comparison with the large Reynolds number
cases Re 2100 and Re 5000 (see Figs. 8 and 9), because
they have similar features. In both of these cases, there are
two parts that are significantly larger than the rest: the parts
containing and . The next large term
corresponds to the expression and it is four
to six times smaller than the two largest terms. The rest of the
terms are about 30 to 200 times smaller than the two largest
terms.

For Reynolds number Re 10 some of the terms have
large values and their behavior is chaotic for the initial
transient time . We only make comparison for
larger time in Fig. 10. The dominant terms are the ones con-
taining

, and . Only the last one of these

Fig. 10. Parts of functionalm(w) for Re = 10.

terms, the terms containing belongs to the domi-
nant group for larger Reynolds numbers. The term containing

is one magnitude smaller than these four
dominant terms. The rest of the terms are all four magnitude
smaller and are omitted from the figure.

C. Measure of Control Effort

In the previous subsection our numerical simulations show
significant mixing results with our feedback boundary control
law. This control law is optimal with respect to the cost func-
tional (20). In this section, we measure how big the control ef-
fort is relative to natural quantities in the pipe flow.

Fig. 11 compares the natural pressure power
that propels the flow through the channel

to the power of the control actuation . The
actuation power is four magnitude smaller than the natural
pressure power for all three Reynolds numbers. The negative
sign of the actuation power shows that the actuation acts
against high pressure on the wall by blowing inward the pipe.

We compare the pipe flux and the actuation
flux with the help of Fig. 12. As we stated
earlier, the pipe flux is set to constant one per unit span. The
actuation flux is one quarter of the pipe flux for Re 10 and
about one eighth of the pipe flux for Re 2100 and Re
5000. The maximum velocity at the wall is for Re 10
and for Re 2100 and for Re 5000.

D. Actuator Distribution and Bandwidth for Re 2100

Fig. 13 shows the instantaneous pressure field in a cross sec-
tion of the pipe along with the boundary velocity that is mag-
nified 500 times for visualization. The control “blows in” when
wall pressure is high and “sucks out” when wall pressure is low.
Spatial changes in the control velocity are smooth and small,
promising that low number of actuators will suffice in practice.
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Fig. 11. Pressure power and actuation power.

In order to investigate the density and bandwidth of sensors and
actuators needed we calculate the power spectral densities of
the control. The spectral plots alongside with the original sig-
nals are shown in Fig. 14. Fig. 14(a) and (b) shows that only
about 10–15 actuators/sensors are needed along the pipe length.
Similarly, in the angular direction [see Fig. 14(c) and (d)] we
need at most 15–20 actuators/sensors. That results in approxi-
mately 200 micro-actuators/sensors for the whole pipe surface.
The time-frequency analysis [Fig. 14(e) and (f)] shows a band-
width required for sensing/actuation of only 1.5 Hz.

IX. CONCLUDING REMARKS

We have shown that mixing in 3-D pipe flow is considerably
enhanced by applying small amounts of blowing and suction
across the pipe wall. With the -norm of first-order spatial
derivatives of the flow perturbations as a measure of mixing, we
have designed a Lyapunov based control law that maximizes
this measure, while at the same time minimizing the control
effort and the sensing effort. The penalty on sensing resulted
in a static output-feedback control law (rather than full-state
feedback). A lower bound on the gain from the control effort
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Fig. 12. Actuation flux.

to the mixing measure was also derived. For the open-loop
system, input–output-to-state-stability properties were estab-
lished, which show a form of detectability of mixing in the
interior of the pipe from the chosen outputs on the wall.

The effectiveness of the optimal control in achieving mixing
enhancement was demonstrated in numerical simulations of the
3-D pipe flow at Reynolds numbers 10, 2100, and 5000. Mass-
less particles placed into the flow, simulating passive tracer dye,
indicated considerable mixing enhancement as a result of the
control. Simulation results also showed that the spatial changes
in the control velocity were smooth and small, promising that a
low number of actuators will suffice in practice.

Fig. 13. Instantaneous pressure field with controlled velocity (magnified) in a
cross section of the pipe Re = 2100.

APPENDIX

A. Proof of Lemma 1

The time derivative of along trajectories of (5)–(6) is

(45)

so inserting (5) we have

Re
(46)

We will now integrate term by term using the divergence the-
orem of Gauss, and the following three formulas from vector
differential calculus (can be found in any book on calculus)1

(47)

(48)

(49)

a) Convective term

(50)

so, by the divergence theorem of Gauss, we get

(51)

1In (47), we have used (6).
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Fig. 14. Spectral analysis of the control Re = 2100. (a) Control signal. (b) Power spectral density. (c) Control signal. (d) Power spectral density. (e) Control
signal. (f) Power spectral density.
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on , so the integrand in the last integral of
(51) is simply . Since has the form (10), we have for
odd

and by a change of variables in the first integral
, we get

So we obtain

(52)

b) Crossterm

(53)

by definition of .
c) Pressure term

(54)

so by the divergence theorem of Gauss, and the fact that
on

(55)

From (10) and (11) we have

(56)

so we obtain

(57)

d) Dissipation term

Re Re

Re
(58)

where we have adopted the Einstein summation notation.
From (58) we get

Re Re

Re
(59)

The integrand of the first integral on the right hand side of
(59) can be written as , so by the divergence
theorem of Gauss, we get

(60)

Since the control is wall-normal, the integrand on the right
hand side of (60) reduces to

(61)

We now note from incompressibility (6), which in cylin-
drical coordinates reads

(62)

that

(63)

Thus, by inserting (63) into (61), (61) into (60), and (60)
into (59), we obtain

Re Re Re
(64)

Substituting the terms (52), (53), (57), and (64) into (46)
yields (16).

B. Proof of Lemma 2

Using cylindrical coordinates, we have that

(65)
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Since , we have

(66)

We write

so that

By the Schwartz inequality

so we have that

where we have set in the lower integral limit. We now get

(67)

For , we have

so we get

and, finally

(68)

Inserting (67) and (68) into (66), and letting , yield

(69)

(18) now follows from (65), (69), and (15).
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[1] O. M. Aamo, M. Krstić, and T. R. Bewley, “Control of mixing by
boundary feedback in 2-D channel flow,” Automatica, vol. 39, no. 9,
pp. 1597–1606, 2003.

[2] K. Akselvoll and P. Moin, “An efficient method for temporal integration
of the Navier-Stokes equations in confined axisymmetric geometry,” J.
Computat. Phys., vol. 125, pp. 454–463, 1996.

[3] A. M. Annaswamy and A. F. Ghoniem, “Active control in combustion
systems,” IEEE Control Syst. Mag., vol. 15, no. 6, pp. 49–63, Dec. 1995.

[4] H. Aref, “Stirring by chaotic advection,” J. Fluid Mech., vol. 143, pp.
1–21, 1984.

[5] W.-L. Chien, H. Rising, and J. M. Ottino, “Laminar mixing and chaotic
mixing in several cavity flows,” J. Fluid Mech., vol. 170, pp. 355–377,
1986.



BALOGH et al.: OPTIMAL MIXING ENHANCEMENT IN 3-D PIPE FLOW 41

[6] D. D’Alessandro, M. Dahleh, and I. Mezić, “Control of fluid mixing
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