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ABSTRACT

Conventional mean squared error based methods for objective image quality assessment are not well cor-
related with human evaluation. The design of better objective measures of quality has attracted a lot of
attention and several image quality metrics based explicitly on the properties of the Human Visual System
(HVS) have been proposed in recent years. However, only in a few cases has the performance of such
metrics been demonstrated on real images. In accounting for visual masking, all these metrics assume
that the multiple channels mediating visual perception are independent of each other. Recent neuroscience
findings and psychophysical experiments have established that there is interaction across the channels and
that such interactions are important for visual masking. In this work, we propose the Picture Distortion
Metric (PDM) which integrates these new visual masking properties, and we evaluate its performance for
image coding applications. We evaluate the performance at medium to high range of quality to predict
subjective scores on a 0-10 numerical scale, and on a wide range of quality for the 1-5 CCIR impairment
scale.

Keywords : image quality, image compression, psychophysics, human observer, quality assessment.

1. INTRODUCTION

Conventional mean squared error based methods for objective image quality assessment are not well cor-
L2 The design of better objective measures of quality have attracted a
lot of attention in the past two decades.>1%? Ahumada'!! gave an overview of quality metrics for image

degradation which includes methods for half-toning, image compression and image processing. More re-
1.12

related with human evaluation.

cently, Fckert et al.* gave a review of perceptual quality metrics and a discussion of various components

of typical objective quality metrics, for still image compression applications.

In general, objective measures quantify one or more distortion factors defined as distance measures on
perceptually transformed original and degraded images. These metrics compute the distance measure on
the outputs of a multi stage model; each stage accounting for properties of visual perception relevant to
the visibility of distortions. In recent years several image quality metrics based explicitly on the properties
of the HVS have been proposed.!?214157106 = These metrics compute a distance measure based on the
outputs of a multiple channel cortical model of human vision which accounts for known sensitivity variations
of the HVS in the primary visual pathway. The promise of a metric based on the HVS is that it would
be very general in its nature and applicability. In addition to correctly describing threshold behavior, if it
could accurately rate supra-threshold errors, it can be used to evaluate any image processing algorithm,
regardless of the types of distortions it introduces.

Metrics based on HVS models have been developed based on psychophysical threshold-based experi-
ments which predominantly measure responses to simple stimuli like gratings or gabor patches. It is very
important to verify the performance of such metrics on complex supra-threshold stimuli such as natural
images, and this has been demonstrated only in a few cases.1®®7 The Visible Differences Predictor (VDP)®



proposed by Scott Daly and the Lubin model!® are examples of carefully designed metrics whose perfor-
mance have been demonstrated on relatively simple psychophysical stimuli as well as complex stimuli like
images. All these metrics assume that the multiple channels mediating visual perception are independent
of each other. Recent neuroscience findings have shown that there is significant interaction across the
channels.'91617  There is also strong evidence from psychophysical experiments that interactions across
channels are very important for visual masking.!'®19 In particular, Foley has shown that a new psychophys-
ical masking model incorporating these interactions gives significantly better results than models which
assume no interaction.!? In this work, we propose the Picture Distortion Metric (PDM) which integrates
these new visual masking properties, and we evaluate its performance for the important case of still image
coding. We first evaluate the performance of the PDM in predicting quality scores from medium to high
quality. We then apply the PDM for predicting quality scores which are in a wide range of quality from
low to high.

This paper is organized as follows: After a brief introduction in section 1, we present the PDM method-
ology in section 2. That section gives a brief description of all the components of the PDM. In section 3,
we present results evaluating the performance of the PDM at medium to high range of quality to predict
subjective scores on a new 0-10 numerical scale, and on a wide range of quality for the 1-5 CCIR im-
pairment scale. Finally, in section 4, we present a discussion of the metric and its performance and some
conclusions.
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Figure 1. Picture distortion metric

2. METHODOLOGY

Objective metrics used for quality evaluation of coded images should approximate closely the visual quality
assessment by the human observer. For a coded image, the stimulus assessed by the observer is the coder
error and the masking pattern is now the local activity in the image which may reduce the visibility of the
error. The visibility of the errors is also affected by the background luminance level, and by the spatial
structure and the frequency content of errors. Using the properties of vision, the goal is to quantify these
coder errors by a measure that reflects their visibilities.

In figure 1 we show a diagram of the PDM model. The main components of the model are:

1. perceptual nonlinearity



2. contrast sensitivity function
3. orientation and frequency selective bands (cortex bands)
4. visual masking properties, denoted “nonlinear transducer”.

5. error summation.

2.1. Perceptual nonlinearity

Note that a display nonlinearity may be needed to generate luminances corresponding to image gray values.
We then use a simple power law on the luminances to model the input perceptual nonlinearity which maps
physical luminances to perceptual brightness. This results in a brightness image b(z, y).

2.2. Contrast sensitivity function

We adopt the CSF and the orientation and frequency selective decomposition from the VDP.® In general,
this CSF is bandpass in shape, reflecting visual perception properties at threshold. A low pass version of
this CSF is used in this work as it is regarded to be more appropriate for the supra-threshold conditions
seen in image quality rating applications.

2.3. Orientation and frequency selective decomposition

The orientation and frequency selective decomposition is adopted from the VDP ¢ and uses 5 frequencies
and six orientations so that there are 31 cortex bands when the isotropic low pass baseband is included.
The orientation bandwidth is 30 degrees and the frequency bandwidth is 1 octave for each cortex band.
The decomposition results in 31 brightness images by ;(z,y), corresponding to each cortex band, where k,[
correspond to the indices of frequency and orientation selective channels. To compute the contrast in each
cortex band, we use the simple definition of global contrast and normalize by the image mean. That is, we
obtain 31 contrast images ¢ (z,y) where

bri(x,y) (1)

bmean

cri(,y) =

Note that we use analytic filters so that 31 image sets exist corresponding to both odd and even symmetric
simple cell responses.

2.4. Visual masking

Typically, visual masking is incorporated by using threshold elevation or a saturating transducer function.
When a transducer function is used, the output of the cortex filters are assumed to be the components
of a multidimensional feature vector. The coding errors are quantified by the L, norm of the difference
between the masker (original image) and the masker + stimulus (coded image). The final metric is hence
the distance between the vectors representing the original image and the coded image.

2.4.1. New approach to masking

Previous HVS metrics assume that the cortex bands representing the multiple channels in the HVS are
independent of each other. It has been shown by recent results in neuroscience and psychophysics stud-
ies!®2918 that there is significant interaction between different cortex bands. The performance of a HVS
metric may be expected to improve if we take this into consideration.!® The generalized normalization
model proposed by Watson et al.?'?%'¥ will be able to account for interactions between cortex bands



as reflected in masking. The responses from the frequency and orientation selective cortex bands are
transformed into normalized responses as
aRR?

V= exc 2
b+3qRE, @)

where R... and R;,, are the response of neurons in the excitory and inhibitory paths and V is the
normalized response.?l?%18  Both odd and even symmetric simple cell responses are considered for the
excitory and inhibitory paths. Separate excitory paths for even and odd symmetric simple cell responses
are used whereas the inhibition is common to both paths and uses energy summation over even and odd
symmetric responses. Note that the pooling operation given by >-q R? , can be over orientation, frequency
and spatial extent. This extent accounts for the spread of masking among different neural layers. In this
work, only orientation pooling between bands at the same spatial frequency is implemented. At this point,
it should be noted that there are several types of masking,?® some of which cannot be easily modeled. We
have considered only pattern masking'® in this work. In other words, the model assumes that the mask is
a simple deterministic pattern, for example, a gabor patch.

We compare this masking to the within channel transducer masking proposed by Legge and Foley *
which uses
a|Rexc|2'4

y = Ufterel
b+ |Rinn|?

(3)

A similar model was used in Lubin’s work.141°

Using the notation of equation 1, the normalized responses for each band are calculated as

_ aleg(z,y))?
Vk,l($7 y) - b + ZQ(Ck,l(xv y))q (4)

2.5. Summation of partial responses

For overall summation over all frequency and orientation selective bands and spatial locations, we have
experimented with summations of norms 2, 4 and 8. The overall metric for a norm’q’ summation over all
frequency k and orientation [ selective bands and norm’p’ over all spatial locations (z,y) is computed as

PDM = (Y PDM(x,y)") (5)
Xy
where .
PDM(z,y) = (D> Dz, y)")s (6)
K,L
and
Dyi(z,y) = Vigol®,y) = Vigelz,y) (7)

here, the subscripts o and ¢ correspond to the original and compressed images.

We evaluated the three summations, the first being a norm2 over all bands and spatial locations. This
reflects energy summation. The second one is a norm4 summation over all bands and spatial locations and
approximates probability summation.?®> Thirdly, we use a norm4 summation over all bands to approximate
probability summation over multiple channels and then a norm8 summation over all spatial locations (which
gives preference to larger errors) to compute the global metric. All the reported results are for this two
step summation. If desired, the PDM output before the summation over spatial locations, can be used
as a distortion map. These maps can be used to gain useful insight into the performance of the coder in



different parts of the image. For this paper, however, we use the summed scalar metric as an indicator of
the overall quality of the image. It should be noted here, that it is not clear what is the correct way to
sum over all the bands and especially all the spatial locations.'?> Hence, we use a simple norm summation
for the PDM computation. Better methods of summation may yield improved results; especially if results
from the study of higher order perceptual properties like eye movements are also incorporated.

PDM performance: medium to high quality, image dependencies
10 T T T T T T T T 7

Objective Values
N
T

Ideal
Lab
Parrot
Alps
Fuji
Bikes

A< OO x
A g o O x

P2 | I I I I I
Pl 0 1 2 3 4 5 6 7 8 9 10

Subjective Values

Figure 2. Picture distortion metric at higher quality ranges: image dependencies
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Figure 3. Picture distortion metric at higher quality ranges: coder dependencies



3. RESULTS

We now demonstrate the performance of the PDM in predicting subjective scores for coded images. The
raw PDM output values are linearly transformed (in the least square error sense) to obtain a final PDM
metric which can be directly compared with subjective scores. It is important to note that this does not
change the correlation coefficient and the rank correlation values, but all other observations (image and
coder dependencies) are based on this linearly transformed metric.

Figure 4. Test images 1: top: Lab, Parrot, Alps; bottom: Fuji, Bikes.

3.1. High Quality Results

We first evaluate the performance of the PDM for medium to high quality range images. The subjective
scores were obtained using a 3-context image assessment scheme for coded images.?62” In this method,
separate scales are obtained for images differing in scene content and for each coding algorithm, using
numerical category scaling with explicit high and low anchors. Since images obtained at different quality
levels from each scene and coder are separately rated, we avoid the problems of numerical scaling wherein
subjects use separate scales to rate distinct images and coders. Further, the method uses explicit anchor
stimuli specifying the end points of the scale. By presenting unambiguous anchors specifying the ends of
the scale each time an image is rated, this method assures dependable results. The separate scales are
linked using pairwise matching techniques to obtain a robust scaling technique. This method can be used
for arbitrary, narrow ranges of quality.

Figure 4 shows the five 5124512 sized test images (denoted ”Bikes”, ”Lab”, 7 Alps”, "Fuji” and ”Parrot”)
which were selected from a Kodak PhotoCD disc. Two coders were selected for the experiments: the
standard JPEG coder?® (Independent JPEG Group IJPG Version 6) and a wavelet coder?*3°(biorthogonal,
“9-77 wavelet of Barlaud,>® four dyadic scales, HVS based quantizer and an activity mask based QM



encoder) that produce artifacts of widely varying visual effect. The experiments focused roughly on medium
to high quality, with five levels of quality for each image, giving a set of 50 images (5 images*2 coders*5
levels/coder). Five observers took part in the experiments; two having extensive experience in viewing
coded images, one with moderate experience and the other two having minimal experience. All of them had
normal/corrected to normal vision. The individual subjective scores were averaged to obtain a subjective
score for each image.

The database consists of 50 images rated on a 0-10 numerical scale over medium to high range of quality.
Figure 2 shows the performance of the PDM in predicting subjective scores. The correlation coefficient and
the rank correlation between the PDM and subjective scores are 0.87 and 0.89. The performance is good,
especially at higher levels of quality. There is an image dependency in the performance (as shown in figure
2), with the metric consistently underestimating subjective scores for the ”Bikes” image and consistently
overestimating scores for the ”Fuji” image. It is interesting that exclusion of the ”Bikes” image from the
database results in a correlation of 0.93. This is because the ”Bikes” image is very busy with a large number
of features, yielding larger coding errors. These larger distortions are given more importance by the PDM,
whereas the subjects do not, while giving their subjective scores. There is no strong coder dependency of
the performance as shown in figure 3. Since the metric is based largely on properties of threshold vision,
it is expected to work better at high quality, and we can verify this from figure 2.

We now compare the performance of inter-channel masking used in the PDM with the intra-channel
masking used in previous studies,!®> keeping the rest of the model same. The PDM with inter-channel
masking performs better, achieving correlation 0.87 and rank correlation 0.89 with subjective scores, as
compared to correlation of 0.85 and rank correlation of 0.85 obtained using intra-channel masking. Further,
the mean and the maximum of the absolute prediction error using the PDM with inter-channel masking
are 1.19 and 3.04, lower than the corresponding values, 1.24 and 3.5 with intra-channel masking. Although
this comparison shows that inter-channel masking performs better than intra-channel masking, it should
be strongly emphasized that the comparison is strictly within the PDM framework and specifically for the
task of predicting subjective quality scores.
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Figure 5. Picture distortion metric for wide quality range: image dependencies



Figure 6. PQS test images. From left to right, then top to bottom: Church, Hairband, Weather, Barbara,
and Cameraman.

3.2. Wide Quality Range Results

We next evaluate the performance of the metric on a database of images which are in a wide range of quality.
The subjective scores were obtained on the CCIR impairment scale.? Figure 6 shows the 256256 sized
test image set which include the ITE (Institute of Television Engineers of Japan) test images “Church”,
“Hairband” and “Weather”, and the widely used “Barbara”, and “Cameraman” images. The JPEG coder
and simple wavelet and subband coders were used to compress the images.? The experiments resulted in
a set of five images coded with one of three types of coders and for the entire range of quality. A total of
seventy five encoded images were assessed by nine observers as described, and the average MOS score was
computed for each encoded image.

The database consists of 75 images obtained by compressing five test images using 3 coders at 5 levels
of quality. Figure 5 shows the performance of the PDM in predicting subjective scores. The correlation
coeflicient and the rank correlation between the PDM and subjective scores are 0.85 and 0.9. The per-
formance is good, especially at higher levels of quality, as discussed before. There is no strong image or
coder dependency in the performance. For this quality range, there is a non-linear relationship between
the PDM and the subjective scores which can be seen in the figure 5. It is very interesting to see that
the measure performs very poorly while predicting the quality of two particular images. These sub-band
coded ”Barbara” images, have severe Moire pattern-like artifacts in the scarf region. The PDM gives lot
of importance to these errors while the subjects do not, when they judge the quality. The discrepancy
in such results shows the inherent limitation of present generation HVS based objective quality measures
which do not model the higher order visual attention and memory processes which play an important role
in subjective image quality judgment.

4. DISCUSSION AND CONCLUSIONS

In this paper, we develop a new vision model based objective metric, the PDM, which incorporates new
masking models proposed in psychophysics literature.!?'® In addition, we show that such a distortion
metric based largely on threshold properties of the HVS performs well in predicting subjective score values
at high quality and reasonably well at lower levels of quality.



However, there are several reasons why vision models should be applied with caution to natural images:
vision models have been developed based on psychophysical experiments a vast majority of which involve
threshold measurements only; the extension of these models to supra-threshold image error conditions may
not be entirely appropriate. In addition to this, most psychophysical experiments measure responses to
simple stimuli like gratings or gabor patches. It may not be possible to extend some of these results to
analysis of complex stimuli like compressed images. In spite of these limitations, the success of applying
properties of visual perception for image processing or coding applications have been reported through the
years.13:32-35

In this work, we have used the terms image quality and image fidelity quite loosely and occasionally
interchangeably. But, strictly, there are significant differences between the two. We now consider the
difference between subjective image quality and image fidelity and how they relate to the performance of
objective metrics. Image fidelity quantifies how accurately a process, for example, a display, renders an
image. The fidelity of the rendered image is how visually discriminable it is, from the original image. The
fidelity of the rendered image, can be quantified objectively, for example, by using HVS metrics which can
quantify the discriminable differences. Image quality, on the other hand, quantifies how much one image is
preferred over the other. There are several additional factors which mediate subjective quality evaluation.
These include individual preferences, past memory and expectations of the observer and several cognitive
factors which are difficult to even identify. It has been shown that there is a complex relationship between
image quality and fidelity, which depends on the specific task.*® Subjective assessment of images involves
both fidelity and quality; the results depend on how the attributes and instructions are described and used
while performing the experiments. For all the subjective data used in this paper, subjective evaluation
was performed using image impairment (rather than image quality) as an attribute as described in the
references.?%272 We have noticed in our work, similar to other studies,?” that the results of the subjective
experiments are dependent on the instructions used. We postulate that when observers scale impairment
rather than quality, using anchored scales, the assessment uses a combination of image fidelity and image
quality depending on the level of quality. However, this issue was not rigorously explored in our work on
subjective quality.?6:27

HVS based objective metrics are actually, image fidelity metrics. It can be argued that there is a
limitation on how well HVS based objective fidelity metrics can predict subjective scores which are a
reflection (at least partly) of image quality. The performance of the HVS based objective fidelity metrics
in predicting subjective scores is not only limited by the threshold data used to derive the properties of
the model, but also by the lack of the cognitive factors that are involved in the subjective assessment.
Incorporating some of the higher level visual and cognitive processes would improve the performance of
HVS based objective metrics.
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