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ABSTRACT 

Government agencies must make rapid and informed decisions in wildfires to safely evacuate 

people. However, current evacuation simulation tools for resource-strapped agencies largely fail 

to compare possible transportation responses or incorporate empirical evidence from past 

wildfires. Consequently, we employ online survey data from evacuees of the 2017 Northern 

California Wildfires (n=37), the 2017 Southern California Wildfires (n=175), and the 2018 Carr 

Wildfire (n=254) to inform a policy-oriented traffic evacuation simulation model. We test our 

simulation for a hypothetical wildfire evacuation in the wildland urban interface (WUI) of 

Berkeley, California. We focus on variables including fire speed, departure time distribution, 

towing of items, transportation mode, GPS-enabled rerouting, phased evacuations (i.e., allowing 

higher-risk residents to leave earlier), and contraflow (i.e., switching all lanes away from danger).  

 

We found that reducing household vehicles (i.e., to 1 vehicle per household) and increasing GPS-

enabled rerouting (e.g., 50% participation) lowered exposed vehicles (i.e., total vehicles in the fire 

frontier) by over 50% and evacuation time estimates (ETEs) by about 30% from baseline. Phased 

evacuations with a suitable time interval reduced exposed vehicles most significantly (over 90%) 

but produced a slightly longer ETEs. Both contraflow (on limited links due to resource constraints) 

and slowing fire speed were effective in lowering exposed vehicles (around 50%), but not ETEs. 

Extended contraflow can reduce both exposed vehicles and ETEs. We recommend agencies 

develop a communication and parking plan to reduce the number of evacuating vehicles, create 

and communicate a phased evacuation plan, and build partnerships with GPS-routing services.  

 

Keywords: Evacuations, Traffic Simulation, California Wildfires, Transportation Policy, 

Behavior, Contraflow, Phased Evacuations 
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1. INTRODUCTION 

Recent large-scale wildfire evacuations in California have exposed significant challenges for 

governments in increasing evacuation compliance, decreasing congestion, and ensuring equity. In 

many of these events, public agencies (e.g., transportation, transit, emergency management) lacked 

resources to deploy for a transportation response (1). These challenges are likely to extend to other 

wildland-urban interface (WUI) evacuations across North America. Without adequate funding, 

staff, and research ability, governments need practice-ready strategies to successfully evacuate 

residents in wildfires. One positive direction in the field has been the development of wildfire 

evacuation models, including traffic simulation models (2) that have sometimes been coupled with 

fire spread models and trigger buffer models (e.g., (3)). Despite these new integrated models, two 

key limitations remain in the wildfire evacuation simulation field. First, choice-making and 

behavior (e.g., transportation mode choice, destination choice) in wildfire evacuation simulations 

is often assumed or estimated based on expert knowledge, not actual behavior from post-disaster 

surveys or data. Second, traffic simulations for wildfires often fail to compare transportation 

strategies for evacuations. Effective and cost-efficient policies are crucial for ensuring safe 

evacuations.  

 

To begin addressing these two key limitations, we developed several research questions: 

1. What behavioral assumptions in simulations could be replaced by previously collected 

evacuation data? 

2. What key factors should be integrated into traffic simulations to balance realism, 

computational complexity, and generalizability? 

3. What transportation responses/strategies could be simulated and how might 

responses/strategies differ? 

 

To answer these questions, we developed a spatial-queue-based traffic simulation that integrates 

post-disaster wildfire survey data from three wildfires - the 2017 Northern California Wildfires, 

the 2017 Southern California Wildfires, and the 2018 Carr Wildfire - for several evacuation 

choices. Using this simulation, we compare and contrast different fire speeds, departure times, 

towing demand, transportation mode splits, rerouting participation rates (i.e., GPS-guided routing 

based on real-time traffic conditions), phased evacuation times (i.e., time-based zone releases of 

evacuees), and contraflow options (e.g., switching all lanes to evacuate away from the fire). These 

fire behavior and policy parameters are tested in hypothetical wildfire incidents in the Berkeley 

Hills. We investigate the results for each scenario and provide recommendations for the different 

responses and strategies. 

 

2. LITERATURE REVIEW 

2.1 Wildfire and No-Notice Evacuation Behavior 

During wildfire evacuations, individuals must make a number of complex choices including their 

decision to evacuate or stay/defend, departure timing, transportation mode, route choice, 

shelter/accommodation type, destination, and reentry timing. The wildfire evacuation behavior 

literature (see review in (4)) has focused predominantly on the decision to evacuate or stay (5,6). 

In many cases (e.g., (7,8)), this literature employs discrete choice models to isolate influential 

variables in the decision to evacuate or stay including defending behavior of property (see (9) for 

more work on alternatives to evacuations). One important improvement over the years has been 
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the collection of post-disaster wildfire evacuation survey data to inform these models, e.g., (6–

8,10,11,1). However, much less work has focused on decisions during the evacuation process (e.g., 

route, destination) (11,12), as noted in (13). Other work, such as (14), notes that behavior such as 

extra-trip making, mobilization time, and background traffic can also impact evacuations. 

Moreover, alternative transportation strategies such as the sharing economy (e.g. (15–17)) may be 

feasible under certain wildfire evacuation circumstances, changing the potential modal split and 

sometimes increasing social equity. Altogether, the literature lacks in several areas: 1) fully 

understanding evacuee behavior, and 2) having enough survey data for most or all choices in 

wildfire evacuations. In addition, survey data has yet to be fully integrated into evacuation 

simulation models as behavioral variables are currently created via assumptions, expert opinions, 

and/or hypothesized statistical distributions. 

 

Apart from the wildfire specific studies referenced above, no-notice or short-notice evacuation 

under other types of hazards (e.g., truck attack, flash flood, or general emergency situations) have 

long attracted researchers’ attention (18–21). Research in this area can be categorized into two 

types. The first type focuses on understanding the evacuation demand, such as participation rates, 

origin locations, departure times, and destination locations (22). The second type analyzes 

operational strategies to accomplish the evacuation safely and efficiently (23). On the demand side, 

compared to early, self-organized evacuations, no- or short-notice evacuations are often 

characterized by excess levels of stress and uncertainties associated with dire situations (20,24). 

As a result, evacuees’ behaviors might differ from their response to long-notice evacuations. In 

addition, short-notice evacuations also have distinct phases (e.g., anticipation, warning, 

displacement, notification, and return and recovery) (24). Different evacuation behaviors are 

associated with each phase. Surveys and statistical models have been used to elicit qualitative and 

quantitative insights on the evacuation behavior parameters, such as the reasons and ratios of 

people choosing to stay in shelters, hotels, or with family/friends (22,24). It is also recognized that 

different behavior parameters are interconnected and correlated, and models with correlation 

structures have been used to capture their joint distribution (22). On the operational side, 

challenges for safely evacuating people correspond to traffic assignment tasks, with some 

additional features and constraints. Different algorithms have been used to optimize the evacuation 

process, from bus scheduling, to family trip-chain arrangements, to optimum traffic assignment 

(21,23,25). 

 

2.2 Wildfire Evacuation Strategies 

Wildfire evacuation strategies have been largely developed following guidance and lessons learned 

from other types of disasters (e.g., hurricanes, tsunamis). The focus of most strategies for wildfire 

evacuations has been on evacuation efficiency (e.g., reducing evacuation time estimates [ETEs] or 

total travel time), given the speed and short notice of wildfires. Generally, these metrics are aimed 

to 1) improve the network capacity through strategies of contraflow (e.g., switching some or all 

lanes of a roadway to flow away from a hazard) or new infrastructure or 2) optimize the utilization 

of the network by evacuees through strategies such as phased evacuation, which reduces peak 

demand on the roadway by spreading out evacuees temporally. Some examples in literature offer 

more details of how the strategies can be implemented in a wildfire evacuation context. Contraflow 

was studied in (14), where locations were determined by iteratively turning the excess road 

capacity in the opposite direction of road links. (26) proposed a phased-evacuation strategy where 

those closer to danger should leave first (Innermost First Out, InFO), while (27) tested all phase 
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sequences in a road network with four evacuation zones. A lane-based intersection-control plan 

was proposed in (28) to reduce crossing and merging conflicts at intersections for wildfire 

evacuations. However, one key limitation of many of these strategies is the need for a significant 

amount of personnel and coordination to implement (e.g., intersection control in (29)). Moreover, 

some metrics to determine strategy efficiency can be misleading as ETEs are sensitive to the 

departure of the last vehicle from the evacuation zone (30). Despite work on different 

transportation strategies in evacuations (63), a comprehensive study that compares relative gains 

of each type of strategy specifically for wildfire evacuation remains absent from the literature. 

 

2.3 Wildfire Evacuation Simulations and Strategies 

Traffic modeling and simulations have been widely used to test wildfire evacuation scenarios and 

strategies (Table 1), from simple hypothetical network (27,29), to small communities with tens to 

hundreds of households (31,32) to a large town/city (33). Most studies run off-the-shelf 

microscopic simulation software, such as SUMO (33) and Paramics (29,31). Certain non-

microsimulation quick calculations are also proven to be useful in estimating the evacuation delays 

and finding bottlenecks, such as the simplified manual calculations in (29) and adjusted four-step 

models used by (14). Model inputs (network and travel demand) are usually sourced from a variety 

of venues, such as the OpenStreetMap (OSM), digitized aerial imagery, planning documents, and 

census data. Vehicles follow either a fixed route to the closest exits or routes that periodically 

update based on evolving traffic conditions during the evacuation. Probably due to the complexity 

of the problem as well as the emerging nature of the evacuation process, most wildfire-evacuation-

related studies use one-shot assignment rather than optimization-based formulation, with 

exceptions for simplified networks, such as in (28) and (34). Model outputs typically include 

aggregated metrics such as ETEs, fire exposure (e.g., (27)), or spatially or temporally 

disaggregated link-level congestion status (e.g., (14,33)). In many evacuation studies across 

hazards, agent-based models are widely adopted in the evacuation simulations (35–37). These 

types of models are frequently leveraged to investigate the changes in evacuation performance 

metrics in parametric studies by focusing on detailed evacuation choices, such as departure time, 

route, and destination. 
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TABLE 1 Key Models for Wildfire Evacuations 1 

Traffic Simulation Models for Wildfire Evacuations 

Reference Model Characteristics  

Metrics 

 

Strategies or Scenarios 
Demand Generation Departure Time Destination and 

Routing Choices 

Simulation 

Type 

Network + Demand 

Data Source 

(31)8/11/202

1 8:14:00 

AM 

250 homes; vehicles per 

household follows Poisson 

distribution (mean: 0.5-3 

vehicles/household) 

Household departure 

time follows Poisson 

distribution (mean: 5-

25 minutes) 

Dynamically updated 

least-cost routes to 

closest exits 

Microscopic 

(Paramics) Digitized aerial 

image and planning 

documents 

(Emigration Oak, 

UT) 

Clearance time, 

mean vehicle travel 

time, evacuation 

time of each 

household 

(disaggregated) 

Adding new 

infrastructure; varying 

demand rate and 

departure delay 

(29)* Not required; 30-150 

vehicles per zone used for 

testing the clearance time 

on the hypothesized 

network 

 

Not required; 

uniformly generated 

within 15 minutes; 

used for testing the 

clearance time on the 

hypothesized network 

Various static routing 

(minimize total travel 

distance, minimize 

merging or balanced); 

destinations solved 

endogenously with 

routes 

Microscopic 

(Paramics) and 

manual 

capacity 

analysis 

Hypothesized (9 to 

25 intersections); 

digitized aerial image 

of 20 intersections 

(Salt Lake City, UT) 

Clearance time, 

total travel distance, 

number of merges 

Reducing intersection 

merge/cross delays via 

turn restrictions (lane-

based routing); varying 

demand rate, signal 

timing and numbers of 

exits 

(34)* Three levels of evacuation 

demand: 1,794, 3,558, and 

5,692. Background traffic 

and evacuees are in total 

47,300 

Optimum departure 

time solved 

endogenously with 

routes 

System-optimal 

dynamic traffic 

assignment; destinations 

solved endogenously 

with routes 

Mesoscopic 

(DYNASMAR

T-P) for 

network 

loading 

Simplified extracted 

network (Fort Worth, 

TX) 

Network clearance 

time, total and 

average trip time 

Time-dependent staging 

policy for each origin; 

varying evacuation 

demand 

(32) 1.5-5 vehicles per node, 

randomly assigned to 753 

nodes 

All departure finish by 

30 minutes (urgent), 1 

hour (medium), or 2 

hours (slow)  

Fixed “shortest” path or 

dynamically updated 

“fastest” path to pre-

designated exits 

Microscopic 

(CORSIM) 

Digitized aerial 

photograph (Summit 

Park, Salt Lake City, 

UT) 

Clearance time, 

fatalities, link level 

max. queue length 

Varying demand rate, 

departure time (urgency), 

& incorporating rerouting 

(27)* Grid network: 20-80 

vehicles per block; Ring 

network: same vehicle 

density as the grid 

network; real network of 

1-8 vehicles per household 

for 485 households 

Set zonal departure 

time interval: 

hypothesized network: 

1 minute; 

real network: 1 or 4 

minutes 

Dynamically updated 

fastest route to any exit; 

all exits are linked as 

one destination zone. 

Microscopic 

(Paramics) 

Hypothesized (grid, 

ring); digitized aerial 

image (San Marcos, 

TX) 

Clearance time Staggering departure of 

zones; varying demand 

rate 
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(14) All households in 8 

evacuation districts with 

background traffic; auto 

ownership from US 

Census (2000) 

Not available (static) Shelters (15%), Friends 

or families’ home 

(60%), hotels (15%), out 

of county (10%) 

Adjusted four-

step with static 

multiclass 

assignment 

Planning documents 

of main roads for 

fire-prone 

neighborhoods 

(Colorado Spring, 

CO) 

Clearance time, 

link-level 

congestion (volume-

to-capacity) 

Restricting the egress 

routes to evacuees;  

blocking the entrance to 

evacuation zones; 

conducting 

contraflow 

(38) Total population of about 

9,000. 85% participate in 

the evacuation, 1.5 people 

per vehicle trip 

Evacuees react to 

visual triggers & 

official warnings, both 

related to dynamic fire 

front; decision and 

preparation delay 

Static routing to closest 

exits 

Microscopic 

(SUMO) with 

trigger model 

Open Street Maps 

(OSM); census 

population; registered 

household addresses 

(Dandenong Ranges, 

Australia) 

Clearance time, fire 

exposure count 

Conducting phased 

evacuation with dynamic 

triggering, varying fire 

ignition locations and 

weather conditions 

(33) Uniformly distributed 

along residential/service 

roads (23,635 vehicles for 

Paradise, 12,212 for Mill 

Valley) 

S-shaped cumulative 

departure 

Fixed “shortest” path or 

periodically updated 

“fastest” path to any 

exit; all exits are linked 

as one destination zone. 

Microscopic 

(SUMO) 1 

second time 

step is used). 

OSM (Paradise, CA 

and Mill Valley, CA) 

Link-level speed, 

arrival curve, 

average trip-time 

Closing roads; conducting 

contraflow, varying 

departure time 

concentration; varying 

demand rate, and 

rerouting 

* Emergency evacuations, not specific to wildfire evacuations 

Other Key Literature Related to Simulations of Wildfire Evacuations 

Reference Type of Model or Analysis Goal or Aim of Study 

(39) Fire spread modeling (FlamMap), fire-spread network modeling, and 

shortest path analysis (altogether known as the Wildland-Urban Interface 

Evacuation model) 

Calculate evacuation trigger buffer a small community (Julian, California) and 

determine trigger zones 

(40) Wildland-Urban Interface Evacuation model (WUIVAC) Apply data from the 2003 Cedar Fire in southern California to develop trigger buffers 

and compare results to the event timeline to find possibly improvements 

(41) Network and spatial data analysis (critical cluster model) Identify fire-prone communities with minimal egress opportunity in western U.S. 

(3) Household-level model for trigger buffers and fire-spread modeling 

(FlamMap) 

Determine evacuation trigger buffers (ETBs), recommended evacuation departure 

times (REDTs), and a ranking of households based on lead time 

(42) Review of evacuation models Understand and review the scale, applicability, and interactions of fire, pedestrian, and 

traffic models 

(2) Review of traffic models for wildfire evacuations Understand and review the traffic models based on relation to fire spread, spatial and 

demographic factors, temporal issues, and intended application and identification of 22 

traffic models and applications 

(43) Controlled behavior experiment and regression models Determine the collective evacuation decision of communities under different disaster 

likelihoods and shelter availabilities 

1 
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2.4 Evacuation issues in other disasters 

Evacuation strategies in wildfire emergencies can sometimes be different compared to other 

disasters, due to characteristics of fire hazards. For example, time for advanced warnings in 

wildfire evacuations (hours) are often shorter than those for hurricanes and flooding (often with at 

least 24 hours in advance), but longer than tsunami evacuations (minutes in advance or no warnings 

at all). The spatial extent of evacuations for each hazard are also different, where the distances of 

evacuation trips include local sheltering (e.g., tsunamis), within-region evacuations (e.g., 

wildfires), and out-of-state evacuations (e.g., hurricanes). These spatial temporal differences along 

with the difference in risks (63) alters evacuation behavior and the most efficient and effective 

transportation response strategies. For example, compared with wildfire evacuations when cars are 

the predominant mode of transport, tsunami evacuations are usually multi-modal, involving both 

vehicular traffic and pedestrian traffic as people need to rapidly move to safety (35). Tsunami 

evacuation destinations also tend to be closer in distance (to inland location or vertical shelters), 

due to the minimal time to evacuate (36). Hurricane evacuations benefit from a longer period of 

advanced warning (e.g., usually days in advance), but the spatial extents of the evacuation trips 

are also the largest, sometimes requiring evacuations of over 100 miles to another state (44,45). 

This can lead to large-scale transportation responses that span multiple states. While wildfires 

often require more rapid evacuations compared to hurricanes, they also tend to impact a smaller 

land area, threaten less people, and require shorter trips to reach a safe destination. Consequently, 

wildfire evacuation transportation responses must be deployed faster than hurricane responses, but 

they can also be more complex and time-intensive compared to tsunami evacuations.  

 

Other types of disasters, such as nuclear power plant failures, chemical accidents, and hazardous 

material accidents, also require evacuations. In nuclear power plant failures (e.g., the Three Miles 

Island (TMI) nuclear accident, USA [1979] and the Fukushima nuclear disaster, Japan [2011]), 

individuals evacuated lived in specific distances from the source of the accident. For example, 

residents within several to tens of miles radius of the accident were ordered to evacuate in past 

events (46,47). Since the direction of radioactive material plays a critical role, the strategies 

employed could be parallel to those of wildfires. However, shelter-in-place strategies (e.g., staying 

inside and reducing air flow into a building) are more common for these disasters than wildfires. 

It should also be noted that the temporal length of evacuations from these types of disasters is 

highly variable (46,48), which indicates that different evacuation strategies from a range of natural 

hazards could be used. Altogether, the unique characteristics of hazards influences the most 

effective transportation response strategies to improve evacuation outcomes. However, strategies 

developed for one disaster could be effective for another disaster with similar spatiotemporal 

characteristics. To test this possibility for wildfire evacuations, we considered a number of 

strategies across hazards to begin developing a suite of evacuation strategies that are most effective 

for wildfires. 

 

 

3. METHODOLOGY 

To address some gaps presented in the literature review and taking cues from (2), we developed a 

survey-informed dynamic (spatial-queue) traffic simulation to evaluate evacuation performance 

(time efficiency, evacuee safety) under different fire, human behavior, and transportation response 

scenarios. The details of each component are introduced below in Figure 1 and following sections. 
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Figure 1. Study framework 

 

3.1 Spatial-Queue-Based Dynamic Traffic Simulation Model 

We use a spatial-queue-based traffic model to simulate the evacuation process. We chose this over 

popular microscopic simulators that implement car-following and lane-changing because the 

spatial-queue-based model is less data intensive and is easier to program from scratch. The 

simulator tracks individual vehicles through a vehicle routing module, a spatial-queue-based link 

model, and an intersection model that prevents cross conflicts. The simulation runs at a time step 

of 1 second, capturing detailed temporal traffic conditions, though not sub-link, sub-node or sub-

second behavior (e.g., interaction of multiple vehicles inside an intersection). At the beginning of 

the simulation (or when rerouting is required), the routing module computes for the fastest path 

using Dijkstra's Algorithm (49), based on the free flow speed (initial route) or average travel speed 

in the past 20 seconds (subsequent rerouting). Vehicle routes are updated every 10 seconds for 

those following real-time traffic updates similar to location-based direction services (e.g., Google 

Maps, Apple Maps, Waze). Queues and spillbacks are simulated by the link model, which requires 

a vehicle to spend at least the free flow travel time on a link, before joining a queue at the end. 

When the end of the queue, formed by vehicles with some physical length, reaches the upstream 

end of the link, no more vehicles can enter (spillback). Link flow capacity is assumed to be 1,900 

vehicles/(hour×lane). Discretized into one-second time steps, link capacities are imposed in a flip-

coin probability manner, with the probability of a queuing vehicle leaving the current link or 

entering the next link being 0.53 vehicles/(second×lane). At each 1-second time step, the node 

model moves vehicles at the front of each link to the next link, as long as 1) it satisfies the inflow 

capacity of the next link and the outflow capacity of the current link, and 2) it does not conflict 

with other vehicles moving through the intersection at that time step (e.g., from perpendicular 

direction, left-turns). Vehicles entering an intersection are assumed to have equal priority except 

roundabouts (higher priority). All intersections are modeled as non-signalized (e.g., due to power 

failures).  
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3.2 Scenario Development 

This research compares the effectiveness of different evacuation response/policy options via 

scenario testing with controlled variables. In this section, the set of fixed inputs and variable 

scenarios will be explained. 

 

3.2.1 Road Network 

The hypothesized evacuation occurs in the hilly northeast area of Berkeley. Most of the roads in 

the study area are one-way-per-direction residential roads (Figure 2(b)). On-street parking is 

common, creating many narrow choke points that prohibit two-way flow. However, off-street 

parking is often recommended by the city on a red flag warning day (50). Figure 2(b) highlights a 

few main evacuation routes. Among all possible routes leading away from the fire, Marin Avenue 

is the straightest (no curve), but is also the steepest (maximum gradient over 30%). The other two 

roads labeled in Figure 2(b) (i.e., Spruce Avenue and Euclid Avenue), are also frequently used by 

residents. A distinct feature of the road network in the Berkeley Hills compared to other wildfire 

evacuation study is that the road network here is “funnel-shaped.” Apart from the major egress 

roads shown in Figure 2(b), there are many smaller roads that lead to safe areas. These roads can 

serve as the evacuation route for a small number of vehicles that are routed off the main roads, 

while also allowing for emergency access vehicles to go uphill if major roads are used for 

contraflow operations. We also note that nearly all roads in the area are flanked by densely grown 

trees and brush, which pose substantial fire risk and a high chance for toppled trees on roadways. 

 

The road network for the study area was obtained from the OSM. The study area is defined to be 

the city of Berkeley plus a 6.2-mile (10 km) buffer area, given wildfire evacuation trips are usually 

short (1,14). To reflect slower driving on narrow, hilly roads, a discount factor of 0.8 was applied 

on the speed limit. After processing the OSM data, a directed node-and-link-based road network 

for the study area was obtained (Figure 2). The large and complex network consists of 15,294 

nodes and 37,951 links. 
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Figure 2. Map of the study area, road network, evacuation zones and fire hazard severity 

zones. (a) The whole study area; (b) terrain map and numbers of lanes per road in the 

evacuation zone; (c) four evacuation zones. (LRA: local responsible area; SRA: state 

responsible area. VHFHSZ: very high fire hazard severity zone) 

 

3.2.2 Fire Propagation 

The Berkeley Hills area borders Tilden Regional Park and mostly falls within the California 

Department of Forestry and Fire Protection (Cal Fire) Very High Fire Hazard Severity Zones 

(VHFHSZ, Figure 2). A hypothesized fire is ignited at a transmission tower 0.9 miles northeast of 

the Berkeley Hills area (coordinate: 37.910399, -122.249261). Fire spread can be modeled by 

software such as FlamMap or the Wildland-Urban Interface Fire Dynamics Simulator (WFDS) 

(39,51). However, WUI fire spread is difficult to model due to non-uniform buildings, defensible 

space, and vegetation. Consequently, data from a nearby and real fire case (1991 Oakland Hills 

Fire) was borrowed. Both sites are located on the east hillside of the East Bay Hills with similar 

weather patterns, land topology, vegetation, and housing density. An elliptical fire growth model 

was fitted to a georeferenced map of the Oakland Hills Fire (Figure 3) (52). The hypothesized fire 

starts shortly before 11:00 am on a weekend, same as the Oakland Hills Fire. All households are 

assumed to be at home. These two critical assumptions were used to constitute a “worse-case” 

scenario. Evacuation orders are sent out 15 minutes after the onset of the fire (reasonable estimate 

for an urban fire), starting the evacuation. Future work will be necessary to integrate wildfire 

modeling with traffic simulations to produce more realistic evacuation models. 
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Figure 3. (a) Chronological view of the development of the 1991 Oakland Hills Fire (via 

Oakland Fire Department from georeferenced image by (52)). (b) Fitting elliptical curves 

to the observed fire frontier. 

 

3.2.3 Evacuation Zone 

Based on fire location, evacuation orders are issued to an assumed area within Berkeley bounded 

by several major streets (Hearst Avenue on the south, the Shattuck-Sutter-Arlington corridor on 

the west and the city boundary on the east and north). To add land development realism, a parcel 

map was obtained for the evacuation area, where each parcel is home to one to five households 

depending on the land use code (53,54). This accounts for 7,438 households. For simplicity, areas 

west of Shattuck Avenue (i.e., downtown Berkeley) and south of Hearst Avenue (i.e., University 

of California, Berkeley campus) are assumed as temporary safe locations. For this study, we 

generated a random list of origin-destination pairs, where 30%, 30%, 30%, and 10% of the vehicles 

evacuate to destinations within 1-2 miles, 2-3 miles, 3-4 miles, and 5 or more miles. Our local 

focus stems from our survey data that found upwards of two-thirds of evacuees remained within 

their county of origin. The treatment of destination choices is simplistic, as evacuees’ destinations 

could be influenced multiple factors (e.g., availability of shelters, proximity to resources, safety of 

the destination). Moreover, we did not ask for exact destinations (by address or traffic analysis 

zone) in our survey and these destinations will require more robust datasets such as mobile phone 

traces. With this limitation in mind, the results of this study focus on the first half of the evacuation 

trip (e.g., the time to reach 1 mile away from the evacuation zone or the distance/time exposed to 

the fire). Time to the destination is not reported, as this does not provide any additional about risk 

to the evacuee. 

 

3.2.4. Transportation Response Scenarios 

We tested a range of wildfire evacuation scenarios, which can be categorized into three groups: 

hazard (fire speed), evacuation behavior (departure time, towed vehicle demand, transportation 

mode choice, GPS-enabled rerouting), and policies/responses (phased evacuation, contraflow). 

For a set of scenario variables, a base case value was chosen for comparison. Details of each 

scenario are given in Table 2. 
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Several post-disaster surveys of individuals impacted by California wildfires in 2017 and 2018 

were used to define some scenario variables, as discussed in Table 2 (1). For example, mode choice 

with a focus on vehicles per household was used as a key behavioral parameter. About 41% to 

45% of evacuees depending on wildfire used two vehicles to evacuate. Moreover, an additional 

9% to 17% of evacuees depending on wildfire used three or more vehicles to evacuate. Even small 

increases of vehicles on the roadway could significantly increase congestion during a wildfire. For 

route decision-making, only between 8% and 19% of evacuees depending on fire used GPS 

navigation. This behavior is particularly interesting given that 78% to 87% of respondents overall 

had access to in-vehicle or smartphone navigation. This result may be influenced by shorter 

evacuations during wildfires (about two thirds evacuated within county) and/or evacuees’ greater 

knowledge of route options. Finally, between 6% and 21% of evacuees depending on fire towed 

items while evacuating (e.g., boats, trailers, or towing personal vehicles using recreational 

vehicles). Towed items generally increase congestion, take additional space on narrow mountain 

roads, and reduce traffic throughput. Individuals likely wanted to protect their processions from 

the fire, leading them to tow items during the evacuation. Additional details and a thorough 

discussion of these choices and more are provided in (1). 

 

TABLE 2 Descriptions of Scenarios 

Category 

Options 

(Baseline Value 

Underlined) 

Description 

Hazard Scenario 

Fire speed 

 

“Slow”: Basecase ROS × 

0.5 

 

“Normal”: 1991 Oakland 

Hills Fire rate of spread 

(ROS) 

 

 

“Fast”: Basecase ROS × 2 

• Wildfire speed depends on fuel type, wind 

speed, humidity, land topology, etc. 

• The baseline case uses the fire speed in the 

1991 Oakland Hills Fire (Figure 3(b)) 

• Alternative cases assume the fire speed to be 

halved (e.g., with proper fuel management 

and/or firefighting, favorable weather) or 

doubled (e.g., poor fuel management and/or 

challenged firefighting, unfavorable 

weather) 

Evacuee Behavior 
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Departure 

time 

“Fast”: 20 min ± 10 min 

 

“Medium”: 40 min ± 20 

min 

 

“Slow”: 60 min ± 30 min 

• Cal Fire emphasizes the importance 

preparing and taking swift action in a 

wildfire (“Ready, Set, Go!”) 

• The planned departure times assumed as a 

truncated normal distribution (i.e., truncated 

around the mean at ± one standard deviation) 

• Vehicles will leave automatically if fire 

reaches residents’ location regardless of the 

planned departure time 

• The baseline case assumes the planned 

departure time to be the medium level 

~N(40min, 20min), truncated at 20 min and 

60 min. 

• The alternative cases assume shorter or 

longer departure times 

% household 

towing item 

0%    

 

10% (approximated 

survey) 

 

25% 

• Normal vehicles assumed to take 26 ft. on 

the road, invert of typical jam density (94)  

• Towed vehicles assumed to take 50 ft. of 

space (normal vehicle plus a 24 ft. 

trailer/recreational vehicle) 

• Survey results indicated that between 6% 

and 21% of households took towed vehicles 

during their evacuation 

• It is assumed each household tows a 

maximum of one item irrespective of the 

number of evacuating vehicles 

• The baseline case assumes 10% households 

tow an item 

• The alternative case assumes 0% and 25% 

households tow an item 

# vehicles 

per 

household 

for 

evacuation 

 

“Low”: 1 

vehicles/household 

 

44%/43%/13% households 

leave with 1/2/3 vehicles 

(approximated survey)  

 

“High”: 3 

vehicles/household 

• Survey results indicated that approximately 

36-45%/41-45%/9-17% of households 

(depending on wildfire case) evacuate with 

1/2/3 vehicles and this is taken as the 

baseline (12,621 vehicles in total for our 

case) 

• Alternative scenarios assume the number of 

vehicles per household to be one (7,438 

vehicles in total) or three (22,358 vehicles in 

total) 

• Other forms of transportation (i.e., bus, rail, 

biking, walking) are converted to single 

vehicle households for simplicity 

% vehicles 

rerouting 

0%         

 
• Survey results indicated that 91% to 93% of 

the evacuees have smartphones but only 
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with real 

time traffic 

information 

15% (approximated 

survey)   

     

50% 

 

100% 

 

15%, but lost connection to 

real-time data in 6 minutes 

 

15%, but lost connection to 

real-time data in 30 

minutes 

 

50%, but lost connection to 

real-time data in 6 minutes 

 

50%, but lost connection to 

real-time data in 30 

minutes 

between 8% and 19% of people followed 

GPS directions during the evacuation 

(depending on wildfire case study) 

• It is assumed updated routing information 

will be available every 10 seconds based on 

the average link traversal time in the past 20 

seconds 

• Individuals that may reroute without perfect 

information are not considered 

• The baseline scenario assumes 15% people 

follow dynamic updated fastest path while 

the rest do not update their route 

• Three alternative scenarios assume different 

percentages of vehicles that dynamically 

update their path 

• Four alternative scenarios assume the 

connectivity to the real-time routing 

information is interrupted 10 or 30 minutes 

after the start of the evacuation (e.g., cell 

tower losing power)  

Policy Scenario 

Phased 

evacuation 

time interval 

0 min      

 

15 min      

 

30 min      

 

60 min 

• Evacuation area is divided into four zones 

based on distance to the fire origin (Figure 2) 

• Zone boundaries are all secondary or tertiary 

roads (i.e., important roads in the residential 

area) 

• Baseline case assumes “no phased 

evacuation”: vehicles in four zones have the 

same mean departure time 

• Alternative scenarios vary the time interval 

in the mean departure time of vehicles in 

each of the four evacuation zones 

Contraflow 

No contraflow 

 

Short-distance contraflow 

on selected roads (Figure 

4) 

 

Long-distance contraflow 

• Contraflow roads now switch all lanes in the 

evacuation direction 

• Baseline case assumes “no contraflow” 

• Roads were identified based on long traffic 

queues from the baseline simulation and 

local knowledge of primary routes in the 

area 

• Alternative scenarios assume a short-

distance or a long-distance contraflow 

 

3.3. Limitations 

In addition to the assumptions described in the prior section, we note several key limitations here. 

First, the surveys exhibit self-selection bias as they were opt-in. We attempted to reduce this bias 
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through a wide distribution across multiple agencies and news sources. Participants also skewed 

wealthier with more vehicles, due to the online distribution, and the sample sizes for the surveys 

were small. Additional survey limitations are described in further details in (1). The survey data 

also has measurement error, leading us to choose approximate values for the model. Finally, we 

note that we used survey data from other locations to develop the scenarios for the Berkeley Hills, 

as a major fire has not occurred recently in the Berkeley Hills. Despite this possible mismatch of 

traffic, social, climate, and cultural factors, the surveys and our study area were similar based on 

fire risk (WUI zones), housing type (mostly single-family residences) and income level (high 

income level). Future work is needed to apply modeling across more geographies and collect more 

survey data to increase generalizability.   

 

There are limitations regarding the network representations. For example, even though the city 

recommends off-street parking on a red flag day, the compliance is not guaranteed. This is a major 

issue hindering evacuation, as the road network in the study area (as well as many other high-risk 

sites beyond this study) is quite windy and narrow. Also, there are critical intersections where left-

turns block other movements or where two traffic streams merge. Evacuation efficiency could be 

significantly improved if these critical intersections can be correctly managed (e.g., forming 

undisrupted evacuation routes (55)). However, such strategies usually require optimization 

techniques to be formulated and are not included in this study. We also note that our network does 

not consider the impacts of vehicle breakdowns or emergency vehicles (which need to travel uphill 

towards the fire). However, since contraflow is not instituted on all uphill routes, emergency 

vehicles would find alternative roads to access the fire or those in needs. The network analysis also 

assumes that most evacuees will not travel far distances, which is supported by the survey data. 

However, mass evacuations over 100,000 people may require a better understanding of 

destinations and shelter types (along with the suitability of these locations) for the simulation. 

 

Regarding traffic models, due to data availability and coding efficiency considerations, sub-link 

behaviors in the model (e.g., lane-changing aggressive drivers) were not included. The node model 

is not detailed enough to investigate within-intersection events. We remove signaling for 

simplicity, since so few nodes in the study area are signalized. The “fastest” path assumption is 

limited as evacuees likely do not have full knowledge of congestion, choosing detours to 

circumvent congestion. Research has also shown that other factors impact routing beyond shortest 

path (11,56). Pedestrian-vehicle interactions are not considered, evacuees are assumed to leave via 

a vehicle (overestimating congestion), and individuals rerouting without perfect information are 

not considered. 

 

For the scenarios, interactions of different strategies are not considered due to the already large 

numbers of studied variables, despite possible correlated effects (57). Incidents such as fallen trees 

blocking the roads are not considered. A shelter-in-place option is not considered. We assume 

100% of residents are home and 100% of evacuees will leave even though research has shown 

compliance of mandatory evacuation orders around 90% (11). This oversimplification is chosen 

to model both a disadvantageous scenario for congestion, but also an ideal outcome (in terms of 

compliance to mandatory evacuation orders) for public safety agencies. We also note that we 

oversimplify the evacuation process (one trip per household, with no trip-chaining). Past research 

has demonstrated that evacuees may take multiple stops before reaching the destination. For 

example, (6) found that  people make 1.1 intermediate stops on average based on post-wildfire 
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surveys in Haifa, Israel. Families with children make more intermediate stops, at 1.5 on average. 

(58) also argued that trip-chaining helped explain certain travel behaviors (e.g., evacuating towards 

the fire area), which avoids overly optimistic travel time predictions. In the simulation case study 

presented in this paper, trip chains are not considered (e.g., child pickup or helping carless 

individuals). However, the considered scenario, namely a weekend morning when all residents are 

at home, is likely to imply an equally disadvantageous demand level. First, additional trips such 

as child pickup or return home from work are usually happening during work hours, which 

coincides with the time that most residents are away from home in the residential neighborhood. 

Second, during wildfire events, there are usually orders in place that prevents people from entering 

the fire zone. 

 

Apart from excluding trip-chaining, we also simplify the model by not including surrounding 

vehicles (i.e., background traffic), multiple pre-evacuation trips by households, or post-evacuation 

trips. We also did not consider shadow evacuations (i.e., evacuation of individuals who did not 

receive a mandatory evacuation order), which is a limitation. More data is needed to determine the 

extent of shadow evacuations, especially in cases where evacuation orders are delivered effectively 

and on-time. We also note that specific vulnerable population evacuations were not considered. 

For instance, in zip code area 94708, which covers most of the evacuation area, there are 2,850 

Old-Age, Survivors, and Disability Insurance (OASDI) beneficiaries (59). Agencies with local 

knowledge should make these populations a priority. The destination choice in the simulation is 

based on the notion that most wildfire evacuations are short-distance trips. Destinations for each 

simulated vehicle are randomly sampled according to the trip distance distribution obtained from 

the survey. Three random variables are used, and results indicate that stochasticity in destination 

locations only have minor impacts on the results. Future work is necessary to also consider how 

shelter locations could be incorporated into the modeling. 

 

Most critically, simulations are not perfect representatives of real-life behavior. The number of 

factors, random events, and governmental decisions would be nearly impossible to model. We 

acknowledge that our simulation, while incorporating past behavioral data, could be continuously 

improved with greater realism. This might also include how demographic characteristics impact 

the decision to evacuate or stay/defend (see (6–8,11,13)). Though, most of these studies have found 

that risk perceptions, not demographics, are better predictors of choice. Regardless, integrating 

discrete choice analyses with this simulation framework is a logical next step. Finally, the 

simulation framework is not straightforward for agencies to use directly due to the lack of an 

interactive dashboard. Efforts are being made to make the code and data open-sourced, as 

discussed in Section 3.4. Our aim is to produce a workable simulation model that is a stepping 

stone for more behaviorally driven research. 

 

3.4 Simulation Reproducibility 

Reproducibility is defined as the ability to confirm the results of a previous experiment by means 

of another similar experiment (60), and it is a crucial criterion in ensuring the credibility of 

scientific results. (60) categorized reproducibility into four levels, from being able to reproduce 

the results using the same data and model, to reproducing the results based on general descriptions 

of the model specifications. The model presented in this paper is based on computer simulations. 

Efforts to ensure reproducibility include: 
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1. Stating model specifications and key assumptions in detail in the methodology section 

(Section 3). Based on these specifications, the results can be verified and reproduced in 

other simulation software; 

2. Conducting repeated experiments with random seeds as shown in the results section 

(Section 4). Despite the minor differences in each random experiment, the magnitude and 

overall conclusions of the results were largely unchanged; 

3. Providing open-sourced simulation code. To ensure that the results and conclusions are 

reproducible by future researchers, the simulation code is open-sourced, and data inputs 

are available upon request. 

 

4. RESULTS 

We begin with presenting the baseline case for the wildfire simulation. Figure 4 shows the 

simulated congestion status at two specific time steps for the baseline case. Each road link is 

colored by vehicle density, while each road node is represented by pre-departed vehicles. Figure 

4(a) shows results at 45 minutes since giving out the evacuation order. The traffic is visibly heavier 

than Figure 4(b), which is at 1 hour and 45 minutes after giving out the evacuation order. We note 

that the most congested roads are often branch roads merging into key routes (e.g., the roads 

leading to Marin Avenue). 

 

For each scenario shown in Table 2, the alternatives are compared against the base scenario, while 

fixing all other strategies to their respective baseline values (underlined values in Table 2). Three 

random repetitions are conducted to reduce the influence of random variabilities on the outcomes. 

Two evacuation related metrics are shown in detail: 

● Safe Vehicles: Total number of vehicles that have reached at least one mile away from the 

evacuation zone; 

○ Designates vehicles reaching safe location; 

○ Can derive evacuation time estimates; 

● Exposed Vehicles: Number of vehicles within in the fire frontier; 

○ Identifies vehicles overtaken by the fire (i.e., potential risk or danger); 

○ Does not necessarily signify fatalities. 

The metrics are plotted over time for the baseline and each comparison scenario. Other summary 

statistics are given in Table 3, including time of exposed vehicles and average distance from the 

fire frontier. 
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Figure 4. Results from the spatial-queue-based traffic simulation, including the vehicle 

density on each road link and number of pre-depart vehicles (either because of the delay in 

departure or being blocked from the first link). (a) Results at 45 minutes since the evacuation 

order is given out (1 hour since the ignition of the fire); (b) Results at 1 hour and 45 minutes 

since the evacuation order is given out (2 hours since the ignition of the fire); 

 

4.1 Fire Speed 

We first vary the fire speed to reflect potential changes in weather conditions, firefighting, and/or 

fuel management. In the baseline case, fire overtook the first vehicle at 14 minutes after the 

evacuation order was given (Figure 5(a)). The number of exposed vehicles reached its peak of 782 

vehicles at 2.3 hours. Compared to the baseline, this metric decreases by 56% if the fire speed can 

be reduced to half (e.g., through effective firefighting, fuel management, weather, etc.) or increases 

by 55% if the fire speed doubles. Figure 5(b) shows safe vehicles and the associated ETEs. Fire 

speed only minimally influences ETEs since most vehicles depart before the fire reaches their 

households in all scenarios. Additional work will need to identify how departure time and 

mobilization time is influenced by fire speed, especially given the role of speed in challenging 

evacuations in past wildfires (1). 
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Figure 5. The impact of fire speed on (a) exposed vehicles; (b) number of safe vehicles. 

 

4.2. Departure Timing 

The three departure time scenarios (“fast”, “medium” and “slow”, Table 2) represent departure 

times after receiving the evacuation order. Scenarios perform similarly for exposed vehicles 

(Figure 6(a)), possibly due to relatively close means for all three cases (20, 40 and 60 minutes). 

The number of exposed vehicles in the “fast” departure scenario grows ahead of the other two 

cases due to earlier buildup of queues on Marin Avenue (a key local route). 

 

Figure 6(b) shows both the cumulative number of vehicles that started the evacuation (dashed line) 

and safe vehicles. We note that the dashed line for the cumulative distribution function (CDF) does 

not follow a truncated normal function, since some vehicles cannot enter fully saturated links. The 

“fast” case is the most efficient in ETEs, showing the benefit in early departure. However, the 

magnitude of the time savings of a 20-minute earlier departure is minimal. Compared with Section 

4.4 (phased evacuation), more gradual departure times (without staggering the departure spatially) 

alleviate less congestion. 

 
Figure 6. The impact of departure delays on (a) exposed vehicles; (b) safe vehicles. 

 

4.3 Towing 

Normal vehicles are assumed to take 26 ft of space on road, the invert of typical jam density (94) 

with towed items taking an additional 24 ft (approximate trailer length). Assuming the percentage 

of households towing items is 0% or 25%, the simulation results in -5% and 8% changes in the 

total vehicle length compared to the baseline  
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(10% households take towing items). The maximum number of exposed vehicles changed by -3% 

and 5% compared to the baseline, while the ETEs changed by -7 minutes and +4.2 minutes, a 

rather small change compared to other scenarios. 

 
Figure 7. The impact of towing items on (a) exposed vehicles; (b) safe vehicles. 

 

4.4 Transportation Mode Split 

Evacuating households often use multiple vehicles to take belongings, family members, and pets 

or to remove the vehicle from danger (61), leading to more congestion. Our baseline case sets the 

household vehicles for evacuation according to the survey (about 1.7 per household), resulting in 

782 exposed vehicles (about 6% of the total demand) and an ETE of about 3 hours. If all 

households evacuate with only one vehicle, the maximum number of exposed vehicles falls to 245 

(about 3% of the total demand) and the ETE is cut to 1.9 hours. If all households evacuate with 

three vehicles, exposed vehicles reach 2,497 (11% of the total demand). Only 19,953 vehicles can 

reach the safe area in 4 hours (89% of the total demand in this scenario). 

 
Figure 8. The impact of number of vehicles per household on (a) exposed vehicles; (b) safe 

vehicles. Note the scales are different. 

 

4.5 Real-Time Traffic Information for Rerouting 

Rerouting can theoretically relieve congestion by distributing the traffic to other roads. The black 

lines in Figure 9(a) presents baseline results with 15% rerouting (similar to the survey). The 

orange, blue and green curves correspond to scenarios where 0% (no information), 50% (strong 

access to rerouting information), and 100% (theoretically equivalent to automated vehicles [AVs]) 

of the drivers reroute. Compared to baseline, the exposed vehicles change by +20%, -51% and -
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89%, respectively. Figure 9(b) shows that the alternative scenarios can also reduce the ETEs to 

3.2, 2.1 and 1.2 hours compared to 2.9 hours in the baseline case.  

 
Figure 9. The impact of vehicle rerouting on (a) exposed vehicles; (b) safe vehicles. 

 

However, rerouting may not be a safe option due to road closures or connectivity challenges, as 

was the case of the Camp Fire (62). We further explored this scenario in the simulation and the 

results are shown Figure 10. In Figure 10, results of two levels of real-time routing participation 

rate (15% and 50%) and three levels of interruption timing (no interruption, interrupt at 30 minutes 

and 6 minutes) are plotted. In the base case (black curves), 15% of vehicles follow real-time routing 

information, and such information is available throughout the evacuation process. Comparatively, 

the orange and red curves show the results when the connection to the real-time information is 

interrupted at 30 minutes or 6 minutes. Unless the connectivity is lost at a very early stage, the 

influence on evacuation efficiency is minimal (orange curve almost coincides with the base curve). 

The reasoning is that the total number of rerouting vehicles (15%) is relatively small. For these 

vehicles, many are routed away from the congested roads at the beginning and are not adjusted 

significantly during the evacuation. This can be seen in Figure 11(a), where the thickness of the 

lines indicates the numbers of vehicles using each link throughout the entire simulation and the 

color indicates the percentages of rerouting vehicles. We note that the percentage of rerouting 

vehicles on the congested roads (thick lines) is lower (less than 5%) than the scenario average of 

15% rerouting. As a result, interrupting rerouting after congestion starts to form will not alleviate 

or worsen congestion significantly. However, if rerouting is interrupted at the beginning of the 

simulation (e.g., the red curve in Figure 10), the vehicles with rerouting capabilities are not able 

to avoid the congestion, since delays have not started to form when they are planning their routes. 

The results of a loss of connectivity early in the evacuation are very similar to results without 

rerouting (orange curve in Figure 9). For higher usage of real-time rerouting (50% of vehicles 

using real-time rerouting, blue/green/purple curves in Figure 10), the impact of losing such 

information is clearer. As shown in Table 3, if the connection to the real-time information is lost 

at 30 minutes while 50% of the evacuees are trying to follow it for routing, the number of exposed 

vehicles increases by almost 100 compared to the no interruption case, while the total exposed 

time (vehicle-hours) increases by over 50%. Figure 11(b) also illustrates this. Since evacuation 

efficiency is dominated by the congestion on a few routes, significant improvements could be 

made if vehicles on these congested routes could have used real-time rerouting to seek an 

alternative route. 
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Figure 10. The impact of interrupting real-time routing at different stages of the 

evacuation. 

 

 
Figure 11. Total numbers of vehicles using each link (thickness) and percentages of vehicles 

with real-time rerouting on each link (color scale). (a) 15% of all evacuees follow real-time 

traffic information; (b) 50% of all evacuees follow real-time traffic information.  

 

4.6 Phased Evacuation 

Phased evacuations often improve congestion by reducing the maximum instantaneous traffic load 

and increases overall safety by prioritizing residents in greater danger (63). We tested phasing by 

altering time intervals between the mean departure time of different evacuation zones (Figure 12). 

Figure 12(a) shows exposed vehicles for different phased evacuation intervals. By giving a 15-

minute priority to each of the evacuation zones closer to the fire (blue curve), exposed vehicles 

reduce by 78%. If the phase interval increases to 30 minutes (green curve), exposed vehicles reduce 

by 94%. However, if the phase interval becomes too large (e.g., 60 minutes, orange curve), some 

vehicles may leave too late and be overcome by the fire, increasing exposed vehicles slightly 

compared to the 30-minute case. Figure 12(b) shows safe vehicles differ minimal from baseline 

for phase intervals of 15 minutes and 30 minutes. However, when the phase interval becomes 60 

minutes, the network is underutilized (characterized by flat lines). 
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Figure 12. The impact of phased evacuation on (a) exposed vehicles; (b) safe vehicles. 

 

4.7 Contraflow 

In this study, the locations of contraflow were identified based on inspecting the bottlenecks in 

Figure 4, centerline markings, and local knowledge of downhill routes as: 

For short-distance contraflow, resources are assumed to be limited and the strategy could only be 

implemented along the key egress routes to slightly beyond the evacuation boundary: 

● West side downhill routes (3.7 miles long, extending 0.5 mile outside of the evacuation 

zone): Marin Avenue → Spruce Street → Oxford Street; and 

● East side downhill routes (1.9 miles long): Shasta Road → Glendale Avenue → La Loma 

Avenue → Cedar Street → Euclid Avenue → Le Conte Avenue → Hearst Avenue (→ 

join the westside contraflow routes at Oxford Street). 

When there are sufficient personnel and time, contraflow roads can be extended to local 

highways. In this scenario, the contraflow strategies are also implemented following roads: 
● Shattuck Avenue and Martin Luther King Junior Way, from University Avenue till CA-

24 (2.7 miles). 

● University Avenue, from Shattuck Avenue till I-80 (2.2 miles). 

 

Figure 13(a) shows a reduction of 53% of exposed vehicles after implementing contraflow to the 

evacuation zone boundary. In the extended contraflow scenario, the number of exposed vehicles 

reduced by 73% compared to the baseline. In Figure 13(b), the number of safe vehicles and ETE 

does not change substantially when the evacuation lanes terminate close to the evacuation 

boundary. In fact, this is in accordance with the characteristics of contraflow: it helps absorb more 

vehicles from branch roads to the contraflow lanes, thus making it faster for the vehicles to outrun 

the fire. However, in an urban setting, the downstream (sink) capacity is still limited by the end of 

the contraflow roads, leading to vehicle queues downstream of the contraflow roads. By extending 

the contraflow lanes to a further distance away from the evacuation zone, it is possible to reduce 

the queue spillback into the evacuation zone, making it faster for vehicles to leave the dangerous 

area. 
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Figure 13. The impact of contraflow on (a) exposed vehicles; (b) safe vehicles. 

 

4.8 Summary of Findings 

Four summary statistics are given in Table 3 for comparison: 1) exposed vehicles; 2) ETE; 3) 

amount of time exposed vehicles were in the fire frontier; and 4) average distance from fire. The 

time for all vehicles to complete the evacuation is not shown, as the evacuation destinations were 

picked at random and sometimes constitute long trip times. 

 

Based on summary statistics in Table 3, phased evacuations with 30-minute departure time 

interval, >50% vehicle rerouting, personal vehicle reduction (1 vehicle per household) and 

instituting contraflow beyond the evacuation zone boundaries are the most effective strategies. 

These strategies can greatly reduce the load of the traffic temporally (phased evacuations), 

spatially (rerouting and contraflow), and overall (personal vehicle reduction). Each strategy has 

limitations: phased evacuations require strict adherence to mandatory orders, vehicle rerouting 

requires real-time information from power and cell sources and quick detection of road closures, 

personal vehicle reduction requires significant education and a willingness to give up an expensive 

asset, and contraflow requires planning efforts and is labor-intensive during its execution.  

 

Some strategies (e.g., slowing fire speed, phased evacuation with less time intervals between 

zones, selective contraflow) have less impact on ETEs but still lead to moderate reductions in 

exposed vehicles. Reducing fire speed provides more time for slower households to leave. We 

found that rapid phasing, compared to more drawn-out phasing, overloads the network too quickly 

and is not as effective as other phasing intervals. Contraflow over a short length also removes 

individuals quickly from the fire area, but downstream congestion still leads to high ETEs. Several 

strategies, such as changing towing behavior and speeding up departure times, lead to minimal 

reductions in both exposed vehicles and ETEs. The worst case among all scenarios studied is to 

evacuate with three vehicles per household. This represents the highest evacuation demand on a 

network with limited capacity and is detrimental in all metrics evaluated.  

 

The above simulation results are based on the series of scenarios and assumptions as stated in 

Sections 3.2 and 3.3. In reality, situations that deviate from these assumptions might happen and 

lead to changes in the outcomes. For example, depending on the time and day of the incident, there 

may be less people at home compared to the current assumption. This will reduce the evacuation 
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demand, effectively leading to less challenging evacuation situations similar to the effect of vehicle 

reduction. Also, it has been suggested that people may make multiple trips during the evacuation 

(6,58). This has the potential to increase the overall ETE and conflicts at intersections, for example. 

Other factors that will affect evacuation outcomes include shadow evacuations, the presence of 

pedestrians sharing the road network, vehicle breakdowns, emergency vehicles traveling in the 

opposite direction, transportation of vulnerable populations, and public transit usage. In addition, 

the resilience and operations of the infrastructure may also impact the overall evacuation 

efficiency. For instance, signals that are not optimized may create long queues of traffic backing 

up (64). However, as the signalized intersections in the study area are mostly out of the evacuation 

zone, it may not significantly affect evacuation metrics, such as the fire exposure time. 

Realistically, multiple disadvantageous scenarios may happen at the same time, such as a fast-

moving fire that damages the communication and navigation infrastructure, causing difficulties in 

coordinating contraflow operations between emergency personnel and/or evacuee challenges in 

accessing real-time routing information. 

 

TABLE 3. Summary of Evacuation Efficiency Metrics under Different Strategy Scenarios. 

 

Evacuation Efficiency Metrics 

Exposed Vehicles 
Evacuation Time 

Estimate (ETE) 

Total 

Time of 

Exposed 

Vehicles 

Distance 

from Fire 

Max # veh 

in fire 

frontier at 

the same 

time (veh); 

% change 

from 

baseline 

Time (hrs), 

all 

vehicles 

reach 

safety, 1 

ml from 

evac zone; 

% change 

from 

baseline 

Total veh-

hours fire 

frontier 

(veh-hrs) 

Min. 

average 

distance to 

the fire 

frontier 

(miles) 

       

Baseline 

Baseline 782 - 2.9 - 954 0.6 

       

Fire speed  

×0.5 

(slower) 
342 -56% 2.8 -1% 350 0.8 

×2 (faster) 1,209 +55% 2.8 -2% 1,569 0.5 

       

Departure time 

Less delay 729 -7% 2.7 -5% 910 0.4 

More 

delay 

747 -4% 3.1 +7% 906 0.6 

       

% towed vehicles 

0% 757 -3% 2.8 -4% 885 0.7 

25% 821 +5% 3.1 +2% 906 0.6 
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# vehicles per household for evacuation 

1 245 -69% 1.8 -36% 129 0.9 

3 2,497 +219% >4 >+40% 5,057 0.4 

       

% vehicles rerouting with real-time traffic information 

0% 943 +20% 3.2 +11% 1,320 0.6 

50% 381 -51% 2.1 -28% 279 0.8 

100% 86 -89% 1.2 -58% 35 0.7 

15%, stop 

at 6 min 
979 +25% 3.1 +7% 1,430 0.6 

15% stop 

at 30 min 
771 -1% 2.8 -3% 974 0.6 

50%, stop 

at 6 min 
979 +25% 3.1 +7% 1,430 0.6 

50%, stop 

at 30 min 
474 -39% 2.1 -28% 411 0.8 

       

Phased evacuation time difference between bands 

15 min 173 -78% 2.9 +2% 188 0.8 

30 min 49 -94% 3.2 +10% 35 0.8 

60 min 80 -90% >4 >+40% 40 0.7 

       

Contraflow 

Short 

contraflow 
367 -53% 2.6 -10% 310 0.8 

Long 

contraflow 
209 -73% 1.7 -41% 84 0.9 

 

 

5. POLICY RECOMMENDATIONS 

The modeling results point to clear opportunities for emergency management and transportation 

agencies to reduce wildfire evacuee risk and improve ETEs. In Table 4, we present each of the 

transportation responses, their priority, and possible recommendations for agencies to pursue. We 

note that many strategies will require careful planning and substantive communication with 

residents. Indeed, informational and educational campaigns (not infrastructure or operational 

changes) that attempt to nudge behavior may be the most cost-effective strategy to improve 

evacuation outcomes. 
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TABLE 4: Policy Recommendations for Transportation and Hazard Responses and 

Strategies  

Transportation/ Hazard Response Priority 

1. Slowing Fire Speed Moderately Recommended 

Description 

Slowing fire speed will reduce the number of vehicles in the fire frontier and allow for longer 

mobilization times, especially for vulnerable populations who might need more time to 

evacuate. However, slowing fire speed requires very quick and rapid response to the hazard or 

longer-term fuel management strategies (e.g., fuel breaks), which may not be feasible for some 

jurisdictions. Moreover, the typology, land development, and weather conditions may make 

fire suppression nearly impossible, placing firefighters or aircrafts at risk. 

 

Recommendations for Emergency Management and Transportation Agencies 

• Manage fuels and create fire breaks by reducing highly flammable vegetation in high-

risk areas (e.g., near powerlines) and along roadways 

• Develop rapid detection systems for wildfires (e.g., cameras, sensors, physical 

lookouts, crowdsourced information, drones) 

• Work with homeowners and landowners through education, funding, and enforcement 

to create defensible space, fire resistant structures, and backup water storage systems 

 

Feasibility 

Fire spread depends on the weather, topology, and fuel. Studies have shown that fuel 

management such as Fuel Reduction Burning (FRB) can effectively slow down the rate of 

head fire spread (65). Also, structures that are separated by sufficient distances or have 

defensible space around them can help stop or slow down fire (66). Smart technologies are 

also maturing and have been adopted in practice, such as using fire cameras combined with 

Artificial Intelligence (AI) to rapidly detect fire and smoke at early stage (67). The benefits of 

slowing fire spread are clear, but actions will require substantial effort by agencies and 

residents. Agencies should work on community preparedness and prescribed burning. 

Residents should conduct actions for the residence (e.g., clean gutters, use fire resistant roofing 

and exterior in high-risk areas). Economically, however, this can be difficult for low-income 

communities (e.g., metal roofing can be 5-10 times more expensive than asphalt roofing 

materials), indicating equity challenges. 

2. Reducing Departure Delays Moderately Recommended 

Description 

Reducing the departure time lag between receiving a mandatory evacuation order and 

evacuating can help remove at-risk people more quickly. However, this strategy alone is not 

enough to sufficiently reduce evacuation risk. Moreover, some individuals, such as individuals 

with a physical disability, may need extra assistance and additional time to evacuate. 

 

Recommendations for Emergency Management and Transportation Agencies 
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• Issue mandatory evacuation orders as quickly as possible to ensure enough time for 

individuals to mobilize and leave, especially individuals with access and functional 

needs (AFN) 

• Encourage residents to create go-bags that speed up the mobilization process 

• Include in mandatory evacuation orders an approximate amount of time they should 

spend mobilizing that is long enough to prepare but also short enough to evacuate 

individuals quickly 

 

Feasibility 

Reduction in departure delay can be achieved through improving pre-event preparedness and 

giving evacuation orders in a timely and clear manner. Cal Fire and local agencies have made 

efforts in improving this preparedness with the public-facing website readyforwildfire.org that 

disseminates “Ready, Set and Go” information (68). For alert systems, most local areas are 

gradually adopting state-of-the-art software, such as Code Red, and/or updating their Wireless 

Emergency Alert (WEA) system. However, issues remain in disseminating information 

quickly, in multiple languages, with adequate direction, and to enough people (1). Reducing 

evacuation delay is attainable, but based on recent experience, a robust communication system 

(along with correct decision-making from officials) is needed. 

3. Reducing the Amount of Towing Minimally Recommended 

Description 

Additional mobile assets (e.g., trailers, boats, motorhomes) create more demand, but this 

increase is minimal to moderate. A reduction in towing leads to some gains across evacuation 

metrics. However, mobile assets tend to be expensive, making them a higher priority for 

protection. 

 

Recommendations for Emergency Management and Transportation Agencies 

• Encourage residents in high-risk areas with mobile assets to gain wildfire (e.g., 

disaster) insurance 

• Suggest to residents to hook up and prepare mobile assets ahead of potential fire 

danger to reduce mobilization time 

• Develop plans for parking areas outside of potential evacuation zones for residents to 

take mobile assets during high fire danger weather (i.e., pre-disaster trip-making) 

 

Feasibility 

There is currently little information on agency regulation or recommendations regarding 

towing vehicles, so its current feasibility is hard to assess. Based on the Federal Highway 

Administration (FHWA) highway statistics of 2019, the ratio of trailers versus automobiles (all 

privately owned) in the fire-prone states California, Nevada, Oregon, and Washington were 

0.16, 0.18, 0.22 and 0.20, respectively (69). The values are within range of the simulation 

inputs (0-25%) in this study. Trailer usage in places with large farm animals may be higher 

and planning for their safe evacuation might be more crucial. 

4. Reducing Number of Evacuating Vehicles Highly Recommended 
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Description 

The travel demand from multiple vehicle households greatly increases exposed vehicles and 

ETEs. By reducing the number of vehicles taken by households, congestion will be greatly 

diminished and allow evacuees to reach their destinations more quickly. Reducing vehicles is 

highly recommended for all jurisdictions but this strategy will require significant and proactive 

educational campaigns. 

 

Recommendations for Emergency Management and Transportation Agencies 

• Recommend to residents to take as few vehicles as possible (i.e., enough to transport 

people and key belongings) through an educational and informational campaign 

• Suggest to resident to pre-pack vehicle(s) in advance such that space is used efficiently 

in vehicles 

• Encourage evacuees taking more than one vehicle to provide their extra space to 

carless individuals and other vulnerable populations to improve equitable outcomes 

• Develop an equitable insurance framework for protecting vehicles of residents in high-

risk fire areas 

• Develop plans for parking areas outside of potential evacuation zones for residents to 

take additional vehicle during high fire danger weather (i.e., pre-disaster trip-making) 

 

Feasibility 

Based on data from 1990-2010, the WUI is the fastest growing land use type in the contiguous 

United States (70). With mostly single-family houses in the WUI (71), private vehicle are the 

primary mode of transport in such areas. In the Berkeley Hills area (most of which belongs to 

zip code 94708), the average household size is 2.3, but there are nearly 2 vehicles per 

household on average. As a result, carpooling would be considered less attractive given the 

high car-ownership. Israel, for example, having lower car ownership than the United States, 

was reported to use 0.89 vehicles per household for evacuation (6).  The benefits of vehicle 

reduction during evacuations are well understood in the literature, and there is already some 

development of education campaign by agencies. For example, Marin County in California 

advocates on its website that “every seat should be filled” and that evacuees should “assist 

elderly or disabled neighbors” and “carpool with neighbors to reduce traffic” (72,73). (57) 

noted the difficulty in vehicle reduction and compared this to the “prisoner’s dilemma”, where 

residents would have to forsake personal properties (vehicles and belongings that could not be 

taken) for the overall benefit of reduction in traffic. One important possibility is that auto 

insurance could help to reduce the financial loss of vehicles if they are left at the residence. 

Some auto insurance policies cover wildfire damage but not all people can afford this 

comprehensive coverage. In terms of parking capacity in the study area, there are nearly 1,400 

off-street parking spots owned and operated by the City of Berkeley, including three garages 

and two surface parking lots in Downtown Berkeley, South Berkeley, and the Elmwood 

district (74). There are also over 1,400 parking spaces at the North Berkeley and Ashby 

stations for Bay Area Rapid Transit (BART) (75). In addition, the above totals do not count for 

parking owned by companies, employers, or private operators. Other parking structures, such 

as those on the nearby University of California, Berkeley campus, can also provide additional 

space for the pre-evacuation of vehicles. For other cities, a similar crude validation can be used 

to estimate the feasibility of a pre-evacuation parking strategy.  
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5. Increasing GPS-Based Rerouting Highly Recommended 

Description 

Higher rates of rerouting led to significant reductions in exposed vehicles and ETEs. Even 

smaller percentages of rerouting (15%) were far more effective than other potential 

transportation strategies. Despite these benefits, a rerouting strategy will have to ensure that 

GPS-guided directions are available, accurate, and followed by evacuees. 

 

Recommendations for Emergency Management and Transportation Agencies 

• Partner with GPS mapping services (e.g., Google Maps, Apple Maps, Waze) and auto 

manufacturers with GPS guidance to ensure that systems with be operational in a 

disaster 

• Update mapping services through official or crowdsourced information of blocked 

routes (i.e., downed powerlines, trees) and current fire location 

• Work with and require utilities to have backup generators for key communication 

services (e.g., high-speed mobile Internet) to ensure GPS directions are available 

• Produce pre-disaster information related to GPS guidance to evacuees and encourage 

usage of services, even for short evacuations 

• Encourage services to default applications to reroute in an evacuation, rather than 

remain on the current route 

• Consider future integration of wildfire evacuation information to automated vehicles 

(AVs) 

• In the long-term, develop vehicle-to-everything (V2X) technologies that can exchange 

information and compute real-time routes without relying on vulnerable 

communication infrastructures (e.g., cell towers) 

 

Feasibility 

Real-time rerouting is an effective strategy in all scenarios studied in the simulation. However, 

its feasibility is dampened by several challenges. First, real-time rerouting services are mostly 

provided by private companies. While many have shown strong willingness to assist (e.g., 

Google hazard map showing real-time closures), companies have yet to develop robust 

partnerships with agencies. Second, GPS systems need to be paired with transmission 

infrastructure (e.g., cell towers) to communicate with the central server about current 

positions. However, cell towers and other communication infrastructures have been 

susceptible to power outages, losses of backhaul fibers, and structure damages from wildfires 

(76). In 2020, California Public Utilities Commission issued a new decision for major wireless 

providers to have 72 hours of backup power and build new communication resiliency and 

emergency operations plans (77). Other opportunities for ensuring communication include the 

use of short-range equipment to act as temporary stations (e.g., using drones to relay wireless 

signals in (78)). However, these innovations are still largely conceptual. Finally, people may 

not choose real-time routing guidance during an evacuation, opting instead for routes that are 

shorter, have less fire danger, and high-quality pavement conditions (12). Altogether, real-time 

routing requires improvements to enhance V2G (vehicle to grid) infrastructure and V2V 

(vehicle to vehicle) infrastructure to support more secure and robust communication to make 

rerouting feasible (79–82). 
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6. Phasing Evacuations Highly Recommended 

Description 

Depending on the phasing time difference (and size of phased zones), a phased evacuation 

strategy can be effective in improving evacuation outcomes on its own. However, phasing 

requires significant pre-planning activity and active communication with residents before and 

during the evacuation, making it difficult to implement. Moreover, the characteristics of the 

wildfire may make a phased evacuation impossible, as the fire may overcome non-evacuated 

zones. 

 

Recommendations for Emergency Management and Transportation Agencies 

• Research, develop, and widely distribute phased evacuation plans that create 

reasonable time bands (e.g., approximately 30 minutes for a highly urban fire) 

• Use known boundaries and easy to identify landmarks and roads to set evacuation 

zones for phasing 

• Maintain a relatively small number of potential zones to reduce confusion in the 

evacuation process and reduce the number of messages sent to evacuees 

• Convey emergency evacuation orders and warnings by zones 

• Prepare for contingencies (i.e., changes in time bands) if the fire spread is faster or 

slower than expected 

 

Feasibility 

Dividing the fire-prone area into zones is an effective way to move as few people as needed to 

safe areas (83). In practice, agencies can construct evacuation zones based on both natural (e.g., 

vegetation type) and human factors (e.g., landmarks, clearly defined roads) (84,85). The initial 

research can be done as a desktop study, as the vegetation coverage map, the road network map, 

and other geospatial information can be readily obtained from sources such as the LANDFIRE 

program and OpenStreetMap. During the development stage, refinement can be made through 

meetings with the emergency responders and the wider community (14). Prior to wildfires, 

residents need to be informed of their zones, potentially through letters sent to homeowners and 

renters or announcements via online neighborhood hubs such as Nextdoor. Interactive zone 

maps for the jurisdiction can also be created easily using tools such as ArcGIS online (e.g., 

Berkeley Evacuation Zone Map from (86)). During the wildfire, geo-coded alerts can be sent to 

residents in targeted zones. For example, alerts can be sent to the residents in specific areas 

through FEMA’s Integrated Public Alert & Warning System (IPAWS) system through multiple 

pathways using commercial software (87,88). However, reliability of the software could be 

problematic, as previous technical difficulties have been reported (89). Lastly, zone-based 

phased evacuation may not work as planned if the fire spreads too quickly. In such case, public 

agencies may need to use a variety of communication tools (e.g., radios, phone calls, social 

media platforms, person-to-person interactions) to keep evacuees informed (62). 

7. Instituting Contraflow Moderately Recommended 
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Description 

Contraflow strategies can reduce the exposed vehicles from the fire frontier. Extending the 

contraflow operation beyond the immediate boundary of the evacuation zone can help to 

further improve the ETEs. However, contraflow tends to be an expensive procedure that 

requires significant pre-planning, time to executive, and personnel. For resource-strapped or 

smaller agencies, contraflow may not be a viable option. 

 

Recommendations for Emergency Management and Transportation Agencies 

• Develop contraflow plans that focus on highly congested roads, arterials, and 

neighborhoods with few exits to maximize effectiveness and minimize resource needs 

• Notify evacuees ahead of time of the plan to switch lanes to flow in the opposite 

direction 

• Consider potential turning or merging conflicts when designing contraflow routes 

• Pre-plan traffic operations (e.g., changing signals to prioritize traffic away from the 

fire) and consider congestion-reducing mechanisms near the end of the contraflow to 

minimize bottlenecks and upstream queuing in the fire frontier 

 

Feasibility 

The practicality and benefits of contraflow has been demonstrated mainly in hurricane 

evacuations. However, its success is heavily dependent on proper planning and execution. 

Early studies pointed out several factors that might prevent contraflow from achieving its 

optimum outcome. On the planning level, limitations include the cost of planning and 

infrastructure changes, safety implications, confusion caused by evacuees’ unfamiliarity to the 

arrangement, and reduced access for service and emergency vehicles (90). On the operational 

level, especially on urban roads/arterials, challenges remain in identifying contraflow links 

analytically, disseminating contraflow information timely, and maintaining traffic flow 

through reversed lanes and intersections (91). However, it has been shown that simple and 

inexpensive actions, such as providing enough entrance capacity and carrying out merges after 

the evacuation area, can greatly improve contraflow efficiency (92,93). 

 

6. CONCLUSIONS 

In this study, we developed a spatial-queue-based dynamic traffic simulation model that 

incorporated behavioral data from post-disaster wildfires in California. This simulation model was 

applied to a wildfire evacuation case in the Berkeley Hills Area of Berkeley, California. To 

incorporate realism, we considered a range of variables including fire speed, departure time, 

destination choice, mode choice, number of towed vehicles, queuing, rerouting, and two policy 

strategies (e.g., contraflow, phased evacuation). We aimed to produce a data-driven model that 

could identify possible transportation response strategies for agencies with minimal time, funds, 

resources, or knowledge to respond to a wildfire evacuation. Compared to other evacuation 

models, the incorporation of behavioral data, focus on policies and strategies, and realistic details 

(e.g., dynamic routing, parcel level data, complicated street network) signify an important step for 

the field. 
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We found strong indications that phased evacuations, vehicle rerouting, and reduction in personal 

vehicles were the most effective strategies for reducing the number of exposed vehicles in the fire 

frontier and/or the evacuation time estimate (ETE). Implementing these strategies, while 

challenging, would not be unrealistic for small and/or poorly resourced emergency management 

and transportation agencies. The strategies would require substantial pre-disaster communication 

and accurate, timely messaging during the wildfire. Contraflow for an extended length beyond the 

evacuation boundary was also found to be effective in reducing ETEs and exposed vehicles. 

However, this strategy would be potentially hard to implement for resource-strapped agencies if 

guidance is required at every intersection. A vehicle rerouting strategy may also require new 

partnerships with GPS-based mapping platforms (e.g., Google Maps, Apple Maps, Waze). In 

addition, the phased evacuation results showed that too small or too large of time intervals would 

be less efficient, suggesting a need for thoughtful planning. We also found moderate improvements 

in evacuation outcomes for implementing contraflow (for short lengths under resource constraints) 

and slowing fire speed for our case study. In combination with other strategies, these responses 

may prove to be highly useful under different conditions (e.g., for a different road network). 

 

Given the level of details that the simulation can support (e.g., road network, vehicle behavior), 

there are many assumptions involved that have been documented extensively in Section 3 and offer 

broader application. Specifically, the intended application of this simulation is for preparedness 

analysis and reconnaissance of real events, where reasonable assumptions can be made based on 

local knowledge or post-event surveys. For example, for many resource-strapped communities in 

the WUI area, it is imperative to understand the most cost-effective precautionary measures and 

implement corresponding policies. This best-working strategy is likely to be different for each 

community, thus a flexible simulation model framework such as the one presented in this paper 

becomes valuable. The model can be adapted to incorporate local knowledge-based assumptions 

to find the critical policy scenario specific to the local context. For post-event reconnaissance, (64) 

presented the application of a similar framework in Paradise, CA to simulate the Camp Fire 

evacuation. In that study, the assumptions were made according to the field interviews with local 

officials. Consequently, the modeling approach in this paper demonstrates the applicability of the 

simulation framework to analyze alternative scenarios and gain valuable lessons from 

reconstructing past events. 

 

However, more research is needed on this topic based on the limitations of the paper. For example, 

the model could use additional realism through better post-disaster data (including verification 

with mobile phone data) and integration with a fire spread model. The model also requires 

application across more jurisdictions in California, in North America, and globally for 

generalizability assessments. Most critically, work is needed to link this model to a transit-based 

evacuation model that better incorporates the needs of vulnerable populations and includes data 

on how vulnerable populations make decisions in wildfire evacuations. With increasing frequency 

and size of wildfire evacuations, realistic and practice-oriented models that incorporate behavioral 

realism will become even more critical to ensure that all people are safe.  
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