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Abstract 

While humans routinely encode and retrieve memories in 
groups, the bulk of our knowledge of human memory comes 
from paradigms with individuals in isolation. The primary 
phenomenon of interest within the relatively new field of 
collaborative memory is collaborative inhibition: the tendency 
for collaborative groups to underperform in free recall tasks 
compared to nominal groups of the same size. This effect has 
been found in a variety of materials and group compositions 
(Rajaram & Pereira-Pasarin, 2010). However, the majority of 
research in this field is guided by verbal theories without 
formal computational models. In this paper we adapt the 
Search of Associative Memory (SAM; Raaijmakers & Shiffrin, 
1981) model to collaborative free recall. We present a 
framework to scale SAM to collaborative paradigms with 
multiple SAM models working together. Our simulation 
results with the collaborative SAM model suggest that retrieval 
disruption, responsible for the part-set cuing effect in 
individuals, is also the cause of collaborative inhibition when 
multiple models are working together. Our work provides an 
existence proof that SAM can act as a unified theory to explain 
both individual and collaborative memory effects, and offers a 
framework for future predictions of scaling to increased group 
sizes, shared knowledge, and spread of false memories.   

Keywords: collaborative memory; collaborative inhibition; 
memory model; search of associative memory 

Introduction 
Outside of the laboratory we regularly encode and retrieve 
memories in collaboration with others, but almost all 
empirical research in human memory has historically 
involved participants performing tasks in isolation. The 
experimental study of collaborative memory is a 
comparatively young field focused on revealing the cognitive 
mechanisms involved in group interaction in memory tasks. 
The field primarily scales up experimental paradigms and 
theories originating in individual memory to the collaborative 
group level.  
    The primary focus within the field is collaborative 
inhibition—the tendency for collaborative groups to 
underperform in free recall tasks compared to nominal groups 
of the same size. This effect is robust and has been found in 
a variety of materials and group compositions (Marion & 
Thorley, 2016; Rajaram & Pereira-Pasarin, 2010). Currently, 
there are several competing explanations for the recall deficit, 
but the explanation with the most empirical support is the 
retrieval disruption hypothesis. This hypothesis posits that 

the deficit from collaboration occurs because individual 
retrieval strategies are disrupted during group activities (B. 
H. Basden, Basden, Bryner, & Thomas, 1997).  

While a large body of experimental research and verbal 
conceptual frameworks exist in collaborative memory, there 
are currently no formal computational models to guide the 
field. The goal of the current paper is a first attempt at 
modifying a prominent model of individual memory (the 
SAM model of Raaijmakers & Shiffrin, 1981), well validated 
at explaining the mechanisms responsible for phenomena in 
individual memory experiments, to the level of collaborative 
groups. We develop a collaborative framework and then test 
the ability of multiple SAM models performing tasks together 
to produce the patterns of collaborative inhibition seen in 
human data. Our simulations support the retrieval disruption 
hypothesis, and provide a formal framework going forward 
to unify individual and collaborative memory research. 

Collaborative Inhibition 
The experimental paradigm typically used within the 
collaborative memory field is an extension of classic 
paradigms previously used and validated in the field of 
individual memory. This paradigm involves participants 
learning a list of words, performing a distractor task 
individually, and then performing a recall task (typically free 
recall or cued recall) together in small groups (Harris, 
Paterson, & Kemp, 2008). As expected, collaborative groups 
perform better in the recall task than individuals. However, 
to compare group performance, collaborative group recall 
must be compared to nominal group performance, not 
individual performance. In both collaborative and nominal 
group conditions, subjects learn a list of items individually in 
the study phase. Then, in the collaborative group condition, 
subjects are asked to work together with other group 
members to recall items on the list. The collaborative group 
response is calculated by counting all non-overlapping 
responses produced by the group. In the nominal group 
condition, subjects are asked to recall items on the list 
individually and do not recall together. The nominal group 
response is calculated by counting the total, non-overlapping 
responses produced by individual group members. When 
collaborative group recall performance is compared to 
nominal group recall performance in this way, there is a 
significant deficit in recall in the collaborative group (B. H. 

959



Basden et al., 1997; Weldon & Bellinger, 1997)—called 
collaborative inhibition. 
 

Mechanistic Hypotheses of Collaborative Inhibition 
There are three viable theories explaining the collaborative 
inhibition effect: social factors, the retrieval disruption 
hypothesis, and the production blocking hypothesis. The 
social factors hypothesis posits that social factors, such as 
social loafing, are the primary cause of collaborative 
inhibition. Social loafing as a possible mechanistic 
explanation for collaborative inhibition is implied by 
previous group research in a wide variety of fields that show 
a similar loss of individual productivity  (Diehl & Stroebe, 
1987; Ingham, Levinger, Graves, & Peckham, 1974; Latane 
& Nida, 1981). However, while this hypothesis seems 
intuitive given the social nature of collaboration, little 
experimental evidence has been found to support it 
(Andersson, Hitch, & Meudell, 2006; Weldon, Blair, & 
Huebsch, 2000).  

The most popular mechanistic hypothesis is the retrieval 
disruption hypothesis which posits that the deficit from 
collaboration occurs because individual retrieval strategies 
are disrupted during group recall (B. H. Basden et al., 1997). 
According to this hypothesis, each group member develops a 
unique strategy of organizing information in memory during 
the study phase of a recall task which is then disrupted by 
mismatched cues from other group members when asked to 
recall in a group. This hypothesis originates from a 
mechanistic explanation for the part-set cuing effect found in 
the individual memory literature.  

The individual memory analogue to collaborative 
inhibition is commonly believed to be the part-set cuing 
effect (Andersson et al., 2006; B. H. Basden et al., 1997; B. 
H. Basden, Basden, & Henry, 2000). Typically, when an 
individual is asked to use cues to aid recall, their recall 
performance increases (Tulving, 1974). However, the part-
set cuing effect produces the opposite. When an individual is 
presented with a random selection of a memorized list as 
cues, their recall for the remaining words on the list is 
inhibited (Nickerson, 1984; Slamecka, 1968). Crucially, the 
part-set cues must be a random subset of the study list for the 
effect to occur. It is hypothesized that when randomly chosen, 
the part-set cues interfere with the subject’s internal 
organization of the study list, thus interrupting their 
idiosyncratic retrieval strategy (D. R. Basden & Basden, 
1995). It is theorized that in a collaborative setting, group 
members provide part-set cues for others in the group—
causing collaborative inhibition. B. H. Basden et al. (1997) 
were the first to provide experimental evidence tying 
collaborative inhibition to the part-set cuing effect and 
supporting retrieval disruption as a mechanistic explanation 
for collaborative inhibition. Additionally, there is some 
evidence to show that retrieval inhibition occurs during 
collaborative recall (Barber, Harris, & Rajaram, 2015). 
Retrieval inhibition occurs when unrecalled items are not just 
disrupted during recall but also inhibited such that they are 

less likely to be recalled later when the influence of 
collaboration is removed. Nonetheless, a majority of 
evidence favors the retrieval disruption hypothesis. 

While the retrieval disruption hypothesis has the majority 
of supporting evidence in the literature, there are some cases 
where the production blocking hypothesis cannot be ruled out 
as a mechanistic explanation for collaborative inhibition.  The 
production blocking hypothesis posits that the process of 
waiting to respond while other group members produce 
responses inhibits, or blocks, the ability to produce 
information (Diehl & Stroebe, 1987). This hypothesis has 
comparatively more empirical support than the social factors 
hypothesis but less than the retrieval disruption hypothesis. 
While there is some evidence of dual-processing accounts 
involving both production blocking and retrieval disruption, 
most studies involving production blocking during 
collaborative recall have concluded that while the production 
blocking hypothesis and retrieval inhibition cannot be ruled 
out, these mechanisms are insufficient to fully account for 
collaborative inhibition (Andersson et al., 2006; Finlay, 
Hitch, & Meudell, 2000).  

Modeling Collaborative Memory 
Currently, research that takes advantage of social media 
information such as community detection, “fake news” 
detection, topic modeling, misinformation detection and 
prevention dominates the group behavior literature. This 
research stems from the fields of network science and 
linguistics and tends not to incorporate or consider cognitive 
concerns in their models. Until now, the only attempt at 
modeling collaborative memory was made by Luhmann and 
Rajaram (2015) whose main goal was to model information 
transmission at network-scale by taking an agent-based 
modeling approach. Though their main goal was not to model 
collaborative inhibition, during the verification phase of their 
model, the authors were able to produce collaborative 
inhibition when groups of 3 agents were tasked with 
performing collaborative recall. Additionally, they were able 
to model some predictions of the collaborative memory field, 
namely the effect of group size on collaborative memory. 
However, while this model included psychologically based 
agents that were able to encode and retrieve memories, the 
main goal of the study was to examine the effect of 
information transmission on network behaviors. This model 
also did not aim to synthesize both individual and 
collaborative memory outcomes which is the broader goal of 
the current enterprise.  

Because modeling collaborative inhibition was not the 
main focus of the Luhmann and Rajaram (2015) study, there 
were a few simplifications and implementation choices 
which are inconsistent with the individual or collaborative 
memory literature. First, the agents performed the 
collaborative recall task in a turn-taking manner to avoid 
complications of free-for-all recall. While this style of 
collaboration has some experimental precedent (B. H. 
Basden et al., 1997), the majority of collaborative memory 
studies use the free-for-all method because the turn-taking 
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method tends to increase memory intrusions (Meade & 
Roediger, 2009; Rajaram & Pereira-Pasarin, 2010). Second, 
while the authors found evidence of collaborative inhibition 
and emergence of memory similarity during group recall, 
their model does not explicitly address how the collaborative 
agents’ memories become more similar. In their model, 
memory similarity could be detected during the collaboration 
phase. In behavioral experiments memory similarity is 
detected in post-collaborative recall, where the cascading 
effects of retrieval disruption - primarily responsible for 
collaborative inhibition - as well as re-exposure to others’ 
recall during collaboration are posited to homogenize 
memories as detected in the recall performance of former 
group members (e.g., in the shared/collective memory 
measures, e.g., Congleton & Rajaram, 2014). The SAM 
model aims to explicate the mechanism primarily responsible 
for collaborative inhibition and that also contributes to 
memory homogenization, i.e., retrieval disruption. Thus, 
SAM offers a more in-depth and established cognitive model 
and would be more useful for studying the inhibitory effects 
of retrieval disruption on collaborative recall. 
 
Search of Associative Memory (SAM) 
An ideal model to study the cognitive mechanisms at play 
during collaborative memory is the Search of Associative 
Memory (SAM) model (Raaijmakers & Shiffrin, 1981). The 
motivation for using SAM over other possible cognitive 
models is as follows. First, SAM is well-studied and is the 
most widely used model in episodic memory research 
(Wilson & Criss, 2017; Wilson, Kellen, & Criss, 2020). 
Second, SAM is one of the only cognitive models that has 
previously been shown to successfully model the part-set 
cuing effect in individual memory (Raaijmakers & Shiffrin, 
1981). Finally, the architecture of the model affords a 
coherent framework to extend to multiple models working 
collaboratively. If we can modify SAM to explain 
collaborative phenomena without changing the fundamental 
architecture, any of the SAM models in isolation would still 
retain the explanatory power for the range of behavioral 
phenomena in individual memory paradigms thus producing 
a unified account of both individual and collaborative 
memory phenomena.  

SAM is a cue-dependent probabilistic search theory of 
retrieval and is typically applied to simulations of free recall 
and free recall with cues. The model makes use of a two-stage 
memory system: short-term memory and long-term memory. 
The short-term memory system is where processes such as 
encoding and rehearsal are carried out. This system is limited 
in capacity and uses a buffer rehearsal system so that items 
that co-occur in the short-term buffer for longer tend to have 
higher associations with each other when committed to long-
term memory. The long-term memory system is where 
information is transferred from short term memory and stored 
permanently. The long-term memory storage consists of an 
association matrix of study items and environmental context 
(item-context information) and item to item-plus-context 
information (item-item information). The strength of the 

association between item-context pairs is proportionate to the 
amount of time an item remained in the short-term memory 
buffer. The strength of association between item-item pairs is 
proportionate to the amount of time two items co-occurred in 
the short-term memory buffer. In this model, item 
information represents information that would allow a 
subject to recall the name of an item while context 
information represents any information available during 
encoding that’s not directly related to recalling an item name, 
such as emotions, sensations, or environmental details. 
Learning associations can occur during the retrieval process 
in addition to the initial encoding during study.  

Retrieval from long-term memory in SAM is a 
probabilistic, cue-dependent process. When searching 
through long-term memory during recall, the model uses cues 
assembled in short-term memory as probes for long-term 
memory. These cues include context cues, CT, and words 
from the study list, W1T, W2T, … WnT. The T subscript is used 
to indicate a cue at test. During retrieval, a probe set consists 
of only CT or CT with a word cue. The probability that an item 
will be sampled from any given probe is dependent on the 
associations stored between the memory probe and the items 
stored in memory (see Equation 1a and 1b). Equation 1a gives 
the probability of sampling a word, WiS, using only context, 
CT, as a memory probe. Equation 1b gives the probability of 
sampling a word, WiS, given both context, CT, and a word 
cue, WkT, as a memory probe. The S subscript indicates the 
item as it is stored in memory. 

 
 

𝑃!(𝑊"!|𝐶#) = 	
!(%!,'"#)

∑ !*%!,'$#+%
$&'

        (1a) 

 
𝑃!(𝑊"!|𝐶# ,𝑊,#) = 	

!(%!,'"#)!('(!,'"#)
∑ !*%!,'$#+%
$&' !*'(!,'$#+

    (1b) 

 
 Once an item is sampled from memory, the recovery 

process begins. The probability of successfully recovering 
sufficient information to name the memory item is based on 
the association strength between the memory probe and the 
sampled memory item (see Equation 2a and 2b). Equation 2a 
shows the probability of successfully recovering a word 
image, Wi, given only context as a memory probe and 
Equation 2b shows the probability of successfully recovering 
a word image given both context and a word cue as a memory 
probe. 

 
 

𝑃-(𝑊"|𝐶#) = 1 − 𝑒𝑥𝑝{−𝑆(𝐶# ,𝑊"!)}     (2a) 
 

𝑃-(𝑊"|𝐶# ,𝑊,#) = 1 − 𝑒𝑥𝑝 2 −𝑆
(𝐶# ,𝑊"!)

−𝑆(𝑊,# ,𝑊"!)
3 (2b) 

 
  
The original SAM model is able to account for various free 

recall effects established by behavioral research including list 
length effects, presentation duration effects, serial position 
curves, extended recall, and repeated recall. Additionally, the 
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model is easily adapted to simulate categorized free recall and 
cued recall (Raaijmakers & Shiffrin, 1980). While these feats 
make SAM a viable cognitive model of recall, the most useful 
ability for modeling collaborative memory is the previous 
success in modeling the part-set cuing effect. 
 
Part-set Cuing Effect in SAM  In the original formulation 
of the SAM model, Raaijmakers and Shiffrin (1981) were 
able to successfully model the part-set cuing effect. 
Typically, the SAM model uses internal cues to perform free 
recall. In the case of part-set cuing, the model must first use 
external cues, provided by the experimenter, to perform recall 
before transitioning to internal cues once the external cues 
have been used. The first simulation compared recall 
performance of a control model, which was given no external 
cues, and a cued model, which was given external cues. Both 
models were trained on lists of size 30 and with a presentation 
time of 2 seconds per item. The cued model was given 15 
cues during recall. Additionally, the interitem strength 
parameter of the models was varied during this experiment to 
better adhere to the original experiment detailing the part-set 
cuing effect (Slamecka, 1968). When the control model and 
the cued model performances were compared, Raaijmakers 
and Shiffrin (1981) found that the cued models recalled fewer 
critical items (non-cue items) across all values of the 
interitem strength parameter, as was predicted by the part-set 
cuing effect.  

This result was interesting not only because the cued group 
performed worse than the control group but because the 
performance hit occurred in spite of a factor that aids the cued 
group. A recovery rule of the SAM model makes it so the 
probability of recovery after a memory item is sampled using 
an item-plus-context cue is greater than when a memory item 
is sampled using a context only cue. That is, during the 
memory search process, the model can either use context cues 
or previously recalled item cues to further aid in memory 
search. In the original model implementation, the model 
would typically begin free recall by using a context cue 
(stored during the study phase) to probe its long-term 
memory storage. Then, once the model successfully recovers 
an item from memory, that item is then used in conjunction 
with context as the next memory probe. So, it is somewhat 
surprising, given the fact that the recovery rules of the model 
favor item-plus-context cues, that the cued models would 
consistently perform worse than the control models. 
 
Adapting SAM to Collaborative Free Recall Given its 
success at modeling the part-set cuing effect in individual 
memory, adapting the SAM model to collaborative recall 
could provide valuable insights into the cognitive 
mechanisms behind collaborative inhibition.  There were two 
ways to adapt the SAM model to perform a collaborative 
recall task. First, a turn-taking procedure could have been 
implemented that’s similar to the experimental design used 
by B. H. Basden et al. (1997) and the modeling approach 
taken by Luhmann and Rajaram (2015). However, as 
mentioned previously, this method is less common in the 

literature because the turn-taking method has been shown to 
increase memory intrusions (Meade & Roediger, 2009; 
Rajaram & Pereira-Pasarin, 2010). The second method, 
which we implemented, is to allow a free-for-all recall 
method. Because of technology limitations, it is difficult to 
instantiate multiple SAM models and have them interact in 
real time like humans do. However, there are ways to work 
around this problem and effectively simulate the free-for-all 
response method. Additionally, while this method is 
comparatively more difficult than the turn-taking method, it 
is more similar to the method used in the majority of the 
collaborative recall behavioral experiments.  

Figure 1 is a flowchart of how we simulated the free-for-
all method. First, we created a shared memory buffer, called 
the group response, between two or more models which 
represents words “spoken” aloud by the models. To begin, 
the models perform context recall separately. The first 
response produced by any of the models is added to the 
shared buffer and the other models in the collaborative group 
are able to access this response. Then, the models all use the 
new response in the shared buffer as a cue for recall. Similar 
to the context recall phase, the models all perform cued recall 
separately and the response produced first is added to the 
shared buffer. The models continue using new responses as 
cues for recall until all models reach Lmax at which point all 
models return to context recall. This continues until all 
models reach Kmax and the memory search ends. In this way, 
we are able to simulate the free-for-all method of 
collaborative recall with the SAM model. 

 

 
Figure 1. Flowchart of collaborative recall between two or 
more SAM models. 
 
Fitting SAM to Collaborative Recall Data After 
implementing a version of SAM able to perform 
collaborative recall, we fit the model to averages of 
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experimental data of uncategorized list recall (Weldon & 
Bellinger, 1997) and categorized list recall (B. H. Basden et 
al., 1997). While fitting the model, we allowed 5 parameters 
to vary between the collaborative and nominal groups and 
between categorized and uncategorized conditions. Those 5 
parameters were sam_e (the incrementing parameter for 
context-to-word association), sam_f (the incrementing 
parameter for word-to-word association), sam_g (the 
incrementing parameter for word-to-self association), Kmax 
(the maximum number of retrieval failures before searching 
stops), and Lmax (the maximum number of retrieval 
attempts). 

Figure 2 shows the results of fitting the model to 
individual, nominal, and collaborative recall on an 
uncategorized list. Figures 3 and 4 show the results of fitting 
the model to individual, nominal, and collaborative recall on 
categorized lists: one list with 6 categories that had 15 words 
in each (Figure 3) and another list with 15 categories that had 
6 words each (Figure 4). 
 

 
Figure 2. SAM model fit to uncategorized list data taken from 
the original Weldon and Bellinger (1997) paper detailing 
collaborative inhibition. Subjects were tested in groups of 3 
on a list of 40 unrelated words. 

 
 
 

 
Figure 3. SAM model fit to categorized list data from B. H. 
Basden et al. (1997). Subjects in groups of 3 were asked to 
recall from a list of 90 words grouped into 6 total categories 
with 15 items in each category. The larger category size 
results in a more prominent collaborative inhibition effect. 

 
 

 
Figure 4. SAM model fit to categorized list data from B. H. 
Basden et al. (1997). Subjects in groups of 3 were asked to 
recall from a list of 90 words grouped into 15 total categories 
with 6 items in each category. The smaller category size 
results in a less prominent collaborative inhibition effect. 

 
 

 
Figures 2-4 show that not only is the SAM model able to 

accurately reproduce the collaborative inhibition effect found 
in experimental data, but that it also supports the retrieval 
disruption hypothesis. The experimental data from B. H. 
Basden et al. (1997) used to fit the model (Figures 3 and 4) 
supports this as it shows that collaborative inhibition is 
stronger when study materials are less organized. In the first 
condition (Figure 3) study materials are less organized 
because the group sizes are larger—allowing room for more 
idiosyncratic organization within categories. In the second 
condition (Figure 4) the study materials are more organized 
because the group sizes are smaller—allowing less room for 
idiosyncratic organization within categories. When the 
internal organization of study items is dissimilar between 
group members, collaborative inhibition increases because 
the cues from other group members are more likely to disrupt 
individual search strategies. Because the SAM model is able 
to reproduce this effect, it supports the retrieval disruption 
hypothesis. Future research will be dedicated towards teasing 
apart the production blocking and retrieval disruption 
hypotheses and investigating retrieval inhibition. 

In addition to fitting the SAM model to aggregate 
experimental data, we briefly looked into the effect 
collaboration had on the similarity of model memory. 
Luhmann and Rajaram (2015) found that their model was 
able to produce collaborative inhibition, but they suggested 
that this was due to the agents’ memories becoming more 
similar as they collaborated. There is support for this in the 
experimental literature (Congleton & Rajaram, 2014), 
suggesting as people collaborate together, their memories 
become more similar—giving rise to shared memory. Given 
the increase in memory similarity due to collaborative recall, 
it seemed pertinent to determine whether SAM exhibited 
such properties as well.  
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Figure 5. Word association correlation between 2 of 3 models 
during uncategorized collaborative recall. 

Figure 5 is the result of calculating the average correlation 
between two model’s word association matrices every time a 
new item was added to the group recall buffer. That is, each 
time a group member successfully “said” a word (and each 
group member’s internal associations were updated), we 
calculated the correlation between 2 out of 3 group member’s 
association matrices. As shown in Figure 5, the average word 
association correlation between two models in a collaborative 
group does increase during recall. Additionally, the average 
increase in word association correlation across 200 
collaborative recall groups was r = 0.09. 

Discussion 
The implications of collaborative memory research are 

much larger than participants recalling lists of words in 
experimental settings. The cognitive mechanisms being 
studied by this basic science are the same that play a role in 
crucial applied phenomena such as the spread of 
misinformation, memory contagion, fake news, eyewitness 
testimony, and even conspiracy theories. To date, there are 
no formal computational frameworks within which to 
understand how the memory mechanisms of individuals 
interact to produce emergent phenomena when collaborating.  

In this paper we took a first step towards this goal by 
modifying the well-validated SAM model of Raaijmakers 
and Shiffrin (1981), and providing an existence proof that 
multiple SAM models working together can produce the 
basic patterns of collaborative inhibition seen in experimental 
data. The results of the simulation suggest support for the 
retrieval disruption hypothesis in the collaborative memory 
literature. In addition to basic uncategorized lists, 
collaborative SAM naturally produces the patterns seen in 
categorized lists, namely greater collaborative inhibition 
when study materials are less organized. Importantly, each 
SAM model in isolation would still retain the explanatory 
power for the range of behavioral phenomena in individual 
memory paradigms, providing a unified model to understand 
both individual and collaborative memory.  

With our SAM-based framework validated on the standard 
patterns of collaborative inhibition seen in the literature, we 
can now go forward fitting individual data from specific 
experimental manipulations and using the optimal parameters 
to better understand the internal mechanisms producing the 
behavioral phenomena. Having a formal computational 
framework allows the field to generate new predictions and 
experiments to help differentiate between theories of group 
memory that are currently unresolvable using only 
experimental data. In addition, the number of SAM models 
interacting can be scaled up significantly, a feat not possible 
in experimental studies, allowing us to better understand how 
individual cognitive mechanisms give rise to group memory 
inhibition at scales closer to what we see in shared learning 
on massive social media discussions.  
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