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SOLUTION METHODS FOR CONTACT PROBLEMS
Petef, Hk"riggkers1 and Bdhram Nour— Omid*

SUMMARY

The merits and limitations of some existing procedures for the solution of contact problems,
modeled by the finite element method, are examined. Based on the. Lagrangian multiplier
method, a partitioning scheme can be used to obtain a small system of equation for the Lagrange
multipliers which is then solved by the cpnjugate gradient method. A two level contact algorithm
is gmplqyed which ﬁrst'linegrize the nonlinear contact problem to obtain é linear contact problem
that is in turn solved by the Newton me‘thod.’ The perfo;(nance of the algorithm compare’d, to

some existing procedures is demonstrated on some test problems.

t Visiting Scholar, Department of Civil Engineering, University of California, Berkeley CA. 94720
This author gratefully acknowledge support by the Deutsche Forschungsgemeinschaft.

b4 Center for Pure and Applied Mathematics, University of California, Berkeley CA 94720, ,
This author gratefully acknowledge partial support by the Office of Naval Research under contract N00014-76-C-
0013.



1. Introduction

Presently, there are a number of procedures that are employed for the solution of the sys-
tem of equations arising from contact problems. In this report we look at some of the commonly
used methods and evaluate their performance. We concentrate on algorithms based on Lagrange
multiplier and penalty methods. In the early finite elevment applications, contact problems were
solved by the Lagrange multiplier approach [2,7]. For each constraint condition a Lagrange
parameter is introduced that appears in the ’list of the unknowns. Hence, the dimension of the
resulting system of equations will increase. In addition, the associated tangent matrix is indefinite
and has zero diagonal entries that pose some difficulties in the solution step. These shortcomings

motivated the use of penalty formulation [8].

The penalty approach results in solutions that satisfy the contact conditions only apbroxi-
mately. The accuracy of the approximate solution depends strongly on the penalty‘parameter.

The correct choice for this parameter is the essence of the algorithm.

The above two approaches have cértain advantages kas wen as drawbaéks. ’Here we attebmi)t
to eliminate some of these limitations. In section 2 we state the different ways of modeling the
constraint conditions for contact problems. All these models give rise to systems of equations that
have identical structure. We then derive the Lagrange multiplier and the penalty methods and
demonstrate the inter-relation between the two methods. A new method is constructed based on
the Lagrange multiplier method in section 3. The system of equations is partitioned into blocks.
The primary unknowns are eliminated resulting in a small system of equations for the Lagrange
parameters. These equations are then solved by the conjugate gradient method [6]. In section 4
we use the above partitioning approach to construct the contact algorithm. The algorithm is a
two level iterative method which first linearize the nonlinear contact problem to obtain a linear
contact problem that is in turn solved by the Newton method. In section 5 we compare the per-
formance of the algorithm with some existing procedures using a number of different test prob-

lems. compare .
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2. Existing Solution Procedure for Contact Problems

2.1. Statement of the Problem

In the context of linearized ela'.sticiitfyytheory a number of different \appro’aches have been
developed for the solution of the equations arising in contact proble/ms.‘ These problems can be
viewed as the minimization of the potential energy subject to certain kinematic constraints. The
equilibrium stkzklte is achieved when the displacement field vk niinimizcs the potential energy

)=+ [ Wwv- [ pbvdV- [ Evid (2.1)
2 Bl s? B JB® 8,84 Ja B®

and satisfies the constraint condition on aBlnam )

(vi-vln+ 7v20. (2.2)
B! and B? denote the two bodies that come into contact. v! and v? are the displacement fields of
B! and B% W is the strain energy; pb is the inertial forces; and ¢ is the traction vector. n is the
unit vector normal to the contact surface and « is the initial gap between the two bodies in the

directiqn of n.

The application of a standard finite element Jprocedui"'é" leads to the discrete form of Eq. (2.1)

7(u) = —é—uTKu -u’f (2.3)
where u is the displacements veétor of the nodes in the mesh; K is the associated stiffness matrix;

and f is the vector of the nodal forces which is obtained from the last two integrals in Eq. (2.1).

The discrete counterpart of the constraint Eq. (2.2) can be given in a number of different
forms which depends on the modeling of the contact condition. We will restrict our attention to

2-dimensional problems modeled by 4-node elements.

Certain discretizations result in a mesh that assures node-to-node contact for the linear
model. This leads to restrictive but simple constraint conditions. The model may be improved
by allowing node-to-surface contact. For the class of Hertzian contact problems we assume a

plane contact surface with a determined normal. In general, the contact surface is not plane and
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a reference body must be chosen to define the normal vector m to the contact surface. The con-

tact surface on the reference body is referred to as the master surface and that on the second

body is called the slave surface. This leads to a family of models for choosing the normal. In

Table 1 below we give four different ways of modeling the contact condition at each node. e, is

the {-th column of the identity matrix and a is a surface coordinate defining the point of contact.

Hertzian General

Node-To-Node 'S :' <
- ; *
(elT - ekr)“ >
i
® > ® -
Node-To—Surface . .- —-
o

(e, - (1—‘a)ef~ ceju > v

Table 1. Different constraint conditions for nodal contact.

Our objective here is to examine different procedures for the solution of the equations aris-

ing from the contact problem. For this purpose, each of the constraint equations given in Table 1

can be stated in the form

bTu> 4 ' (2.4)

where b depends on the choice of the model. Furthermore, the contact stresses normal to the

contact surface, )\, must satisfy the condition
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“A<0 ) TR (2.5)
The Egs. (2.4) and (2.5) can be combined to obtain

AbTu-9) =0 o ~ i (2.6)

which is known as the Kuha-Tucker condition.

2.2. Lagrange Multiplier Mztiiod
Using the Lagrangian multiplier approach, the contact condition, Eq. (2.4), can be added to
the relation for the discrete form of the potential energy, Eq. (2.3), to obtain
m(u,A) = 7(u) + AT(BTu - 7) o (2.7)
where the last term contains all constraint conditions for the nodes in contact. A is a vector of

the Lagrange multipliers, 7 is a vector of the discrete initial gaps and

‘B=['b,|b2|---|bc] T (2)
is a matrix containing the c vectors that represent the contact kinematics for each nod‘e. c is
total number of constraint conditions. The variation of 7 in Eq. (2.7) leads to the following set of
equations:

- [Da(u,A)T6u = [DF(u)]T6u + ATBTSu =0 - . (2.92)
[Dr(u,A)|T6A = [BTu-4]T6A =0 o (29v)

By the fundamental theory of variations, Eqs. (2.9) can be arranged in the matrix form
Kk B]|*l |f
BT O (= (2.10)
7

The coeflicient matrix in the above equation is indefinite and non-singular. Therefore Eq. (2.10)
has a unique solution. However, for some ordering of the unknowns a sub-matrix of the
coefficient matrix is singular and care must be taken when solving these ‘equations. “This particu-

larly poses a difficulty for three dimensional problems [16].
Remark 2.1:

Adding - —%C—A TA to Eq (2.7j regﬁlarizes the problem. The effect is replacing the zero dyi‘ag-

onal block in Eq. (2.10) with the diagonal matrix - —i—-l. This approach is known as
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“Augmented Lagrangian’’ method. The regularization does not solve the problem of the
singularity of the sub-matrix, but helps in the solution step of Eq. (2.10) for an appropriate
choice of k. On ihe otier hand the solution:only satisfies the constraint condition, the

second equation of Eq. {2.10), approximately. Instead, u satisfies the perturbed condition

BTu—q—-i—Az(); - (2.11)

Equation (2:10) must be solved as part of a Newton iteration. The size of the coefficient
matrix varies with the number of .active contact conditions. - This results in an  additional
difficulty that can be avoided using special contact elements [7] and including the constraint con-
dition for all the possible contact nodes in Eq. (2.10). The result is a larger system of equations

than necessary.

The advantage of the Lagrange multiplier method is that the contact conditions are satisfied

exactly.

2.3. Penalty Formulation

Ar alternative procedure for the solution of the contact problem can be derived by satisfy;
ing the contact conditions only approximately. ~Adding a fictitious energy term, also called
penalty term, to Eq. (2.3) we get

2(u) = F(u) + «[(BTu-~)T(BTu-19)]. (2.12)
where x is the penalty parameter. For a more detailed derivation see [8]. Physically, x
re'presents the stiffness of a fictitious linear spring between any two points that are in contact.
The variation of 7-leads to

[D7(u)]T6u = [D7(u)}Téu + x[u’BBT - 7"BT|6u =0 (2.13)

Again, by the fundamental theory of variation, Eq. (2.13) becomes
K + «BBTlu =f+ «kBy | (2.14)
Here the coefficient matrix is symmetric positive definite. Its size remains unchanged during the
Newton iteration. What changes is the profile of the matrix according to the number of contact

conditions.




Remark 2.2:
When the pénalty pafameter is chosen to bke too large it leads to numerical problems in the
form of loss of accuracy in the solution of (2.14). On the other hand too small of a choice
for x results in unacceptable penetration of one body into the other. These effects also arise
in other applications of penalty method as shown in’ [3,4].L An analysis presented in Appen-
dix I gives an estimate for the optimal penalty parameter in contact problems. This esti-
mate depends on the computer precision, ¢ (é is the smallest number in the computer that
satisfies 1 + ¢ > 1), the total number of unknowns, n, and the smaller stiffness, k,, of the

two elements that are in‘contact. “The estimate of the penalty parameter is

b, .
= 'ﬁ—-er (2.15)

Remark 2.8:
The above formulatlon can also be derived from the augmented Lagranglan method. The

ehmmatlon of the Lagrange parameters will lead dlrectly to Eq (2 14) where the penalty

parameter depends on the perturbation in Eq. (2.11).

2.4. Updating Schemes

In this section we look at quasi-Newton procedures that are used for general nonlinear
analysis and consider their application to contact pr’bblems. One limitation of these methods is
that they are only useful for nonlinear problems with smoothly changing tangent matrices. The
contact problem when modeled using a Lagrange parameter method does not satisfy this criteria.
: Therefore we only consider penalty method. . -

For ease of understanding we use a single contact condition through out this section and we
point out the applicability of the methods for the general case. Eliminating the contact force in
equation (2.10) for a single contact condition we obtain an explicit expression for the inverse of

the new tangent matrix. Accordingly

Kl=K1. ——4qq" : s s © (2.16)
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where q = K™'b. Equation (2.16) can also be derived from Eq. (2.14) by applying the Sherman-
Morrison formula’ to obtain the inverse. The limiﬁing case of this inverse is’ K. The new
coeflicient ma.t‘rixuis a rank one modification of the old.

In the following sections we look at two.commonly used updating methods. These are the
BFGS and Broyden methods that are based on low rank changes in the coeficient matrix. We
apply these methods to the above problem and determine whether they can capture the correct

~modification of the inverse of the stiffness matrix given in Eq. (2.16). This will show if the updat-
ing procedures can be used effectively for nonlinear contact problems.

Let us restrict our attention to the BFGS method as described in {11}. The updating for-
mula is

K'=({+ wvl)KY(I + vwT) (2.17)
A detailed description of v and w can be found in Appendix B. Here we state only the result of
the analys’is in Appendix ’B. When BFGS is applied to the above contact problem the two vec-

tors, v and w, in the limiting case, satisfy

vwl = —;-lf?bur (2.18)
and the associated update for K™
- T
K =K'- L KT+ b7 - 2 g7 k1  (2.19)
qf qf a

This is clearly not the update given in Eq. (2.16). However when the residual is purely due to the
contact force then the correct update is:obtained in the limiting case. “When ‘¢ contact condition
are present then we expect the BFGS algorithm to perform ¢ steps to obtain the exact
modification. We conclude that when other nonlinearities such..as material -nonlinearities are
_present then the convergence of BFGS method will slow down. Similar considerations hold for

the Broyden method. The results are stated in Appendix B.

2.5. Use of Static Condensation

In most applications the contact region is small compared to the domain of the structure.
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This fact can be used to reduce the computational efforts for linear structures. In this case the

equilibrium equation (2.10) can be arranged in the form-

K/ Kicof [u 1
IIC:K'C'B “‘C" . e fc R SR (220)
0 BTOf [A) a

where C denotes all possnble contact nodes a.nd I are the remalnmg nodes Smce durmg the con-
tact iteration u; depends only mdlrectly on A it can be ehmmabed from Eq. (2.20). This lea.ds to

a full but much smaller system of equatlons

[RC’ B] Uco fc

BT 0 (221)

v

“where

Ke =K¢ - KEK 'K ¢
tc =tc - KIK/',

KC is obtained at an intermediate step of the Gaussian elimination process and therefore its
evaluation requires no additional computatlonal eﬂort The advantage of statlc condensatlon is
that a smaller system of equatxoe has to be sol\;'ed’ during the contact iteration. The sfatxc con-
’densation process shown for the Lagrangian' multiplier approach can also be used for the penalty

method.



-10-

3. Partitioning Method

The solution of the system of equations(2.10) can be obtained in a number of different
ways. Direct methods are the most common procn;edq}'es used [7], however there are two
difficulties with this scheme. As pointed out the coefficient matrix of Eq. (2.10) is indefinite and
may require special care during the factorization ste;;. Sihyce/ the contact problem is non-linear we
must perform a Newton-Raphsdﬁ iteraﬁion to obtaiﬁ the soiﬁntibn; | Therefore, a factorization must
be performed at éach Newton step. VIn this secﬁon we derive akhybrid"sche'me f,hat takes advan-
tage of the fact that the part of the coefficient matrix éséociate& w1th thé‘dégrees of freedom that
do not come in contact remains unchanged during the iteration process. This is only true for elas-
tic Structures with small deformation. In the sequel, we state the corresponding procedure for
non-linear structural behavior. In the following section K represents either the total stifiness

matrix or the condensed stiffness matrix given by Eq. (2.17).
Eliminating the displacements, u, in Eq. (2.10) we obtain
BTK'BA = BTK'f - 4 (3.1)
Then, the displacements éie related to the contact forcés, A, through
u=K'(f-BA) B (3:2)
The matrix BTK'B appearing in Eq. (3.1) is symmetric, positive definite and full. The size of
this matrix depends on the number of nodes that are actually in contact which, in general, is

much smaller than the total number of degrees of freedom.

The system of equations (3.1) may be solved using a direct procedures [15]. However, this
approach requires the evaluation of the coeflicient matrix in (3.1) which is not known explicitly.
Therefore, an iterative method will be used that does not require computing the elements of this
coeflicient matrix. The conjugate gradient method (CG here after) can solve the linear system of
equations (3.1) performing only the product BTK'Bv for a given vector v. For a detailed
description of the CG algorithm see [9]. The application of this method to Eq. (3.1) is given in

Table 2. below.
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Given an initial approximation A, then:
(1) © Compute” "

(3) Po=ro=B'K’[f-BA] -1

(b)  po=rJr,

(2) for k =0,1,2, - - - until convergence repeat;

(a) d,=BT'K'Bp;

(b) o = p/(dps)
() A=A+ opy
) P = - opdy
(e) o= rkﬂlrm

(f) if peyy < tol-py then terminate the loop. |

(8)  Be= pisilon

(h)  Prgr =P+ Bibs

Table 2. The conjugate gradient algdritbm for ev'aluation of contact forces.

In this algorithm A, is the k-th approximation to the solution of Eq. (3.1). r; is the residual asso-
ciated with A; and p; is the square of the norm of this residual; p, is the step direction and oy is
the step length that minimizes the potential energy associated with Eq. (3.1); d; is the change in
the residual vector due to a the step. The CG iteration is terminated when the norm of the resi-
dual vector is reduced by a factor specified by fol. All these vectors are of length equal to the

number of nodes in contact.

Theoretical results [9] shows that the number of CG iterations is at most equal to the
number of equations. However, in practice the number of iterations is greatly influenced by the
conditioning of the coeflicient matrix. The eigenvalues of the matrix BTKB are the Ritz

approximation to the eigenvalues of K™!. Therefore, the spread of the eigenvalues of BTK™'B is
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less than that of K~ and hence better conditioned. It is this reason that makes the CG method
effective when used to solve Eq. (3.1).

We compare the above method to a procedure which ‘ejvaluates the coefficient matrix and
then solves Eq. (3.1) using a direct scheme. We base this cost comparison on the operation

counts. The number of operations for each method is given in Table 3.

Method No. of Operations

Direct | c(2bn + —:1;-02+ c)

CG 7(2bn + 5¢)

Table 3. Operation count for each solution scheme.

In Table 3 ¢ is the number of contact nodes; b and n are the half-bandwidth and the dimension
of K respectively; and ;j is the number of CG iterations. When j < ¢ CG method is faster than
direct method. In the case of small ¢ (¢ A 12) and j = ¢ the direct method is slightly faster.
Another advantage of CG method is that it requires considerably less storage than the direct
method, since the coeflicient matrix is never computed explicitly. Furthermore, when a low level

of accuracy is required j; may be much less than c.
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4. Cont#ct Algorithms |

Our objective is to d’erkiv\e algorithms fq; tﬁg f’okr’ the solutiéé of contgct problems which may
also include material and/or geometrical non-ligearities ip the structure. At present most algo-
rithms are based on some form of Newton iteration which treats the non-linearities due to contact
conditions in the same way as those present in the structure itself. Here we develop algorithms
that distinguish between these non-li_pearities am‘in thergfore the contact equations are handled

separately by a minor iteration.

4.1 Minor Iteration

The inherent non-linearities in contact problems are due to the fact that the correct contact
area is not known a priori. To determine the contact area and the contact forces a minor New-
ton iteration is used. The linear system of equations arising at each.step of the minor iteration is
solved using the partitioning scheme given in section 3. This minor iteration is described in Table

4.

The matrix B*) contains vectors that describe those contact conditions to enforced. In gen-
eral these vectors depend on the direction of the normal from:a contact node to the contact sur-
face. This normal is obtained by an orthogona.l projection from a node on the slave surface onto
the master surface [5]. In the large deformation case the change in the normal vectors must be
considered. Since the nop-linear contact problem is solved as a sequence of linear contact prob-
lems the structural non-linearities can be ignored duriank the minor i:teration. For this reason we

can neglect effects such as the changes in the normal to the contact surface.
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(1) Given the displacements, U, the contact forces, A, a contact state B, and

the residual force vectof, r, and the factors of the'tan‘g\ent matrix, K y

from a previous major Newton step:

set u® = @ and BY = B,

(2) fori=20,1,2,--- until convergévnce repeat;‘

(a) Determine all penetrating nodes through Eq. (2.4) and establish BO).

(b) 8(’) — f, + B(')Tu(')

(c) if |8"] < tol-||g®]| then terminate.’

(d)  Solve using CG method

BOTKABOACHD = g0

(¢)  If any element of A“+Y is positive reset to zero.

() Au®) = - KFBOACHD

(g) u(’+‘) . u(o) & Au(’)

(3)  Return a) A, and BY in @, A, and B respectively.

Table 4. Minor iteration.

Remark §.1;

The coeflicient matrix in the system of equations, B(')TK’}IB(')A("“) = g, at step (2-d) of

the minor iteration may be replaced by an approximating matrix, H(). The object is to

reduce the numerical effort in the solution of this equation. The price for this approxima-

tion is a larger number of iterations. Some choices for H®) can be found in {10]. These

include:

D= 1
® H( o) I

Here, (') is a penalty parameter which is increased during the iteration starting from

a small value. This procedure is usually referred to as the augmented Lagrangian



method.

e HY=BOTBO,

obtained at little cost. However, the increase in the number of iterations will escalate the

4.2 Masajor Iteration

described above.

In the case of contact problems this is a diagonal matrix with nonzero terms ranging
from 1 to 2 depending on the modeling of the contact condition. Due to the structure

of H®) this leads to a poor rate of convergence.

With the above approximations the solution of the system of equations in step (2-d) can be

. overall cost due to step (2-f).

When non-linearities due to material and/or geometry are also present, all non-linear eflects
must be considered. The Newton algorithm has been applied successfully to obtain the solution

of such problems. Here we modify the Newton process by incorporating the minor iteration

(1)

\ (2)

Start from an initial approximation &%, A® =0,

and BO = 0;

for m = 0,1,2, - - - until convergence do

(a)
(b)
(c)
(d)
(e)
0
(2)

" Compute the residual force, r{™) due to G™),
it [r™) + BME™| < tol-|[r©@]] then stop.
Compute the tangent matrix K™ at g™,
Factorize K{) into LDLT.

Solve K{™ATG™) = — p(») _ BU™K(™)
Update displacements " *V = ™) + Ag(™

Perform the minor iteration.

Table 5. Major iterétion.
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Remark 4.2:

As mentioned before the Lagrange parameter approach can not avoid the difficulty that exists

‘when one or more rigid body modes are present in the finite element model. To side step this

difficulty there are three possible procedures that one can follow:

(i) Introduce as many spring as there are rigid body modes into the finite element model.

(i) Solve the problem using a specified displacement instead of an applied force.

(iii) » During the LDLT factorization of K1 one can replace the diagonal elements in D that are

zero within the machine precision with terms that are of the order of the required-accuracy.

This is equivalent to removing the rigid body modes.

An advantage of major-minor iteration is that it will never require more triangular factori-

zations than the standard Newton 'procedure. This is due to the fact that if only one minor itera-

tion is performed the algorithm reduces to the standard Newton scheme. As the numerical exam-

ples show, the minor iteration reduces the number of triangular factorizations and therefore result

in a more efficient algorithm.

A further advantage is that the steps (c) and (d) of the major iteration can be replaced with

an updating scheme for the triangular factors of the tangent matrix such as the Broyden and

BFGS methods [1,11]. This will result in a further reduction in the number of triangular factori-

zations and may reduce the overall cost of the analysis. In general, updating procedures that

retain the signature! of the coefficient matrix such as those cited above can not be applied to
usual formulation of contact problems by the Lagrange multiplier method Eq. (2.10). The parti-

tioning method permits the use of these updating schemes,

1. The signature of a matrix is its number of negative, zero and positive eigenvalues.
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5. Numerleal Resulits

In this section we demonstrate the characteristics of the solution procedure described in sec-

tion 3 on several examples. The main objectiVe is to compare the cost of different algorithms for

the solution of contact problems. All numerical experiments were performed on a VAX 11/780

using the finite element program, FEAP [16], as a bases for all the computations.

Ezample 1: Parabolic Beam

In this example a parabolic beam, described in Figure 5.1 is modeled using"four node, "plane k

stress, quadrilateral elements. The finite element discretization results in a total of 860 equations.

Four different procedures were used to solve this problexh. These are:

® L agrange Multiplier Method

(i)  Major-Minor iteration or Partitioning method based on Egs. (3.1,3.2),

(ii) Full Newton method [7] based on Eq. (2.10),

(iii) Newton-Lanczos method [12] based on Eq. (2.10),

. Denalty Method

(iv) Full Newton method [5] based on Eq. (2.14).

The result of our comparisons are presented in Table 6 below. The solution times presented in

this table include the evaluation of the stifflness matrices and residual force vectors as well as the

solution of the system of equations. The partitioning method requires less computation time than

the other methods. The Newton-Lanczos method, as implemented in [12], has a drawback since it

requires additional storage for the preconditioning matrix when used for contact problems.

Liagrange Multiplier Penalty

Part. Method | Full Newton | Newton-Lanczos | Full Newton
Total Solution N B /
Time (sec.) 48.8 112.9 84.7 114.1
No. of ' 3 minor \ ‘ o
Iterations 1 major 3 3 , 3
No. of '
F'actorization 1 3 2 3

Table 6. Cost comparisons of various methods for example 1.
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The solution time for all the above methods may be reduced by performing static.condensa-
tion as defined in section 2.4. In this case the coeflicient matrix of the reduced system is full and
therefore the partitioning method can best_take advantage of this. Note, a large part of the cost
for the partitioning method (17.9 sec.) is due to the minor iteration and is consumed by the
matrix-vector multiplication K™(Bv). When K is condensed and much smaller this cost will
almost be eliminated.

Ezample 2: Circular Beam

As a second example we consider a circular beam in contact with a rigid foundation. The
purpose of this is to demonstrate the influence of the penalty parameter on the total number of
iterations. Due to the geometry of the problem (see Fig. 5.2) the middle of the beam will lift up.
Using the symmetry condition, the beam is discretized by 60 plane stresé elements. Imposed dis-
placements wefé specified at the two ends of the beam. The deformed ’shape of the beam is
presented in Fig. 5.3. This problem is solved with a range of penalty parameters and the results

are presented in Table 7 below.

Penalty No. of Maximum
Method Parameter. | Iteration { Penetration
1 Major
Partitioning | 6 Minor 0.0
10 4 5.27x 1072
; 10° 5 2.73x 1072
Penalty 10* 6 7.09%x 107
10* 8 9.24%x10™*
10° 8 9.28%x10°°
108 8 9.29x10°®

Table 7. Influence of penalty parameter on convergence.

The optimum penalty parameter obtained from Eq. 2.15 is &,y = 10%. Here optimality
refers to accuracy in the constraint condition. The nuniber of iterations for penalty parameters
larger tbah Kopt is the same as the numbel; of iterations fof K opt- Thﬁé, there is little to be gained
by overestimating ‘the penalty parameter. For many applications lower accuracy may be
sufficient. Then, underestimating the penalty parameter -may translate into fewer iter’ations as

can be seen in Table 7.
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Ezrample 8: Contact of Two Beams

The interaction of two cantilever beams due to contact is used to dcmonstrate the behavior
of the methods for geometrically nonlinear problems. A detailed description of the pfoblem is
given in Fig. 5.4. Each beam is mddeled by Ib finite deformation '.béﬁm elements [13]. A
prescribed vertical displacement of 25.0 units is applie,d at point A on the upper beam. The
deformed shape (see Fig. 5.5) is obtained‘uSing a single load step. “The pya;r't'it‘ioning method
achieved convergence after 5 major and 6 minor iterations with a total solution time of 6.5 sec.
In contrast, the penalty method required 9 iterations to converge. The total solution time for this

method was 9.2 sec.

The observed reduction in the number of major iterations (from 9 to 5 iterations) is due to
the minor iteration. At the beginning of the first iteratkion three hodes of the upper beam
penetrate the lower beam. .Then, the penalty method enforces the associated three constraint
conditions. Tﬁis is a poor approximation forktk,be’ contact region ahd results ih slow converéence.
On the other hand, the minor iteration of th’e partitioning method rgleases ‘two of the nodes in
contact and therefore obtains a better approximation to the contact area and hence faster conver-

gence.



=20 -

References

1
12
3]
14

sl

]

(7}
(8]

[9]
[10]

[11]

[13]

[14]

.C. Broyden, ‘A New Method of Solving. Nonlinear Simultaneous Equations,”. Comput. J,,
Vol. 12, pp 9499, 1969.

S. K. Chan, and I S Tuba “A mete Element Method Ior Contact Problems of Sohd
Bodies: I. Theory and Validation;" Int. -J. Méch: 56i.;;Vol. 13,'pp. 627-639, 1971.

C. A. Felippa, “Error Analysis of Penalty Function Techniques for Constraint Definition in
Linear Algebraic Systems,”’ Int. J.{_Num‘,.r Melh Eng‘\ng:.,;Vol, 11, pp. 709-728, 1977. )

C. A. Felippa, ‘‘Iterative Procedures for Improving, Penalty Function Solutions of Algebraic
Systems,” Int. J. Num. Meth. Engng., Vol. 12, pp. 821-836, 1978. ‘

J.4O. Hallquist, “N’IKEZD:’ An Implicit, Finité— Deforma’tion,’Fin’ité— Element Code for Ana—
lysing the Static and Dynamic Response of Two- Dimensional Solids,” Rept.. UCRL:. 52678,
University of California, Lawrence Livermore National Laboratory, 1979.

M R Hescenes, and E Stlefel “Methods ol' Con;ugate Gradlents for Solvmg Linear Sys-
tems,”’ J. Res. Nat. Bur. Standards, Vol. 49, pp. 409-435, 1964 b

T. R:'J. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and W. Kanoknukulchai, “A
Finite Element Method for a Class of Conta.ct-lmpact Problems " C’omp Meth Appl Mech
Engnyg., Vol. 8, pp. 249-276,1976. ;

'N. \Kikuchi and J. T. Oden, “Contact Problems in ;Elyés‘tb\(s;tatics "in ‘Fz"n'i;le’Flefheynts Spe-

cial Problems in Solid Mechamcs Vol IV Ed Oden and Carey, Prentlce-Hall Englewood
Cliffs, N. J., 1984.

M. R. Lij, B. Nour-Omid, and B. N. Parlett, ‘A Fast Solver Free of Fill-In for Finite Ele—
ment Problems,” SIAM J. Numer. Anal., Vol. 19, No. 6, pp. 1233-1242, Dec. 1982.

D. G. Luenberger, Linear and Nonlinear Programming, 2nd Edition, Addison-Wesley Pub.
Co., Reading, Massachusetts, 1984.

H. Matthies, and G. Strang, “The Solution of Nonlinear Finite Element Equations,” Int. J.
Num. Meth. Engng., Vol. 14, pp. 1613-1626, 1979.

B. Nour-Omid, B. N. Parlett and R. L. Taylor, “‘A Newton-Lanczos Method for Solution of
Nonlinear Finite Element Equations,” Computers and Structures, Vol. 16, No. 1-4, pp. 241-
252, 1982.

J. C. Simo, K. D. Hjelmstad, and R. L. Taylor, *Finite Element Formulations for Problems
of Finite Deformation of Elasto-Viscoplastic Beams,” Report No. UCB[SESM-83/01,
Department of Civil Engineering, University of California, Berkeley, Jan. 1983.

J. H. Wilkinson, Rounding Errors in Algebraic Problems, Prentice-Hall, Englewood Cliffs, N.
J., 1963.




! -21-

[15] P. Wriggers, “Zur Berechnung von Stoss- und Kontaktproblemen mit Hilfe der Finite- Ele-
ment Methode,”’ Bericht Nr. F81/1, Forschungs- und Seminarberichte aus dem Bereich der
Mechanik der Universitaet Hannover, Hannover, 1981.

[16] O. C. Zienkiewicz, The Finite Element Method, 3rd Edition, McGraw-Hill, London, 1977.

|

|
H
|



w22 -

‘ureagy dstoqereJ ayj Jo eye( pue A1jpwosn 1°¢ S

AN ZANNLANYY,

L]

\
T

c0=d
go=4
0001 = 4

‘Viva




w3

“wejqold wead Ie[naal) 2f) jo vie(] pue Li1jowoany 7°¢ S g

tri { 07 ‘ vl

s
—dn

I
7 T A RIS TSRS TR L
o0 : P : , n
Ll
L

*SjudUWIAJA sso1ys Jued g9

00001 = H

‘Y1va




‘wreaq] Je[nod1) ay3 Jo uoieindyuo) paumoja(q g¢ 81y

-24.

B NSNS NN NN ANANSN A SN AN NRNRNS NN

OO SN N ANNRRANN

ANNRNRNNNNY

ey




-28 -

{E)

20

40 | 40 40
Fig. 5.4 Geometry and Data of Large Deformation Beam Problem.

DATA:
El = 10*
EA = 10°

GA = 10°

Yy == 25.0

Fig. 5.5 Deformed Configuration of the Beam Problem.
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Appendix A
Error Analysis for Penalty Method

Thefe 5fe two sdurces of errdr that reﬁeég the accura.cy of analysis based on penalty method.
Both errors depend strongly on the penalty parameter, but in two completely different ways. The
first error is due to large perturbatip{n’ ip the system 9{ e‘qukabtiong (214) thgt results f:om a’s':n'x‘a\'ll
penalty parameter (Note, the relation between penalty and Lagrangian multiplier metﬁods).
Applying the Sherman-Morrison formula to obtain an expression for inverse ‘of the coefficient
matrix in (2.14), we get an relation between the approximate solution, u, and the penalty param-
eter, k. Accordingly

u = [K!-«xK'B(I + BTK'B)'B TKe (A1)
As the penalty parameter, kK — 0o, u approaches the exact solution
ugz = [K! - K'B(B'K'B)'B'K|f o (A2)

Retaining only terms of order % the error in u becomes
u-up ~ “K'B(BTK'B)*BTK™ (A3)
Taking norms, we get

lu-ug || ~ — | K'B(BTK B/ BTK |

<

Tyr~-1py-1
”(B I(K B) ” " [K«IB(BTK—IB)—IBTK-II"”

The term in the square bracket is the contribution to ug due to the contact forces and we may
assume that this term is equal to ¢ ||ug]||. Here ¢ is a constant that is close to unity in most

cases. Then

la-usl _ e} BTKB)

el T ok (A4)

The second source of error is due to the loss of information when a large quantity is added
to a small one in the computer. For example consider an environment where 8 digits of accuracy
is used in all computations (the unit roundofi error, ¢ = 10®). Then a stiffness coefficient

k = 1/3 is represented as 0.33333333. If a penalty parameter, x = 103, is added to this term the




-7

result will be 0.10003333x10°. Note that half of the digits in k is lost. These errors are very

similar to those committed during the factorization step. Such errors were considered in [3,4] and

given by

llu-ug] K
———— e €— A5
Toell = "o (43)

where kpy, is the smallest stiffness coefficient that is modified by «.

Adding the contributions from the two error bounds in (A4) and (A5) we obtain
Tre-1py-1
p=ne K &+ c|[(BTK'B)| (A6)
kmm K

where p is the relative error bound for the solution u and represents the accuracy that can be

attained with a given penalty parameter k. p is 2 minimum when

Ckmln
=K, = e A7
"R \/nenBTK-‘Bu (A7)

[BTK'B|| is a measure of the flexibility of the bodies at the contact surface and may be

approximated by 1/k,y, Using this approximation and assuming that the constant ¢ is unity we

get

K in

PC” -~ -m' . . . (AS)

In figure A1 we plot -log;c(p) against loglo(n) for a two degree of freedom contact problem. On
the same plot we present the result of actual numerical experiments performed on a VAX,:11/780

computer with ¢ = 10717,
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Appendix B

On the Use of BEGS Method

Here we consider the BFGS iteration, as presented in [11], for the solution of contact prob~
lems. This procedure converges only if used together with a penalty formulation. Our objective
is to examine whether the BFGS update can capture'the correct changes in the tangent matrix,
given in Eq. (2.14), during the iteratién.

Consider step m of BEGS method. The inverse of the stiﬂhess matrix is updated through

K~l (r+ w,,,v,,{) A0+ vaw]) (B1)
where
dl h,._
vm=[; [ Gen )] z]r(uml) ffu,,)
Wy = m m-1
®2)

dp, = um - “m—l

h, = flu,)-flu,,) a

Let us restrict our attention to a linear contact problem with a single constraint condition b.
Starting from u, = 0, the solution of the unconstraint problem

Cu = Kg'f
is obtained at the end of the first iteration. Here f, = f(u,) and K, is the initial tangent matrix.

Using Eqs. (B2) we have

=[1-(1+ —5.2—)"/"']1’0 - knb where ¢ = 7K', and n = f{K;'b
K7

1

Wy = ——K;'t,
1 Kﬂ2+ S'KO 0
d, = Kj'ty

Since the penalty method yields the exact update for the constraint problem as ¥ — 0o, we must

also consider the limiting case for the BF GS update. Therefore £k — oo we have

1
v,w!l - - —buf
n
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and therefore

Ki' = Ki' - TKG'(6bT + b - SHIIKS! (B3)
This is not the correct update for the inverse of the tangent matrix. Eq. (B3) indicates that the
BFGS update depends on the residual force throughout the structure, whereas the changes in the

tangent matrix must depend only on the contact condition.

In general, the BFGS procedure may deliver a solution, starting from any approximation
that is sufficiently close to the solution. In particular, if we choose the solution of the uncon-

straint problem, u, =‘K6' 'f;, as the starting vector, then we obtain the correct update

K = K;! - ;Ka‘(bb")K(;‘ (B4)
The above demonstrates that the BFGS update for contact problems is exact only under special
circumstances. The above picture is further complicated by the fact that more than one node
comes into contact in a single step. Therefore the number of updates to obtain a good approxi-
~mation to the tangent matrix will be greater than one, and depends on the number of active con-
tact conditions. A difficult situation for the BFGS procedure may occur when there is separation
of contact nodes within a given load step. In this case the updates resulting from a node coming

into contact and then separating slow down the convergence of the method.

Similar analysis for Broyden's method [1] show that the updates resulting from this pro-

cedure are unsymmetric in all cases. In the limiting case this becomes

Ki' = Kj! - K;'buTKg! (B5)

1
u’K;'b
In the above study we focussed our attention to the limiting case x — oo. However, the

updates and the rate of convergence of the methods greatly depends on the penalty parameter.
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