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ECONOMIES OF SCALE AND SELF-FINANCING RULES
WITH NONCOMPETITIVE FACTOR MARKETS

Kenneth A. Small

ABSTRACT

When a firm or public authority prices output at marginal cost, its profits are related to the

degree of local economies of scale in its cost function.  As is well known, this result extends to

the case where some congestion-prone inputs are supplied by users.  I show that contrary to

common belief, the result holds even when scale economies are affected by a rising factor supply

curve.  In that case, constant returns to scale in production produces diseconomies of scale in the

cost function, making marginal-cost pricing profitable.  Examples are provided for a monopsonist

both with and without price discrimination.  In the latter case, second-best pricing is also

considered:  profits then are not governed in the usual way either by returns to scale in

production or by scale economies in the cost function, but some useful bounds are provided.
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ECONOMIES OF SCALE AND SELF-FINANCING RULES

WITH NONCOMPETITIVE FACTOR MARKETS

Kenneth A. Small

1. Introduction

As is well known, profits of a competitive firm have a sign determined by the degree of

local returns to scale in its production.  Profits are negative, zero, or positive if returns to scale

are locally increasing, constant, or decreasing, respectively.  This is sometimes called a self-

financing rule.

But what of a firm that is a monopsonist in one or more of its factor markets?  If the

factor-supply functions are well-behaved, then there exists a well-defined cost function that takes

them into account (Varian 1984, p. 105).  The relationship between cost and output for this cost

function defines the extent of economies or diseconomies of scale, which differs in general from

the degree of returns to scale of production.1  For example, suppose production takes place under

constant returns to scale but one or more supply prices rise with factor usage (the other prices

being constant); then the cost function will display diseconomies of scale because increasing

output raises some input prices.

Do scale economies in such a situation tell us anything about profits?  Clearly they do if

profits are defined in the usual way as revenue minus costs.  Thus, for example:  "Where there are

economies of scale, prices set at marginal cost will fail to cover total costs, thus requiring a

subsidy." (Vickrey 1987, p. 315)  As I show in the next section, this statement follows

immediately from the definition of scale economies.

Self-financing rules have been extended to congestible facilities, most notably through the

example of congested highways (Mohring and Harwitz, 1962, pp. 81-86; Strotz, 1965; Mohring,

1970, p. 696).2  In this case marginal cost includes the imputed cost of inputs supplied by users

rather than purchased in markets.  More generally, congestible public goods may be provided

                                                
     1See Bannock et al. (1978, p. 388) for the terminological distinction between returns to scale and economies of
scale.  I thank Frank Gollop for bringing it to my attention.  See also Eatwell (1987) and Silvestre (1987).

     2The result is generalized to a variety of dynamic settings by Braid (1995) and Arnott and Kraus (1995).
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efficiently at zero profits by governments, clubs, or firms when there are locally constant returns

to scale Ñ a condition that is guaranteed, for example, by perfect competition among firms with

U-shaped average cost curves (Oakland, 1972; Berglas, 1976).  Marginal-cost pricing of

congestible facilities might occur due either to competition (Berglas, 1976; DeVany and Saving,

1980) or to prescription (Vickrey, 1987).

In stating and applying this result the distinction between returns to scale and economies

of scale has been largely overlooked.3  Yet empirical work on highway congestion exemplifies the

importance of the distinction.  This work typically estimates a production function or a cost

function, using some combination of financial accounts and engineering assumptions.  Those

authors basing their case solely on the production function typically find increasing returns to

scale, and thereby argue that marginal-cost pricing will produce a deficit.4  Others argue that in

the cost function, those increasing returns are offset by a rising supply price of urban land,

possibly yielding no scale economies or even diseconomies so that marginal-cost pricing would

produce a balanced budget or a surplus.5

In this paper, I explicitly derive a self-financing rule based on cost functions when the firm

(or public authority) is a monopsonist in one factor market, taken to be that for land.  I consider

cases both with and without price discrimination.  I also consider both pure marginal-cost pricing

and second-best pricing that corrects for the factor-market distortion, the latter case requiring a

natural modification of the concept of "profit" for the result to hold.  This formulation makes

clear that profits are governed by the existence of scale economies or diseconomies of a cost

                                                
     3In the three cases cited, Mohring and Harwitz (1962) base their result on the "capital and congestion cost
functions" (p. 85);  Mohring (1970) on the production function (p. 696); and Strotz (1965) on the "returns to scale"
of a government production function that converts "expenditure on roads, E," into congestion reduction (p. 135). 
Strotz's  E  is an amount of "homogeneous productive service" (p. 131) which is used to produce the aggregate
consumption good, so in formal terms it really refers to a factor input rather than a cost, thereby justifying his use of
the term "returns to scale."

     4For example, Meyer et al. (1965), Mohring (1965, 1970);  Kraus (1981b); Jansson (1984, pp. 220-222).

     5For example, Fitch and Associates (1964), Vickrey (1965), Strotz (1965, p. 137), Keeler and Small (1977),
Small et al. (1989), Newbery (1990).  Strotz's discussion is especially intriguing.  Strotz justifiably uses the term
"returns to scale" (see earlier footnote);  but when he speculates on the type of returns actually encountered, he argues
for decreasing returns due to three factors:  network effects (which Kraus 1981b shows to be an invalid argument);
interchanges (which Kraus shows to be a valid argument though not sufficient empirically to reverse the increasing
returns from highway width); and "more expensive construction ... and land acquisition costs" as the highway
system is expanded (p. 137, emphasis added).  This third argument appears to invoke a rising supply price.
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function that incorporates whatever factor-supply elasticities actually face the firm.  I show the

result first in a general setting, then for the case of a congestible facility using the example of

highway congestion.

My conclusion differs from that of Berechman and Pines (1991), who claim to resolve the

conflict in favor of a rule based solely on the production function.  They demonstrate that the

degree of returns to scale of production determines the sign of "imputed profits;" these are

defined as revenues minus a quantity I call "imputed costs."  Imputed costs include a land

component equal to the quantity of land used multiplied by its shadow price.  A similar result is

derived by Strotz (1965), who explicitly states:  "the rent that equates the demand and supply of

land is to be used in calculating the land cost of the road." (p. 164)

This formulation using imputed costs has the appeal that it more easily characterizes first-

best pricing and investment rules.  It also provides some nice results in models of clubs and local

public goods.  For example, under locally constant returns the imputed cost of providing a

congestible public good is equal to the revenues from optimal user charges supplemented by a

confiscatory tax on any urban land rents (Arnott, 1979; Berglas and Pines, 1981).  But only for

the factor-price taker do imputed profits correspond to real financial flows.6  If one wishes to

analyze the profits of a real fiscal entity, a rule involving the actual cost function is more useful. 

One may wish to know, for example, whether a public agency will incur deficits, whether a

regulated private firm will be financially viable, or whether the developer of a club-like

community will make a profit.  Such questions can be answered using a cost function that

accounts for varying factor prices.

I demonstrate these results in a general context in section 2-4.  I then derive (section 5) a

Mohring-Harwitz type of model for congestible facilities as a special case of this more general

one, in order to show that the results apply there as well.  I conclude by arguing that authorities

purchasing land for public projects do in fact face a rising supply curve, at least within the legal

context prevailing in the United States.

                                                
     6Hence Oakland (1972, p. 347) qualifies his generalized Mohring-Harwitz result as applying only in a
"competitive economy" in which average and marginal production costs of the congestible public good are equal.
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2. The Simple Mathematics of Self-Financing Rules

At the most general level, the self-financing rule is simply a consequence of basic

definitions.7  It applies to any enterprise that prices output at marginal cost, whether due to

competition in output markets, to regulation, or to the policies set for a public agency.  It can be

stated concisely as:
Proposition 1.  Let  C(q)  be any differentiable cost function, and let local scale
economies be measured by the ratio of average to marginal cost,

A firm or authority incurring this cost and setting output price equal to marginal cost
earns profits, as a proportion of cost, equal to  (1-s)/s.

Proof:  Revenues  R  are given by the denominator of (2.1), implying that profits relative to

costs are:

Equivalently,

Revenues exceed costs under diseconomies of scale (s<1), fall short under economies of scale

(s>1), and are exactly in balance in the intermediate case (s=1).

This result easily generalizes to multiple outputs.  Let  q={qj}  and  p={pj}  be vectors,

                                                
     7See, for example, Baumol et al. (1988, p. 68), Kraus (1981a, p. 235), or Small (1992, p. 49).  I regret that in
my 1992 treatment I mistakenly used the term "returns to scale" to describe economies or diseconomies of scale.

s
C

q dC dq
=

· /
. (2.1)

R
C

 = 
1
s

 . (2.2a)

R-C
C

 = 
1-s
s

 . (2.2b)
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and let  s  be the multiproduct scale economies associated with cost function  C(q), as defined by

Bailey and Friedlaender (1982):

Then marginal-cost pricing implies that the denominator of this equation is equal to revenue, so

that again (2.2) holds.  For simplicity, I use the one-output case for the remainder of the paper.

My purpose is to explore the consequences of equations (2.2) when factor prices are not

constant.  This can be done most easily by focusing on the case where there is just one non-

competitive factor market, which we may call "land".  Let  xa=(x1, ..., xn-1)  be the vector of input

factors other than land, with  wa  the corresponding vector of fixed factor prices.  Let  xn  be land

input, and let  En(xn)  be the expenditure required to acquire  xn  units of land.  Output  q  is

produced according to the production function

q = f(xa,xn) . (2.3)

The cost function is then defined as

We know from the envelope theorem that  dC/dq  is equal to the incremental cost of

increasing output by increasing any one of the inputs:

s
C

q C q
j

j j

=
· ¶ ¶S /

. (2.1¢)
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where  fiº¶f/¶xi  and where the asterisk indicates that the quantity is evaluated at the solution 

x*º(xa
*,xn

*)  to (2.4).  In particular, the usual equality holds between  dC/dq  and the short-run

marginal cost defined by holding one or more factors constant in (2.4); that equality depends only

on  x*  being the solution to (2.4), not on its being optimal in any broader sense.

3. Applications to Monopsony and Distorted Factor Prices

This section considers three specific cases of a non-competitive land market that might

arise in public projects.  The first two cases are monopsony, without and with price

discrimination.  The third case is a constant but artificially low price of land.  In each case, I

derive the cost function and note some associated optimization conditions.  Where relevant, I also

consider a second-best price that improves welfare compared to marginal-cost pricing.

Monopsonist with No Price Discrimination

In this case, land is supplied with a rising supply curve  wn(xn).  (All the equations are

identical if the supply curve is falling, with appropriate reversals of inequalities.)  Thus  En(xn) =

wn(xn)xn, and (2.5c) becomes:

where  wn>0  is the inverse supply elasticity of  xn, defined by

It is useful to contrast this cost function with the imputed cost function analyzed by
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Berechman and Pines (1991),8 which I denote by  C~(q).  Imputed cost is defined by first setting

up a general equilibrium model with identical consumers, two produced goods, and aggregate

resource constraints on factor inputs.  One of the goods is produced according to (2.3).  This

model is then solved for all utility-maximizing quantities, leading to shadow factor prices

(w~a,w~n), and some output  q~  which we may consider a reference output.  Finally, a

minimization like that in (2.4) is performed except factor prices are held constant at these shadow

prices;  this minimization is performed at an arbitrary level of  q, no just at  q~, so let us denote

the resulting minimized cost by  C~(q).  This produces the theoretical results that the optimum

can be decentralized by charging output price  p~=dC~/dq;  and that at this optimum, the sign of

imputed profits

is determined by what we may call imputed economies of scale,

From standard duality theory,  r  is identical to the local returns to scale  r(x~)  of the

production function, evaluated at the corresponding input vector  x~º(x~a,x~n).  That is,  r(x)  is

the elasticity of the production function with respect to a uniform increase in all inputs, starting

at  x.9  We expect  r  normally to exceed  s  for the case considered here, reflecting the fact that the

rising supply price of land creates an additional factor raising costs as output expands.  More

precisely, I prove the following result in the appendix:

Proposition 2.  For a given output, let  x*  be the solution to the cost minimization

                                                
     8This is the cost function referred to in their statement that "the homogeneity of the production function is
exactly the reciprocal of the homogeneity of the corresponding cost function, with fixed factor prices..." (p. 178;
italics in original).  Their derivation is for the special case of highways, considered in section 3 below; but the same
concepts apply to the more general case of this section.

     9See, for example, Baumol et al. (1988), p. 21.
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problem (2.4) when the supply relationship is that of a non-discriminating
monopsonist facing a rising supply curve  wn(xn), and let  s  be the economies of
scale at the same output.  Then  r(x*)>s.

It follows immediately that whenever returns to scale are constant,  r>s  unambiguously.  Hence

using returns to scale  r  instead of economies of scale  s  in (2.2) would normally understate

actual profits as measured by  R-C, although doing so would correctly predict imputed profits

R~-C~.

In general, it is difficult to say what the empirical counterpart of  C~(q)  might be, since the

general-equilibrium shadow factor prices needed for its definition cannot be reliably estimated

either from observed factor prices or from the solution to (2.4).  This makes the sign of imputed

profits of somewhat limited practical interest.  Of course, if the authority actually pays for land

at its competitive rental price, the problem disappears and  C~  becomes its actual cost function. 

I examine actual land-payment practices for the U.S. in Section 6.

In assessing the utility of results predicting actual profits under marginal-cost pricing, it is

useful to ask:  Why would a firm price at marginal cost?  One reason might be that it has no

market power in its output market.  As shown by DeVany and Saving (1980), a profit-

maximizing highway operator in such a situation will engage in marginal-cost pricing which takes

precisely the form of congestion pricing as advocated, for example, by Walters (1961).  For such

a firm, choosing factor inputs according to (2.4) and setting output price equal to marginal cost as

given by (2.5) may be viewed as two steps in a single profit-maximizing calculation (Varian 1984,

pp. 104-105).  Together they imply the well-known first-order condition

where the inverse supply elasticities  wi  are all zero except for  i=n.  Equation (3.5) tells us that

each factor is used to the point where the value of its marginal product is equated to its private

marginal factor cost.  In section 4, I use these conditions to derive the cost function explicitly for

a simple production function in which both  r  and  s  are easy to see.

Another reason for charging marginal cost might be that a public authority is persuaded to
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do so by economists.  (The technical term for this is economist's fantasy.)  For example, short-

run marginal-cost pricing is often recommended even when the amount of one factor is not

optimal, on the assumption that that factor is fixed.  As already noted, this is the same as

charging  dC/dq  in this problem.

If land is used suboptimally but is variable, the problem is more subtle.  Charging marginal

cost is no longer second-best optimal given the distortion caused by the non-competitive land

market.  One could complain, therefore, that this authority just mentioned (or its economic

advisor) is naive:  it exploits its monopsony power in the land market, but refrains from

exploiting any monopoly power it may have in the output market.  Yet in many situations, such

"naive" behavior is arguably more plausible than either first-best optimality or second-best

output pricing.  The public might well regard it as abhorrent to exploit power over highway

users, while fiscally irresponsible not to obtain land at the lowest possible cost.

Still, we can consider the revenue implications of second-best pricing rule, formulated as

follows:  the firm minimizes its cost of producing any given output as in (2.4);  but that output is

determined by a pricing rule chosen to maximize the sum of profit, consumer surplus, and

producer surplus.  We expect this price to be lower than the profit-maximizing price, since

expanding output provides some benefits to landowners, in the form of greater producer surplus

(rents), that are not captured by the firm.

Let  p=P(q)  be the inverse demand function for output, and let  xa
*(q)  and  xn

*(q)  be the

factor demands that solve (2.4).  The problem is then:
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where

is the producer surplus of suppliers of land, with  wn
*(q) º wn[xn

*(q)].  The first-order condition10

is

Assuming the output-elasticity of the derived demand for land is positive, this second-best price

is less than the firm's marginal private cost.

Now suppose the central government instructs the highway authority to charge this

second-best price.  This of course will destroy the relationship between revenues and costs that

occurs when the firm can maximize profits.  But it is trivial to show that a simple per-unit

subsidy, equal to the gap between price and marginal cost, restores the relationship:

Note this result holds for any price, not just the second-best optimal price.  It simply states that

no matter what the output, if the firm receives a price for each unit equal to its marginal cost,

then profits are a fraction  (1-s)/s  of costs.

More interesting is the relationship between profits and returns to scale.  One could

speculate that the lower profits achieved under second-best pricing would be more accurately
                                                

     10The second-order condition is met if  C
~

  is convex or at least not too concave compared to the slope of the
output demand curve:  see appendix.
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predicted by returns to scale  r  than by  s.  This turns out to be true when the production

function is homothetic and  wn  is small.  More precisely, I show in the appendix the following

result:

Proposition 3.  For a non-discriminating monopsonist selling output at the second-
best price  p0  given in (3.8), the ratio of revenues to costs,  poq/C, differs from  1/r* 
by:

where  r*ºr(x*)  is the degree of local returns to scale at the cost-minimizing input
vector  x*º(xa

*,xn
*).  For a homothetic production function, the term in square

brackets is positive;  that is,  1/r*  underpredicts the the ratio of revenues to costs
and equivalently  [(1-r*)/r*]¥C  underpredicts profits.

For the production function illustrated in Section 4, the term in square brackets is second-

order in  w.  So if the inverse supply elasticity of land is small, then  r  is a better approximation

than  s  to use in predicting the sign of profits from second-best output pricing.  However,

neither will predict precisely.

Monopsonist With Perfect Price Discrimination

As is well known, perfect price discrimination in a factor market causes the firm to face the

true social factor costs at the margin.  As a result, the first-order conditions for maximizing profit

in a competitive output market are the same as those for maximizing welfare;  hence there is no

distinction between first- and second-best output pricing.  Those conditions,  pfi=wi  for all

factors  i, could be written in terms of the imputed cost function  C~.  But the corresponding self-

financing rule would not be very useful, because the imputed cost function does not represent the

actual outlays of the firm.

Instead, we can use the firm's actual cost function:
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Differenting (3.11), we see that marginal cost is given by  wi/fi  for all  i.  Hence marginal-cost

pricing produces the optimality conditions  pfi=wi  for all factors  i.

Cost function (3.11) describes the true financial outflows for this firm, so the self-financing

rule (2.2) is relevant.  This cost function again accounts for the rising supply price of land,

although in a different manner than (2.4).

Once again, the actual cost function  C  displays fewer scale economies, or more

diseconomies, than does the imputed cost function  C~.  This is because the two functions have

the same marginal costs, as we have just seen, but  C  has a smaller average cost than  C~  due to

smaller expenditures on inframarginal units of land.  Therefore the ratio of average to marginal

cost for  C  is less than for  C~.  Using the imputed cost function instead of the actual one would

impute a greater deficit, or a smaller surplus, than the firm will actually incur.

Authority Facing Constant but Artificially Low Land Price

In many situations the problem may not be so much monopsony as simply the use of

market prices for land rental that are lower than the shadow prices.  This may come about, for

example, because public authorities are exempt from property and corporate income taxes

(Vickrey, 1962) or because the price of central urban land is distorted downward due to unpriced

congestion (Kanemoto, 1977; Arnott and MacKinnon, 1978).

Taking these distorted rents to be constant, the analysis of the cost function is identical to

the conventional analysis;  r=s  and equations (2.2) hold using either  r  or  s  on the right-hand

side.  The further question comes in considering second-best pricing.  The objective is again to

maximize (3.6), but now  Sn  is redefined as the (negative) social surplus caused by valuing land

below its shadow cost:
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where  w
_

n  is the distorted rental price of land and  wn(¥)  is the shadow value (which could be

constant).  The first-order condition is

where  poo  is the second-best price.  This price is higher than marginal cost, so the ratio of
revenues to costs exceeds  1/r = 1/s,  by an amount

When the production function is homothetic, the output-elasticity in large parentheses is just 

1/r.

4. Example:  Homogeneous Production, Constant-Elasticity Supply

The nature of the solutions discussed in the previous section are readily illustrated by the

case of two inputs (n=2), with production according to the function:

and a supply curve for the second input given by:

The first input has constant price  w1.  Returns to scale are therefore  r=a+b  and the inverse

supply elasticity is  w.
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Monopsonist with No Price Discrimination

Solving the first-order conditions for the cost minimization of equation (2.4) yields cost-

minimizing factor inputs:

where

If  wn  were constant, use of each input would be proportional to  q1/r  and so would the

cost function.  But with wn  rising, the authority tilts its input mix increasingly toward  x1  as  q 

rises, so that  x1  grows more rapidly, and  xn  more slowly, than  q1/r.  Expenditure on  xn,

however, rises at the same rate as that on  x1, as can be seen by substituting (4.3) into the

expression for cost.  Doing so yields:
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Scale economies are therefore

which is less than  r  in accordance with Proposition 2.

Second-best pricing according to (3.8) yields

and

This confirms that the ratio of second-best revenues to costs is overestimated by  1/s  (to first

order in inverse supply elasticity  w) while it is underestimated by  1/r  (but only to second order

in  w).

As a numerical example, suppose  a=0.7,  b=0.3, and  w=0.3.  Then we have constant

returns to scale in production  (r=1), but diseconomies of scale in costs since  s=0.93 according to

equation (4.9).  With marginal-cost pricing, the ratio of revenues to total costs would be 

1/s=1.074.  With second-best pricing, however, the ratio would be 1.013, which is closer to  1/r 

than to  1/s.

Monopsonist with Price Discrimination

If we similarly calculate the optimal factor inputs for an authority solving the minimization

problem in (3.11), we find that their output-elasticities are again  m  and  n  as in (4.3).  C(q)  is
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again given by (4.8) except that  A  is redefined to a smaller value.11  Hence scale economies are

again  s=1/mºa+[b/(1+w)].

5. User-Supplied Inputs With Congestion

The debate motivating these derivations arose in a congestion model that looks somewhat

more complex than the one presented in Sections 2-4.  However, it is actually a special case, as

demonstrated in this section.  This underlying equivalence should be no surprise, since it is why

Mohring and Harwitz (1962) were able to derive the self-financing result for the case of highway

congestion.

I use a standard model of highway pricing and investment, along the lines of Keeler and

Small (1977) and many others.  In order to capture the insight behind self-financing results in a

congestion model, the congestion externality is quantified as a cost, thereby affecting both the

marginal-cost price and the total costs.  However, these user-borne costs are excluded both from

revenues and costs in computing the authority's profits.

The equivalence between the two models is then demonstrated by reformulating the

production relationships in the congestion model into a single production function like (2.3), in

which one of the inputs is user-supplied and its "price" has the interpretation of an average user-

perceived value.  These production relationships are two:  the congestion technology, and the

production of highway capacity.  Congestion technology relates the user-supplied input, which

is taken to be  x1, to output  q.  Production of highway capacity involves all the other inputs. 

The two relationships are linked because capacity is a parameter in congestion technology.  To

complete the equivalence, we must relate scale economies for this general production function to

those for the two underlying relationships, and we must relate "profits" under the general model

to those of the highway authority.

The user-supplied input  x1  is here called "user time" and is written as the number of users

                                                
     11The proportionality factors in (4.3) and (4.8) are altered as follows:  (w0/g)  is replaced by  (w0/b) in the factor
 A  defined in (4.4), and  A  is multiplied by  b  instead of  g  in the second of equations (4.3).



17

times an average travel time, which is determined by the congestion technology:

where capacity  X  is a physical property of the highway.  I assume  t(¥)  is differentiable,

monotonically increasing in  q, and monotonically decreasing in  X.  Capacity is produced from

the other inputs according to:

where  xbº(x2,...,xn-1)  is the vector of inputs other than time and land, with corresponding price

vector  wb.  By calling  x1  a user-supplied input, I mean that its cost is part of the perceived price

 p  of travel:

p = t + w1t(q,X)

where  t  is the money price charged for use of the road.  In the transportation context, the factor

price  w1  is conventionally called the value of time, and  p  is called the full price of travel.

To transform this formulation into that of sections 2-4, solve (5.1) for  q  as a function of 

x1  and  X, denoting the result as  q=H(x1,X);  this is possible because  t(¥)  is monotonically

increasing in  q.  Substituting (5.2), we can write  q  directly as a function of inputs:

Equation (5.3) is in the form of the production function (2.3), with input vector  xa  partitioned

as (x1, xb).  This production function gives the number of users who can use a system while

maintaining a level of service yielding total travel time  x1, given the capacity that can be produced

by inputs  xb, xn.  In other words, it gives the output made possible with inputs  x1, xb, and xn.  Its

degree of returns to scale,  r, can be derived from the degree of returns to scale in producing
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capacity,  rg,  and the degree of local homogeneity of the congestion function,  ht º etq + etX, 

where the elasticies have signs  etq>0  and  etX<0.  The result is shown in the appendix to be:

Capacity is usually defined in such a way that equal percentage increases in  q  and  X 

have no effect on  t:  i.e.,  ht=0.  (For a highway, this means congestion depends only on the

volume-capacity ratio.)  In that case, (5.4) shows that  (1-r)  has the same sign as  (1-rg), that is, 

f(¥)  has the same type of returns to scale as  g(¥).

What about the cost function derived from  f(¥) allowing for a possible rising supply price

of land?  It can similarly be related to the cost function for producing capacity.  To see this, let

land be supplied according to any differentiable supply function such that expenditure on land is

 En(xn), as before.  Define the total cost and capital cost functions:

and

Their relationship is made apparent by noting that the constraints in (5.5) and (5.6) are just

equations (5.3) and (5.2), respectively.  Recall that these equations are equivalent under the

transformation of variables from  X  to  x1  defined in (5.1).  That is, (5.5) can be rewritten as a

minimization over  X  instead of  x1, by substituting (5.1) for  x1  and (5.2) in place of the

constraint:
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This equation gives the relationship between the capital cost function,  K(X), and the total cost

function,  C(q).

We are now in a position to relate the scale economies of the two cost functions,  C(¥)  and

 K(¥).  Denote these scale economies by  s  and  sK, respectively.  The minimization in the second

line of (5.7) implies the first-order condition

Equation (5.7) also implies, using the envelope theorem, that

Manipulation (see appendix) yields:

where  q1ºw1tq/C  and  qKºK/C   are the shares of user cost and capacity cost, respectively, in

total cost.  In the usual case when  ht=0, (5.10) shows that  (1-s)  has the same sign as  (1-sK). 

That is, the cost function (5.5) has the same type of scale economies as the capital cost function

(5.6).  Note that the condition  ht=0  can be regarded either as a normalization condition in

defining "capacity" or as an assumption of constant returns in the congestion technology.12

Finally, how do "profits," as defined using cost function  C, correspond to financial profits

of the authority that finances capacity and practices congestion pricing?  The answer is they are

identical, because user costs are subtracted from both revenues and costs in going from one

formulation to the other.  Congestion pricing involves setting money price  t  so that full price 

pºt+w1t  is equal to marginal cost as given by (5.9).  Financial profits are therefore

                                                
     12The latter interpretation is made, for example, by Mohring and Harwitz (1962) and Strotz (1965, p. 135).
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which is identical to profits as defined in section 2.  The ratio of the authority's financial profits

to its cost,  (tq-K)/K, is related to  sK  as follows:

When  ht=0, this ratio is just  (1-sK)/sK, exactly analagous to (2.2b); or equivalently, the ratio of

congestion-pricing revenues to capital cost is  1/sK, as noted by Kraus (1982a, p. 236).

All the earlier results on the sign of profits therefore apply to the case of highway

congestion.  The sign of financial profit is governed by the degree of scale economies embedded in

 C(¥), which is defined for general factor-market conditions and accounts for a possibly rising

supply price for land.  Scale economies in  C(¥)  are related through (5.10) to scale economies in

the capacity-cost function  K(¥).  Under the usual assumption that  ht=0,  C(¥)  has scale

economies of the same type as  K(¥); hence the latter determines the sign of financial profits.

For completeness, note that (5.10) can also be written in the form

exactly analogous to (5.4).  (The derivation uses the first-order condition (5.8), which can be

written as  q1etX = -qK/sK.)  In the case of competitive factor markets, (5.12) would follow

immediately from (5.4) using the usual duality results that  s=r  and  sK=rg (Varian 1984, p. 68).
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6. The Context for Self-Financing Rules

To more fully appreciate the need for extending self-financing rules to monopsonistic input

markets, consider the process of land assembly for a highway.  The competitive price-taking

model of Berechman and Pines requires that we imagine the highway authority renting land from

competitive owners, each of whom can at any time evict his highway tenant and lease his parcel

to some other user at the prevailing market rent.  This market rent is that which applies in

equilibrium with the road fully built.  But such a competitive equilibrium cannot exist because

land must be irrevocably committed to the road prior to construction, typically through advance

purchase.  So the actual rental price paid for the land cannot be determined each period in a

competitive market.  Instead, we are in the realm of bilateral negotiations.

When land development is done privately, land assembly is often undertaken in great

secrecy so that at least some of the land can be purchased at prices reflecting its value prior to

any consideration of the new facility.  Other parcels may have to be purchased at higher prices. 

This result resembles the discriminating monopolist.

Occasionally, public land assembly occurs in the same way, as in the famous case of the

Los Angeles water district's purchase of riparian land in Owens Valley, California.  More often,

public land assembly occurs through negotiations in a context of eminent domain, the doctrine by

which the public can force a sale at a price determined by a court.  Fischel (1995) offers a

fascinating overview of the relevant case law in the United States, which provides insights into

the actual nature of the supply function faced by an authority building any large project involving

land assembly.13

In one instance, court rulings provide an outcome resembling that of a non-discriminating

monopsonist.  In Florida, alone among the fifty states in the U.S., land taken for a highway

through eminent domain is priced at an amount that includes the increase in value induced by the

highway (Bingham, 1985, pp. 11-7 through 11-11).

The overwhelming tendency, however, is to value land taken for a public project well

                                                
     13See especially chapter 2.  I am indebted to Fischel also for pointing me, in personal discussion, to the articles
by Francis and Bingham cited below.
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below its market value with the project in place.  According to Fischel, court cases have followed

cycles.  Early in the development of a particular technology such as railroads, when the benefits

from facilitating projects were perceived to be very high, rules for compensation were relatively

favorable to the agency acquiring land.  Later, as the magnitude of benefits became less compelling

and issues of horizontal equity were given more scope, the rules changed toward requiring higher

compensation.

For example, in the early days of both railroads and interstate highways, the courts

frequently reduced the price paid for land by a "benefit offset."  This reflected the fact that for

many landowners, only part of the owner's parcel was taken, while the remainder of the parcel

rose in market value because of the project.  In the case of urban elevated railways, this same

theory was at first applied to property in the form of easements for light and air, which were

deemed to be implicitly taken by the builder of an elevated structure in the middle of a street. 

Later, such offsets were prohibited, thereby raising the cost of acquiring those easements.  In the

case of interstate highways, similarly, compensation practices allowed rather low compensation

during the 1950s and 1960s;  but starting in 1970, both federal law and state court decisions

added many new compensation requirements such as for relocation costs, blight caused by prior

announcement of the project, and loss of business goodwill.  Cordes and Weisbrod (1979)

provide empirical evidence that such compensation practices did affect the amount of highway

construction undertaken.  Hence, their impact on the price of land acts in the manner postulated

in the investment models of in this paper.

The benefit offset was haphazard, leading to differing payments for similar land purchases

depending on how much other land was part of a given parcel.  Nevertheless, it produced a very

rough kind of rising supply price resembling that facing a perfectly discriminating monopsonist. 

Given the route and the size of the landholdings within which the road passed, the acquisition of

a very small strip of land might be essentially free because there would be enough other land in

the parcels for the benefit offset to be virtually complete.  A larger purchase would more often

encounter the need to purchase parcels for which the benefit offset would be only a fraction of

the cost of the land actually purchased.  For such parcels, marginal increases in the project's

scope would reduce the benefit offset by an amount reflecting the full access value of land taken,
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which means land at the margin would effectively be supplied at the full market price with the

road in place.

Two California practices illustrate other mechanisms by which highway authorities may

effectively be faced with a rising supply curve for land (Francis, 1984, p. 449).  California, like all

states except Florida, normally allows a public authority to exclude from its land payments the

land value induced by the highway itself.  However, if land not originally planned to be used is

subsequently taken due to a change in plans, induced value would be compensated.  Similarly, a

1971 court decision required that land taken for a freeway be valued at an amount that includes

any induced value caused by an intersecting freeway.  Both of these practices mean that as the

highway system is expanded, the authority must pay a land price that reflects at least in a crude

way the increasing scarcity value of the land that results from the highway system itself.

Of course, landowners may impose legal costs or delays on highway authorities in order to

increase their payments.  However, there seems no evidence that this is either systematic or

widespread.  Probably it means that most land is purchased for slightly more than the courts

would require, but it does not affect the relationship between price and scarcity.

Thus, it seems clear that highway authorities face a rising supply price for land. 

Furthermore, in many cases the nature of compensation rules leads to the landowners being left

with little producer surplus, corresponding to the case of the perfectly discriminating

monopsonist.  This is the least problematic case for our purposes because marginal-cost pricing

is first-best.  In such a case, the condition for a fully enlightened highway authority to be self-

financing is there are no positive economies of scale in its cost function, taking account of the

rising price of land.

The question arises whether we should include local land value increases induced by the

highway itself, if they are in part offset by land value decreases elsewhere.  Strictly speaking, the

arithmetic of equations (2.1)-(2.4) holds regardless of the cause of the rising supply price faced

by the highway authority.  However, it is probably better for two reasons to limit the use of

these equations to sketch planning, that is the analysis of alternative levels of highway provision

throughout an urban area, as for example in Fitch and Associates (1964).  One reason is that

normative implications of marginal-cost pricing become more cloudy if a highway competes for
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traffic with other highways that are not optimally priced.  The other reason is ambiguity about

what the price of land is a function of.  When land price is increased because of incidental

business from traffic carried by the road, it is really output  q  rather than land input  xn  that is

affecting land price, which would alter the choice of output price.  When land price is increased

by improved accessibility, either volume-capacity ratios  q/X  must have decreased or there must

have been some improvement in the highway's characteristics other than increased capacity, such

as faster off-peak times or improved safety;  Larsen (1993) notes that these are often correlated

with capacity and that this alters the Mohring-Harwitz result.  Both of these possibilities suggest

useful extensions of the model, but are accounted for neither here nor in any of the self-financing

literature discussed above.

7. Conclusion

There are practical reasons, then, to be interested in the finances of public authorities that

face noncompetitive factor markets for land.  This paper has shown how the self-financing rule,

usually applied only to first-best optimal investment and pricing, can be extended to such

situations.  The extended rule relates revenues from marginal-cost pricing, whether or not that

pricing is first- or even second-best optimal, to the actual costs incurred by the authority.  The

relationship hinges on the degree of scale economies of the actual cost function, which are

diminished to the extent that the authority faces a rising supply price of land.
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Appendix

Proof of Proposition 2

Let  x=(xa,xn)  be any input vector, and define returns to scale as the elasticity of the production

function with respect to an increase in inputs along the ray defined by  x:

Writing out the derivative in this equation and applying the first order conditions (2.5) at

x* º (xa
*,xn

*), with lºdC/dq, yields

which is greater than  s  for positive  wn
*.

The intuition is that even though the non-discriminating monopsonist must pay the same

price for all units of land (so that  C~=C  at reference output  q~), the marginal costs differ.  This

is because in calculating  C, but not  C
~

, the price of land will rise with increasing  q.  Hence the

ratio of average to marginal cost is larger for  C~  than for  C, i.e.  C~  shows greater economies of

scale.
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Second-Order Condition for Equation (3.8)

The maximand  L  in equation (3.8) contains the quantity  C(q)-Sn(q), which can be written as

in which the middle two terms cancel.  Therefore

since  C~  is defined like  C  except holding  wn  constant at  wn
*.  The last term is negative, so we

are assured of a maximum if  P¢-C~²<0  or if  P¢-C~²  is positive but not so large as to overcome

the last term.  Demand is downward sloping (P¢<0), so if  C~  is convex or not too concave

compared to  P¢, the second-order condition holds.  Note that  P¢-C~²<0  is the second-order

condition for optimality of marginal-cost pricing in the normal case of competitive factor

markets, so the requirement here is weaker than the one usually imposed.
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Proof of Proposition 3

Equation (A.2) implies that

Applying definition (3.8) of  po  yields (3.10) directly.

Now suppose the production function is homothetic, and consider the expansion paths for

inputs as  q  increases.  If  wn
*  were zero, these expansion paths would be rays from the origin,

and each input would grow proportionally to  q1/r*.  Hence the output-elasticity in the last term

in (3.10) would be  1/r*, so that the term in square brackets would vanish.  With  wn
*  positive,

use of land grows more slowly than  q1/r*  because the price of land rises;  so the elasticity in

(3.10) is less than  1/r*, causing the term in square brackets to be positive.

Derivation of Equation (5.4)

Let  r,  ht, and  rg  be the degrees of local homogeneity of  f(¥),  t(¥),  and  g(¥), respectively.  That

is, they are defined by

Substituting the definition (5.3) of  f  into the definition (5.1) of  x1,
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Differentiating with respect to  x1, xb, and xn yields:

Multiply these equations by  x1, xb, and  xn, respectively, and add them (remembering that  f=q). 

Using (A.7) and (A.9) to simplify, this yields:

or, recalling that  x1=qt,

Applying (A.7) and dividing by  qt,

Solving for  r  yields (5.4).
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Derivation of Equation (5.10)

Returns to scale are  sºC/(qdC/dq),  sKºK/(XdK/dX),  and  ht  as defined by (A.8). 

Applying these definitions to (5.9) and multiplying by  q  yields:

Subtracting  Cºw1qt+K  from each side,

Dividing by  C  yields (5.10).
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