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Abstract 

 

The Prefrontal Cortex and Hierarchical Behavior 

by 

Jennifer Sloan 

Doctor of Philosophy in Neuroscience 

University of California, Berkeley 

Professor Jonathan D. Wallis, Chair 

 

 

 

Every day, often without thinking about it, you create and achieve goals. These goals range in 
complexity from brushing your teeth in the morning, to avoiding traffic on your way to school, 
to figuring out how you're ever going to graduate from Berkeley. The intricate workings of your 
prefrontal cortex enable the planning and execution of such behaviors. For years, scientists 
have studied the mechanisms of simple choice behavior and learning in the form of stimulus- 
and action-outcome associations but the question of how increasingly complex and temporally-
extended learning arises remains largely unknown. Informed by converging work from the 
fields of psychology and computer science, we set out to understand the computations 
performed at the level of single cells that may contribute to the ideation, mental maintenance, 
and stringing together of actions to perform a hierarchical gambling task. We recorded 
extracellular activity from two subjects as they performed an n-armed bandit task and 
compared and contrasted the information processed simultaneously in three distinct brain 
areas: the lateral prefrontal cortex, the orbitofrontal cortex, and the anterior cingulate cortex. 
While our data do not support the preferential processing of superordinate versus subordinate 
goals in prefrontal cortex, we did find many signals that may underlie hierarchical behavior. 
These include value and action encoding that depended on the hierarchical level, as well as 
encoding of past choices that could be used to chunk actions at the same level of the hierarchy. 
Understanding these mechanisms could help elucidate how the complex behavioral repertoire 
of the primate is implemented. 
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1.  Introduction 

Much of human behavior is hierarchically structured. Even a simple act, such as making a cup of 
tea, can be broken down into multiple steps, each of which may be further broken down into 
requisite operations. Consideration of such hierarchical behaviors has been a cornerstone of 
many theories regarding the organization of the nervous system. For example, the proposed 
evolution of higher cognitive processes in humans from simpler instinctual responses in lower 
organisms informed colleagues Herbert Spencer's and John Hughlings Jackson's theories on the 
hierarchical organization of our nervous system (Wiest, 2012). Spencer, a biologist and 
philosopher, postulated that nervous tissue is constructed in layers with evolutionarily newer 
neural formations added on to more primitive areas (Spencer, 1855). Hughlings Jackson, a 
British neurologist, described the organization of behaviors to be resultant of this evolution 
such that each subsequent anatomical layer is responsible for more and more specialized 
behaviors as well as extended control over the lower centers and more instinctual actions 
(Jackson, 1884). Karl Lashley argued that, although temporally integrated actions sequences 
existed in insects and lower organisms, it was only in animals with cerebral cortices that such 
behaviors were displayed with any degree of complexity (Lashley, 1951).  

Spencer also put forth a theory for the mechanism of learning by which these increasingly 
complex behaviors could be learned. Forming the basis for modern theories of reinforcement 
learning, Spencer first articulated that pleasurable sensations achieved as the result of motor 
actions make those actions more likely to be repeated in the future under similar circumstances 
(Spencer, 1855; Leslie, 2006). This thesis aims to build upon our current understanding of the 
neural mechanisms supporting reinforcement learning (RL) in hierarchical behavior. 

1.1 Thesis overview 

The remainder of this chapter will be used to introduce the hierarchical structure of human 
behavior, what role reinforcement learning plays in that behavior, and how specific areas of the 
brain are structured to support such complex goal-directed behavior. The following chapter will 
describe the experimental methods, including the specific task used to study hierarchical 
behavior, details of training, and the equipment used. Chapter 3 will describe the response 
properties of neurons in the lateral prefrontal cortex (LPFC), an area that has been implicated in 
the organization of temporally extended behaviors, during the performance of the task. 
Chapter 4 will describe neural activity in orbitofrontal cortex (OFC) and anterior cingulate cortex 
(ACC), two areas that have been implicated in reinforcing behaviors. Finally, Chapter 5 will 
discuss how the current project has contributed to our understanding of hierarchical behavior 
and ways in which that understanding remains to be improved.  

1.2 Hierarchical behavior 

As humans, we perform many complex behaviors every day of our lives. That is, we string 
together actions with short term objectives into longer sequences of actions with longer-term 
objectives until we have increasingly complex goals that can take minutes, hours, days or even 
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years to achieve (Schank and Abelson, 1977; Fuster, 1997). To understand this organization of 
operations, let us consider the example from Humphreys and Forde (Humphreys and Forde, 
1998) of making a cup of tea (Figure 1.1). The superordinate goal of making a cup of tea may be 
broken down into the steps of putting a teabag into a teapot, pouring hot water into the 
teapot, pouring tea into a teacup, the addition of milk and tea if preferred, and stirring. Further, 
pouring tea into a teacup is composed of the subordinate actions of lifting the teapot, moving 
the teapot to the teacup, and tilting the teapot until tea comes out. One can even imagine that 
these actions are further broken down into motor programs, or sequential muscle flexions and 
extensions. In addition, the superordinate goal itself may also belong to higher-order goals (for 
instance, making breakfast). 

The categorization of these actions into so-called chunks, scripts, nodes, or schemas provides a 
potential mechanism by which a sequence of events can be efficiently stored under a single 
representation (MacKay, 1987; Cooper and Shallice, 2000; Botvinick et al., 2009). There is some 
evidence to suggest that the prefrontal cortex (PFC) is critically involved in this process. Indeed, 
early clinical work described how PFC damage produced disorganized behavior. Wilder Penfield, 
who operated on his own sister to remove a frontal lobe tumor, described how she was 
cognitively unimpaired by the operation, with normal intelligence, language, memory and 
reasoning, and yet she could not perform relatively simple tasks, such as cooking a meal 
(Penfield and Evans, 1935). Her problem was specifically in organization: she would finish 
cooking some parts of the meal before others had even begun. 

Another component of hierarchical behavior is the ability to keep the final goal in mind. The 
temporally extended nature of hierarchical behavior means that the final goal can be many 
steps from the initiation of the behavior. Here too, patients with frontal lobe damage tend to 
struggle. For example, Duncan and colleagues have reported the phenomenon of “goal 
neglect”, whereby patients with PFC damage disregard a task requirement, even though it has 
been understood and remembered (Duncan et al., 1996). The maintenance of the goal likely 
relies on working memory, a process that is known to be implemented by PFC (Goldman-Rakic, 
1987; Miller and Cohen, 2001; Frank and O'Reilly, 2006). Working memory representations are 
both flexible and dynamic (Frank and O'Reilly, 2006), which would be advantageous for goal 
representation. Goals frequently need to be adjusted “on the fly” and they only need to be 
stored temporarily: once the goal is achieved it can typically be forgotten. Indeed, there is 
strong negative correlation between working memory capacity and the likelihood of 
experiencing goal neglect (Kane and Engle, 2003)[REF] demonstrating the relationship between 
the two processes. 

Although the above findings are suggestive of a role for PFC in hierarchical organization, the 
precise contribution remains unclear. In addition, how different PFC subregions interact in 
order to implement hierarchical behavior is also unknown. The main aim of this thesis is to 
tease apart the contribution of different PFC areas to hierarchically-structured behavior by 
recording the electrical activity of single neurons in different PFC regions of awake monkeys 
while they are engaged in hierarchical behavior. 
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1.3 Reinforcement learning 

A key feature of all behavior, whether or not it is hierarchical, is that the organism typically has 
to choose among multiple alternatives when deciding which course of action to pursue. We 
may opt to spend our day working to obtain a meal for sustenance or we might choose instead 
to pursue a mate to maximize our reproductive success. Each of these actions is valuable; one 
perhaps with more immediate utility than the other, but both serve to perpetuate our genes. 
While classic theories of behavioral economics (Von Neumann and Morgenstern, 1944; 
Kahneman and Tversky, 1979) establish heuristics that are useful in determining optimal 
choices, they don't provide an explanation for how humans and animals learn about and 
develop preferences for different actions and outcomes to begin with. In this section, we will 
review the main theories regarding how this is accomplished, and also look at some of the 
special challenges posed to learning theory by hierarchical behavior. 

1.3.1 Historical perspective 
With the idea that positive outcomes influence subsequent choice behavior, Edward Thorndike, 
a contemporary of Herbert Spencer, developed his Law of Effect that spurred a field of research 
in behavioral conditioning using rewards and punishments to study the process of learning. 
Thorndike’s classic experiments involved putting a cat in a closed box with a lever that, when 
pressed, opened a gate and enabled escape to food. Early in the experiment, cats tended 
toward instinctual behaviors like exploring, sniffing, and scratching around the box. 
Occasionally, by chance or curiosity, they happened upon the lever that released them to a 
tasty feast. Later in the experiment, after trials were repeated many times, the animals’ 
behavior shifted such that less time was spent exploring before the lever was pressed. Learning 
could be roughly quantified by the difference in time the animal spent in the box from the 
beginning to the end of the experiment (Thorndike, 1911). Subsequently, Skinner trained rats to 
use a response lever to receive rewards (Skinner, 1930). The receipt of the reward “reinforced” 
the lever press, making it more likely that the animal would press the lever in future.   

At around the same time, parallel experiments by the Russian physiologist Ivan Pavlov sought to 
more carefully elucidate the connection between an external stimulus and the resulting 
response (Pavlov, 1927). Pavlov’s initial experiments examined the salivary reflex of dogs to a 
food stimulus. Pavlov realized that it was more beneficial for animals to respond to predictive 
cues of a noxious event (for instance that the certain odor or sound may indicate a predator) 
than  it was to wait until a predator’s teeth sank into their flesh.  Pavlov characterized how we 
learn from the temporal pairing of sensory cues. His classic work, called Pavlovian Conditioning, 
was done by pairing a conditioned stimulus (CS) about which the animal had no prior 
knowledge or expectation (e.g. a bell), with an unconditioned stimulus (US) which the animal 
found rewarding (e.g. a piece of meat). Repeatedly pairing the CS and US would eventually elicit 
the same response to the CS as to the US. In other words, the animal would now salivate to the 
bell, rather than the piece of meat. Pavlov termed this a “conditioned response”. This enabled 
Pavlov to measure the amount of learning that had taken place about the CS-US association, by 
measuring the strength of the conditioned response (e.g. amount of salivation to the CS).  
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Subsequent experiments showed that animals would only learn about a stimulus if it produced 
a surprising outcome (Kamin, 1969). For example, if the bell in the previous example were now 
accompanied by a light, the animals would not learn that the light predicted the meat. The bell 
already provided this information and so the delivery of the meat was not surprising. Learning 
about the light was “blocked” by the prior learning about the bell. Rescorla and Wagner (1972) 
put forth a prominent model to account for these findings. They proposed that the change in 
the strength of the CS-US association was proportional to the difference between what the 
animal expected to happen (the prior CS-US association) and what actually happened. More 
formally: 

𝑉𝑉𝑖𝑖𝑛𝑛+1 =  𝑉𝑉𝑖𝑖𝑛𝑛  +  𝛼𝛼 �𝜆𝜆𝑈𝑈𝑈𝑈  −  �𝑉𝑉𝑛𝑛
𝑖𝑖

� 

  

where Vi is the associative strength of conditioned stimulus ion trial n, λUS is the value of the 
unconditioned stimulus to the animal, α is a learning rate parameter varying between 0 and 1. 
Learning is therefore proportional to the discrepancy between the value of the actual outcome 
(λUS) and the value that was predicted by summing across all predictive conditioned stimuli. 
Thus, as the animal learns, and the outcome becomes better predicted, less learning occurs.  

As psychologists were working on the problem of understanding the mechanisms of complex 
learning, drastic technological advancements in computing allowed the creation of the field of 
artificial intelligence, leading scientists to develop algorithms for making smart machines. In 
fact, one of the most prominent computational frameworks for machine learning dovetailed 
nicely with the psychological models. Work done by Sutton aimed to allow naive hedonistic-
guided machines to learn and navigate novel environments through trial and error (Sutton and 
Barto, 1981; Sutton, 1988). The system could make predictions about the best course of action 
and, based on further information gathered incrementally, update future predictions based on 
experience. There are many common threads between the problems of human learning and 
machine learning. Both paradigms (animal and machine learning, respectively) assume that 
there is a subject or actor that, in a given circumstance or state, performs an action with the 
intent of achieving a desirable outcome. If the outcome is as predicted, no learning has taken 
place, and behavior repeats the same in future. However, if the result is better or worse than 
expected, learning occurs and actions are adjusted on future attempts according to the 
feedback. 

Indeed, Sutton made only two modifications to the Rescorla-Wagner model. First, to move 
away from the trial structure inherent in the Rescorla-Wagner model, and thereby improve the 
generalizability of the algorithm, predictions were made on the basis of successive time-points. 
The algorithm thus become known as the temporal difference (TD) model of RL. One problem 
with this modification, however, is that (unlike a trial) not every time point results in an 
outcome. Therefore the algorithm was modified so that it took into account, not just the 
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immediate reward, but also future potential rewards that arose as a result of the action. More 
formally: 

𝛿𝛿𝑡𝑡  =  𝑟𝑟𝑡𝑡 + 𝛾𝛾𝛾𝛾(𝑆𝑆𝑡𝑡+1) − 𝑉𝑉(𝑆𝑆𝑡𝑡) 

where δt is the amount of learning that should take place, rt is the amount of reward received at 
time t, γ is a discount factor, ensuring that future rewards are treated as less valuable than 
immediate rewards, V(St+1) is the predicted value of future possible states that the actor can 
access, and V(St) is the value of the current state. In other words, the amount that an action 
should be reinforced is the difference between what the actor predicted would happen, V(St), 
and the value of the thing that actually happened, i.e. the sum of the reward, rt, and future 
potential rewards arising as a result of the action, γV(St+1). This calculation is also referred to as 
a “reward prediction error” (RPE), since it reflects the error in the actor’s prediction as to the 
reward arising from the action.   

In the 1990s there was great excitement in the field of neuroscience, when Wolfram Schultz 
and colleagues (1997) discovered that dopaminergic neurons in the brain encoded RPEs, 
providing information about how much better or worse the appetitive outcome was than 
predicted (Schultz et al., 1997). That is, dopaminergic neurons in the ventral tegmental area 
(VTA) and the substantia nigra (SNc) become more active (by firing more action potentials than 
baseline) when an appetitive event was better than the animal predicted, became less active 
when an event was worse than the animal predicted, and remained at a tonic level of activity 
when the event occurred as predicted. RL continues to be a prominent model for animal and 
human learning and RPEs have been increasingly well characterized across species and learning 
paradigms (Dayan and Niv, 2008; Lee et al., 2012; Roesch et al., 2012). In addition to those in 
the VTA and SNc, other signals related to RL parameters have also been discovered and 
characterized in other areas of the brain, most notably the striatum (Valentin and O'Doherty, 
2009; Li et al., 2011; Diuk et al., 2013) and anterior cingulate region of the frontal cortex 
(Behrens et al., 2007; Kennerley et al., 2011). 

1.3.2 Reinforcement learning and hierarchical behavior 
One difficulty RL faces in describing the learning of natural human behavior is the tenet that an 
agent learns to behave adaptively by exploring an environment and testing different courses of 
action in various environmental states or conditions and subsequently experiencing the related 
outcomes. When we consider that the number of possible environmental states is near infinite, 
and the number of possible actions in a given state is equally numerous, the combinatorial 
explosion of possibilities quickly becomes overwhelming. Given that time to learn increases 
with greater environmental complexity, the system of standard RL in natural settings is 
eventually infeasible (Botvinick et al., 2008). A possible solution to this problem is abstraction in 
terms of time or space. Spatial abstraction would mean collapsing across a number of inter-
related environmental states (for example, specific locations in a single room) and treating 
them as equivalent and interchangeable (Botvinick, 2012). This reduces the space over which 
the agent is required to learn, making the problem more tractable.  
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The second related approach is the use of temporal abstraction whereby multiple actions are 
combined into subroutines. Similar to the example given earlier from Forde & Humphries of 
making a cup of tea is the subroutine of checking email (Botvinick, 2012). The chunking of 
actions – open laptop, mouse to browser icon, double-click, enter URL, enter password etc.—
packaged into a single high-level action representation reduces the number of decisions 
required to solve a problem thereby making it easier to master (Figure 1.2). This hierarchical 
structure, applied to standard RL paradigms, has yielded the field of Hierarchical Reinforcement 
Learning (HRL) and is a useful model for how the brain may cope with learning in large spaces 
with many available options to pursue. The fundamental questions of how these subroutines 
are established and the neural mechanisms which may support this structured learning remain 
unanswered. The prefrontal cortex, heavily recruited for executive functions of working 
memory, the chunking of action sequences, and calculation of reward prediction error learning 
signals is uniquely poised to facilitate HRL and this thesis aims to elucidate the contributions of 
three distinct prefrontal areas. 

1.4 Prefrontal cortex 

PFC is located at the front of the frontal lobe, rostral to the adjacent premotor cortex as divided 
approximately by the arcuate sulcus in the monkey (Barbas and Pandya, 1989).Homologies 
between rodents and primates are difficult and exacerbated by the lack of sulci in rodents. One 
method for defining PFC across species is to locate the projection zone from the mediodorsal 
nucleus of the thalamus (Rose and Woolsey, 1948). Using this classification, PFC comprises 
approximately thirty percent of the human neocortex, a larger proportion of the cortex than in 
any other species (Fuster, 1997). PFC is the slowest brain region to develop relative to other 
cortical areas and is only fully mature after a person enters their twenties (Giedd et al., 1999; 
Fuster). Anatomically positioned for diverse information integration, PFC regions connect with 
cortical and subcortical motor areas, virtually all sensory areas, and with midbrain and limbic 
structures associated with the processing of reward, emotion, and memory (Barbas and 
Pandya; Fuster, 1997; Miller and Cohen, 2001). There are three gross subregions in PFC (Figure 
1.3): orbitofrontal cortex (OFC), medial PFC, which includes the anterior cingulate cortex (ACC), 
and lateral areas (LPFC) and these areas are highly interconnected (Barbas and Pandya, 1989). 
The following sections will discuss medial, lateral, and orbital PFC subregions in more detail 
including functionality as well as morphology across species and reciprocal connectivity within 
the brain. 

1.3.2 Lateral prefrontal cortex (LPFC)  
Covering the lateral surface of the anterior end of the brain in monkeys and humans, LPFC has 
several subregions: areas 9 and 46 dorsally and 44, 45, and 47/12 ventrally. These areas are 
flanked by the frontopolar cortex (area 10) anteriorly and the frontal eye fields (area 8) 
posteriorly (Petrides and Pandya, 1999). This thesis will focus on areas 9 and 46, abbreviated 
LPFC, in the macaque monkey.This region is homologous to the human middle frontal gyrus 
(Petrides and Pandya, 1999). Because rodent PFC is agranular, it is difficult to identify a 
homologous region in rodents. However, Uylings and colleagues claim that dorsomedial 
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shoulder regions of the rat PFC are similar to the dorsolateral portion of PFC in primates 
(Uylings et al., 2003).  

LPFC receives sensory and motor input and is well positioned to integrate complex stimuli 
information (Petrides and Pandya, 1999). Polysensory information enters from the superior 
temporal sulcus. Visual signals related to object recognition and location are received from 
inferotemporal (IT) cortex and V5/MT, respectively. Abstract visual information, including that 
related to body position in visual space, is projected to LPFC from posterior parietal cortex. 
Although LPFC is not directly connected to primary motor areas, it is interconnected with 
premotor cortex and frontal and supplementary eye fields, conveying high-level motor planning 
and preparatory activity rather than low-level muscle control commands. In contrast to its 
strong sensorimotor connections, LPFC has little direct limbic connectivity although it can 
process memory-related information via reciprocal connections with the hippocampus. Limbic 
information is also received from interconnections with OFC.  

Petrides and Pandya (1999, 2002) have shown that there are anatomical subdivisions present in 
lateral prefrontal cortex such that the ventral and dorsal regions of dorsolateral PFC, as defined 
by the dorsal and ventral lips of the principal sulcus, connect differentially with distinct regions 
of parietal and premotor cortices and the cerebellum (Hoshi, 2006). Evidence has been 
accumulating to support functional divisions within LPFC as well (Hoshi, 2006; Koechlin et al., 
2003; Badre et al., 2008; Badre,2010; Hampshire et al., 2011). Using a simple behavioral task 
where monkeys were presented with visual cues instructing specific motor responses and then, 
following a short delay, visual choice cues were shown at various locations and animals could 
choose an action to achieve a positive outcome, Yamagata et al. (2012) characterized the 
differential contributions of neurons in dorsal and ventral DLPFC as well as dorsal premotor 
area. Dorsal DLPFC seemed to encode higher level information about the behavioral goal across 
the delay whereas neurons in ventral DLPFC encoded stimulus features of the cues as well as 
spatial information specifying the action to be taken, informing the differentiation of 
information processing along the perception-action hierarchy underlying goal-directed 
behavior. Another study examined the activity of single cells in LPFC during a cue-target 
association task. Here, Sigala et al. (2008) show a hierarchical representation in neural activity 
whereby responses of single cells in each phase of a task do not  predict their response during 
other phases and instead show orthogonal activity, for example cue information in phase and 
target information in another. In addition to physiology studies in non-human primates, 
functional neuroimaging (fMRI) and lesion studies in humans suggest that there may be a 
hierarchical functional organization within the frontal cortices whereby the post posterior 
regions control direct, concrete motor responses and information becomes progressively more 
abstract, goal-oriented, and context dependent anteriorly. Koechlin and colleagues (2003) 
conducted an fMRI study confirming that the increasing cognitive demands of sensory, 
contextual, and episodic information engage premotor to caudal to rostral prefrontal regions 
accordingly. Badre and D’Esposito (2007) subsequently devised an fMRI experiment 
manipulating competition at four levels of abstraction from simple motor responses to 
contextual cue-to-dimension mappings, showing an increasing reaction time gradient in 
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addition to hemodynamic activation along the rostro-caudal axis corresponding with a cognitive 
representational hierarchy. Furthermore, patients with stroke-related lesions along the rostro-
caudal axis show predictable deficits in the same task (Badre and D’Esposito, 2009).  

All PFC areas appear to contain neurons that encode reward-related information (Rangel and 
Hare, 2010; Wallis and Kennerley, 2010). However, in contrast to ACC and OFC, the reward 
information encoded by LPFC seems to be more highly processed. For example, LPFC neurons 
are able to predict reward values by distinguishing stimuli on a categorical basis, independent 
of visual properties (Pan et al., 2008).Reward information in LPFC also interacts with working 
memory processes, for example, by increasing the precision with which information is stored in 
working memory (Kennerley and Wallis, 2009). LPFC neurons also show properties that would 
be useful for allowing reward to control hierarchical behaviors. For example, neurons in LPFC 
seem to maintain a trace of previous choice activity for several trials in the past in order to 
maintain an average rate of reward, which would be useful for controlling temporally extended 
behaviors (Seo et al., 2007). Related, lateral prefrontal activity has been shown to increase with 
strategic use of working memory. Daniel Bor et al. (2003) has shown using functional 
neuroimaging that when people employ methods of chunking in a memory task of spatial 
sequences, behavior improved and LPFC is more active than when no such strategy is used. In 
addition, LPFC may play a role in allowing higher-level goals to suppress more low-level reward 
information. For example, Rangel and colleagues showed that LPFC was activated in humans 
dieting in response to unhealthy food options presented in a functional magnetic resonance 
imaging (fMRI) study (Hare et al., 2009). The LPFC signal correlated with the strength of the 
value signal in ventromedial PFC, suggesting that LPFC may have worked as a mechanism to 
suppress the value information elicited by the unhealthy food. 

In summary, LPFC displays many properties that make it ideally suited for the control of 
hierarchical behavior. Neuronal signals are frequently temporally extended, which may enable 
the representation of superordinate behaviors. In addition, reward signals in LPFC show the 
capacity to interact with high-level cognitive representations. However, at this stage, these 
ideas remain speculative; the current project aims to determine the precise contribution of 
LPFC. 

1.3.2 Orbitofrontal cortex (OFC) 
OFC lies on the ventral surface of the PFC right above the eye orbits of the skull. OFC includes 
Brodmann areas 10, 11, 12, 13, and 14. Along the anterior-posterior axis, the cytoarchitecture 
of tissue goes from granular (anterior) to dysgranular to agranular (posterior) dependent on the 
prominence of granular cells in layer IV (Morecraft et al., 1992). Though human OFC shares 
similar cytoarchitectonic organization (Mackey and Petrides, 2010), rat OFC lacks clear 
homologous areas and is instead described anatomically as ventrolateral OFC, lateral OFC, and 
agranular insular cortex (Ongur and Price, 2000).    

OFC has few connections with motor areas; indeed, it is the PFC subregion that is most poorly 
connected to the motor system. However, there are some connections between ventral 
premotor cortex and areas 12 and 13, and there are interconnections between OFC and LPFC 
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that may indirectly affect motor behavior (Carmichael and Price, 1995a). While these 
connections suggest a limited role in motor processing and execution, OFC has many more 
connections with sensory areas. Area 12 receives visual information from inferotemporal 
cortex, perirhinal cortex and regions in the superior temporal cortex relay polysensory input 
(Carmichael and Price, 1995a; Kondo et al., 2005). In addition, areas 12 and 13 receive tactile 
information about the face, hand, and forelimb from the anterior infraparietal area and 
secondary somatosensory cortex (Mountcastle et al., 1975; Petrides and Pandya, 1984), taste 
information from insula and opercular cortex (Carmichael and Price, 1995a), and olfactory 
information from the pyriform cortex (Carmichael and Price, 1995a). In addition to the vast 
amount of sensory information it receives, OFC also receives an array of signals related to 
emotion and reward-related activity. Amygdala, hippocampus, temporal pole, entorhinal, 
perirhinal, perihippocampal, and cingulate cortices all connect with areas 11, 13 and 14 
(Carmichael and Price, 1995b). Overall, though the OFC receives a relative lack of motor 
information, the area is very rich with limbic and sensory information. 

OFC appears to play an important role in value-based decision-making. For example, patients 
with damage to OFC exhibit choices that are inconsistent with their subjective preferences 
(Camille et al., 2011b). OFC neurons respond to valuable stimuli in the environment (Rolls, 
1996; Schultz et al., 2000; Wallis, 2007, 2012), encode both positive and negative expected 
outcomes (Morrison and Salzman, 2009) andreflect the value of one reward relative to others 
(Padoa-Schioppa and Assad, 2006, 2008). Such signals may underlie the role OFC plays in 
decision-making. Further, the strong limbic input to OFC, as well as its strong connections with 
all sensory modalities, place it in an ideal location for learning stimulus-outcome associations. 
OFC lesions impair Pavlovian conditioning in rats but leave instrumental conditioning 
unaffected (Ostlund and Balleine, 2007).Although intact on a range of neuropsychological 
exams, patients with OFC damage are unable to cope with stimulus-outcome reversals such 
that they continue responding in favor of a once-rewarding stimulus even though it may no 
longer be rewarding (Rolls et al., 1994). 

Although much of the recent literature has focused on the role of OFC in encoding reward 
information, there is also evidence that it plays a role in more cognitive processing. For 
example, OFC neurons are able to encode high-level, abstract rule information (Wallis et al., 
2001). In addition, although working memory processes are more commonly ascribed to LPFC 
rather than OFC (Bechara et al., 1998), recent evidence has shown that OFC neurons can hold 
information about rewards in working memory (Lara et al., 2009). In summary, OFC has both 
the anatomical connections as well as the functional properties to make an important 
contribution to processing reward information and using reward information to guide behavior, 
and those contributions could include enabling reward information to interact with high-level 
cognitive processes. 

1.3.3 Anterior cingulate cortex (ACC) 
ACC is located in the cingulate sulcus on the medial wall of PFC and consists largely of area 24. 
In humans, ACC is comparable to monkeys with one difference: human area 24 in the cingulate 
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sulcus has noticeably larger pyramidal neurons in layer V (Nimchinsky et al., 1996). Medial PFC 
in rats is more rudimentary than that of monkeys and humans, with simpler cell morphology 
and fewer divisions (Ongur and Price, 2000). Most primate electrophysiology studies of ACC 
focus on the region surrounding the portion of the cingulate sulcus anterior to the genu of the 
corpus callosum (Matsumoto et al., 2003). This is, in part, because this region is most accessible 
for electrophysiological studies. It lies close to the surface of the brain and is sufficiently lateral 
to avoid any accidental contact with the central sinus. This is also the region that we will focus 
on in the current thesis. 

ACC has strong connections with limbic and motor-related areas. Of the limbic areas, the 
amygdala, a key structure for processing affective value and emotion, connects strongly with all 
part of ACC (Carmichael and Price, 1995b). ACC is also the region of frontal cortex with the 
heaviest dopaminergic input (Williams and Goldman-Rakic, 1993). As for motor connectivity, 
ACC strongly connects to the area immediately posterior to it - the cingulate motor area (CMA) 
- which has direct projections to the spinal cord controlling movements of the arm and leg 
(Dum and Strick, 1991, 1996). CMA is also connected with the supplementary motor area 
(SMA), and together their spinal projections make up 40% of all corticospinal projections in the 
frontal lobe (Dum and Strick, 1996). In contrast, ACC has few connections with sensory areas 
(Carmichael and Price, 1995a).Recent findings, using diffusion tensor imaging, have shown that 
ACC has the same pattern of connections in the human as in the monkey (Croxson et al., 2005). 

Consistent with its connectivity to limbic areas, ACC neurons encode information about many 
different aspects of rewards, including their size, probability of delivery and how much work 
was required to earn the reward (Kennerley et al., 2009), as well as information about negative 
outcomes (Sallet et al., 2007; Seo and Lee, 2009). Although ACC and OFC share similar limbic 
connections, and similar responsivity to rewards, their pattern of connections suggests that 
they are part of two very separate networks performing different functions. Areas in the medial 
wall tend to connect with one another, but only have weak connections with areas in OFC, 
while areas in OFC tend to connect with one another, but only have weak connections with 
areas in the medial wall (Figure 1.4). These anatomical findings have led to the suggestion that 
there are two distinct limbic networks in frontal cortex (Carmichael and Price, 1996): the medial 
network and the orbital network.  

Given the existence of these two networks, there has been speculation as to what the 
difference is in their function. One possibility, which would be consistent with the anatomical 
connections of the two networks, is that OFC is important for associating stimuli with the 
rewarding outcomes they predict while ACC is important for associating actions with rewarding 
outcomes (Rushworth et al., 2007). Related ideas have been proposed in the decision-making 
literature. OFC is argued to be responsible for assigning values to sensory stimuli in the 
environment, thereby enabling the organism to efficiently make choices between different 
goods. This decision space is argued to be independent of the action necessary to acquire those 
goods. In contrast, ACC is argued to calculate the value of actions by integrating information 
about the action and the object to which the action is directed. There has been considerable 
debate about whether decision-making occurs solely in the realm of the goods space 
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(Wunderlich et al., 2010; Padoa-Schioppa, 2011), the action space (Kawagoe et al., 1998; Platt 
and Glimcher, 1999; Roesch and Olson, 2003) or requires the two systems to operate in parallel 
(Cisek and Kalaska, 2010; Luk and Wallis, 2013). 

Although there is neuropsychological evidence to support these distinctions in humans (Camille 
et al., 2011a), monkeys (Rudebeck et al., 2008) and rats (Balleine and Dickinson, 1998; Pickens 
et al., 2003; Ostlund and Balleine, 2007), the evidence at the single-neuron level is more mixed. 
OFC neurons in monkeys typically encode the value of predicted outcomes rather than the 
motor response necessary to obtain the outcome (Tremblay and Schultz, 1999; Wallis and 
Miller, 2003; Padoa-Schioppa and Assad, 2006; Ichihara-Takeda and Funahashi, 2008; Abe and 
Lee, 2011), but there have been some notable exceptions (Tsujimoto et al., 2009). Furthermore, 
robust encoding of actions has been seen in rat OFC (Feierstein et al., 2006; Furuyashiki et al., 
2008; Sul et al., 2010; van Wingerden et al., 2010). With regard to ACC, many studies have 
emphasized the role it plays in predicting the outcome associated with a given action (Ito et al., 
2003; Matsumoto et al., 2003; Williams et al., 2004; Luk and Wallis, 2009; Hayden and Platt, 
2010), but there have also been studies showing ACC neurons encoding the rewards predicted 
by stimuli (Seo and Lee, 2007; Kennerley et al., 2009; Cai and Padoa-Schioppa, 2012).  

Further yet, there is substantial and growing evidence that implicates ACC in reward prediction 
error signaling, including data to suggest that separate populations of neurons encode positive 
and negative errors similarly (Matsumoto et al., 2007; Kennerley et al., 2011; Sallet et al., 2007). 
In addition to, and in contrast with, standard RPE models where “good” events trigger positive 
RPEs and “bad” events trigger negative RPEs, it has been suggested that the cellular activity in 
this region may actually signify the occurrence of an unexpected outcome positively (+ RPE) or a 
non-occurrence of an expected outcome negatively (RPE -) regardless of whether the outcome 
is affectively positive or negative (Alexander and Brown, 2011). The reward prediction error 
activity may also be dependent on task phase or epoch (Kennerley et al., 2011; Sallet et al., 
2007) and can occur in response to a stimulus announcing a reward discrepancy before the 
actual reward has even been dispensed (Sallet et al., 2007). Though results conveying the types 
of information encoded in ACC are diverse and can be somewhat difficult to interpret in light of 
each other, that it receives heavy dopaminergic input and makes connections with limbic and 
motor areas, together with its documented role in action-outcome monitoring, ACC is uniquely 
poised to convey learning signals in complex behavioral environments such as the present 
hierarchical experiment where reward is manipulated on multiple levels.  

1.4 The role of PFC in hierarchically structured behavior 

Sometimes called the central executive, or association cortex, many prefrontal cortical areas 
receive information from two or more sensory modalities and project to multiple 
supplementary and pre-motor regions. This interconnectivity makes PFC suited for integrating 
and computing information to create abstract, high-level representations, to determine the 
optimal response to an environmental situation. Such high-level representations would be 
useful for a diverse array of cognitive processes, including memory and attention, emotional 
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and social processing, as well as planning and goal-directed behavior. Information in PFC may 
be encoded and maintained over time for working memory and used to select appropriate 
actions, while inhibiting others, in the pursuit of reward and learning. 

As discussed above, there is clear evidence implicating PFC in hierarchical behavior, befitting an 
area that is at the apex of perception-action cycle. However, as also made clear above, the 
different PFC areas are unlikely to perform the same function or make the same contribution to 
hierarchical behavior. The nature of these different contributions are not clear though. The aim 
of this thesis is to specify these contributions. We designed a primate version of a hierarchical 
task, and trained two monkeys to perform it. Each trial began with a choice, which we termed 
the superordinate choice. This choice determined how much juice reward the animal would 
receive at the end of the trial. However, before the animal received the juice, he had to 
perform a series of subordinate choices. These choices did not affect the final amount of juice 
received, but the animal was incentivized to perform that as efficiently as possible, since the 
more efficiently he performed them, the quicker he would get to the final reward. We then 
recorded electrical activity from single neurons in LPFC, OFC and ACC while the animal 
performed the task. Based on the previous evidence summarized above, we proposed different 
functions of the three different areas.  

Given the evidence that LPFC is involved in the representation of hierarchical behaviors and has 
the capacity to maintain information in working memory, we predict that LPFC neurons will 
encode superordinate motor responses and maintain that information through until the time of 
reward delivery, even though there will be intervening subordinate motor responses. We know 
that OFC is importantfor tracking stimulus values, and so we expect that the activity of OFC 
neurons will encode value information for low-level subordinate choices. However, given the 
role of OFC in encoding reward information in working memory, it may also be responsible for 
maintaining information about the value of the chosen superordinate choice until the time of 
reward delivery. Such a signal would be important for the animal to learn what the best 
superordinate choice in terms of yielding the maximum amount of final reward. Finally, given 
the role of ACC in encoding RPEs, we predict that ACC will encode RPE activity for both 
subordinate and superordinate choices. Indeed, the final delivery of reward will generate an 
RPE simultaneously for both levels of choice. To date, RPEs have only been studied using tasks 
that generate a single RPE, and so how neurons encode multiple RPEs is unknown. One 
possibility is that ACC will contain different populations of neurons responsible for encoding 
RPEs from different levels of the hierarchy. 

Chapter 3 will focus on LPFC and its role in encoding superordinate and subordinate motor 
responses. Chapter 4 will focus on OFC and ACC and their role in encoding the value of the 
choices as well as the final delivery of the reward. Chapter 5 will examine outcome and reward 
prediction activity in LPFC, OFC, and ACC. Chapter 6 will conclude the thesis with a discussion of 
the results and suggestions of future directions. 
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Figure 1.1 The superordinate task of making a cup of tea may be broken down into subordinate actions. From 
Humphreys and Forde, 1998. 
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Figure 1.2 Panel A shows a standard decision tree where each arrowhead signifies a point at which the agent 
needs to choose an action from all those available to pursue in order to reach the end goal. Panel B illustrates the 
benefit of aggregating the first four (red) and second three (blue) actions into single subroutine options. Panel C 
shows the behavioral trajectory taken from an original 7 steps down to two, an efficient reduction in the decision 
space. From Botvinick, Niv, and Barto (2009). 
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Figure 1.3 The medial, lateral, and orbital surfaces of the prefrontal cortex. Monkey outlines taken from 
Carmichael and Price (1996) and Petrides and Pandya (1999); human outline taken from Ongur and Price (2000). 
Adapted and re-printed with permission from Luk (2011).  
  



16 

 

 
 

 
 

Figure 1.4  Medial and orbital networks of the prefrontal cortex taken from Carmichael and Price (1996). Adapted 
and re-printed with permission from Wallis (2012). 
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2. Methods 

2.1 Overview 

All experimental methods and techniques are described herein.  

2.2 Behavioral training materials and methods 

2.2.1 Subjects 
Two rhesus monkeys (Macaca mulatta), subjects L and P, were used for this experiment. At the 
time neurophysiological recordings were taken subject L was 3 years old and weighed 10.1 kg 
and subject P was 4 years old and weighed 9.5kg. Subjects were housed in pairs when possible 
as part of a 5 animal colony. Subjects were fed two times per day, provided with behavioral 
enrichment, and experienced a 12-hour light cycle beginning at 7am daily. Subjects' fluid intake 
was regulated in order to motivate their participation in the study. All procedures were in 
accordance with the National Institutes of Health guidelines and the recommendations of the 
University of California Berkeley Animal Care and Use Committee. 

2.2.2 Equipment 
Subjects performed tasks seated in a primate chair facing a 19-inch LCD computer screen 
placed 50cm from the chair. A system of computers controlled the display of behavioral events 
(Figure 2.1). These computers utilized Monkeylogic (http://www.monkeylogic.net/), a toolbox 
running in conjunction with Matlab (http://www.mathworks.com/products/matlab/), for the 
design and execution of psychophysical tasks. The central Monkeylogic control computer sent 
commands via a COM port to a receiving computer which then presented the visual stimuli on 
an LCD monitor. The stimuli were mirrored via a video splitter onto a third monitor in the 
sound-attenuation box where the monkeys sat. Mirroring the presentation of the task allowed 
us to monitor exactly what the subjects saw without disturbing them as they worked. The 
Monkeylogic control computer ran timing routines and interfaced with various external devices 
via a PCI-6229 data acquisition (DAQ) card (National Instruments, Austin, TX). Each behavioral 
event in the trial was marked with a code that was sent as an 8-bit number from the DAQ to the 
multichannel acquisition processor (MAP). The MAP systems read in this number and recorded 
its value along with a timestamp of when it occurred. Its timestamp was stored along with 
neurophysiological data in a single '.plx' data file. The Monkeylogic control computer ran with a 
single interrupt routine that triggered every millisecond and updated both a software clock and 
sampled all data lines. Thus, the control of the behavioral contingencies, the presentation of 
visual stimuli, and the monitoring of behavioral event all took place with single millisecond 
resolution.  Visual stimuli in the task were isoluminant as measured by the Spyder luminance 
meter (Datacolor, Lawrenceville, NJ). 

During initial training, when subjects used a manual joystick to respond, choices were 
registered by using two 4-TPS-E1 Touch Sensor Modules (Crist Instrument, Damascus, MD) 
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connected to the digital input port of the DAQ card. The touch sensors were contact-sensitive 
devices designed to send a 5-volt TTL pulse when a grounded subject touched it. Actions were 
executed using custom-made joysticks that connected to the Touch Sensor Module.  

Once subjects learned to register their choices using a joystick, they were then trained to use 
eye movements (saccades) to select from available stimuli. Eye position was recorded using an 
infrared eye monitoring system (ISCAN, Burlington, MA). An infrared camera focused on the 
subject's eye and visualized the results using proprietary image tracking software. The software 
tracked the center of the subject's pupil as X and Y coordinates as well as the pupil diameter. 
These three measures were fed separately to three DAQ analog input channels and recorded 
for the duration of the session. 

Juice rewards were delivered by commands from the DAQ analog output ports to the juice 
pump. The ISMATEC-IPC8 peristaltic juice pump (ISMATEC SA, Glattbrugg, Switzerland) took a 0-
5V TTL pulse that delivered a voltage-dependent volume per unit time through polymer tubing 
which ended in a custom made mouthpiece positioned near the animal's mouth.  

2.2.3 Behavioral training 
Subjects were trained to perform the behavioral task using positive reinforcement. Sitting in 
front of a video monitor, subjects used eye movements to choose from available visual stimuli 
in order to obtain a liquid reward mixture of 50% water and 50% apple juice. Subjects were able 
to work on the task until receiving as much reward as desired. Once the subjects learned the 
task, neurophysiological recording sessions began and were typically carried out for five or six 
days a week. 

2.2.4 Behavioral task 
A depiction of the behavioral task is shown in Figure 2.5. Animals were required to make two 
decisions in this task. After completing an initial fixation period of 500 ms, a new trial began 
with the presentation of the superordinate choice. These two stimuli were chosen from four 
possible stimuli at random and each indicated a volume of a juice reward the animal would 
receive upon successful completion of the trial. The red fixation cue turned green and the 
animal indicated his choice by maintaining visual fixation on the stimulus for 500 ms. Prior to 
the subordinate choice presentation, the animal is again required to fixate centrally (300 ms). 
Once the fixation requirement was satisfied, two out of four possible stimuli were presented to 
the animal and the fixation cue turned from red to green, allowing the animal to proceed with 
maintaining visual fixation on the stimulus of choice for 500 ms. Each stimulus represented a 
probabilistic “win” to the animal as indicated by a secondary reinforcement meter presented 
centrally around the GO cue. The subordinate stimuli had 10%, 35%, 60%, and 85% probabilities 
of satisfying a “win” requirement and two wins were necessary before the animal was able to 
receive the liquid juice reward whose volume pertained to the superordinate selection. Juice 
rewards were delivered over a 1600 ms period and volume was adjusted by the speed of a 
solenoid pump.  
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2.3 Neurophysiological techniques 

2.3.1 Isolation of recording sites 
To record from the brain areas of interest, we began by placing recording chambers on the 
overlaying skull. Magnetic resonance images (MRIs) of the subjects' brains were taken at the 
U.C. Davis Center for Imaging Sciences with a 1.5 Tesla scanner prior to the animals’ arrival at 
Berkeley. Those digital images were then imported into commercial graphics software (Adobe 
Illustrator CS5, San Jose, CA) where stereotactic coordinates for chamber placement were 
calculated. Correspondence between the MRI scans and electrode placement were verified 
during recording sessions by mapping the location of sulci and the boundaries of gray and white 
matter.  

Alternate areas were recorded from both brain hemispheres were in each subject. In subject L, 
ACC and LPFC were recorded from the left hemisphere. This chamber was centered at 25mm 
anterior of the interaural line (i.e. AP 25) and 6.9mm lateral of the mid-sagittal plane (i.e., LM 
6.9) on the skull and angled at 20 degrees outward from vertical. LPFC and OFC were recorded 
from the right hemisphere in subject L and this chamber was similarly centered at AP 25 and 7.5 
LM and angled 12 degrees outward from vertical. In subject P, activity in ACC and LPFC was 
recorded from the right hemisphere. This chamber was centered at 27mm anterior of the 
interaural line and 17.7 mm lateral of the mid-sagittal plane on the skull and angled at 20 
degrees outward from vertical. LPFC and OFC were recorded from the left hemisphere in 
subject P and this chamber, angled 10 degrees lateral of vertical, was similarly centered at AP 
27 and 17.7 mm LM. (Figures 2.2 to 2.4) 

2.3.2 Surgery 
Subjects underwent an initial surgery to implant a custom-made titanium head-positioning post 
secured with titanium orthopedic screws. This post kept the subjects head immobile to allow 
for eye movement tracking as well as head stabilization for electrode recordings. For each 
animal, after determining the position for chamber placement, two surgical operations were 
performed: one to implant the chambers and one to make craniotomies through which the 
recording electrodes enter the brain. Cylindrical titanium recording chambers were secured to 
the skull using bone cement and titanium screws. Subsequent craniotomies were made within 
the chambers to allow access to the underlying brain tissue. Chambers were covered with 
polypropylene CILUX caps from Crist Instrument (Hagerstown, MD) to prevent contamination 
and infection, as well as to discourage granulation tissue growth.  

For surgical procedures, anesthesia was induced with ketamine intramuscularly (10mg/kg IM). 
Xylocaine or lidocaine spray (14%) was used as a local anesthetic to facilitate intubation. 
Anesthesia was maintained with isoflurane (2-4%). Depth of anesthesia and vital signs were 
steadily monitored by the surgical team including heartbeat (90-150 beats per minute), 
respiration (17-23 breaths/min), body temperature (36-39 degrees celsius) and  blood oxygen 
saturation (>85%).  Lactated Ringer's solution was infused intravenously (2-4 ml/kg/hr) to 
ensure the monkey remained sufficiently hydrated and heating pads and clothing were placed 
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under and on the body to maintain temperature. Following surgery, gas anesthesia was 
discontinued, and once an animal showed signs of recovery, the animal was extubated and 
given buprenorphine at a dose of 0.01-0.03mg/kg subcutaneously (SC) or IM for post-operative 
pain relief. Animals were checked upon and carefully monitored at least every half hour, the 
period of which was incrementally lengthened as the animal recovered from anesthesia. After 
the initial recovery, the animal was checked several times per day at which time appropriate 
analgesics and antibiotics were administered. Typically, buprenorphine  (0.01-0.03mg/kg SC or 
IM) was administered 2-3 times per day for 2-5 days. All appropriate measures were taken to 
minimize pain and choice and dose of analgesic were made in consultation with veterinary 
staff.  

2.3.3 Recordings 
Neuronal activity was recorded from three brain areas: anterior cingulate cortex (ACC), 
orbitofrontal cortex (OFC), and lateral prefrontal cortex (LPFC). Tungsten electrodes (FHC, 
Bowdoin, ME) attached to custom-designed screw microdrives were lowered so as to record 
from multiple brain areas simultaneously on a given day. The microdrives were mounted to a 
custom-made plastic grid containing an array of 24-guage holes spaced 1mm apart, which 
allowed electrodes to be lowered independently to varying depths. Stainless steel 24-gauge 
thin-wall hypodermic needles (Terumo, Somerset, NJ) were glued to the bottom of the grid 
such that the beveled tip of the needles pointed out of the grid. These tips served to puncture 
the dura mater and guide the electrodes to the desired recording location. Electrodes were 
lowered manually by handheld screwdrivers to MRI-informed depths. As an electrode 
approached a cellular layer we slowed the lowering and stopped when we isolated single 
neurons. After neurons were located on all or most recording channels we waited 1-2 hours for 
the brain to settle to ensure maximum stability during the recording session which lasted 1.5-
2.5 hours. Neuronal drift was seldom a problem. Neurons were sampled randomly to ensure 
fairer comparison of neuron properties between the different brain regions. During the 
recording session, no changes to the channels were made and distractions to the subject were 
minimized.  

To minimize the chance of infection chambers were cleaned both before and following all 
recording sessions. Cleaning began by removing the cap (or grid, for cleanings following 
recordings) and sterilizing the chamber exterior with alcohol. Next, under sterile conditions, the 
inside of the chamber was flushed with sterile saline, then with a mixture of povidone (an 
iodine-based antiseptic) and saline, followed by a final saline flush. Tissue was dabbed dry with 
a sterile gauze or cotton swab. If cleaning was prior to recording, the plastic grid with 
microdrives and electrodes was fitted on top of the chamber. The grids used for recording were 
sterilized in Cidex, a glutaraldehyde solution, overnight. If the cleaning was performed after 
recording, a new sterilized cap was secured on top of the chamber.  

2.3.4 Materials and methods for neurophysiology 
Voltage signals were taken from the tip of the electrodes with respect to the reference, the 
dead-positioning post affixed to the subject’s skull. Those neuronal signals were recorded and 
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amplified via hardware and software from Plexon, Inc. (Dallas, TX) as shown in Figure 2.1. The 
signal was amplified 20 times from an op-amp based circuit in the headstage, which connected 
directly to the electrodes. The signal was then further amplified 100 times through a 
preamplifier and filtered for spikes in the 100 Hz – 8 kHz frequency band and local field 
potentials (LFPs) in the 1 Hz – 300 Hz frequency band. Signals were then processed by a 
Multichannel Acquisition Processor (MAP system) for further amplification and filtering.  

Spikes and LFPs were digitalized at 40 kHz with 12-bit resolution per channel. For the spikes, 
voltage thresholds were set to ensure that the neuronal signals were a minimum of 4 standard 
deviations above the background noise (calculated over a 10s period immediately prior to 
recording.) When the spike waveform crossed the manually set threshold, the program 
recorded the time stamp of the threshold crossing. Waveforms and voltage fluctuations that 
did not cross the threshold were discarded. The digitized waveforms were then sorted offline 
using Offline Sorter software (Plexon, Inc., Dallas, TX). This constructed 2D or 3D plots of a 
subset of 12 waveform features including the first three projections from principal components 
analysis, peak-valley differences and widths, and waveform energy. From those 2D or 3D plots, 
clusters of waveforms were grouped together manually and classified as single units (Figure 
2.6). We ensured the separation of neuronal waveforms by rejecting channels where more than 
0.1% of the waveforms were separated by intervals of less than 1.5 ms or where neuronal 
“drift” occurred. Typically, approximately 15% of the channels were discarded.  

2.4 Statistical analysis 

We used MATLAB (MathWorks, Natick, MA) to perform all analyses. Analyses were restricted to 
successfully completed trials. To characterize selectivity of a neuron, we first calculated its 
mean firing rate in each trial during a defined time epoch. We compared differences in firing 
rate between experimental conditions with the null hypothesis that the neuron did not encode 
a given type of information We specified the independent variables and statistical test in our 
description of the experimental results. Once we had classified the neurons according to the 
type of information they encoded, we assessed differences between brain areas in the 
prevalence of these different types of neurons using chi-squared tests. We specify the 
independent variables and particular statistical analyses are described in detail in the results 
chapter. 
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Figure 2.1 Signal acquisition system  
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Figure 2.2 Structural magnetic resonance image (MRI) from Animal L showing chamber placement (light blue 
parallel lines) and possible electrode tracks in yellow. Brain areas recorded from are highlighted in red (LPFC), 
green (ACC), and blue (OFC). 
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Figure 2.3 Structural magnetic resonance image (MRI) from Animal P showing chamber placement (light blue 
parallel lines) and possible electrode tracks in yellow. Brain areas recorded from are highlighted in red (LPFC), 
green (ACC), and blue (OFC). 
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Figure 2.5 Illustration of the sequence of events in the behavioral task. There were two decision periods: a 
superordinate choice and a subordinate choice, both presented randomly. 
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Figure 2.6 Distinct waveforms cluster on the basis of a principal components analysis using Offline Sorter  
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3. Results 

3.1 Behavioral analysis 

3.1.1 Subject L 
Subject L was new to the lab prior to the beginning of this experiment. This monkey was trained 
for 13 months, through a series of increasingly complex games, before the implantation of 
recording chambers. During the training period, when given a new stimulus set, subject L 
consistently learned the slot machine probabilities more quickly than casino values. We set the 
criterion for learning  as choosing the more rewarding stimulus for more than 20 consecutive 
trials. Upon receiving a new stimulus set each testing day for five days, Subject L reached this 
criterion on average after 150 slot machine choices and 270 casino choices. Recording 
chambers were implanted once the subject consistently performed optimally for at least 85% of 
a given session for two weeks (or ten sessions) of testing on both casino and slot machine 
choices. Rarely, and typically later in a session when the subject was satiated, the monkey failed 
to achieve initial fixation or complete whole trials. Data was recorded during 44 sessions. 
Subject L completed an average of 538 ± 100 trials per session. Subject L chose the highest 
value slot machine of those presented 99% of the time and the highest value casino offered on 
90% of trials. Fewer than 2% of trials were excluded from our analyses because of errors such 
as failing to initiate fixation.   

We used a logistic regression to determine which factors were driving the subject’s choices. For 
the casino choice, we examined whether the value of the left casino and the value of the right 
casino could predict whether the subject would select the casino on the left. As the value of the 
left casino increased, or the value of the right casino decreased, the subject was significantly 
more likely to select the left casino (p < 1 x 10-15 for both predictor variables). Thus, the subject 
appeared to be using the value of both casinos to determine his choice. For the slot machine 
choices, we used four predictor variables consisting of the value of the left and right slot 
machine, as well as value of the left and right casinos. The number of slot machine choices 
varied from trial to trial, depending on the subjects’ choices as well as the payout contingencies 
of the slot machine. Thus, to analyze choices across trials, we focused on the first and last slot 
machine choice, as well as the casino choice. The likelihood of choosing the left slot machine 
increased as the value of the left slot increased or the right slot decreased, for both the first slot 
and last slot choice (p < 1 x 10-15 in all cases). There was no effect of the left or right casino 
values on the slot machine choices (p > 0.05 in all cases). 

Further evidence that the subject was comparing both options in order to make a choice was 
evident in his reaction times (RTs). If the subject was performing such a comparison, we 
reasoned that his RTs would be slowest when the value difference between the two options 
was small, and quicker when this value difference was large. To examine whether this was the 
case, we performed a multiple linear regression to determine whether we could predict the 
monkey’s RT by the values of the chosen stimulus, the unchosen stimulus, and the absolute 
difference between the chosen and unchosen stimuli. In addition, we included whether the 
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subject was responding to the left or right as a nuisance parameter. Differences here could 
arise due to a variety of factors such as the calibration of the eye tracker, or due to a subject’s 
attentional bias. Subjects indicated their choices by a steady fixation within 2 degrees of visual 
angle of the selected stimulus for 500-ms. Because the subjects were able to freely view the 
stimuli on the screen, they often briefly made saccades to different objects before making their 
final response. Reaction times were computed as the time between the appearance of stimuli 
on the screen and the completion of the choice of interest (minus the required choice selection 
time of 500-ms).  

Consistent with the idea that it takes longer to determine the optimal choice when the value of 
the choices are close together, we found that smaller absolute differences in value significantly 
predicted longer RTs for the casino choice (p < 3.5 x 10-15) and for the first (p < 1 x 10-15) and last 
(p < 3 x 10-8) slot machine choice. Not surprisingly, as shown in Figure 3.1, subject L also 
consistently responded faster to more valuable options for both casino and slot choices (p < 1 x 
10-15 in all three cases). However, we also noticed that casino choices tended to take longer 
than slot machine choices. At an average of 382-ms ± 5-ms casino decisions took significantly 
longer than both the first slot machine choice (230-ms ± 5-ms) and the last slot machine choice 
(213-ms ± 2-ms; one-way ANOVA, F2,68522 = 731.83, p < 1 x 10-15).  

One possible explanation for the slower responses on casino choices might be that they arise 
when the subject is losing motivation to perform the task. In this situation it may take longer for 
the subject to make his first choice (the casino), but once that choice is performed, he makes 
his subsequent choices (the slots) at normal speed in order to ensure he receives the final 
reward. To examine whether this was the case, we broke the session into quartiles. Although 
reaction times did generally increase as the session progressed, casino RTs remained 
consistently slower than slot machine RTs (Figure 3.2). We performed a two-way ANOVA to test 
the significance of these effects, with RT as the predictor variable, and independent variables of 
Choice (casino, first slot, last slot) and Quartile. There was a significant main effect of Quartile 
(F3,68511 = 12, p < 1 x 10-7), which arose from RTs getting slower as the session progressed. In 
addition, there was a significant main effect of Choice (F2,68511 = 730, p < 1 x 10-15), which arose 
from casino choices being slower than slot machine choices. Most importantly, a simple effects 
analysis showed that there was a significant effect of Choice even during the first Quartile 
(F2,68511 = 150, p < 1 x 10-15), when the effects of inadequate motivation should have been 
weakest. Thus, subject L appeared to make casino choices more slowly than slot machines, 
irrespective of his motivational state, suggesting that casinos required additional cognitive 
processing compared to slot machines. 
  



30 

 

 

Figure 3.1. Monkey L: Reaction times for the chosen casino, first slot, and last slot machine values.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Monkey L: Mean reaction times (bars are SEM) for chosen values broken down by quartile of behavioral 
session. Reaction times became slower as a training session progressed. In addition, reaction times for casino 
decisions were consistently slower than those for slot machine choices.   
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3.1.2 Subject P 

The second subject trained on this task, subject P, took 12 months to reach a consistent level of 
performance. Similar to subject L, when given a new stimulus set, subject P learned slot 
machine values more quickly than casino values. After having been given a new stimulus set for 
each of five days, Subject P took 160 slot machine choices and 400 casino choices to reach a 
criterion of 20 consecutive trials where he chose the optimal stimuli at both levels of the task. 
Recording chambers were implanted once the animal performed at or above 85% for every 
testing session over a two week period. Analyses were computed only for successfully 
completed trials. During 32 recorded sessions, of 522 ± 104 trials per session, Subject P chose 
the highest value slot machine of those presented 96% of the time and the highest value casino 
offered on 91% of trials. Errors, such as fixation failures, occurred on 6% of trials and we 
excluded these trials from our analyses.  

Our analysis of subject P’s choices followed the same methods outlined above for subject L. We 
used a logistic regression to examine how the value of the two options influenced the subject’s 
choice. We determined that subject P’s choices were highly driven by the value of the options 
for both casino and slot machine choices such that as the value of the item on the left increased 
or the value of the item on the right decreased, the subject was more likely to make a leftward 
response (p < 1 x 10-15). We also tested whether the casino influenced which slot machines 
were subsequently chosen and while there was no effect of the casinos on the last slot machine 
choice (p > 1 x 10-15 in both cases), it seems that the value of the right casino (p = 0.0069) but 
not the left (p = 0.0997) influenced the first slot machine choice. However, note that the 
magnitude of this effect was considerably weaker than the effect of the value of the slot 
machines. A one unit change in the value of the slot machines increased the odds of choosing 
the slot machine by an average of 110%, whereas in contrast, a one unit change in the value of 
the casinos increased the odds of choosing a particular slot machine by an average of only 8%.   

Next, we again considered whether the monkey’s RT could be explained by the values of the 
chosen stimulus, the unchosen stimulus, the absolute difference between the chosen and 
unchosen stimuli, or the responses of right and left. We concentrated on three choices: the 
casino choice and the first and last slot machine choice. Similar to subject L, subject P took 
significantly longer to make choices when they were closer in value (p < 0.001 in all cases). He 
was also quicker when choices were of higher value (Figure 3.3, p < 1 x 10-15 in all cases). In 
addition, casino choices were consistently faster than slot machine choices. At an average of 
455-ms ± 10-ms casino decisions took longer than both the first (385-ms ± 7-ms) and the last 
(319-ms ± 4-ms) slot machine choices. A 2-way ANOVA of Choice (casino, first slot, last slot) and 
Quartile on the subjects’ RTs showed a significant main effect of Quartile (F3,45432 = 85, p < 1 x 
10-15), indicating that the subjects’ choices got slower as the session progressed, and a 
significant main effect of Choice (F2,45432 = 69, p < 1 x 10-15), which arose from casino choices 
being slower than slot machine choices (Figure 3.4). However, a simple effects analysis showed 
that there was no difference between casino and slot machine choices during the first Quartile 
(F2,45432 < 1, p > 0.1) suggesting that, in subject P, the casino choices were slower because of 
motivational issues associated with initiating the sequence of choices that constituted a trial.  
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Figure 3.3. Monkey P: Reaction times for the chosen casino, first slot, and last slot machine values.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Monkey P: Reaction times for chosen values broken down by quartile of behavioral session. Reaction 
times slow as the behavioral session progressed, particularly for casino decisions. This could arise because of 
suggesting a decline in motivation which might differentially affect the tendency to complete choices in the early 
phase of the trial. 
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3.2 Neurophysiology: LPFC 

3.2.1 Value encoding 
In total, 262 neurons were recorded from LPFC, 136 from subject L and 126 from subject P. 
Given that value was highly predictive of behavioral parameters, we used a stepwise regression 
to broadly search for value-related variables that were predictive of each neuron’s firing rate 
during casino and slot machine decision epochs during the behavioral task. We considered 
seven variables related to the value of the pictures: chosen value; unchosen value; the sum and 
difference of the chosen and unchosen values; the ipsilateral value, contralateral value, and the 
difference of the ipsilateral and contralateral values. Note that the sum of the ipsilateral and 
contralateral values is identical to the sum of the chosen and unchosen values and so was not 
included as an additional regressor. We also included a parameter that reflected the subject’s 
behavioral response to either the left or right option (section 3.2.2 will describe neural activity 
related to the behavioral response). We defined the decision period for a given epoch as the 
500-ms following the presentation of the stimuli, with a 100-ms lag to account for the time it 
takes for information to reach LPFC. In other words, the casino decision period is from 100-ms 
to 600-ms following the appearance of the two casino stimuli on the monitor. Because the 
number of slot machine choices varies from trial to trial, we restrict most of our analyses to the 
first and last slot machine choices and epochs. In addition, we examined neural selectivity 
during the fixation period, the 500-ms immediately preceding the presentation of the casino. 
During the fixation period, the subject has no information about the value of the upcoming 
pictures, and so analyzing neural activity during this period provides us with a useful benchmark 
against which to compare our statistical analyses from the remainder of the trial. 

Table 3.1 shows the percentage of neurons encoding each of these parameters for each 
decision at each stage of the task. During the casino choice period, the most prevalent value 
encoding (39/262 or 15%) related to the chosen casino. Figure 3.5 shows a neuron that 
encoded the value of the chosen casino. It responded most strongly when the subject chose the 
most valuable stimulus, and responded less strongly when the subject had to choose one of the 
less valuable options. Furthermore, it did not encode the value of the slot machines.  

The proportion of neurons that encoded the value of the chosen casinos was significantly 
higher than the proportion that encoded the value of the slot machines. This was true 
irrespective of whether we compared the casinos and the first slot (chi-squared test = 7.0, p < 
0.01) or the casinos and the last slot (chi-squared test = 5.0, p < 0.05). When neurons 
responded selectively to the value of a chosen stimulus, most had a higher firing rate for lower 
value stimuli (casino: 28/39, binomial test, p < 0.005; first slot:  18/19, binomial test, p < 5 x    
10-6; last slot: 19/22, binomial test, p < 0.0005).  

LPFC neurons also encoded stimulus values according to their position on the screen. Figure 3.6 
illustrates a neuron located in the right hemisphere of animal P’s brain that encoded the value 
of the contralateral (with respect to the brain hemisphere from which the neuron was 
recorded) casino but neither contralateral nor ipsilateral first or last slot machine responses. 
This neuron fired in a graded manner with its highest rate of discharge indicating the highest 
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value casino on the left side of the screen. This neuron did not respond to slot machines, 
irrespective of laterality, and did not significantly encode the value of the ipsilateral casino (p > 
0.05 in all cases). The proportion of neurons encoding the value of stimuli either ipsilateral or 
contralateral to the neuron was similar at the time of casino choice (59/262 or 23%), the first 
slot machine choice (45/262 or 17%) and the last slot machine choice (41/262 or 16%). These 
proportions did not significantly differ from one another (chi-squared test = 4.0, p > 0.1). 
Neurons were approximately equally likely to have either positive or negative relationships 
between firing rate and the value of the contralateral or ipsilateral options (binomial test, p > 
0.1 in all cases).  

We wished to determine whether the neurons encoding values overlapped more than 
predicted by chance. There were not enough neurons with specific value-related variables to 
make statistical comparisons across epochs, so we collapsed across the seven different value-
related variables. In sum, 143/262 or 55% of neurons encoded value information during the 
casino, compared to 124/262 or 47% during the first slot machine and 114/262 or 44% during 
the last slot machine. There were neurons that encoded value information during the casino 
and the following first slot choices (67/262 or 26%) as well as during the casino and last slot 
choices (66/262 or 25%) but neither of these populations exceeded what would be expected by 
chance (binomial test, p > 0.1 in both cases). A significant number of neurons did encode value 
information during both the first and last slot machine choices, however (70/262 or 27%, 
binomial test, p = 0.007). Further, the proportion of neurons that encoded value-related 
variables during all three choice epochs also exceeded what would be expected by chance 
alone (42/262, binomial test, p = 0.0074). 

We next examined whether LPFC neurons maintained information about the value of the 
casinos while the subject performed the intervening slot machines. To do this, we added 
additional parameters to the stepwise regression. Specifically, we examined whether the value 
of the casinos predicted neural activity at the time of the slot machine choices. Thus, we 
included the seven variables related to value and the behavioral response for both the slot 
machine as well as the preceding casino (16 parameters total). There was no evidence that LPFC 
neurons encoded any information about the casino values at the time of slot machine choices. 
The proportion of neurons encoding each of the parameters relating to the casino values did 
not exceed chance during either the first slot machine choice or the second slot machine choice 
(Table 3.2,  binomial test, p > 0.1 in all cases). 

Finally, we noted an additional difference between the slot machine choices and the casino 
choices. At the time of the slot machine choice, many LPFC neurons encoded the difference in 
value between the ipsilateral and contralateral pictures (first slot, 36/262 or 14%; last slot, 
27/262 or 10%). In contrast, at the time of the casino choices, few neurons encoded this 
difference (19/262 or 7%). A statistical comparison of these proportions revealed that 
significantly more neurons encoded the difference at the time of the first slot machine choice 
compared to the casino choice (chi-squared test = 5.2, p < 0.05). Encoding the difference in 
value of the two options could be a useful signal to guide action selection so that the most 
valuable option is consistently chosen. 
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In summary, there was little evidence to support our original hypothesis that LPFC neurons 
might encode the value of the casinos and maintain that information through until the time of 
reward. Instead, at each stage of the task, LPFC neurons encoded value information that was 
pertinent to the choice that the subject was currently facing. However, there was also evidence 
that suggested that the cognitive processes underlying the casino choices were qualitatively 
different from those underlying the slot machine choices. Whereas LPFC neurons tended to 
encode the value of the chosen option at the time of the casino choice, they tended to encode 
the difference in the value of the options at the time of the slot machine choice. In addition, 
there was more overlap between neurons encoding value information at the same hierarchical 
level (first slot vs. last slot) than there was between neurons encoding value information at 
different hierarchical levels (casino vs. slot). 
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 Chosen Unchosen Chosen + 
Unchosen 

Chosen – 
Unchosen 

Ipsilateral Contralateral Ispi-
Contra 

Response 

Fixation 3.44% 1.91% 4.20% 4.96% 2.29% 2.67% 1.91% 3.82% 

Casino  14.89% 5.34% 3.82% 7.25% 12.98% 9.54% 7.25% 38.55% 

First Slot 7.25% 4.58% 2.67% 9.92% 8.40% 8.40% 13.36% 40.84% 

Last Slot 8.40% 2.67% 2.29% 5.34% 7.63% 8.40% 9.54% 48.85% 

 

Table 3.1 The percentage of neurons in LPFC that encode values for the chosen, unchosen, sum of the chosen and 
unchosen; difference between the chosen and unchosen; ipsilateral stimulus to the hemisphere recorded from; 
contralateral stimulus to the hemisphere recorded from; the difference between the ipsilateral and contralateral 
stimuli; and the response (right or left) for the casino, first slot machine, and last slot machine at the time of 
choice. Percentages of neurons whose activity changes significantly during the fixation period according to 
different values are shown for reference. Percentages in red are significant, binomial test, p <  0.05. 
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 Chosen Unchosen Chosen + 
Unchosen 

Chosen – 
Unchosen 

Ipsilateral Contralateral Ispi-
Contra 

Response 

First Slot 5.73% 1.15% 3.05% 4.96% 3.82% 3.05% 3.44% 11.45% 

Last Slot 1.53% 3.05% 1.91% 4.58% 2.29% 5.34% 3.05% 4.20% 

 

Table 3.2 The percentage of neurons that encode the casino values at the times of first and last slot machine 
choices.  Neurons were classified according to whether they encoded the value of the following options: chosen, 
unchosen, sum of the chosen and unchosen, difference between the chosen and unchosen, ipsilateral stimulus to 
the hemisphere recorded from, contralateral stimulus to the hemisphere recorded from, difference between the 
ipsilateral and contralateral stimuli or the response (right or left). Percentages in red are significant, binomial test, 
p <  0.05. 
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Figure 3.5 Neuron L129_18b increased its firing rate during the casino choice as the value of the chosen casino 
increased. It did not encode the value of the slot machines. Dark blue is the response to the highest value option; 
light blue is the 2nd highest value option; yellow represents the 2nd lowest option; orange is the lowest value 
option. For the chosen value, we combined the lowest value option with the second lowest value option, since 
there were few trials where the subject chose the lowest value option. Similarly, for the unchosen value, we 
combined the highest value with the second highest value option, since there were few trials where the subject did 
not choose the highest value option. Although the neuron did appear to also respond to the highest value option 
when it was presented on the right (contralateral to the recording location) the effect did not reach significance (p 
> 0.1). Black vertical bar denotes time of stimulus onset. Abscissae correspond to neuronal firing rate in Hz and 
ordinate axes denote time in milliseconds. 
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Figure 3.6 Neuron P106_25b, located in the right hemisphere of animal P responded selectively to the value of the 
contralateral casino (but not slot machines) by increasing its rate of discharge in response to higher value choices. 
Conventions as in Figure 3.5.  
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3.2.2 Response encoding 
Many LPFC neurons encoded the behavioral response, i.e. whether the animal selected the 
option on the left or the right. An example is shown in Figure 3.7. This neuron increased its 
firing rate whenever the animal selected the option on the right, irrespective of whether it was 
a casino or slot machine choice. Most neurons recorded from LPFC encoded behavioral 
responses to at least one of the decisions (casino, first slot or last slot: 174/262 or 66%). During 
all three decision epochs the cells responding selectively to behavioral responses were equally 
likely to encode leftward or rightward choices (binomial test, p > 0.1 in all cases). From our 
initial stepwise regression analysis (Table 3.1), we noted that the proportion of neurons that 
encoded the behavioral response increased chronologically as the trial progressed from earlier 
to later choices (casino, 101/262 or 39%; first slot, 107/262 or 41%; last slot, 128/262 or 49%). 
However, the trend just failed to reach significance (chi-squared test = 5.8, p = 0.055). 

 Across the population, neurons that encoded the behavioral response for one kind of decision 
often encoded the response for another kind of decision. Thus, there were neurons that 
encoded the behavioral response to both slot machine decisions (81/262 or 31%), to the casino 
and first slot machine (66/262 or 25%) or to the casino and last slot machine (67/262 or 26%). 
There was also a population of cells that, like the neuron in Figure 3.7, encoded the responses 
to all three choices: casino, first slot, and last slot (52/262 or 20%). We examined whether the 
overlap in these populations was significantly greater than chance. Specifically, we determined 
the incidence of encoding of the behavioral response for each choice, and then examined 
whether the proportion of neurons encoding conjunctions of response encoding exceeded the 
proportion that one would expect if the neuronal populations were statistically independent of 
one another. We found that the proportion of neurons encoding the behavioral response for 
multiple decisions was significantly greater than would be predicted by chance (casino and first 
slot; casino and last slot; first slot and last slot; and casino, first slot, and last slot; binomial test, 
p < 1 x 10-15 in all cases).   

However, there was also evidence that some neurons encoded the behavioral response for a 
specific decision. For example, the neuron in Figure 3.8 encoded the behavioral response for 
the slot machine choice, but did not encode this information at the time of the casino choice. In 
sum, 29/262 or 11% of neurons encoded the behavioral response at the time of the slot 
machine but not at the time of the casino, whereas 20/262 or 8% encoded the behavioral 
response at the time of the casino but not at the time of the slot machine. These proportions 
were not significantly different from one another (chi-square test = 1.4, p > 0.1). 

Finally, as mentioned in the previous section on value encoding, we also added a parameter to 
our stepwise regression model to look at whether neurons in LPFC maintained information 
about the response to the casino choice at the time of slot machine choices. Interestingly, the 
response at the time of the casino choice was predictive of the neural activity at the time of the 
first slot machine choice for some neurons (26/262 or 10%). However, the proportion of 
neurons encoding the casino response at the time of the second slot machine choice did not 
exceed chance (11/262 or 4%, binomial test, p > 0.1). This result led us to ask whether there 
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might be encoding of early slot machine responses that are predictive of neuronal activity at 
subsequent slot responses. In fact, there was a significant number of neurons (38/262, binomial 
test, p < 1 x 10-15), such as the one shown in Figure 3.9, whose activity at the second slot 
machine choice was predicted by the response to the first slot machine.   

In summary, the encoding of behavioral responses by neurons in LPFC was widespread and 
complex. Much of the encoding was consistent with a straightforward motor response, with 
neurons showing similar encoding of the behavioral response to more than one, and sometimes 
all three, decisions. There were also neurons that showed more complex responses, encoding 
the behavioral response only at the time of the superordinate or subordinate choice. However, 
there was no evidence that LPFC neurons were biased towards encoding either the 
superordinate or subordinate choice. Finally, we also found that encoding of the behavioral 
response during one choice could predict response encoding at subsequent choices. Such 
activity could arise if neurons fired when the animal was going to make a specific response, but 
only if the response followed a specific prior response. For example, a neuron might only 
respond to rightward slot machine choices when they follow a leftward casino choice. Such an 
encoding scheme could conceivably represent a mechanism by which individual responses are 
chunked together to form a specific action sequence. 

3.3 Summary 

LPFC neurons encoded many different variables within the current task, but the encoding of the 
value of the options was restricted to a minority of the neurons. Instead, the most prevalent 
encoding was of the behavioral response. However, there was no evidence to support the 
notion that LPFC was preferentially involved in encoding higher levels of the behavioral 
hierarchy. Furthermore, there was no evidence that LPFC neurons maintained information 
about the superordinate choice while the subordinate choices were made.  
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Figure 3.7 Neuron P109_18c increased its firing rate whenever the animal selected the right option (red) compared 
to the left option (blue). This was observed irrespective of whether the subject was making a casino or slot 
machine choice. Black vertical bar denotes time of stimulus onset. Abscissae correspond to neuronal firing rate in 
Hz and ordinate axes denote time in milliseconds.  
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Figure 3.8 Firing rate of neuron L125_001b for leftward responses in blue and rightward responses in red. This is 
an example of a neuron that modulates its firing rate for responses at the subordinate but not superordinate level. 
Conventions as in Figure 3.7. 
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Figure 3.9 Neuron L125_001a depicts a neuron selective for rightward responses to slot machine choices. At the 
time of the second/last slot machine choice, the cell encoded the response made at the first slot choice. On the 
majority of trials there are only two slot machine choices, so the second slot machine is also the last slot machine. 
However, on trials with less favorable slot options, sometimes the animal is forced to make several choices, the 
first and second of which are shown above. All other conventions as in Figure 3.7. 
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 4. Results 

4.1 Neurophysiology: OFC 

4.1.1 Value encoding in OFC 
We recorded the activity of 249 neurons from OFC, 160 from animal L and 89 from animal P. 
Given the classic role of OFC in encoding value, our first analysis aimed to determine how 
neurons in OFC compared with those in LPFC in terms of value encoding. We used a stepwise 
regression taking into account the seven variables related to stimuli value: chosen value, 
unchosen value, sum of chosen and unchosen values, difference of chosen and unchosen 
values, the ipsilateral value, contralateral value and the difference between the ipsilateral and 
contralateral values. Ipsilateral and contralateral were defined with respect to the brain 
hemisphere in which the neuron was recorded. We also added a parameter for the subject’s 
behavioral response, i.e. whether he chose the left or right option.  

The proportions of cells in OFC that alter their activity according to stimulus value at each stage 
of the task are shown in Table 4.1. During the casino choice period, the most prevalent value 
encoding (35/249 or 14%) related to the chosen casino. Figure 4.1 shows a neuron that 
encoded the value of the chosen casino. It responded most strongly when the subject chose the 
least valuable stimulus, responded less strongly when the subject chose a more valuable 
option, and did not encode the value of the slot machines. The proportion of cells that encoded 
the value of the chosen casinos, however, was not significantly different from the proportion 
that encoded the value of the chosen slot machines irrespective of whether we compared the 
casinos and the first slot (chi-squared test = 0.28, p > 0.1) or the casinos and the last slot (chi-
squared test = 0.06, p > 0.1). Although there was a bias towards encoding lower value stimuli 
with a higher firing rate, it was weak and inconsistent (casino: 23/35 or 66%, binomial test, p < 
0.05; first slot: 18/30 or 60%, binomial test, p > 0.1; last slot: 22/32 or 69%, binomial test, p = 
0.01). Thus, in comparison to LPFC, OFC neurons showed a more even distribution of neurons 
that either increased their firing rate as value increased or increased their firing rate as value 
decreased. However, the overall proportion of neurons encoding chosen values was similar in 
LPFC and OFC at the time of the casino choice and the first and last slot machine choices (chi-
squared test, p > 0.05 in all cases). 

OFC neurons also encoded stimulus values according to their position on the screen. Figure 4.2 
shows a neuron recorded from the right hemisphere of animal L that encoded the value of the 
contralateral (with respect to the brain hemisphere from which the neuron was recorded) 
casino. This neuron did not respond to slot machines, irrespective of laterality, nor did it 
respond significantly to value of the ipsilateral casino (p > 0.05 in all cases). In addition to 
coding for stimulus values according to their position on the screen, neurons in OFC also 
encoded the difference in value of the contralateral stimulus from the ipsilateral stimulus. The 
prevalence of laterality-encoding neurons in OFC did not differ significantly from their 
prevalence in LPFC (chi-squared tests, p > 0.1 in all cases). 
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Finally, to examine whether OFC neurons maintained information about the value of the 
casinos while the subject performed the intervening slot machines we added additional 
parameters to our stepwise regression model. We included the seven variables related to value, 
as well as one for behavioral response, for both the slot machine as well as the preceding 
casino (16 parameters total) to see whether the value of the casinos predicted neural activity at 
the time of the slot machine choices. As shown in Table 4.2, there were several small but 
significant populations of neurons during the slot machine epochs that encoded values related 
to the previous casino choices. This was in marked contrast to what we found in LPFC, where 
there was no evidence that the value of the casinos were maintained across the slot machine 
choices. Because the population of selective neurons was small and distributed across several 
types of encoding scheme, we collated neurons according to whether they encoded any value 
information about the casinos at the time of the first or last slot choice. Significantly more 
neurons in OFC (147/249 or 59%) maintained some kind of value information about the casinos 
during either the first or last slot choice compared to LPFC (121/262 or 46%, chi-squared test = 
8.0, p < 0.005).  

4.1.2 Response encoding in OFC 
Many OFC neurons encoded whether the subject chose the left or right option. An example is 
shown in Figure 4.3. This neuron increased its firing rate for responses in the right direction and 
suppressed its firing rate when the subject chose the leftward stimulus. Nearly half of the OFC 
neurons encoded the response of at least one behavioral choice (122/249 or 49%, binomial 
test, p < 1 x 10-15). However, the proportion of response encoding neurons was still significantly 
less than in LPFC for casino, first slot and last slot choices (chi-squared test > 7.9, p < 0.005 in all 
cases). To address whether there were cells dedicated to encoding responses for one type of 
choice and not another, we looked to see if there were any neurons whose activity significantly 
correlated with the responses to casinos but not slot machines or to slot machines but not 
casinos. There was a significant population of neurons that encoded the response associated 
with the casinos but not the slots (24/249 or 10%, binomial test, p > 0.1), while neurons that 
showed the opposite pattern (encoding the response associated with the slots but not the 
casinos) were at chance levels. 

The final question we addressed with regard to response coding in OFC was whether there 
were neurons whose activity reflected information about the earlier responses at later points in 
time. Indeed, there was a small, but significant population of OFC neurons that encoded the 
casino choice response during the first slot machine choice (24/249 or 10%, binomial test, p < 
0.001) and the second slot machine choice (16/249 or 6%, binomial test, p = 0.05). We similarly 
wished to know whether responses to the first slot machine choice were predictive of neural 
activity at the time of subsequent slot machine choices and, as in LPFC, there was some 
evidence that some neurons (24/249 or 10%, binomial test, p < 0.001) do indeed maintain 
information about the first slot machine response at the time of responding to the second/last 
slot machine.   
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4.1.3 OFC Summary 

OFC neurons encoded many different task variables relevant to performance of the task. 
However, two key differences emerged relative to LPFC coding. First, OFC neurons were more 
likely to maintain value information about the casinos across the intervening slot machine 
choices. Second, encoding of the response was generally weaker in OFC at all the choices.  
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 Chosen Unchosen Chosen + 
Unchosen 

Chosen – 
Unchosen 

Ipsilateral Contralateral Ipsi – 
Contra 

Response 

Fixation 2.01% 2.81% 4.02% 4.02% 1.20% 3.21% 2.01% 4.42% 

Casino 14.06% 6.02% 4.42% 10.44% 9.64% 8.84% 10.84% 26.51% 

First Slot 12.05% 1.61% 4.42% 5.62% 12.05% 10.04% 10.04% 24.10% 

Last Slot 12.85% 1.61% 2.01% 8.43% 7.23% 8.03% 6.43% 28.92% 

 

Table 4.1 The percentage of neurons in OFC that encoded chosen value, unchosen value, sum of the chosen and 
unchosen values, difference between the chosen and unchosen values, value of the ipsilateral stimulus, value of 
the contralateral stimulus, the difference between the value of the ipsilateral and contralateral stimuli, and the 
subject’s behavioral response, i.e. whether they chose the left or right option. The percentage of selective neurons 
is shown separately at the time of the casino choice, first slot machine choice and last slot machine choice. 
Percentages of neurons whose activity changed significantly during the fixation period according to different 
values are shown for reference. Percentages in red are significant, binomial test, p < 0.001. 
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 Chosen Unchosen Chosen + 
Unchosen 

Chosen – 
Unchosen 

Ipsilateral Contralateral Ipsi – 
Contra 

Response 

First Slot 4.82% 2.41% 2.01% 5.22% 6.43% 6.02% 4.02% 9.64% 

Last Slot 6.02% 2.81% 4.82% 6.43% 6.02% 2.01% 1.61% 3.61% 

 

Table 4.2 The percentage of neurons in OFC that encoded the casino values for chosen, unchosen, sum of the 
chosen and unchosen; difference between the chosen and unchosen; ipsilateral stimulus to the hemisphere 
recorded from; contralateral stimulus to the hemisphere recorded from; the difference between the ipsilateral and 
contralateral stimuli; and the response (right or left) at the times of first and last slot machine choices. Percentages 
in red are significant, binomial test, p < 0.05. 
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Figure 4.1 Cell P121_017a modulated its response based on the value of the chosen casino at the time of the 
casino choice. However, it did not encode the value of the slot machine at the time of the slot machine choice. 
Dark blue is the response to the highest value option; light blue is the 2nd highest value option; yellow represents 
the 2nd lowest option; orange is the lowest value option. For the chosen value, we combined the lowest value 
option with the second lowest value option, since there were few trials where the subject chose the lowest value 
option. Similarly, for the unchosen value, we combined the highest value with the second highest value option, 
since there were few trials where the subject did not choose the highest value option. Black vertical bar denotes 
time of stimulus onset. Abscissae correspond to neuronal firing rate in Hz and ordinate axes denote time in 
milliseconds. 
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Figure 4.2 Neuron L147_25c, located in the right hemisphere of animal L responded selectively to the value of the 
contralateral casino (but not slot machines) by increasing its rate of discharge in response to higher value choices. 
Conventions are as in Figure 4.1. 
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Figure 4.3 Neuron L147_28a increased its firing rate whenever the subject chose the option on the right (red) and 
suppressed its firing rate when the subject chose the option on the left (blue). This pattern occurred at each 
choice. Conventions are as in Figure 4.1.  
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Figure 4.4 Neuron L128_27b encoded responses at the superordinate but not subordinate level. Black vertical bar 
denotes time of stimulus onset. Conventions as in Figure 4.1. 
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4.2 Neurophysiology: ACC 

4.2.1 Value encoding in ACC 
In total, 221 neurons were recorded from ACC, 112 from animal L and 109 from animal P. 
Further toward the goal of understanding how hierarchical information may be coded for in 
ACC, we again ran a stepwise regression to broadly search for value-related variables that were 
predictive of each neuron’s firing rate at different task levels. Table 4.3 shows the percentage of 
neurons encoding each of these parameters for all three decision periods in the task. As with 
LPFC and OFC, the most prevalent value encoding related to the chosen values although there 
was not a difference in the proportion of neurons that encoded the chosen casino, first slot, or 
last slot machine values (casino:  43/221 or 19%; first slot: 48/221 or 22%; last slot machine: 
39/221 or 18%, chi-squared test = 0.9, p > 0.1). A neuron encoding the value of the chosen 
casino, by increasing its firing rate in response to higher values, is shown in Figure 4.5. There 
was no difference in the proportion of neurons that encoded the chosen casino in ACC as 
compared to LPFC or OFC (LPFC: 39/262; OFC: 35/249, chi-squared test = 2.4, p > 0.1). However, 
the proportion of neurons in ACC encoding the value of the chosen first slot machine was 
significantly greater than that in LPFC (LPFC: 19/262, chi-squared test = 19.8, p < 1.0 x 10-5) as 
well as OFC (OFC: 30/249, chi-squared test = 7.2, p < 0.05). Further, the proportion of neurons 
in ACC encoding the value of the chosen last slot machine was significantly greater than that in 
LPFC (LPFC: 22/262, chi-squared test = 8.5, p < 0.005) but not OFC (OFC: 32/249, chi-squared 
test = 1.7, p < 0.1). Another set of variables encoded by neurons in ACC were related to the 
position of stimuli on the screen. Shown in Figure 4.6 is a neuron in the right hemisphere of 
animal P that modulated its firing rate in a graded manner based on the value of the ipsilateral 
(right) casino, with higher rates of discharge reflecting higher values. None of the proportions 
of neurons encoding ipsi/contra values at any of the three decision epochs in ACC differed 
significantly from LPFC  or OFC (chi-squared tests, p >0.1 in all cases).  

Next we examined whether variables at the time of the casino choice predicted neural activity 
at the time of the slot machine choices. To our stepwise regression, we added the seven 
variables related to value and the behavioral response for both the slot machine as well as the 
preceding casino for a total of 16 parameters. There were significant proportions of neurons 
that computed and encoded the difference between the chosen and the unchosen casino 
values at each subsequent choice epoch (first slot: 10/221; last slot: 10/221, binomial test, p < 
1.0 x 10-5 in both cases), potentially carrying information about the goodness of choice through 
to the time of reward. In addition to selectivity for the difference of the chosen and unchosen 
stimuli there were also populations of neurons in ACC that, at the time of the first slot machine 
choice, encoded the chosen casino (14/221 or 6%, binomial test, p < 0.05).  

In summary, ACC neurons play a prominent role in encoding the values necessary to perform 
well on our hierarchically structured probabilistic task. Although many ACC neurons encoded 
the superordinate choice, they differed from LPFC and OFC in also showing particularly strong 
encoding of subordinate choices. 
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4.2.2 Response encoding in ACC 
As with LPFC and OFC, the largest proportion of selective neurons we found in ACC encoded 
whether the subject would choose the left or right option. This was true for the casino choice as 
well as the slot machine choices, although response encoding appeared to get stronger as the 
trial progressed. Encoding of the behavioral response was strongest at the time of the last slot 
machine choice (83/221 or 38%, binomial test, p < 1.0 x 10-15). While this group was not larger 
than the group of neurons encoding responses to the first slot machine choice (68/221 or 31%, 
chi-squared test = 1.8, p > 0.1), it was significantly larger than the proportion of neurons 
encoding the response to the casino decision (57/221 or 26%, chi-squared test = 6.5, p = 0.01). 
In comparison to the other areas, response encoding in ACC was consistently weaker than in 
LPFC (chi-squared test, p < 0.05 in all cases), but did not differ statistically from response 
encoding in OFC (chi-squared tests, p > 0.1 in all cases.) 

Although there was a small population of ACC neurons that encoded superordinate but not 
subordinate choices (14/221 or 6%, binomial test, p < 1.0 x 10-4) or superordinate but not 
subordinate choices (19/221 or 9%, binomial test, p < 1.0 x 10-11) the majority of ACC response 
encoding neurons were selective for multiple choices. Indeed, more than one quarter of ACC 
neurons encoded the behavioral response at more than one time point. For every conjunction 
of time points tested, the number of response-encoding neurons was greater than chance 
(casino + first slot: 35/221 or 15%, binomial test, p < 1.0 x 10-15; casino + last slot: 42/221 or 
19%, binomial test, p < 1.0 x 10-15; first slot + last slot: 53/221 or 24%, binomial test, p < 1.0 x 
10-15; casino + first slot + last slot: 34/221 or 15%, binomial test, p < 1.0 x 10-15).  

Finally, we examined whether there were cells in ACC whose activity reflected information 
about earlier responses at later points in time. Similar to LPFC and OFC, there was a population 
of neurons that encoded the casino response at the time of the first slot machine (28/221 or 
13%, binomial test, p < 1.0 x 10-10) and a population that maintained the response to the first 
slot machine choice at the time of the second or last slot machine choice (23/221 or 10%, 
binomial test, p < 1.0 x 10-6). 

4.2.3 ACC Summary 
There were a number of features of ACC encoding that differentiated the neurons from the 
other areas. First, ACC strongly encoded the chosen value, even for the slot machines. Second, 
it maintained information about the value of the casinos across the slot machines. Finally, there 
was a progressive increase in response encoding as the trial progressed. 
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 Chosen Unchosen Chosen + 
Unchosen 

Chosen – 
Unchosen 

Ipsilateral Contralateral Ipsi – 
Contra 

Response 

Fixation 2.01% 2.81% 4.02% 4.02% 1.20% 3.21% 2.01% 4.42% 

Casino 19.46% 4.52% 2.26% 8.14% 6.33% 15.84% 7.24% 25.79% 

First Slot 21.72% 2.71% 5.43% 5.88% 6.79% 9.05% 8.60% 30.77% 

Last Slot 17.65% 2.71% 3.62% 9.95% 5.58% 10.41% 6.33% 37.56% 

 

Table 4.3 The percentage of neurons in ACC that encoded values for the chosen, unchosen, sum of the chosen and 
unchosen; difference between the chosen and unchosen; ipsilateral stimulus to the hemisphere recorded from; 
contralateral stimulus to the hemisphere recorded from; the difference between the ipsilateral and contralateral 
stimuli; and the response (right or left) for the casino, first slot machine, and last slot machine at the time of 
choice. Percentages of neurons whose activity changes significantly during the fixation period according to 
different values are shown for reference. Percentages in red are significant, binomial test, p <  0.05. 
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 Chosen Unchosen Chosen + 
Unchosen 

Chosen – 
Unchosen 

Ipsilateral Contralateral Ispi-
Contra 

Response 

First Slot 6.33% 2.71% 4.98% 4.52% 2.26% 4.98% 4.07% 12.67% 

Last Slot 4.07% 4.52% 3.62% 4.52% 3.17% 3.62% 1.81% 3.17% 

 

Table 4.4 The percentage of neurons in ACC that encode the casino values for chosen, unchosen, sum of the 
chosen and unchosen; difference between the chosen and unchosen; ipsilateral stimulus to the hemisphere 
recorded from; contralateral stimulus to the hemisphere recorded from; the difference between the ipsilateral and 
contralateral stimuli; and the response (right or left) at the times of first and last slot machine choices. Percentages 
in red are significant, binomial test, p <  0.005. 
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Figure 4.5 Neuron P132_27a encoded the value of the chosen casino at the time of decision making but not during 
the subsequent slot machines. Conventions are as in Figure 4.1. 
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Figure 4.6 Neuron P111_25a, located in the right hemisphere of animal P responded selectively to the value of the 
ipsilateral casino (but not slot machines) by increasing its rate of discharge in response to higher value choices. 
Conventions are as in Figure 4.1.   
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5. Outcome and Prediction Error Encoding 
In multi-step behaviors an animal may make several choices before experiencing the reinforcing 
outcomes that are inherently good or bad. While it is understood that primary rewards 
reinforce the immediately preceding actions in simple behaviors, it remains to be understood 
how temporally extended choices are reinforced such that the animal is able to attribute 
positive value to a superordinate choice across intervening subordinate actions. To determine 
how this process takes place, we contrasted neural activity at the time of feedback for the first 
slot machine choice with neural responses to the final outcome in the trial. 

5.1 Subordinate choices 

A key feature of reinforcement learning is the calculation of the prediction error, the difference 
between the value of what was expected to happen and the value of what actually happened. 
We examined whether neurons encoded this information at the time of feedback for the first 
slot machine (Table 5.1). Specifically, we examined whether they encoded a positive prediction 
error (the extent to which an outcome was better than expected) or a negative prediction error 
(the extent to which an outcome was worse than expected). For example, if the animal received 
a win when he chose the slot machine that was rewarding 35% of the time we would code this 
as a positive prediction error with a value of 0.65 (|1 - 0.35|). If he had received a loss, it would 
have been coded as a negative prediction error with a value of 0.35 (|0 - 0.35|). We also 
included a parameter that detected whether neurons encoded the outcome in a binary 
manner, i.e. if the neuron was simply whether or not the choice resulted in a win.   

In each brain area, there were many neurons that fired according to whether the subordinate 
slot machine choice had resulted in a win (LPFC: 41/262 or 16%; OFC: 37/249 or 15%; ACC: 
44/221 or 20%) though these populations did not differ significantly from one another (chi-
squared test = 2.0, p > 0.1 for all comparisons). There were also neurons that encoded positive 
prediction errors, particularly in OFC (LPFC: 22/262 or 8%; OFC: 40/262 or 16%; ACC: 22/221 or 
10%). While there was no difference between ACC (22/221, binomial test, p < 0.05) and either 
LPFC or OFC, significantly more neurons in OFC (40/249 or 16%) encoded positive prediction 
errors than those in LPFC (22/262 or 8%, chi-squared test = 6.3, p < 0.05). Neurons that 
encoded negative prediction errors, or outcomes that were worse than expected, were 
relatively infrequent and only exceeded chance in ACC (13/221 or 6%, binomial test, p < 0.05).  

5.2 Superordinate Choices 

To examine neural encoding of the final outcome, we regressed neural activity against the 
volume of juice delivered. In addition, because the reward magnitudes corresponding to the 
superordinate casino choices were probabilistic rather than deterministic, 25% of the time the 
amount of reward the animal received was different than he was expecting. Thus, we also 
included regressors indicating positive and negative prediction errors. As with the subordinate 
choices, there were neurons in all brain areas that encoded the outcome to the casino choice, 
that is the amount of juice delivered. One such neuron from LPFC is shown in Figure 5.1. 
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However, across the different neuronal populations, there were significantly more neurons in 
ACC (76/221 or 34%) and OFC (71/249 or 29%) that encoded the outcome of the casino choice 
than there were in LPFC (54/262 or 21%, chi-squared test = 3.9 and 10.9 respectively, p < 0.05 
for both comparisons).  

In all brain areas, populations of neurons encoding positive prediction errors did not exceed 
chance (LPFC: 8/262 or 3%; OFC: 14/249 or 6%; ACC: 10/221 or 5%, binomial test, p > 0.05 in all 
cases). However, as with the subordinate choice epochs, in ACC there was a small, but 
statistically significant, population of neurons that encoded negative prediction errors (15/221 
or 7%, binomial test, p < 0.05). The proportion of such neurons did not exceed chance in OFC or 
LPFC (OFC: 5/249 or 2%; LPFC: 12/262 or 5%, binomial test, p > 0.05 in both cases).  

Finally, we compared the number of neurons encoding the most common signal (the binary 
outcome) at the time of either slot or casino feedback. There was no difference in the number 
of LPFC neurons encoding outcomes during slot or casino feedback (slot: 41/262 or 16%; casino: 
54/262 or 21%, chi-squared test = 1.9, p > 0.1), but there were significantly more neurons that 
encoded the outcome at the time of casino feedback compared to slot feedback in both OFC 
(casino: 71/249 or 29%, slot: 37/249 or 15%, chi-squared test = 12.9, p < 0.001) and ACC 
(casino: 76/221 or 34%, slot: 44/221 or 20%, chi-squared test = 11, p < 0.001).  
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SLOT OUTCOME +RPE -RPE 

LPFC 15.65% 8.40% 4.58% 
OFC 14.86% 16.06% 4.82% 
ACC 19.91% 9.95% 5.88% 
 

CASINO OUTCOME +RPE -RPE 

LPFC 20.61% 3.05% 4.58% 
OFC 28.51% 5.62% 2.01% 
ACC 34.39% 4.52% 6.79% 
 

Table 5.1 Percentages of neurons in each brain area that encoded outcome related variables when feedback was 
received for the different choices of the task. Neurons were classified according to whether they encoded the 
value of the outcomes; positive prediction errors when outcomes were better than expected; and negative 
prediction errors when outcomes were worse than expected. Percentages in red are significant, binomial test, p <  
0.05. 
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Figure 5.1 Neuron P101_024b encoded the value of the outcome when the reward was dispensed by increasing its 
firing rate in response to higher value outcomes. Dark blue is the response to the highest value option; light blue is 
the 2nd highest value option; yellow represents the lowest option. Although there appears to be a difference in the 
firing rate of this neuron for the value of the chosen casino, this effect was not significant (p > 0.05). Black vertical 
bar denotes time of stimulus onset for the choice plots (first three plots) and the time of reward delivery for the 
reward plot (rightmost plot). Abscissae correspond to neuronal firing rate in Hz and ordinate axes denote time in 
milliseconds. 
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6. Discussion 

6.1 Summary of findings 

We trained two monkeys to perform a hierarchically-structured probabilistic bandit task. They 
demonstrated, by their optimal choices, that their decisions were driven in a goal-directed 
manner by the value of future rewards. Most importantly, our subjects were able to link the 
value of the final reward with the initial casino choice, despite the intervening slot choices. 
However, contrary to our original hypothesis, we did not find substantial evidence that PFC 
neurons favored the encoding of either subordinate or superordinate values or actions. On the 
other hand, we found considerable evidence that PFC neurons process information related to 
casino and slot machine levels differently. Many neurons encoded value information or the 
choice response during one epoch of the task and not another. Thus, although different regions 
of PFC are not biased to encode different levels of the task, the temporal structure of the task is 
still encoded in PFC activity.  

We did notice some differences in neural encoding across the areas. Perhaps most relevant to 
our understanding of hierarchical behavior is the manner in which the different areas 
maintained information about the casino choice across the intervening slot machine choices. 
Most strikingly, OFC was the area that showed the clearest maintenance of value information 
from the time of the casino choice through to the final delivery of the reward. This encoding 
was weaker in ACC and virtually absent in LPFC. This information could serve as an eligibility 
trace, ensuring that the value of the chosen option is updated once the animal receives the final 
outcome. 

There were other, more general trends that were apparent in all three areas that may be 
relevant to the representation of hierarchical information. Neuronal responses tended to show 
a greater correlation within hierarchical levels compared to across hierarchical levels. Thus, 
neurons that encoded either the value or response associated with the first slot machine 
tended to show similar encoding to the second slot machine, but necessarily to the casino. Such 
relationships reflect the hierarchical structure of the task in the neural representation. In 
addition, throughout the course of a trial, we observed a tendency for neurons to encode both 
the current choice, as well as the choice that was made on the previous choice. Thus, many 
neurons encoded the previous casino choice at the time of the first slot machine, and many 
neurons encoded the first slot machine choice at the time of the second slot machine choice. 
Such activity may conceivably be related to the mechanism by which individual actions are tied 
together to form options (Botvinick et al., 2009). 

 

The areas also differed in the relative proportion of neurons that were encoding value-related 
information in comparison to action-related information. LPFC neurons showed stronger 
encoding of the choice response than ACC or OFC at all stages of the task. In comparison, ACC 
and OFC tended to encode more reward-related information than LPFC. For example, activity 
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reflecting winning outcomes to the subordinate choices was greater in OFC than LPFC. Further, 
the proportions of neurons in OFC that selectively encoded binary win/loss information and 
magnitude-dependent reward information were greater in both OFC and ACC compared to 
LPFC.  

Finally, ACC showed several unique features that differentiated it from LPFC and OFC. First, it 
encoded information about chosen stimulus values, but information for subordinate level 
choices was stronger than in the other brain areas. In addition, response encoding seemed to 
increase as the trial progressed with more cells encoding each subsequent response, peaking at 
the final behavioral response preceding reward delivery 

6.2 Findings in perspective 

Though we did not find clear evidence that PFC distinguishes between different levels of 
hierarchical tasks, we did find that many neurons in different areas treated superordinate and 
subordinate task-relevant information differently and often specialized in one or the other. Our 
findings should be considered in the broader context of the empirical literature related to 
hierarchical behavior, neural organization, and PFC function.  

In our task, casino level choices required more temporally extended maintenance of 
information in a goal-directed manner to compare outcomes with previous choices. Our 
prediction that LPFC may support the encoding of this information over intervening time was 
informed by previous work (Koechlin et al., 2003; Badre and D'Esposito, 2007) showing a 
functional-anatomical hierarchy supporting increasingly abstract information as one moves to 
progressively anterior regions of LPFC. We found no evidence that LPFC neurons were 
predisposed to encoding superordinate choices. There are two possible reasons why our data 
may not converge with previous findings. First, while the casino paradigm we used had multiple 
layers involving different contexts, it was not truly hierarchical in the sense that the subordinate 
states were not contingent upon the superordinate option in play. For example, previous work 
has emphasized the dependence of superordinate values on subordinate choices available 
therein (Glascher et al., 2010). The task we used maintained the two levels as nested but the 
reward contingencies associated with each level were purposefully independent of one 
another. Our strategy was to begin with the current task and work towards a truly hierarchical 
task in later experiments. This more measured approach will enable us to deconstruct the 
processes underlying hierarchical behavior. In particular, our task required that the subject link 
the final reward with a choice made at the beginning of a sequence of choices, while 
simultaneously monitoring the outcomes associated with intervening choices. It is therefore 
ideally suited for testing whether different PFC regions are responsible for representing choice 
behavior that evolves over either a long or short behavioral timeframe. Future experiments can 
now develop tasks in which subordinate choices depend on superordinate choices. 

A second reason why we may not have observed hierarchical representations relates to the 
training that the animals had received in order to perform the task. The stimuli we used were 
well-learned and likely required working memory faculties to a lesser degree than if the value 
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contingencies were learned online during recording. These details likely contribute to a 
comparatively less abstract and less cognitively demanding behavior than if the animals were 
learning new stimuli with more complex reward contingencies. In addition, recent studies have 
emphasized how goal-directed behavior, thought to be dependent on PFC, transitions to a 
habitual system with repeated training, that is thought to depend on the striatum (Daw et al., 
2005; Smith and Graybiel, 2013). In future work, we can study the processes underlying this 
transition by using chronic implants to record PFC neural activity throughout learning.  

The ubiquitous encoding of responses in our data is consistent with recent work examining 
response encoding in PFC that has shown it to be pervasive and complex. That LPFC neurons 
strongly encode responses supports previous work (Seo et al., 2007; Wallis, 2007; Luk and 
Wallis, 2009; Tsujimoto et al., 2009). Previous research has been less in accord on findings of 
response encoding in OFC. Many studies, typically using simple decision-making tasks, have 
reported that OFC neurons do not encode the behavioral response related to the animal’s 
choice (Tremblay and Schultz, 1999; Wallis and Miller, 2003; Padoa-Schioppa and Assad, 2006). 
However, there are some notable exceptions to this finding (Tsujimoto et al., 2009; Luk and 
Wallis, 2013), including the current results. A common feature of all of the tasks in which 
prominent response coding is observed in OFC is that they require information to be 
maintained over delays in order to evaluate whether the optimal response was made. Luk and 
Wallis (2013) used a task in which choice options were presented sequentially requiring the 
animal to remember, at the time of the outcome, which action was chosen and how that 
related to the options presented earlier in the trial. Similarly, the task used by Tsujimoto et al. 
(2009) required that the subject remembered which response had been made on the previous 
trial in order to determine the optimal response for obtaining reward on the current trial. Thus, 
OFC may be critically required for associating rewards with earlier actions.   

ACC was the only area that appeared to encode subordinate choices more strongly than 
superordinate choices. This could conceivably relate to the hierarchical task structure. 
However, it might also relate to the different contingencies that we used for the subordinate 
and superordinate choices. Although both levels of our task are probabilistic, they are not 
necessarily probabilistic to the same extent. Recent work has suggested that ACC may be 
involved in encoding the volatility of probabilistic choices (Behrens et al., 2007). Although the 
casino choice led to a different magnitude of reward on 25% of the trials, the slot machine 
choices were potentially more volatile. The probabilistic contingencies were frequently more 
extreme for slot machine choices, and instead of leading to different sizes of reward, the effect 
was all-or-none: the animal either won a token or it did not. Thus, the stronger encoding of the 
subordinate choices in ACC may have reflected the increased volatility of the reward 
contingencies associated with those choices. We could test this in future experiments by 
reversing the volatility of the probabilistic contingencies. For example, the casino choice could 
be associated with the all-or-none delivery of the final reward, whereas the slot machine 
choices could be associated with the probabilistic delivery of a certain size of reward bar 
completion. 
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Also interesting, with respect to the data collected in ACC, is the trend of stronger encoding of 
responses increasingly closer to the time of reward. Studies of learning in rats (Balleine et al., 
1995; Killcross and Coutureau, 2003) have suggested that actions more proximal to reward are 
more readily sensitive to devaluation, even in over-learned states, suggesting persistent control 
of behavior by goal-directed systems. Thus, the degree of neural encoding of actions in ACC 
may reflect the degree to which the action is under the control of the goal-directed system.    

6.3 Future directions 

While we have contributed to the growing corpus of knowledge on reinforcement learning in 
PFC, questions remain to be addressed. The task we have presented here was feasible for 
animals to learn but to better address questions at the core of hierarchical reinforcement 
learning, it may be necessary use a more truly hierarchical adaptation emphasizing the learning 
process. Determining how neurons in multiple brain areas modulate their activity over the 
transition from naïve to well-learned environments will better elucidate the dynamic updating 
of state-dependent action values as well as the establishment of behavioral preferences. 
Because the superordinate option values in our task were not determined by state or action 
values at the subordinate level, in the well-learned state it may not have been as necessary to 
maintain the identity of the chosen option online for the purpose of updating.  

Further, though we have observed lower-level learning signals in OFC and ACC, additional work 
is required to gain understanding about how temporally abstracted actions are initially chunked 
and organized into sensible subroutines. The subordinate level of our task also did not require 
unique action sequences contingent upon the higher-level option guiding behavior, unlike in 
the example from Chapter 1 of putting a teabag in a pot, pouring hot water into a teapot, etc., 
There are likely differences in the underlying neural mechanisms between behaviors necessary 
in our task and those more ethologically relevant to human behavior.  

6.4 Closing remarks 

There is great clinical significance to the understanding of hierarchical behavior. Disorders such 
as Parkinson’s disease, schizophrenia, and addiction involve dysfunction in learning and 
decision making. This thesis has examined the involvement of PFC in hierarchically structured 
decision making and behavior. Specifically, we have considered how single neurons in three 
distinct frontal brain regions—LPFC, ACC, and OFC—encode value, response, and outcome 
information enabling animals to make successful subordinate-level choices toward the 
achievement of a superordinate goal. Although we did not find evidence to support our original 
hypothesis that different PFC areas would be differentially involved in representing the 
hierarchical task, we nevertheless found many signals that could underlie hierarchical behavior, 
including value and action encoding that depended on the hierarchical level, as well as 
encoding of past choices that could be used to chunk actions at the same level of the hierarchy. 
Understanding these mechanisms could help elucidate how the complex behavioral repertoire 
of the primate is implemented. 
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