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ABSTRACT
We generalize a method for avoiding GPU shared commu-
nication when dealing with a downsweep pattern. We ap-
ply this generalization to Cyclic Reduction, a tridiagonal
solver with this pattern. Previously, Cyclic Reduction suf-
fered poor performance when compared to other tridiago-
nal solvers on the GPU due to performance issues stem-
ming from shared-memory bandwidth bottlenecks and step-
efficiency. We address this problem by applying our down-
sweep shared-memory communication-reducing methodol-
ogy. Our re-mapping also allows Cyclic Reduction to solve
larger systems directly in a virtual block. By using our
generalized mapping, we improve Cyclic Reduction’s per-
formance on a GPU by a factor of 3–4.5x over the original
CR implementation, making it 1.5–3x faster than other GPU
tridiagonal solvers.

1. INTRODUCTION
GPUs have become a popular platform for a wide variety

of methods and applications. However, it is still difficult to
determine the optimum mapping of an algorithm to a GPU.
These difficulties are amplified by the added memory hier-
archy existing in modern GPUs. Identifying computational
patterns, and their complementary best GPU mappings, has
therefore become an interesting topic for the GPU comput-
ing community.

We focus on one such computational pattern, which has
an hourglass-shaped active-thread pattern, combined with
a stride-doubling communication pattern. From now on we
will refer to this type of communication pattern as a down-
sweep. At every stage in a downsweep pattern, communi-
cation between elements (and operations) are halved, while
the stride to access adjacent elements doubles. We focus
our analysis on Cyclic Reduction, a tridiagonal solving al-
gorithm that utilizes this downsweep computation pattern.

Tridiagonal linear systems arise in many scientific and en-
gineering problems. Examples of these include spectral Pois-
son solvers [6], alternating direction implicit (ADI) meth-
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ods [10], and numerical ocean models [4]. Typical appli-
cations may require solving up to hundreds or thousands
of tridiagonal systems. Due to its importance, there have
been a number of algorithms designed to solve tridiagonal
systems that have been mapped to the GPU. Cyclic Re-
duction is one such common tridiagonal solver that fits this
downsweep communication pattern.

We make two major contributions in this work. First,
we analyze downsweep patterns and generalize a mapping
onto the GPU that reduces shared memory communication.
We discuss the tradeoffs for register usage and shared mem-
ory usage. Next we contribute a variation of the Cyclic
Reduction method that utilizes this generalization and out-
performs previous known tridiagonal solvers by a factor of
2–4x. This method is also able to solve much larger systems
directly in a block (up to 16 times the size) without the use
of global PCR splitting stages [2].

The rest of this paper is organized as follows: We will
discuss the benefits and motivation of register packing in
Section 2. Section 3 will review Blelloch’s formulation of
parallel-prefix sum [1], a simple feed-forward downsweep
pattern. Section 4 will examine our case study, a GPU-
based tridiagonal solver with a communication pattern that
matches our requirements. Then we will consider two similar
algorithms in Section 5 that do not fit our mapping. Finally
we show our results and discuss the broader implications of
this work.

2. REGISTER PACKING
NVIDIA GPU’s memory system is organized in a hierar-

chical model that includes global memory, shared memory
and registers. Each virtual block has access to a local set
of registers and a shared memory space as well as access
to global memory. Shared memory can be used in order
to communicate information between threads much faster
than using global memory (DRAM). This has been vital
for the speedups that the GPU computing community has
witnessed recently (global memory bandwidth is about an
order of magnitude slower than shared memory bandwidth).
However, in order to reach near-peak performance, a pro-
gram must have a significantly higher number of register-to-
register operations than shared memory or global memory
operations. Otherwise, shared or global memory bandwidth
limits performance.

Register packing refactors parallelized code to have fewer
threads do more work directly in registers. It reduces the
total number of threads doing work, giving each thread more
register-based work. If this reorganization is done correctly,
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Figure 1: Communication pattern of Parallel-Prefix Sum,
with a feed-forward downsweep pattern. Harris et al. [5]
mapped this algorithm onto the GPU with register packing.

it can have two major benefits. First, register-register com-
munication has much higher bandwidth than shared mem-
ory communication (nearly an order of magnitude difference
in bandwidth). Also, because the amount of shared mem-
ory per block is often the major factor in determining the
number of simultaneous blocks that can be run on a pro-
cessor, our reduction in shared memory use can potentially
increase the number of blocks that can be run at the same
time. However, if we pack too much, we reduce the available
thread parallelism and introduce too much register pressure,
lowering occupancy and throughput.

In related work, Volkov and Demmel showed the bene-
fits of register communication as opposed to shared memory
communication in GPU-based dense linear algebra routines
such as SGEMM and LU decomposition [9]. Their SGEMM
implementation stores each block in shared memory, result-
ing in O(n2) operations from O(n) loads. Volkov and Dem-
mel hand-tuned the block sizes for their routines, and due
to the high number of register arithmetic instructions per
shared memory load, found that packing each thread with
the maximum number of registers before overflow resulted
in the best performance.

For the algorithms we address that are structured as the
hourglass-sized downsweep, the benefits of register packing
are immediately apparent. However, we see a tradeoff with
the number of elements per thread that we pack in registers.
We must preserve intermediate results in registers for future
upsweep stages. Therefore, each extra element we pack adds
register pressure per thread. However, if the correct bal-
ance is struck, our re-ordering helps to reduce both shared
memory communication and storage, resulting in much bet-
ter performance (Section 4). The communication pattern
of a simple downsweep algorithm can be demonstrated with
parallel-prefix sum.

3. PARALLEL-PREFIX SUM
Parallel-prefix sum (also known as scan) is a feed-forward

downsweep algorithm that matches the two requirements for
this computational pattern: 1) the total number of elements
being shared at each iteration is halved at each stage; 2) the
communication stride doubles after each iteration. Figure 1
illustrates this communication pattern, which is organized
as a binary tree. Given an input array of elements, we can
organize the downsweep computation in several ways.

As shown in Figure 2a, we could assign a thread to each el-
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Figure 2: Comparison of a (a) non-packed and (b) 4-
deep register packed implementation of Parallel-Prefix Sum.
Columns hold threads; registers are in circles and shared
memory is in squares. While the packed implementation
may have less occupancy, it has more register communi-
cation and less shared memory communication, increasing
overall throughput.

ement, and halve the number of active threads at each stage.
However, this leads to maximal shared memory communi-
cation with little register usage. Harris et al.’s feed-forward
downsweep implementation [5] instead packs four elements
per thread (Figure 2b). Note that the first two steps of this
implementation communicate only between registers, reduc-
ing the shared memory traffic. Also note that the binary-
tree nature of the communication pattern implies that all
communication is only in one direction (to the right).

Sengupta et al. [7] addressed both scan and a cyclic-reduction-
based tridiagonal solver in their work. While they were able
to use this technique to improve scan’s performance, they
could not optimize CR because its communication pattern
was more complex. CR requires bidirectional communica-
tion and a more generalized downsweep formulation, requir-
ing barrier synchronizations and shared memory communi-
cation after each iteration to update neighboring threads
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Figure 3: Communication pattern of cyclic reduction. In each stage, each element requires information from both directions.
The straightforward implementation thus stores all elements in shared memory and halves the number of threads active at
each step.

(Figure 2b cannot be directly applied). Our next section
will discuss this method, and how we create a register-packed
implementation.

4. THE CR ALGORITHM
Cyclic reduction consists of two inverted phases: the down-

sweep communication pattern (known as forward substitu-
tion), as well as an inverted up-sweep pattern (backward
substitution). We can apply the same register packing prin-
ciples we discover for the downsweep pattern, to the upsweep
pattern. A tridiagonal system consists of three bands of el-
ements (labeled a, b and c), and a solution matrix d. CR’s
downsweep phase consists of these sets of equations [6]:

k1 =
ai

bi−stride

k2 =
ci

bi+stride

a′i = −k1 · ai−stride

b′i = bi − k1 · ci−stride

c′i = −k2 · ci+stride

d′i = di − k1 · di−stride − k2 · di+stride

Using this formulation, after every iteration, the number
of active elements being updated is halved, and the stride
is doubled (Figure 3). The increased efficiency of parallel-
prefix sum due to register packing motivates applying the
same technique to our CR implementation.

In related work, Zhang et al. [11] studied and mapped
a number of tridiagonal solvers onto the GPU, including
a version of CR that communicates at each stage through
shared memory. It suffered from shared-memory bank con-
flicts, but even without these shared-memory bank conflicts,
all of their solvers were shared-memory-bound. Their work
used a similar communication pattern to Figure 2a, halving
the number of active threads at each iteration. Göddeke
et al. developed an improved version of Cyclic Reduction
which matched performance to many of Zhang et al.’s other
hybrid tridiagonal solvers [3].

The major contribution of this work is to extend the feed-
forward register-packing method to the bidirectional com-
munication pattern required by algorithms like CR. The

bidirectional communication pattern requires a necessary
shared communication and synchronization step at every
stage. At every stage, border values from one side must be
shared with the previous thread. As the stride doubles, the
register that must be shared changes (rsave). However, the
register that is being updated stays the same (rupdate). This
results in O(1) shared memory updates in one direction at
every iteration per thread, as opposed to no shared memory
communication needed in parallel-prefix sum (Figure 2b).

An example of this transformation can be seen in Fig-
ure 4 for an eight-deep register packing implementation. At
every stage, each thread must save its top-most register.
For the first stage rsave is equal to r0 (which represents
the values a0, b0, c0 and d0). This value is saved so that
its neighbor can update the appropriate bottom-most ele-
ments rupdate (r7 in our example). This is repeated at each
stage for different registers until each thread only has one
update left. We then use shared memory to complete the
final log(numThreads) stages.

5. COUNTER-EXAMPLES: Parallel Cyclic
Reduction and Fast Fourier Transform

Hybrid techniques that use Parallel Cyclic Reduction (PCR)
outperform a completely CR or PCR implementation [11]
because of higher step efficiency and a lack of shared memory
bank conflicts. However, PCR and the similarly-structured
Fast Fourier Transform are unsuitable for this register-packing
technique.

Both FFT and PCR require communication between ele-
ments in a strided pattern that doubles at every iteration.
For PCR, if we pack n elements into each thread, we require
n communications per thread on the first step, then 2n on
the second step, 4n on the third step, and so on. Register
packing, then, does not significantly reduce the amount of
overall communication.

FFTs can be organized into a doubled-strided log(n)-step
communication pattern. Volkov et al. [8] packed small sets of
elements into each thread, with each thread independently
solving small FFT routines. Afterwards, the intermediate
results were re-shuffled through shared memory, and the
process was repeated until the FFT was complete. How-
ever, this method still requires O(n) shared memory shuffles
after each mini-FFT is complete, and is also a poor match
for register packing.
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Figure 4: Our reworked mapping of the CR algorithm onto
the GPU utilizes more elements in registers (8 sets per
thread in this example) and less shared memory commu-
nication(3 words per thread). At every iteration, we must
store rsave (r0 in stage 1, r1 in stage 2, etc.) and update
rupdate (r7 in this case).

6. TRADEOFF ANALYSIS: Registers
vs Shared Memory

Though register communication is much faster than shared
communication and therefore generally preferred, we must
consider the decreased occupancy and increased register pres-
sure that results from having fewer threads. Previous CR
methods saturated the shared memory bandwidth, so reg-
ister packing can potentially improve performance. We an-
alyze the tradeoffs in using register packing with a model-
based approach, and compare against kernels with varying
register packing depths.

6.1 Model Based
We wish to model three things: register usage per thread

(which will limit occupancy), shared memory per block (which
will limit the size of the system we can process), and shared
memory communication per block (which will limit perfor-
mance). As highlighted in Section 2, in order to get close
to the optimal throughput, we must have enough register
operations to amortize the cost of shared memory commu-
nication.

We model each initial thread as having a register penalty
of α for temporary registers while processing each down-
sweep stage. For each set of intermediate values (packing
depth) needed, we apply a cost of β registers. Therefore,
the number of registers needed for a given variation of our
register packing technique becomes:

Number of Registers = α+ β · Packing Depth (1)

At every stage, each thread needs to share one set of el-
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Figure 5: Communication pattern of (a) Parallel Cyclic
Reduction (PCR) and (b) Fast Fourier Transform (FFT).
These methods have a stride-doubling communication pat-
tern, but no hourglass shape. Therefore shared memory
requirements are O(n) and we are unable to apply similar
register packing techniques.

ements with one other thread. Therefore the amount of
shared memory needed and shared memory communication
being performed at every stage should scale linearly with
the number of threads:

Shared Memory Per Block = γ ·Number of Threads
(2)

Shared Memory BW Per Stage = λ ·Number of Threads
(3)

From these equations we can assume that as we increase
the number of elements processed per thread (and decrease
the total number of threads), we decrease shared-memory
communication at the cost of extra registers per thread.
Communication through registers gives us potential speedup,
but if shared-memory communication is already significantly
hidden by register operations, increasing packing depth may
introduce register pressure and lower occupancy, resulting in
lower performance.

6.2 Experimental Confirmation
Table 1 shows the results from examining NVIDIA’s com-

piler (nvcc)-generated cubin files, and the amount of allo-
cated shared memory. All of these were generated from
compiling and running on a NVIDIA GTX 460 (Fermi) us-
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Figure 6: Experimental results showing performance as we
vary the amount of register packing per thread, normalized
to the highest performing variation. Compare with Table 1
for register usage and shared memory usage per test.

ing CUDA 3.1. As we assumed, shared memory increases
linearly with the number of threads, but decreases with the
number of elements processed per thread.

Our model approach appears to map quite well from our
limited sample data. Using our register prediction model,
we find that α ≈ 15 and β ≈ 4. From this data, we see that
moving from four elements to eight elements per thread in-
creases register usage per thread by only about 50% while
halving the amount of shared memory needed for storage
and communication. However, if we again double the num-
ber of elements packed in registers, α plays less of a role
for further packing (sixteen elements per thread), and reg-
ister usage nearly doubles per thread, threatening the total
possible occupancy on our GTX 460.

From the timing results, on this GPU, we see that in gen-
eral the sweet spot is eight elements processed per thread.
At this point, the reduction of registers from the next stage
(sixteen elements) is nearly linear, and having fewer reg-
isters per thread leads to less register pressure. However,
this may change with future cards, and we believe provides
proper motivation for future auto-tuning work.

7. EXPERIMENTAL RESULTS
We ran a set of benchmarks comparing our CR register-

packing method against a set of other GPU tridiagonal solvers.
Our testing environment used an NVIDIA GTX 460 with
CUDA 3.1. Our results indicate that using our register-
packing method on our Cyclic Reduction algorithm proved
effective. Packing more elements into registers also allows
us to solve larger systems without using global memory to
split systems. For systems that now can fit within a single
block, this represents a significant performance boost.

For systems larger than 1024 elements, previous methods
run into a shared-memory size limit. Therefore, we instead
compared against a hierarchical PCR-Thomas method that
splits larger systems into smaller chunks and then processes
each chunk separately [2]. Figure 7 shows our performance
versus a set of GPU tridiagonal solvers. Our CR-register-

System CR Depth Shared Mem Regs Per Number of
Size (Elements) Per Block Thread Threads

512 4 Elements 2.5 KB 31 128
8 1.25 KB 47 64
16 .625 KB 80 32

1024 4 5 KB 31 256
8 2.5 KB 47 128
16 1.25 KB 80 64

2048 4 10 KB 31 512
8 5 KB 47 256
16 2.5 KB 80 128

4096 4 20 KB 31 1024
8 10 KB 47 512
16 5 KB 80 256

Table 1: Shared memory usage, register usage, and thread
count for each of our implementations given varying system
sizes.

packed version outperforms all of these methods (even hy-
brid step-efficient methods such as CR-PCR and PCR-Thomas).
Our method outperforms all instances, with a minimum
speedup of about 50%, and a maximum speedup of 4.5x
against non-hybrid methods such as a shared-memory-bound
CR or PCR.

8. DISCUSSION
As our model showed in Section 6, the initial cost α for

registers was one of the key motivations for packing more
elements locally. However, as we pack more elements, the
benefits become less significant and the penalty in register
pressure begins to grow. For our application and our GPU,
we found the sweet spot to be around a depth of eight.

We emphasize that the best depth is both algorithmic-
dependent and machine-dependent. Algorithms that require
more local communication per shared (or global) memory
read will have a peak-performance advantage, and may ben-
efit from more packing. Tuning algorithms can help to iden-
tify the best depth for a variety of algorithms and platforms,
though we do not address this subject in our work.

The Downsweep Pattern. In this work we characterize the
downsweep pattern as an hourglass shape that is halved in
size at each iteration. However, we can extend this defini-
tion to patterns with a larger radix. For example, Figure 8
shows communication patterns for radixes 2 and 4. The key
requirement for our technique here is that the shared mem-
ory communication must remain constant per stage.

9. CONCLUSION
In this work we analyzed a specific communication pattern

and studied its complementary mapping onto the GPU. We
used a Cyclic Reduction tridiagonal solver as our case study,
one that before this work had shown poor performance on
GPUs when compared to step-efficient or hybrid methods.
However, with our generalized downsweep mapping, we were
able to substantially improve on CR’s performance, making
it faster than other known current GPU tridiagonal solvers.

We believe this mapping and generalization can be useful



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

512 1024 2048 4096

CR

PCR

PCR-CR Hybrid

PCR-Thomas 
Hybrid
CR-RegPack

Relative Time

Number of Systems and Size of Systems

.209 ms .709ms 3.6917 ms 23.375 ms

Figure 7: Experimental results comparing our CR with
packed registers against the previous highest-performing
GPU tridiagonal solvers, normalized to our register-packing
implementation. Due to shared-memory limitations, the CR
and PCR solvers developed by Zhang et al. cannot be ap-
plied to larger systems. Therefore, we instead compared
against a PCR-Thomas hybrid method designed for large
systems.

r0 r1 r2 r3

r3
S[N0-N2]

Radix-4

r0 r1 r2 r3

r1 r3

r3

S[N]

Radix-2

S[N]
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for all algorithms that have this downsweep pattern. How-
ever, the core motivation for our method (reduced shared
communication, higher register throughput) can be applied
to a number of communication patterns. Therefore we feel
identifying and classifying sets of communication patterns,
and then analyzing their optimal mapping to the GPU is
an important field of research. Once some of these patterns
and mappings are better understood, it will be possible to
develop automated tuning methods for them to optimize
register re-usage and shared memory communication.
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