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Abstract

Quantitative Optical Microscopy Using Coded Illumination

by

Zachary Fitzgerald Phillips

Doctor of Philosophy in Applied Science and Technology

University of California, Berkeley

Associate Professor Laura Waller, Chair

Quantitative optical microscopy continues to be a powerful tool for biomedical research
and the sciences at-large. Building upon centuries of optical theory, computational mi-
croscopy leverages large-scale numerical computation to dramatically extend and improve
the capabilities of existing optical microscopes through high-speed capture, super-resolution,
or opening new application spaces such as quantitative phase imaging. This dissertation de-
scribes the theory and reduction to practice of several novel computational microscopy tech-
niques which make use of jointly-designed coded illumination hardware and physics-based
reconstruction algorithms. We first introduce label-free quantitative phase imaging using dif-
ferential phase contrast, and demonstrate a novel single-shot variant using color-multiplexing.
Second, we explore coded illumination for high-throughput imaging, and demonstrate a
temporal-coding technique which enables significantly higher SNR for high-speed slide scan-
ning and neuropathology applications. For fluorescent imaging, this method can provide up
to a 10× improvement in reconstruction SNR compared to conventional high-speed imag-
ing techniques. Next, we explore the design and fabrication of LED illumination devices,
including a quasi-dome LED illuminator which enables high-angle illumination for a variety
of applications. To address practical calibration concerns for computational microscopy sys-
tems, we demonstrate two examples of algorithmic self-calibration. These include aberration
recovery using differential phase contrast as well as source calibration for the quasi-dome
LED array, using both image-based calibration and an online method based on Fourier
ptychography. These works demonstrate the benefits and practical challenges related to
computational optical microscopy with coded illumination.
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Chapter 1

Introduction

1.1 Optical Microscopy
The optical microscope is one of the oldest scientific instruments, and continues to be an
essential tool for researchers, medical professionals, and engineers across many disciplines.
Microscopes are typically defined as having two or more refractive surfaces to provide magni-
fication between the object of interest and the imaging plane, enabling the user to see things
much smaller than the resolving power of the human eye. Credit for the invention of the
compound microscope is generally attributed to Hans and Zacharias Jansen [1], although
the first published work on microscope design wasn’t released until 1665 (Hooke and van
Leeuwenhoek) [2,3]. The term ”microscope” is generally used to describe optical microscopes
- those which are designed for use with light within the optical band of the electro-magnetic
spectrum (390nm ≤ λ ≤ 700nm), which is approximately the electromagnetic spectrum
detectable by the human eye.

Imaging and Resolution
Light interacts with our world in many ways, including diffraction, refraction, reflection, and
absorption. At optical wavelengths, many common materials (such as glass) have favorable
properties for refractive optics (providing significant phase delay with little absorption), fa-
cilitating precise control of an optical wavefront using these elements. Imaging is the process
of creating a copy of a particular optical signal at a different position in space, typically
with the goal of making a measurement using a film or electronic detector. In the simplest
case, a single lens may be used to form a magnified image of an optical signal by placing the
lens and detector at a particular distance from the sample A single-lens imaging system has
many practical issues, however, including lacking telecentricity (consistency of magnification
across the field) and aberrations, both geometric and chromatic. Including multiple optical
elements into a compound microscope can dramatically improve image quality by providing
aberration compensation and enabling telecentricity. Typically, the exact number and de-
sign of these components is abstracted to the end-user and can be defined by a relatively low
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number of descriptive quantities. Magnification and numerical aperture (NA) are the most
important of these; the magnification of an objective sets the field of view, while the NA sets
a minimum bound on the diffraction-limited resolution. The numerical aperture is defined
by the formula NA = n sin(θ), where n is the refractive index of the medium, and θ is the
maximum half-angle at which light may pass through the objective relative to the radial
(optical) axis. The angular dependence of numerical aperture is completely described by
interference effects which arise from the wave-optics model of light propagation. As multiple
off-axis sources of the same wavelength converge to a point, the wavefronts of these sources
will cause constructive and destructive interference. The minimum distance between two
peaks formed by constructive interference is proportional to both the wavelength of the illu-
mination and the angular separation between the two beams (which is set by the maximum
NA of the illumination source and imaging optics). Practically, the size of this spot defines
the resolution of the optical system. By the Rayleigh criteria, the resolution of an optical
system xmin is defined as:

∆xmin =
1.22λ

(NAobjective +NAillumination)
(1.1)

This quantity defines the minimum separation between two points which can be detected
by a system with a circular aperture and is defined by the distance between the center of the
point spread function (PSF) and its first null. Note that Eq. 1.1 is dependent on both de-
tection side NA (NAobjective) and illumination side NA (NAillumination). This equation holds
true while NAillumination ≤ NAobjective. High-angle illumination (NAillumination > NAobjective)
provides no direct improvement to the resolution of the measurement, as the signal from
these illumination angles is not able to interfere with the background (DC) term. This sets
a lower limit on the resolution of a brightfield microscope. When a sample is illuminated
from high angles only (NAillumination > NAobjective), high-resolution features are revealed as
diffraction-limited edge contrast but are not individually resolved with more than 2NAobjective

resolution. This is the working principle of darkfield microscopy.

1.2 Fourier Optics
Fourier Optics provides an important bridge between Fourier theory and optical systems by
modeling common optical phenomena (such as propagation and lensing) using the Fourier
transform. The seminal text on imaging using Fourier theory to analyze imaging systems
was published in 1968 [4] which presents the framework underpinning many common com-
putational techniques such as deconvolution, holography, and free-space propagation. The
Fourier optics description is especially useful for an optical system configured as a telecentric
(4f) system, which is a typical model for an optical microscope:
In this system, the lenses in this system operate as forward and inverse Fourier transform
operators on the input optical field at (P1) as it propagates through the pupil plane (P2)
to the image plane (P3). The electric field at position P2 can be modeled as the Fourier
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Figure 1.1: Schematic of a 4f optical system

transform of P1, which is often occupied by an aperture stop (circular low-pass filter) to
limit the NA of the objective. This stop defines the resolution of the optical system and
can be used to reduce aberrations and prevent aliasing of the optical signal at the camera
plane. Most modern infinity-corrected microscopes may be approximated to a high degree
using these systems, assuming minimal aberrations and misalignment.

1.3 Computational Microscopy
The concept of using computational tools to simulate and invert optical imaging systems
was developed soon after the emergence of large-scale computation in the 1960s; the theory
of image formation and the propagation of light was developed prior to this time [5, 6].
Recently, the field of computational imaging has expanded considerably due to increasing
availability of computing power and digital sensing hardware. In modern microscopes, digital
cameras allow the detection of the intensity of an optical field using a grid of photodetectors,
which digitize the optical field and facilitate computational imaging reconstructions on a
host computer. As graphical processing units (GPUs) have become faster and more widely
available, computational algorithms have likewise accelerated both in speed and scale.

An early example of computational imaging was the application of a cubic phase plate
at the microscope pupil, which provides significantly increased depth of field but produces
a highly distorted image. With knowledge of these distortions the original image with ex-
tended depth of field can be deconvolved using knowledge of the system’s point spread
function (PSF) [7]. Since these early works, the field of computational microscopy has
expanded considerably due to the widespread availability of computing hardware and soft-
ware tools for simulating optical systems and performing quantitative analysis. Prominent
examples include super-resolution methods such as structured illumination [8, 9], which en-
hances resolution by projecting a pattern onto the sample, localization microscopy [10, 11],
which employs statistical analysis to localize sparse fluorophores using temporal dynamics,
and both conventional [12] and Fourier [13] ptychography. Three-dimensional imaging has
likewise become a powerful tool for imaging 3D biological quantities, and becomes abso-
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lutely necessary for high-NA imaging of thick samples which encounter multiple scattering.
Various approaches have been proposed, including deconvolving focal stacks [14], light-field
microscopy [15, 16], PSF engineering [17], and diffraction tomography [18–20]. In addition,
computational imaging has been widely used for quantitative phase imaging, using interfer-
ometry [19,21,22], off-axis holography [23], or commercial add-ons [24,25]. Another add-on
option uses two cameras to capture defocused images which can then be used to solve the
Transport of Intensity Equation (TIE) [26]. Alternatively, if chromatic aberrations are large
enough, they can enable single-shot color TIE [27] without any hardware changes.

In most cases the propagation and refraction of light can be modeled using a small
number of linear and non-linear operations and may be accurately simulated using linear
algebra software packages such as numpy or MATLAB. With knowledge of this forward model,
an inverse problem may be formed to recover the object without any distortions imposed
by the imaging system (provided the information is still present in the measurement). In
computational imaging these distortions are carefully designed to reveal contrast in ways
a conventional system cannot, enabling the recovery of high-dimensional or high-resolution
information using computation after an acquisition in performed. The system operator A{·}
describes and models this entire acquisition process, including a model for the propagation
of light, the design of the system, and any calibration or mis-alignment which may be present
(Fig.1.3). To facilitate the recovery of an unknown object from measurements made under
this system y, an inverse problem formulation is used to invert the system operator A{·},
often having the common standard form:

x̂ = argmin
x

||A{x} − y||22 (1.2)

where x represents the variable of interest (generally the object), A{·} is the mathematical
operation describing the optical system, y is the measured intensity, and x̂ is an estimate
of the object x. The forward operator A{·} is normally formed based on the physics of the
optical systems, need not be linear or represented by a matrix.

The goal of a computational imaging system is to invert the forward operator A{·} in
a way which minimizes the distance between the object estimate distortions of the forward-
inversion process (||x̂ − x||22). If A{·} is linear, is can be inverted in a closed-form solution
using the Moore-Penrose Pseudo-Inverse [28], or with an iterative method such as gradient
descent. If A{·} is non-linear but smooth, it must be inverted iteratively using analytic
expressions for each regularization. If A{·} is non-smooth, it can, in some cases, still be
inverted using iterative soft-thresholding methods such as FISTA [29].

In general, linear problems (characterized by satisfying the relationship A{a + b} =
A{a}+A{b}) are much easier to invert and solve, having lower memory requirements and
complexity as well as a direct inverse. Linear convolution operators are particularly common
for telecentric imaging systems. When a convolution is well-posed, it may be efficiently
inverted using a FFT-based deconvolution algorithm [30], which has complexity N log(N)
as opposed to N2 for normal operators.
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Figure 1.2: Overview of Computational Imaging. The forward model A is a function of the
physical properties of light, the optical system design, and (mis)calibration of the system.
An image of a Nikon TE300 microscope used in this work is provided for context.

The performance of inversion processes may be improved by adding regularization term to
penalize certain undesirable characteristics of the signal, such as noise. The most commonly
used regularization method is Tikhonov (or ℓ2) regularization [31] which enforces a prior on
the total energy of a system. Tikhonov regularization is equivalent to adding an additional
ℓ2 term to Eq. 1.2:

x̂ = argmin
x

||A{x} − y||22 + α||x||22 (1.3)

where α is a tuning parameter which represents the weight of the Tikhonov prior (normally
set to 1

SNR
). If A{·} is linear and can be represented as a matrix, Eq. 1.3 can be directly

inverted using a closed-form expression:

x̂ = ((AHA)−1 + αI)AHy (1.4)
where A is the matrix form of A{·} and I is the identity matrix with the same dimensions
as AHA. This closed-form solution makes Tikhonov regularization popular for many inverse
problems, although the total energy prior may not be accurate in all cases.

A second common class of priors enforce sparsity of the object in some domain. Mathe-
matically the ℓ0 ”norm” returns the number of non-zero elements of the input. This norm
is non-convex, however, requiring a large combinatorial search which is intractable for most
problems [32]. As a proxy, the ℓ1 norm is conventionally employed as a convex, though
non-smooth alternative [33]. When coupled with a generalized sparsifying operator W{·}
and a differential forward model A{·}, this problem is convex, and can be written as:
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x̂ = argmin
x

||A{x} − y||22 + α||W{x}||1. (1.5)

Because the regularization term is non-smooth, iterative solvers must be used to recover
the optimal x̂. WhenW is a unitary function w (or the identity matrix), a solver implement-
ing proximal gradient descent using soft-thresholding may be used to minimize this objective
function, such as FISTA [29], ADMM [34], or TwIST [35]. In general, W can be any unitary
transform, including the Fourier transform or Wavelet Transform, or a learned unitary oper-
ator which is optimized using a machine-learning framework [36]. In all of these cases, the
optimal x̂ may be recovered by performing many iterations of proximal gradient descent. In
the case where W is not unitary, the above relationship does not hold, and other proximal
methods must be used. One prominent example is total-variation regularization (TV), which
enforces sparsity of the image gradients [37]. TV regularization can be implemented using
ADMM [38], FISTA [29], or using soft-thresholding on wavelet coefficients [39].

1.4 Noise in Computational Microscopy Systems
All measurements contain noise from various sources, including photon quantization or cam-
era electronics. In general, these noise sources can be additive or multiplicative, and may
take on a variety of statistical profiles including Gaussian and Poisson distributions. Analyz-
ing the propagation of noise through computational imaging systems is extremely important
for practical implementation of the algorithms presented in this work, as they help motivate
when computational imaging makes sense. Analyses previously introduced in computational
photography [40] have been adopted for microscopy applications here. In this section, we
provide a derivation which applies to all linear systems presented in this dissertation, par-
ticularly Chapter 2 and Chapter 3. Here, we generally assume the presence of an additive,
Gaussian noise term η with zero-mean, and variance ση, which is added to each measurement
made under a general forward operator A{·}:

y = A{x}+ η (1.6)
This approximation is normally valid for measurements made with more than 10 photon

counts, which includes every case presented in this dissertation (including fluorescence imag-
ing). The effect of this noise on image quality is generally represented as the signal-to-noise
ratio (SNR). Here, we use the common imaging SNR definition:

SNR =
ȳ

ση

(1.7)

where ση is the standard deviation of the noise term and ȳ is the mean signal (DC term) of
the measurement y. When inverting the forward operator A{} to recover x, the presence of
η will lead to error in the measurements compared to the ground truth. Take, for example,
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if A can be represented as a matrix A, the Moore-Penrose pseudoinverse of the object is
given by:

x̂ = x+ (AHA)−1AHη. (1.8)
Clearly, the recovered object x̂ will be corrupted by an additive term, which is essentially
the inversion process applied to the noise term η̂. Based on Eq. 1.8, the root-mean-squared
error (RMSE) between x̂ and the true x is (AHA)−1AHη. Taking the covariance of this
term, we can find an expression for the covariance of the error term in the reconstruction:

ΣA†η = σ2
η(A

HA)−H (1.9)
The main result of Eq. 1.9 is that the inversion process re-weights the spectrum of the

original Gaussian white noise η. When A has an ℓ2 operator norm of 1, the minimum
singular value of A defines the maximum noise amplification, while the sum of the inverse
singular values defines the total RMSE:

σA†η = ση

√
ΣN

i=0

1

σ2
i {A}

, (1.10)

where N is the length of x and σ2
i {A} represents the ith singular value of A. This definition is

consistent with [41]. This relationship between the singular values of A and the amplification
of η enables a closed-form relationship to the reconstruction signal-to-noise ratio (SNRrecon)
of a measurement y, defined as:

SNRrecon =
ȳ

ση

√
ΣN

i=0
1

σ2
i {A}

, (1.11)

From this relationship, it becomes clear that the deconvolution process will reduce the SNR
by a factor:

f =

√
ΣN

i=0

1

σ2
i {A}

, (1.12)

where f is the deconvolution noise factor (DNF).
The main result here is that the deconvolution process will always amplify measurement

noise, and that for linear systems this amplification can be computed algebraically so long
as the singular values of the forward operator are known. This result is particularly useful
for convolutional forward operators, where the singular values of A can be computed quickly
and efficiently from the Fourier coefficients of the convolution kernel h due to the circulant
structure of A. This analysis of RMSE amplification is equivalent to A-optimal design [42],
which is used here due to strict compatibility with the definition of imaging SNR (Eq. 1.7).

As a demonstration of this relationship, we simulated a convolutional forward model
with additive Gaussian noise, and perform deconvolution of the noisy measurement. These
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Figure 1.3: Simulation of a convolutional forward model and verification of DNF calcula-
tions. Top row shows forward modal with additive Gaussian noise, while the middle row
shows the deconvolution of the same measurement, separated into object deconvolution and
noise amplification terms. Bottom row shows the measurement and reconstruction SNR
across 1000 random generations of the Gaussian white noise term, overlaid with the multi-
plication of the reconstruction SNR multiplied by the DNF as a verification. The operators
∗ and ∗−1 represent 2D convolution and deconvolution, respectively.

results show that the DNF provides a very close scalar relationship between measurement
SNR and deconvolved SNR, which is illustrated by comparing the estimated measurement
SNR (deconvolved SNR multiplied by the DNF) to the original measurement SNR. Small
discrepancies between the expected and predicted SNR calculations are likely due to sampling
error, since we evaluate the noise standard deviation across a 20-pixel square in the top left
corner of each image, rather than the full image (to avoid including the standard deviation
of the object in our SNR calculation). These relationships are used in both Chapter 2 and
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Chapter 3 for analyzing the noise propagation of linear forward models.

1.5 Coded Illumination for Optical Microscopy
Since the 17th century, microscopes have employed some sort of light source to illuminate a
specimen, from candles to semiconductor light sources. Illumination affects image contrast
in variety of ways - for purely absorptive samples, brightfield microscopy images the light
that is attenuated by the sample by illuminating within the range of angles defined by the nu-
merical aperture (NA) of the objective. Conversely, darkfield microscopy uses illumination
from angles outside of the illumination NA, imaging only light that is scattered or ”bent”
by a refractive medium such as water. Phase contrast microscopy [43] uses annular illumina-
tion to reveal qualitative phase contrast, while differential interference contrast (DIC) [44]
uses coherent, polarized illumination to reveal the gradient of an object’s phase in a single
direction. Recently, programmable light sources such as LED arrays [45, 46] have enabled a
variety of qualitative contrast modalities at high speed [45, 47], as well as the capability to
perform quantitative reconstructions of the complete complex field of the sample [13,48,49],
enabling the measurement of the dry mass of many aqueous biological samples [50, 51].

In the following chapters, I will describe several novel applications and of coded illu-
mination in optical microscopy, fabrication methods for coded illumination devices, and
self-calibration techniques for the aforementioned methods, Fig. 1.5 shows the system which
was used in most experiments presented in this dissertation.

Chapter 2 describes methods for qualitative and quantitative phase recovery, includ-
ing a single-shot quantitative phase imaging method which uses partially coherent color-
multiplexed illumination to recover the complete optical field of an object from a single
measurement. Chapter 3 describes a novel method for recovering a large field-of view with
high SNR by using a coded illumination sequence to introduce motion blur during each cap-
ture, which is then computationally removed using a motion deblurring algorithm to recover
the static object. We demonstrate the performance of this technique for both brightfield
imaging and fluorescence imaging and provide an analysis of optimal acquisition strategy
in terms of common system parameters such as camera noise level and illumination power.
In Chapter 4, we describe the fabrication of several prototypes used for coded illumination,
including a programmable domed LED array, LED sources for high-throughput imaging,
and Computational CellScope, a prototype device which uses a programmable domed LED
illumination to perform quantitative phase imaging, digital refocusing, and multi-contrast
imaging in a portable (smartphone-based) form factor. Chapter 5 describes self-calibration
techniques for quantitative phase imaging, including LED position recovery for LED domes
and aberration recovery using a linearized model. These methods are essential for practi-
cal implementation of many quantitative phase imaging techniques. Chapter 6 concludes
this dissertation on quantitative microscopy using coded illumination and provides future
extensions of the work presented in the previous chapters.
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Figure 1.4: Nikon TE300-based system used for most experiments presented in this disser-
tation. This system uses a digital camera, programmable LED illumination source (Quasi-
dome), mechanical motion stage, and acquisition PC for controlling the acquisition and
processing the data.
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Chapter 2

Phase Imaging using Coded
Illumination

Light is a propagating wave, having a velocity, wavelength (color), amplitude, and phase.
As a single ray of light reaches an interface, it can be absorbed (reduced in amplitude) or
undergo a change in phase through reflection, refraction, or diffraction based on the material
properties and geometry of the object. Measuring this electromagnetic field at the sample
plane is the primary goal of an imaging system; however, the current camera technology
can only measure the amplitude of this complex field due to the relatively slow speed of
silicon-based computing systems compared to the frequency of electromagnetic waves at
optical wavelengths. For example, a coherent wavefront with wavelength 530nm traveling
in air will have an oscillation period of approximately 1.76 femtoseconds (1.76 × 10−15s),
which would need to be sampled at a rate of 1.13 petahertz (1.13 × 1015Hz) to sample
the waveform at the Nyquist rate. Practical limitations of silicon-based computers limit
their clock speeds of around 10 GHz (109Hz), making it impossible to measure an optical
wavefront by directly sampling it electronically. Instead, conventional cameras measure
hundreds of thousands of periods of a waveform, averaging these periods to capture the
intensity of the wavefront, which contains no direct phase information (although the phase
of a wavefront can be indirectly inferred using camera hardware employing interferometric [24,
52] or geometric [16] methods).

Mathematically, the process of measuring the intensity of a wavefront described as taking
the magnitude of the complex field I = |E|2 = |Aeiϕ|2 = A2 where A is the amplitude of
a wave and ϕ is the phase of the wavefront in this phasor notation. Phase is related to
the mechanical geometry of the cell by the relationship ϕ = 2π

λ
nd, where λ is the system

wavelength, n is the refractive index change, and d is the thickness of the object.
This loss of phase information is particularly problematic for imaging aqueous samples,

such as biological cells. To counter this, biologists often apply chemical stains to add ab-
sorption contrast artificially, but this process is cumbersome and can modify the micro-
environment in significant ways. Optical phase imaging methods such as Differential In-
terference Contrast (DIC) [44] and Zernike Phase Contrast (PhC) [53] were developed to
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provide phase contrast, which is a mix phase and amplitude of the wavefront and requires
no chemical staining. These methods have since become widely adopted due to their sim-
plicity and ability to reveal phase information in aqueous samples without adding additional
contrast agents (stains).

2.1 Quantitative Phase Imaging
Quantitative Phase Imaging (QPI) involves recovering the complete amplitude and phase,
or complex field, of a sample. In contrast to qualitative phase imaging methods, such as
Zernike phase contrast and DIC, quantitative methods recover the phase delay caused by
the sample, decoupled from absorption information. Modifications of PhC [54] and DIC [55]
can make these setups quantitative, at a cost of requiring multiple images. More commonly,
QPI methods use interferometry with coherent illumination and a reference beam [21,22,56],
making them expensive and sensitive to misalignment and vibrations.

In optical microscopy, low cost and low-complexity methods which require little hard-
ware modification are often preferred to more complex interferometric methods for practical
reasons such as cost and calibration limitations. Through-focus phase retrieval [57–59] re-
covers the complex field using defocused intensity measurements of the sample by solving
the transport of intensity (TIE) equation. TIE-based phase imaging has also been extended
to use partially-coherent sources, which provides higher resolution than under coherent illu-
mination [60]. The TIE equation is non-linear, however, and requires a second-order solver
and phase unwrapping algorithm to accurately recover the full complex field.

Most quantitative phase imagine methods require the user to capture multiple images to
facilitate phase recovery. Amongst the wide array of existing QPI methods only a small num-
ber are single-shot, since disambiguating amplitude and phase from a single-measurement
is an ill-posed problem. Off-axis holography interferes the sample beam with a tilted refer-
ence beam, then recovers phase by Fourier filtering [23]. Parallel phase-shifting can spatially
multiplex several holograms within a single exposure via an array of polarizers [61]. And
single-shot QPI add-ons based on amplitude gratings work with commercial microscopes,
replacing the traditional camera module [24, 25]. Another add-on option uses two cameras
to capture defocused images which can then be used to solve the transport of intensity equa-
tion (TIE) [26]. Alternatively, if chromatic aberrations are large enough, they can enable
single-shot color TIE [27, 62] without any hardware changes.

In the remaining sections of this chapter, we describe a quantitative phase imaging
method which uses a programmable partially-coherent light source to perform quantitative
phase imaigng, and demonstrate a single-shot variant which uses a color-multiplexing and
inexpensive 3D-printed inserts to enable high-speed recovery of the complex field of a sample.
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2.2 Differential Phase Contrast
Differential Phase Contrast (DPC) [49,63–65] is a partially coherent QPI technique that uses
asymmetric illumination to shift the sample’s spectrum in Fourier space, revealing phase in-
formation in a weak object. While raw DPC measurements provide phase contrast which
is similar to DIC contrast, the DPC method provides a linearization of the image forma-
tion model which can be inverted using a single-step deconvolution process (Quantitative
DPC) [49, 64]. Quantitative DPC recovers both amplitude and phase with resolution up to
the incoherent resolution limit (2× better than coherent methods). Practically, the illumi-
nation switching can be done quickly and at low cost with an LED array [47,49,65]. At least
two complementary source patterns are required, but generally 3-4 patterns (top, bottom,
left, right half-circles) are used to avoid missing spatial frequencies. The DPC method was
recently extended to color multiplexing [66], where the 4 source patterns were encoded into
two images by using a color camera in combination with a color LED array. Similarly, color
photometric stereo has been used for retrographic surface profiling of large objects using
off-axis color illumination in reflection mode [67].

Figure 2.1: Example transfer functions for typical half-circle illumination patterns.
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Forward model

The general image formation model for a sample illuminated under a partially-coherent
source is defined as the sum of many coherent forward models [64]:

I =
N∑
i

|P ∗Oe−i2π
sin θi

λ
r|2 (2.1)

where N sources illuminating from angles θi with wavelength λ illuminate an object O
which is then filtered by a pupil P , having spatial coordinates r. In general, this model is
nonlinear and difficult to invert directly. DPC employs a linearized forward model to describe
the intensity images that result from a given complex-field. This linearization is achieved by
making a weak phase assumption on the sample’s complex-field and ignoring higher order
(nonlinear) terms in the Taylor expansion of the complex-field, E = eiϕ−µ ≈ 1−µ+iϕ. Under
the same approximation, the Weak Object Transfer Functions (WOTFs) for absorption (H̃µ)
and phase (H̃ϕ) can be derived [49, 63, 68] to linearly related to intensity measurements:

I(r) = I0 +Hµ(r) ∗ µ(r) + i ·Hϕ(r) ∗ ϕ(r) + Iss (2.2)
Here, r represents 2D real-space coordinates, I is the intensity measurement, I0 is the
background signal, and ∗ denotes convolution. Iss is the 2nd order scatter-scatter term,
which is assumed to be small and is ignored in the DPC algorithm. Eq. 2.2 can also be
represented in the Fourier domain:

Ĩ(r) = Ĩ0 + H̃µ(r) · µ̃(r) + i · H̃ϕ(r) · ϕ̃(r) + Ĩss (2.3)
Here, ·̃ represents the Fourier transform of the measurements and sample amplitude (µ) and
phase (ϕ). Given a known source (S), and pupil function (P ) whose bandwidth is set by
the objective numerical aperture (NA) and wavelength (λ), the WOTFs are [49, 68]:

H̃µ(k) = P̃ (k) ⋆ (P̃ (k) · S̃(k)) + (P̃ (k) · S̃(k)) ⋆ P̃ (k) (2.4)

H̃ϕ(k) = P̃ (k) ⋆ (P̃ (k) · S̃(k))− (P̃ (k) · S̃(k)) ⋆ P̃ (k), (2.5)
where k represents Fourier-domain coordinates. Generally, multiple DPC measurements are
acquired together, resulting in a series of measurements {y1,y2, · · ·yn} and a stacked forward
model based on one pair of H̃ϕ and H̃µ for each source:ỹ1

ỹ2

ỹ3

 =

H̃µ,1 H̃ϕ,1

H̃µ,2 H̃ϕ,2

H̃µ,3 H̃ϕ,3

× [
µ̃

ϕ̃

]
(2.6)
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Phase Reconstruction
Eq. 2.6 is linear and can be inverted using linear least squares [49] to recover phase and
absorption of the complex field. Due to nulls in the WOTFs, it is often prudent to add
regularization (such as Tikhonov) to ensure noise is not amplified unnecessarily during the
reconstruction process. With m measurements and Tikhonov regularization parameters γµ
and γϕ, the linearized complex field absorption (µ) and phase (ϕ) can be recovered using
the following equations:

µ = F−1


(∑

m

|H̃ϕ,m|2 + γϕ

)
·
∑
m

(
H̃∗

µ,m · Ĩ ′
m

)
−
∑
m

(
H̃∗

µ,m · H̃ϕ,m

)
·
∑
m

(
H̃∗

ϕ,m · Ĩ ′
m

)
(∑

m

|H̃µ,m|2 + γµ

)
·
(∑

m

|H̃ϕ,m|2 + γϕ
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

(2.7)

ϕ = F−1


−i ·

[(∑
m

|H̃µ,m|2 + γµ

)
·
∑
m

(
H̃∗

ϕ,m · Ĩ ′
m

)
−
∑
m

(
H̃µ,m · H̃∗

ϕ,m

)
·
∑
m

(
H̃∗

µ,m · Ĩ ′
m

)]
(∑

m

|H̃µ,m|2 + γµ

)
·
(∑

m

|H̃ϕ,m|2 + γϕ

)
−
∑
m

(
H̃µ,m · H̃∗

ϕ,m

)
·
∑
m

(
H̃∗

µ,m · H̃ϕ,m

)
 ,

(2.8)
For improved performance, other regularizers such as Total Variation (TV) regularization [69],
although many of these methods require iterative solvers such as FISTA [29] which is slower
than direct inversion.
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Figure 2.2: Differential Phase Contrast Reconstruction of a USAF 1951 resolution target
printed as a phase object. The DPC linearization becomes less accurate for objects with
strong phase (> 1 radian) or a strong phase gradient.
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Limitations
The linearization made by DPC is valid when absorption and phase gradient are small. Prac-
tically, DPC will fail to recovery objects which have sharp edges and strong gradients but
will successfully recover large phase values which vary slowly (such as a micro-lens array in
Fig. 2.3) [68,70]. To provide experimental validation of the DPC approximation, we acquired
test images for a series of phase targets across a range of physical heights - each having a
phase which increases linearly across 9 targets [71]. These targets were manufactured on a
single test slide (Benchmark Technologies), having USAF1951, star targets, a ”wedding-cake”
structure with three discrete heights. The results are shown in Fig. 2.2, illustrating the de-
creasing validity of the DPC approximation with increasing target height (and target phase).
The WOTF prediction can be derived by taking the natural logarithm of the weak-object
approximation (iϕtrue ≈ 1 + iϕdpc), which reveals that the true phase ϕdpc is related to the
DPC-recovered phase by the relationship iϕtrue = ln(1+ iϕdpc), although this approximation
is only valid for a single-scattering model. To place this in context, a typical biological cell
monolayer immersed in water will have less than 0.2 radians of phase deviation, making DPC
well-suited for these sorts of imaging tasks.

2.3 cDPC: Single-Shot Quantitative Phase Imaging
To improve temporal resolution of a DPC system without compromising spatial resolution,
we propose color Differential Phase Contrast (cDPC), which requires only a single color
image using color-multiplexed source patterns1. In this method, the source is discretized
into three color channels which are used to display three different half-circle source patterns.
It is important to note that while the original DPC algorithm presented in [49] requires
4 images, the proposed method only requires 3, since the 4th source configuration can be
synthesized by taking the sum of two images acquired with opposite half-circle illuminations
(a synthetic brightfield image) and subtracting that of a 90 degree rotated half-circle source.
In early prototypes the color source pattern was implemented in an LED array microscope,
which offers many imaging modalities in one platform [13, 45, 47, 49, 65, 72, 73]. More recent
work proposed the use of a motion-compensation algorithm to solve for motion between DPC
frames, effectively providing a single-shot phase imaging using computation [74]. Unlike these
methods, however, our proposed configuration does not require a dynamic source, making it
possible to use a static multi-color filter placed in the condenser back focal plane, assuming
Köhler illumination. Both configurations simplify hardware and reduce costs significantly
as compared to phase contrast or DIC, while providing quantitative phase, which is more
general and can be used to synthesize both of the aforementioned methods digitally [75].

1This work was performed in close collaboration with Michael Chen (Waller Lab, EECS, UC Berkeley).
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Figure 2.3: Single-shot color Differential Phase Contrast (cDPC) microscopy. a) Installation
in Nikon TE300 microscope condenser turret. b) CAD model and image of fabricated cDPC
insert.c) Optical schematic of a brightfield microscope with a cDPC color filter placed at the
back focal plane of the condenser in Köhler configuration. d) Reconstruction: the captured
color image is separated into its RGB components, which are then used to recover two
unknowns (amplitude and phase) via a well-posed linear deconvolution. The sample is a
micro-lens array (Fresnel Technologies 605).

Hardware Design

As in conventional DPC, this method requires measurements of the sample illuminated by
known asymmetric sources. In cDPC, however, we make use of the microscope’s existing
condenser unit, which has a turret commonly used for phase contrast inserts or DIC prisms.
This intermediate plane can usually be accessed easily by removing the mechanical inserts.
Taking advantage of this configuration, a simple 3D printed color filter was designed and
fabricated that can be placed in the condenser turret of a Nikon TE300 microscope (Fig-
ure 2.3a).
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The filter prototype consists of Polyethylene Terephthalate (PET) color filters (Lee Filter,
Inc.) laser cut to size and installed into a 3D printed insert designed to fit our microscope.
Narrow bandwidth illumination filters (e.g. multi-layer coated glass) would separate colors
better but suffer from low light throughput and high cost. Therefore, inexpensive and easy-
to-cut PET film filters were used; the resulting cross-talk between color channels will be
accounted for in post-processing, described below.

The total cost of raw materials is approximately $30 and filters were produced quickly
with a 3D printer and laser cutter. One filter is shown in Figure 2.3b; it was installed in
the condenser turret of an inverted microscope (Figure 2.3a), replacing one of the removable
phase contrast (Ph1, Ph2 or Ph3) inserts.

Calibration

Ideally, the color filters would provide perfect separation of the three source patterns into the
three-color channels. In reality, both the illumination and camera color channels have cross-
talk between the desired wavelengths. To account for this, system calibration is separated
into two separate steps: detection-side and illumination-side.

Illumination-side calibration corrects for the relative spectral transmittance of each of
the source color filters. The illumination pattern simultaneously encodes three half-circle
sources, one each for the RGB color channels. Red and green are opposite half-circles, and
blue is rotated by 90 degrees relative to the others. Where the blue and green patterns
overlap, a cyan filter (blue + green) was used. Where the blue and red patterns overlap,
a purple filter (blue + red) was used. Hence, the final filter design actually contains four
quadrants having red, green, cyan and purple filters (see Fig. 2.4).

When filtered by the sensor Bayer pattern, the filter spectrum bases are not orthogonal.
This can be seen in the spectra of each PET film after capture with a color camera (left
column of Fig. 2.4). The result is an undesirable loss of asymmetry in the source that reduces
phase SNR. However, it is possible to account for the asymmetry during reconstruction by
modeling the source patterns as in Fig. 2.4.

Detection-side calibration accounts for spectral cross-talk of the camera color channels.
Standard RGB Bayer filters do not provide perfect discrimination between RGB wavelengths
but coupling artifacts can be removed by calibration. Given the pixel values from the raw
color image with an RGBG Bayer filter (Ir, Ig1, Ig2, Ib), it is possible to solve for the
decoupled color image (IR, IG, IB) that would be obtained if the sample were illuminated
with a single color, according to the following equation,

Ir
Ig1
Ig2
Ib

 = C

IRIG
IB

 . (2.9)

The matrix C is a 4×3 calibration matrix describing the coupling between each color channel.
It is generated by filtering the broadband source with each filter independently, then measur-
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Figure 2.4: Transfer functions for amplitude and phase contrast in each cDPC color channel.
Left: Spectral contribution of each illumination filter as captured by the camera’s Bayer
pattern. The following columns show the components of the amplitude and phase transfer
functions in the spatial frequency domain and the source represented in each image. Bottom
row: sum of each column, representing the calibrated and scaled source and the total coverage
of amplitude and phase transfer functions, respectively.

ing the relative red (IR), green (IG) and blue (IB) read-outs to populate the corresponding
column vectors of the C matrix. The ratio between the intensities of each flat-field image
at each detection channel provides a linear weighting of the contribution of each source to
the color measurement. Once C has been measured once, it can be used to pre-process all
later measurements by solving Eq. (2.9). This step is important for reducing artifacts in the
phase results.

Another important step for cDPC is to account for wavelength-dependent changes in
phase and spatial frequency. DPC recovers absorption (µ) and phase (ϕ) information from
intensity measurements. These quantities are defined as:
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µ =
2π

λ0

αd, ϕ =
2π

λ0

nd, (2.10)

where λ0 is a reference wavelength, d is the thickness of the sample, n represents refractive
index and α indicates absorption coefficient. Absorption and phase transfer functions are
determined by illumination numerical aperture (NA), objective NA and illumination wave-
length [49]. In the proposed color-multiplexed DPC method, the transfer functions must
also consider the change in wavelength of each color channel. Phase (ϕ) depends on which
wavelength is used. By assuming no dispersion in the sample, it is possible to use Eq. (2.10)
to synthesize phase for any wavelength by simply multiplying the optical path length (nd)
by the wave number (2π

λ0
) of a desired reference wavelength λ0.

Examining Fig. 2.4, it is clear that the absorption transfer functions for each color chan-
nel are symmetric low-pass filters. The phase transfer functions, on the other hand, are
asymmetric band-pass-like filters with a line of missing frequencies along the axis of asym-
metry. By rotating the blue half-circle by 90 degrees relative to the red and green ones,
the missing line is filled. The overall amplitude and phase transfer functions for cDPC are
shown in the last row of Fig. 2.4, calculated by summing the absolute values of each color
transfer function. As with previous DPC implementations, absorption information loses con-
trast at high spatial frequencies. Phase has a similar drop-off at high frequencies, but also
loses contrast in the low spatial frequency regions. Hence, SNR will be important for accu-
rately recovering low-frequency phase information. The maximum spatial frequency range
captured is 2× the NA of the blue color channel. However, the final resolution using cDPC
is set by the diffraction limit of green light, since total frequency coverage is set by the
maximum spatial frequency which is measured by two or more color channels. This comes
as an implication of trying to recover two unknowns, amplitude and phase, thus requiring at
least two measurements.

Inverse problem

Using the forward model developed in Section 2.2, the cDPC inverse problem aims to min-
imize the difference between the measured color image and that which would be measured,
given the estimate of the sample’s amplitude and phase:

min
µ,ϕ

3∑
m=1

1

2
∥ Ĩ ′(λm)− H̃µ(λm) · µ̃− i · H̃ϕ(λm) · ϕ̃ ∥22 +R(µ̃, ϕ̃), (2.11)

where Ĩ ′ is the spatial frequency spectrum of the background-subtracted intensity, m is
the wavelength index and R(µ̃, ϕ̃) is a regularization term (typically on the order of 10−3).
This problem is linear and can be solved with a one-step least-square solution (e.g. Wiener
deconvolution [76]) or by an iterative algorithm (e.g. gradient descent). The ideal choice of
regularizer R(µ̃, ϕ̃) depends on the sample and noise.
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min
µ,ϕ

3∑
m=1

1

2
∥ Ĩ ′(λm)− H̃µ(λm) · µ̃− i · H̃ϕ(λm) · ϕ̃ ∥22 +γµ· ∥ µ ∥22 +γϕ· ∥ ϕ ∥22, (2.12)

which remains differentiable and allows us to find the global minimum solution for absorption
and phase with a single matrix inversion step. The reconstructed amplitude and phase are
obtained using Eq. 2.7 and Eq. 2.8 as in conventional DPC
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Figure 2.5: Experimental comparison of single-shot cDPC with monochromatic DPC and
through-focus phase retrieval methods. (Left) Source patterns. (Middle) Raw camera mea-
surements. (Right) Recovered optical field. DPC methods (partially coherent) were acquired
using a 20× 0.4 NA objective lens, while through-focus images (spatially coherent) were cap-
tured using 60× 0.8 NA, in order to ensure equal resolution in all cases.

Validation

To experimentally validate the proposed cDPC method, results were compared with two
established QPI methods: monochromatic DPC and through-focus phase retrieval (Fig. 2.5).
For fair comparison, all are implemented on the same Nikon TE300 microscope using illumina-
tion generated by an RGB LED array (Adafruit). Each cDPC experiment uses a discretized
version of the cDPC color filter design displayed on the LED array. Monochromatic DPC
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uses 4 images captured with each of 4 asymmetric source patterns [47]. Through-focus phase
imaging uses only the central green LED (for temporal and spatial coherence) while captur-
ing 14 images at different focus depths; phase is then recovered by a nonlinear optimization
phase retrieval method [60].

Because of the coherent illumination, through-focus phase imaging has 2× worse resolu-
tion than DPC methods. Thus, a 20× 0.4 NA objective lens was used for DPC methods, but
switched to a 60× 0.8 NA objective for through-focus phase, in order keep resolution equal
for all three. Spatial resolution is quantified using a spoke-pattern phase target [77].

As can be seen in Fig. 2.5, the RGB color channel images have similar contrast to the
left, right and top images of the monochromatic DPC, as expected. The phase results are
also similar, with equivalent spatial resolution. Because the cDPC image is captured in
one shot with color filters, it has lower SNR than monochromatic DPC and deviates in its
low-frequency fluctuations, which have weaker transfer function values. Overall, however,
single-shot cDPC performs comparably to multi-shot DPC.

Next, the LED array was removed and replaced with the existing illumination pathway.
For illumination, a broadband arc lamp light source was used. Alternatively, a high-power
blue-phosphor static LED source could be used. The color filter insert shown in Fig. 2.3b
was then installed into the condenser turret. Figure 2.6 shows amplitude and phase recon-
structions from the proposed cDPC method with objectives of various magnification. The
cDPC method is compatible with any standard objective having NAobjective ≤ NAillumination.
If an objective with larger NA than the condenser NA is used, the low frequencies of phase
will not be transmitted during image formation (see the phase transfer function in Fig. 2.4),
since phase contrast comes primarily from high-angle illumination. The spatial coherence
factor σ is often defined as:

σ =
NAillumination

NAobjective

. (2.13)

In other words, σ < 1 will result in reduced phase contrast as compared to the σ ≥ 1 case.
The Nikon TE300 microscope used in this study was configured with a 0.53 NA condenser
lens. Imaging with a higher objective NA would require high-NA illumination (e.g. by using
a domed LED array [73]). Temporal coherence is set by the bandwidth of the color filters,
since these have narrower bandwidth than the camera filters. The full-width-half-maximum
(FWHM) bandwidth for the filters used in this study was approximately 50nm, which is
similar to the emission spectrum of the LED array used previously [49].

Temporal Resolution

Since cDPC is single-shot, temporal resolution is set by the camera’s frame rate, giving a
factor of 4 improvement over conventional DPC. Single-shot methods reduce artifacts due
to motion blur and image registration. This can be seen in Fig. 2.7, where the performance
cDPC and conventional DPC are compared when imaging a live C. elegans culture. Motion
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Figure 2.6: Phase and amplitude reconstructions for various samples and magnifications.
(First column) Micro-lens array, 4x 0.1 NA. (Second column) Wild-type C. elegans, 10x 0.25
NA. (Third column) HEK 293T cells, 20× 0.4 NA). (Fourth column) MCF7 cells, 20× 0.4
NA.

blur is significantly reduced with cDPC, since the sample changes rapidly between frames,
even at 12.5 frames per second.

Synthesized PhC and DIC Images

Differential Interference Contrast (DIC) and conventional Phase Contrast (PhC) microscopy
are examples of the widespread adoption of phase imaging methods in medicine and biomed-
ical research. Though both methods have gained widespread adoption, optical components
required for their implementation remain expensive, and alignment by an experienced user
is required for acceptable performance. Both DIC and phase contrast can be described by
forward models which produce a qualitative mixture of amplitude and phase images [43,44].
Since the forward models of these systems are well known, quantitative phase imaging meth-
ods can be used to form these images digitally, mimicking the physical optical system through
numerical simulation. Synthesized images from cDPC, as well as ground truth DIC and PhC
images, are shown in Figure 2.8 to be comparable.
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Figure 2.7: Experimental demonstration of motion blur reduction with cDPC vs. conven-
tional DPC. The cDPC method results in significantly reduced motion blur artifacts due to
its single-shot acquisition.

Synthesizing DIC and PhC is of particular use for clinicians and researchers who have
been trained to make diagnoses or decisions based on these images. While all QPI methods
can be used to synthesize these images, the cDPC method is particularly well-suited since
it is single-shot, allowing for real-time digital synthesis. In addition, cDPC is much cheaper
to implement than either DIC or PhC, since it requires only the addition of an inexpensive
color filter insert and no specialized objectives. In contrast, DIC prisms and phase contrast
objectives (specific to a given NA) can drive up the cost of a microscope significantly.

Compatibility with Stained and Dispersive Samples

The cDPC method uses color multiplexing to recover complex-field, making an inherent
assumption that the sample is both non-dispersive and colorless. Non-dispersive means that
the refractive index does not change appreciably with wavelength:

ϕ(n(λ),d, λ) ≈ ϕ(n0,d, λ). (2.14)
This assumption implies that the optical path length (OPL = nd) will remain constant
for all measurements. The relative phase delay will always vary with λ (Eq. 2.10), but
this is accounted for in the cDPC algorithm by scaling the transfer functions based on the
relative wavelength of each color channel. Unless the dispersion curve is known and the
material is assumed to be uniform, one cannot account for dispersive effects in the sample
using the proposed algorithm. However, in practice these effects do not corrupt our phase
reconstructions results significantly due to relatively small dispersive effects of water across
optical wavelengths.
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Figure 2.8: Comparison of standard DIC and PhC images to their synthesized counterparts
from cDPC. Ground truth DIC images were acquired using a 20x 0.75 NA objective and
phase contrast images using a 20x 0.4 NA PhC objective. cDPC images were acquired using
a 20x 0.4 NA objective and the filter insert.

The second assumption is that the sample is colorless, meaning that the absorption does
not have chromatic dependence:

µ(λ) ≈ µ0. (2.15)
This is generally valid for unstained biological samples, which are transparent. Color varia-
tions due to filter transmission coefficients at different wavelengths are present, but can be
removed by the calibration procedure described in Section 1.2. Color-dependent absorption,
such as that created by stained samples, cannot be recovered and will cause errors in the
phase result. In practice, these assumptions limit the applicability of the cDPC method to
unstained uncolored samples. However, quantitative phase reveals the mechanical structure
of the microenvironment with high contrast, which may eliminate the need for staining in
many applications.

2.4 SNR Analysis of DPC Phase Recovery Systems
Differential Phase Contrast linearizes the partially coherent image formation model, en-
abling the analysis of this system using the noise analysis methods described in Chapter 1,
Section 1.4. This section will analyze the choice of source pattern and pupil function in
the context of our propsed linear noise model, and examine the practical benefit of using a
variable number of measurements, variable source diameter, and adding a defocus aberration
to the pupil, in terms of reconstruction SNR. Recent works have used learning techniques to
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Figure 2.9: DPC transfer functions for amplitude and phase for a range of source cavitation
values. As illumination is removed from the center of the source, the overall spectrum
becomes more normalized, leading to higher relative values across the mid-range spatial
frequencies. However, signal is simultaneously reduced due to lower light throughput. The
trade-off between better conditioning and light throughput depends on the illumination
power per pixel (or per led).

explore optimal source designs using non-linear recovery methods (such as an unrolled con-
volutional network) [78]) in terms of root-mean-square error (RMSE) - these techniques are
non-linear and object dependent, but are compatible with non-linear regluarizers, offering
better performance for a specific class of samples with slightly less generality. Our proposed
method for optimizing DPC source patterns assumes nothing about the spectrum of the
sample, but does not take advantage of non-linear regularization methods.

In the presence of measurement noise (valid for most practical systems) the multi-image
DPC forward model described in Eq. 2.6 can be modeled as having an additional additive
noise term η: ỹ1

ỹ2

ỹ3

 =

H̃µ,1 H̃ϕ,1

H̃µ,2 H̃ϕ,2

H̃µ,3 H̃ϕ,3

× [
µ̃

ϕ̃

]
+ η (2.16)
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Figure 2.10: Expected SNR
of DPC reconstructions as
a function of source cavita-
tion. Source patterns with
no cavitation generally pro-
vide nearly-optimal SNR,
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NA2 is optimal for high il-
luminance values.

Here η is modeled as white zero-mean Gaussian noise with
variance σ2

η. The goal of the DPC linearization is to facilitate
the inversion of the block WOTF matrix; when η is included
in the forward model, this inversion will amplify η based on
the singular values of the block matrix H, which are defined
by the illumination source S̃ and system pupil P̃ . Here, we
explore the design of DPC source patterns S̃ in the presence
of additive noise, in terms of reconstruction SNR. The use of a
programmable light source such as a LED illuminator enables
the easy and efficient programming of S̃ simply by changing
illumination pattern electronically, making the design space
of each source quite large. In this analysis, we explore the
use of continuous sources as an approximation of discrete LED
sources, as in previous works [49, 79].

The noise amplification of any linear system can be related
to the singular values of the forward model by the deconvo-
lution noise factor (DNF, see Chapter 1, Section 1.4). In the
DPC forward model described in Eq. 2.16, these singular values
may be found by the following relationship [80]:

σ =

∣∣∣∣∣tr(AHA)

2
±

√
tr(AHA)2

4
− det(AHA)

∣∣∣∣∣ (2.17)

Where ± indicates that both the positive and negative com-
binations should be included in singular value calculations, tr(·)
is the trace and det(·) is the determinant. Using Eq. 1.12 to
calculate the deconvolution noise factor (DNF), the noise ampli-
fication by the DPC inversion process may be estimated using
these singular values. Practically, it is necessary to evaluate
the DNF within a range of support in the frequency domain,
corresponding to the optical bandwidth of the optical system.
In addition, the inherent structure of the phase WOTF (Hϕ)
provides very little support near the DC term, which places a

lower bound on the support region of the DNF calculation. In this analysis, we evaluate the
DNF at all frequencies between 3% and 97 % of the optical bandwidth (2NAobjective), which
corresponds to the region where the phase WOTF has more than 5% of it’s maximum value
for all angles of a half-circle source and circular pupil.
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Figure 2.11: Expected SNR
of DPC reconstructions as
a function of measurement
count (equidistant angles).
SNR increases with the
square root of measurement
count for more than three
DPC measurements, which
is the equivalent of aver-
aging measurements under
the same noise conditions.
For two or less measure-
ments, expected SNR de-
creases significantly, since
there is not enough informa-
tion to disambiguate phase
and amplitude for all fre-
quencies.

With this analysis framework, explore the use of a cavi-
tated DPC source in order to improve the conditioning. The
cavitated (”C”-shaped) source was previously proposed [49] as
an alternative to a filled source (”D”-shaped) due to better con-
ditioning of the deconvolution, particularly for low-frequencies
of phase. This poor conditioning leads to low-frequency arti-
facts that often lead to a ”halo”-like effect around the sample.
Figure 2.9 illustrates the improvement in the phase transfer
function at low frequencies for sources with high cavitation.
These sources have a overall spectrum which is more flat, cor-
responding to lower expected noise amplification by the decon-
volution process. However, we also expect the additional illumi-
nation power provided by center LEDs will also improve SNR,
especially in the presence of signal-independent noise (readout
or pattern noise). Therefore, we analyze our system across a
two-dimensional space of illumination power (defined by illumi-
nance (Lux) at the sample) and source cavitation (defined by
the cavitation NA). The goal of this analysis is to determine
the optimal cavitation (cavitation NA), given a particular LED
source power.

To characterize the relative benefit to using a cavitated
source, we simulated measurements performed under various
illumination power values (illuminance), which correspond to
different measurement SNR values, and evaluated the SNR
in the presence of both signal-dependent (shot) noise as well
as signal-independent (readout or fixed-pattern) noise sources
corresponding to common parameters (The full list of system
parameters is provided in Appendix 7.1, Section 7.1). These
illuminance values can be compared to measured source illumi-
nance for LEDs used in this work (Appendix 7.1, Section 7.1).
While most DPC sources are discrete, most DPC inversion im-
plementations model the source as continuous to avoid (or av-
erage out) LED position calibration error. In this analysis, we
adopt the same convention so that our analysis is smooth in
terms of cavitation NA.

The results of this analysis are shown in Fig. 2.4. For per-
source LED power of less than 1000 lux, a D-shaped source is
optimal due to the additional signal which is provided by the
inner LEDs. For brighter sources, an inner NA corresponding
to approximately 40-50% of the objective NA is optimal in terms of SNR, although the SNR
improvement is generally less than 5% compared to a filled-in (non-cavitated) source.

In addition to source cavitation, we can use the same methods to explore other DPC
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system parameters, including measurement count. The original DPC implementation used
4 measurements [49], but it was later shown that three measurements is sufficient for well-
conditioned recovery [81]. To explore this space, we compared using different DPC measure-
ment counts across a range of illumination powers (Fig. 2.4). This analysis confirms that
reconstructions will fail for less than three measurements, and that using greater than 3 mea-
surements provides improvements which are characteristic of signal averaging (SNR ∝

√
N).

This analysis confirms these previous claims and motivates using three DPC measurements
in most circumstances (unless signal averaging is needed to improve SNR).

This section provides two examples of optimizing DPC acquisitions using a noise-based
analysis. In general, these data indicate that a D-shaped source is still nearly-optimal in
most circumstances, with a C-shaped source providing only marginal SNR improvement
when using a powerful source. These data also motivate using 3 DPC measurements instead
of 4 (spaced equally in angle). Future work could explore the optimal angular distribution of
DPC sources, as well as the relative benefit of using diverse DPC sources such as monopole,
dipole, or other non-semicircular patterns.

2.5 Summary
Phase imaging enables label-free imaging of samples by revealing variations in refractive in-
dex which are naturally present in nearly all biological samples. In this chapter, we described
a method for performing quantitative phase imaging using coded illumination (differential
phase contrast), which can be implemented easily on a conventional optical microscope. DPC
makes use of the weak-object approximation, which linearizes the image formation process,
but is less valid for samples having a strong phase gradient (steep or sharp features). Conven-
tional DPC requires 3 or 4 images to recover the full optical field from intensity measurements;
Here, we have proposed novel method for performing DPC using only single measurement
using a wavelength-multiplexing technique. This method can be implemented using a simple
3D-printed insert (costing less than $30 to fabricate), or with a programmable light source
such as a LED array. While our method does not match the SNR of conventional DPC using
4 images, it enables significantly higher acquisition frame rates, enabling quantitative phase
imaging of fast-moving samples such as C. elegans or cells moving through a microfluidic
channel. Our method, which we call cDPC, also enables the synthesis of conventional phase
images, like DIC or phase contrast, since quantitative phase is more general than these qual-
itative phase measurements. Finally, we proposed a framework for performing DPC source
optimization in terms of SNR and explore two areas of source design which reveal optimal
illumination patterns across a range of source power. Together, these contributions aim to
bring quantitative phase imaging to a wider audience through their simple and inexpensive
implementations.
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Chapter 3

High-Throughput Imaging using
Coded Illumination

High-throughput wide-field microscopy enables the collection of large amounts of image
data at high-speed, using optimized hardware and computational techniques to push system
throughput beyond conventional limits. These systems play a critical role in many fields,
including drug-discovery [82–84], functional protein analysis [85,86] and neuropathology [87–
89], enabling the rapid acquisition of large volumes of data. Many of these imaging methods
involve both resolving and localizing biological structures using fluorescence imaging, which
uses proteins conjugated with a fluorescent dye to tag a particular binding site of the sample.
When these proteins are illuminated with a beam of light within their excitation spectra, they
emit light at a longer wavelength (lower energy). This emitted light can be isolated using
spectral filters which remove the excitation wavelength. The collected signal contains only
localized proteins within the sample, but has low signal compared compared to brightfield
and phase images due to multiple spectral filters and the efficiency of the fluorophores used.

In all wide-field microscopes, the choice of objective lens defines both the resolution
and field of view (FOV) of the system, requiring the user to allocate optical throughput
to either high-resolution features or a wide FOV (but not both). Addressing this trade-off
has been the subject of a large number of computational imaging techniques [8, 10–13, 90],
which have, through various mechanisms, demonstrated the ability to enhance the resolution
of an imaging system beyond the wide-field diffraction limit while maintaining the same
FOV. Similarly, system throughput may also be enhanced by increasing the FOV directly
through mechanical scanning and image-stitching while maintaining the resolution of the
imaging optics. This direct approach has been widely employed for commercial slide-scanning
systems [91], which, when coupled with state-of-the-art analysis tools such as CellProfiler [92],
have enabled statistical analysis of the cellular micro-environment at larger scales than ever
before.

Despite their wide adoption for a large variety of imaging tasks, the performance of
slide-scanning systems is often limited by the mechanical parameters of the motion stage
rather than optical parameters of the camera. This leads to lower information throughput
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than comparable computational imaging systems which employ coded illumination. The
information throughput of an imaging system can be quantified by the space-bandwidth
product (SBP), which is the dimensionless product of the spatial coverage (FOV) and Fourier
coverage (resolution) of a system [93], as well as the Space-bandwidth rate (SBR), which is
SBP per unit time. Improving the SBP and SBR has been the subject of several seminal
works in the field of computational imaging, including structured illumination [8], localization
microscopy [10, 11], and both conventional [12] and Fourier [13, 90, 94] ptychography. While
these methods are diverse in their approaches and application spaces, they share a common
theme of acquiring multiple wide-field measurements under diverse imaging conditions to
improve the throughput of an imaging system.

Quantifying the SBR of high-throughput imaging systems reveals bottlenecks in their ac-
quisition strategy. For example, conventional slide-scanning systems are often SBR-limited
by the time required for a motion stage to move between scan positions and stabilize. These
mechanical motions can lead to long acquisition times, especially when imaging very large
samples such as coronal sections of the human brain [95] at cellular resolution. Conversely, a
Fourier-domain super-resolution technique such as Fourier ptychography only requires elec-
tronic scanning of LED illumination, so is more likely to be SBR-limited by photon counts
or camera readout, since the time to change LED patterns is on the order of microseconds.
However, most super-resolution methods have a fixed FOV, requiring additional mechanical
scanning to capture extended samples.

Conventional slide-scanning microscopes employ one of two imaging strategies. The
first, commonly referred to as ”stop-and-stare” involves moving the sample to each scan
position serially, halting the stage motion before each exposure and resuming motion only
after the exposure has finished. While this method produces high-quality images due to long
exposures, it is slow due to the time required to stop and start motion between exposures. A
second approach, often referred to as ”strobed illumination”, involves illuminating the sample
with a very short, bright pulse as it moves continuously, such that the motion blur which
would otherwise be introduced by an extended pulse is avoided. While fast, acquisitions
performed under strobed illumination will generally produce images with much lower SNR
than a comparable stop-and-stare acquisition due to short pulse times (often on the order of
micro-seconds). The choice between these two acquisition strategies requires user to trade
SNR for acquisition rate, often in ways which make large-scale imagery impractical due to
extremely long acquisition times.

In the following sections, we will describe a technique for improving the speed of real-
space scanning techniques by multiplexing using motion deblurring and coded illumination.
Multiplexing was previous applied to Fourier ptychography [90] by illuminating LEDs from
different angles during each frame, reducing acquisition times and increasing measurement
SNR. This work presents a similar technique, where LED intensities are coded in time as
the sample is moved continuously, and the resulting image is deconvolved using the known
illumination sequence to recover the static image. Further, we show situations where our
method is sub-optimal compared to the current state-of-the-art techniques in both theory
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and experiment1.

3.1 Quantifying Throughput in Microscopy Systems
The information throughput of an imaging system can be quantified by the space-bandwidth
product (SBP), which is the dimensionless product of the spatial coverage (FOV) and Fourier
coverage (resolution) of a system [93], as well as the space-bandwidth rate (SBR), which is
SBP per unit time. Improving the SBP and SBR has been the subject of several seminal
works in the field of computational imaging, including structured illumination [8], localization
microscopy [10, 11], and both conventional [12] and Fourier [13, 90, 94] ptychography. While
these methods are diverse in their approaches and application spaces, they share a common
theme of acquiring multiple wide-field measurements under diverse imaging conditions to
improve the throughput of an imaging system.

Evaluating the space-bandwidth product in conventional imaging systems involves com-
paring the minimum resolution enabled by the optical system with the aberration-free FOV
shape. If a camera is perfectly matched to the resolution and FOV supported by the imag-
ing optics, this is equivalent to counting the number of pixels on the camera. The nominal
optical FOV in a microscope is normally set based on the quality of the optical designs used
in the objective lens; calculating this is beyond the scope of this work (although Chapter 5,
Section 5.2 illustrates the graduation degradation of resolution across the FOV). Practically,
the camera is what defines the FOV, as most objectives are designed to have small aberra-
tions within the dimensions of most imaging sensors. For incoherent imaging, the minimum
resolution is readily calculated from the system numerical aperture NA using the Rayleigh
criterion [96]:

∆x =
1.22λ

2NA
(3.1)

where λ is the illumination wavelength. This resolution limit defines the maximum spatial
frequency in the optical system which is related to the numerical aperture of the camera by:

kmax =
NA

λ
(3.2)

The camera sampling must be chosen such that this maximum spatial frequency is sam-
pled as the Nyquist rate, which is 2kmax. Practically, this is accomplished by introducing
magnification to the optical system to shrink the pixel shape to match the required spatial
frequency. Mathematically, the goal is to determine a magnification factor M which satisfies
the following bound, given a camera pixel size ∆:

∆

M
≤ 1

2kmax

(3.3)
1This work was performed in collaboration with Sarah Dean and Benjamin Recht (ADEPT Lab, EECS,

UC Berkeley).
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Figure 3.1: Illustration of ideal space-bandwidth product allocation for various common
objective lenses as plotted in phase-space. While the area of each rectangle remains constant,
the aspect ratio illustrates the allocation of bandwidth between high-resolution and a wide
FOV.

For color imaging system, note that the factor ∆ must be doubled, since measurements
at each color channel occur at twice the distance between each measurement.

Assuming these criteria are met, the total bandwidth of the system is set by the system
resolution (Eq. 3.1) and the sensor shape scaled by the magnification. A phase-space repre-
sentation provides a geometric description of the aspect ratio of the system coverage in the
spatial and spectral dimensions as a function of the prescribed resolution and FOV as set
by the system magnification. For example, the SBP of a 10× / 0.25NA and a 40× / 1.0NA
objective may be the same, but the former will allocate more throughput to resolution than
FOV, while the latter will provide a wide FOV at lower resolution. This well-known trade-off
is illustrated in Figure 3.1.

The illustration in Fig. 3.1 reveals the regions which are most amenable to scanning for
common objective types. For example, when using an objective with a high magnification and
NA, it would be more optimal to scan a sample in the real domain, since each measurement
will already have significant spectral coverage (resolution). Conversely, low-magnification
optics are more amenable to scanning in the frequency domain to build resolution, since
these systems already have a very large FOV. This intuition explains the practical benefits
of performing Fourier ptychography using a low-magnification objective [13], since scanning
is performed in the frequency domain - there would be little practical benefit to performing
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Figure 3.2: Comparison of spectral (Fourier-domain) and spatial (real-domain) scanning
techniques in high-throughput systems in one dimension (x). A phase-space representation
provides a visual representation of the scanning geometry of each approach.

Fourier ptychography using a high-magnification objective and the maximum illumination
NA would be roughly the same as the imaging NA, making any resolution improvement
marginal compared to brightfield or DPC phase imaging.

On the other hand, mechanical scanning provides a means for augmenting the SBP in
real-space, making it amenable for high-magnification imaging systems. A basic example of
this technique is slide-scanning systems, which move a sample while serially capturing images
between each movement. A second example is conventional ptychography [12], which probes
a sample in real-space while imaging the diffracted field in the Fourier domain (usually using
free-space propagation onto a detector array). The choice of which scanning method to use
is a general question and is beyond the scope of this work but would certainly depend on the
relative acquisition bottlenecks present in each system and would be best compared using
the SBR. Figure 3.2 illustrates these two scanning techniques.

A final parameter of interest is the signal-to-noise ratio (SNR) of the recovered images.
In imaging, SNR is generally defined as ratio of the mean signal to the standard deviation
of the background (As described in Eq. 1.7). The absolute SNR requirements vary based
on applications; in many cases, a SNR > 10 is considered a threshold where images have
good SNR, although images below this threshold are also useful for many applications. The
SNR is inherently tied to space-bandwidth rate because SNR will always increase for larger
exposure times, which would conversely lead to a lower SBR due to longer dwell times for
each measurement. Therefore, it is important to consider a minimum SNR as an additional
constraint on the speed of the optical system. The remaining sections of this chapter present
a method for increasing the SNR of measurements while maintaining acquisition speed, which
could also be interpreted as increasing the maximum SBR to maintain a necessary minimum
signal-to-noise ratio.
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Figure 3.3: High throughput imaging system with coded illumination. A.) Our system con-
sists of an inverted optical fluorescence microscope with a 2-axis motion stage, illuminated
using a programmable LED illumination source. In our proposed method, the sample is
illuminated with many discrete pulses while being scanned at constant velocity. B.) Com-
parison between conventional high-throughput imaging techniques (stop-and-stare, strobed
illumination) and our proposed coded illumination technique. Coded illumination provides a
trade-off between SNR and acquisition speed, particularly for low-light situations such as flu-
orescence imaging. C.) Image of our system, which is a Nikon TE300 microscope configured
with a Prior motion stage and LED illuminator.

3.2 High-Throughput Microscopy with Motion
Deblurring

In this section, we propose a novel computational imaging technique which employs a coded-
illumination acquisition and deconvolution to meet the demands of high-throughput appli-
cations which require a minimum SNR. Our method involves illumination the sample with
multiple pulses during each acquisition in order to improve the SNR compared to strobed
illumination, while maintaining a high acquisition rate. With knowledge of this pulse se-
quence and motion trajectory, the blurred image can be used to perform a reconstruction
of the static image, with higher SNR than a comparable strobed acquisition. Our method
employs a motion-multiplexing technique to enhance the measurement SNR of our system
by illumination with a sequence of short, bright pulses every frame. The captured images
contain motion-blur artifacts, which must be removed computationally through a motion
deblurring algorithm [97]. The overall gain in SNR is proportional to the number of pulses
as well as the conditioning of the motion deblurring process [41], necessitating careful design
of pulse sequences to produce the highest-quality image. In the following sections, we detail
the joint design of the hardware and algorithms to enable high-speed gigapixel-scale fluores-
cence imaging with SBR > 50 million pixels per second, and compare the performance of
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Figure 3.4: Multi-frame forward model. Here [∗] represents 2D convolution and [·] represents
the element-wise product. Top right inset is a an example of a full 1D multi-frame convolution
matrix.

our proposed framework against traditional methods and provide an experimental demon-
stration of situations where coded illumination is both optimal (e.g. fluorescence imaging)
and sub-optimal (e.g. brightfield imaging) as a function of common system parameters such
as illumination power and camera noise levels. Thus, our contribution is both the proposal
of a new high-throughput imaging technique as well as an analysis of when it is practically
useful for relevant applications.

Methods
Motion Blur Forward Models

With knowledge of both sample trajectory and illumination sequence, the physical process
of capturing a single measurement of a sample illuminated by a sequence of pulses while in
motion can be mathematically described as a convolution:

y = h ∗ x+ η, (3.4)
where y is the blurred measurement, x is the static object to be recovered, η represents
additive noise, ∗ represents 2D convolution, and h represents the blur kernel, the mapping
of the temporal illumination intensity to positions in the imaging coordinate system using
kinematic motion equations. With appropriate padding, this convolution can be computed
efficiently using the Fourier Transform, and can be similarly inverted using FFT-based de-
convolution.

To use coded illumination for large FOV imaging, we propose an extension of the single-
frame forward model to the multi-frame case. Mathematically, we model the serial acqui-
sition of motion-blurred frames as the vertical concatenation of many single-frame forward
models, which are individually convolutional (Fig. 3.4). In our model, each captured image
has an associated blur operator Bj defined by each blur kernel hj such that hj ∗ x = Bjx.
Additionally, we prepend each convolutional sub-unit with a crop operator Wj, which selects
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an area of the object based on the field-of-view of the camera. Together, these operators en-
code both spatial coverage and the local blurring of each measurement, and are concatenated
to form the complete multi-frame forward operator:y1

...
yn

 =

W1B1
...

WnBn

x+ η = Ax+ η (3.5)

This forward operator A is no longer generally convolutional, taking the form of a spa-
tially variant convolution based on the coverage of each individual Wj. A one-dimensional
illustration of the multi-frame smear matrix A is displayed in Fig. 3.4. With the addition
of appropriate windowing logic, the forward operation and its adjoint can be computed
efficiently for use in iterative reconstruction.

Reconstruction Algorithm

To invert our forward model ((3.5)), we employ Nesterov accelerated gradient descent [98]
algorithm to minimize the error between our measurements y and estimated object x̂ passed
through forward model A in the ℓ2 metric. For the purposes of this dissertation, we seek to
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minimize an unregularized cost function, O(x) = 1
2
∥Ax − y∥22 using the following update

equations at each kth iteration:

zk+1 = xk − αAH(Axk − y)

xk+1 = βkzk + (1− βk)zk+1
(3.6)

Here, α is a fixed step size and βk is set each iteration by the Nesterov update equation.
In all reconstructions we performed 30 iterations of (3.6), which we found was a favor-

able balance of reconstruction quality and reconstruction time. While adding a regularization
term such to enforce signal priors could improve reconstruction quality (and was previously
analyzed in the context of motion deblurring [99]), we chose not to incorporate regularization
to provide a more fair and straightforward comparison between the proposed coded illumi-
nation acquisition and conventional strobed and stop-and-stare acquisitions. It should be
noted that running our algorithm for a pre-defined number of iterations may provide some
regularization from early-stopping [100].

Reconstructions were performed in Python using the Arrayfire GPU computation li-
brary [101]. Due to the structure of our scans (Figure 3.3A), the reconstruction algorithm is
highly parallelizable – we separate our reconstruction into strips along the major translation
axis to perform 1D convolutions and stitch these strips together after computation. Using
this parallelization, we are able to reconstruct an approximately 1 gigapixel FOV in approx-
imately 2 minutes. Further details of the reconstruction implementation are discussion in
Section 3.2.

Reconstruction SNR

To minimize the error between the reconstructed x̂ and the true object x, the blur kernels
and scanning pattern should be chosen such that the noise is minimally amplified by the
inversion process. This amplification is controlled by the singular values of the forward
model A.

In the case of single-frame blur, the singular values are controlled by the length and
coding of the blur kernel h. While early works [72, 97] used a non-linear optimization
routine (i.e. the fmincon function in MATLAB (Mathworks)) to minimize the condition
number of A, more recent work proposed maximizing the reconstruction signal-to-noise
ratio directly, using camera noise parameters, source brightness, and the well-posedness of
the deconvolution [40, 41].

We extend this work to the multiframe setting. In our analysis, we adopt the convention
of imaging SNR, which is the ratio of the mean signal to the signal variance (due to photon
shot noise, camera readout noise, fixed pattern noise, and other camera-dependent factors).
Under a simplified model, the noise variance will be the addition in quadrature of the camera
read noise variance σ2

r plus a signal dependent term s̄:
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Figure 3.6: (1.18 gigapixel, 23mm × 20mm full-field reconstruction of 4.7µm fluorescent
microspheres. Inset scale bars are 50µm. While coded reconstructions have lower SNR
than stop-and-stare (S&S) measurements, measurements acquired using coded illumination
(Coded) were more than 5.5× faster while maintaining enough signal to distinguish individual
microspheres compared to strobed illumination (Strobed)

SNR =
s̄√

s̄+ σ2
r

(3.7)

Here, we ignore exposure-dependent noise parameters such as dark current and fixed-
pattern noise, since these are usually small for short exposure times relative to read noise
σ2. Note that the denominator of (3.7) is equivalent to the standard deviation of η in (3.4).
This definition is valid for both strobed illumination and stop-and-stare acquisitions. For
an acquisition performed using coded illumination, it is necessary to consider the noise
amplification that results from inverting the forward model. As defined in previous work [41],
this amplification is controlled by the deconvolution noise factor (DNF), which for single-
frame blurring is defined as:

f =

√√√√ 1

m

m∑
i=0

maxj |h̃|2j
|h̃|2i

(3.8)

where f is the DNF, m is the size of the blur kernel h, and h̃ represents the Fourier transform
of h.

To write an expression for the singe-frame SNR under coded illumination, we first define
a multiplexing factor γ =

∑
i hi, the total amount of illumination imparted during exposure.
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If h is constrained to be binary, γ will be equal to the number of pulses in h. (3.7) can the
be modified using both f and γ:

SNR =
γs̄0

f
√

γs̄0 + σ2
r

(3.9)

In (3.9), s̄0 is the mean signal imparted by a single illumination pulse. We include the
complete derivation of (3.9) in Appendix 7.3 for completeness.

The derivation of this quantity relies on the convolutional nature of single-frame motion
blur. As shown in Fig. 3.4, each column of this matrix defines a localized convolutional kernel;
near the horizontal boundaries between the different frames, the vertical combinations of
kernels are non-trivial. While methods for analyzing spatially variant convolution matrices
exist [102], we focus our analysis on a practical simplifying assumption: blur path and
illumination patterns are fixed to be the same across all frames, i.e. hj = h for all j.

In this special case, the resulting SNR of the proposed multi-frame model is governed by
both the power spectrum of the blur kernel and the spatial coverage of the crop operators.
We define ci to be the coverage at pixel i, i.e. the number of times pixel i is included in the
windows {W1, ...,Wn}. The SNR for a multi-frame acquisition with coded illumination is
bounded as

SNR ≥
√

min
i

ci ·
γs̄0

f ·
√
γs̄0 + σ2

r

Thus, the SNR improves by at least a factor of square root the minimum coverage com-
pared with the single-frame coded illumination case in (3.9). The derivation is included in
Appendix 7.3.

Notably, this bound decouples the spatial coverage from the spectral quality of the blur,
allowing for blur kernel optimization independent of the multi-frame aspect. A good motion
path ensures even spatial coverage through ci while a good illumination sequence ensures
spectral coverage through traditional single-frame methods. In what follows, we focus system
design on the maximization of this decoupled lower bound.

The decision to use the same blur kernel in every frame has several practical implica-
tions as well: the micro-controller memory would be saturated when storing more than one
thousand kernels and post-processing registration is much easier since all measurements have
been distorted by the same blurring operator. Additionally, the fact that this reduction re-
quires the motion to be along single motion axis is not limiting, since in practice horizontal
strips are reconstructed independently to accommodate computer memory.

Illumination Optimization

Previous work [41, 97] showed that reconstructions performed using constant (non-coded)
illumination will have very poor quality (in terms of SNR) compared to using optimized
pulse sequences or a short, single pulse. Here, we explore several approaches for generat-
ing illumination pulse sequences which maximize the reconstruction SNR ((3.9)). We first
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consider the problem of minimizing the DNF (f) with respect to h:

f(γ) := min
h

f

s.t. 0 ≤ hi ≤ 1 ∀ i,
∑
i

hi = γ ,
(3.10)

where inequality constraint on h represents the finite optical throughput of the system. This
optimization problem is non-convex, and it resembles those used in previous work [41,72,97]
(Our multiplexing factor γ is related to the kernel length N and throughput coefficient β
in previous work by γ = Nβ). This definition enables a layered approach to maximize the
SNR: after solving (3.10) for each multiplexing factor, it is possible to find the one which
optimizes (3.9) in the context of camera noise parameters.

To simplify the optimization task, the positions encoded in h may be restricted a priori,
e.g. to a centered horizontal line with fixed length as in Fig. 3.4. In the following, we
constrain the positions to a straight line with length N = 2γ. This provides a sufficiently
large sample space for kernel optimization and is supported as optimal by analysis in [41].

We consider several methods for solving the DNF optimization in (3.10): random search
over greyscale kernels, random search over binary kernels, and a projected gradient descent
(PGD) approach. Our random search approach is simple: a fixed number of candidate kernels
are randomly generated, and the one with the lowest DNF is chosen. The grayscale candi-
dates were generated by sampling uniform random variables, while the binary was generated
by sampling indices without replacement. In our PGD approach, the kernel optimization
problem ((3.10) is reformulated as the minimization of a smooth objective g(h) subject to
convex constraints S.

Starting from an initial h0, the update rule includes a gradient step followed by a projec-
tion:

h̃k+1 = ProjS(h
k − αk∇g(hk)) . (3.11)

Details of the reformulation and optimization approach are presented in Appendix 7.3.
The box plots in Fig. 3.5A show the distribution of optimization results for 100 trials of

each approach, where the random search methods sample 1000 candidates and PGD runs
with step-size determined by backtracking line search until convergence from a random binary
initialization. Example illumination sequences from each method and their corresponding
power spectra are displayed in Fig. 3.5B.

Though the kernels with the lowest DNF were generated through PGD, binary random
search results in comparable DNF values and is up to 20× faster than PGD. Further, we note
that a random binary search resulted in significantly lower DNF calculations than grayscale
random search. A binary restriction also achieves fast illumination updates, since grayscale
illumination (as in [72]) would require a pulse-width-modulation (PWM) cycle spread across
multiple clock cycles.

Plotting the DNF (f(γ)) generated through binary random search in Fig. 3.5C reveals
a concave curve. Fitting the curve with a power-law, a closed-form approximation for the
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DNF as is f(γ) = 1.12γ0.64. This analytic relationship allows for a direct optimization of
SNR: substituting any f(γ) ∝ γp into (3.9) and differentiating with respect to γ, we can
determine the approximately optimal multiplexing factor γ∗ as a function of mean strobed
signal s̄0 and camera readout noise σ2

r :

γ∗ =
2− 2p

2p− 1
· σ

2
r

s̄0
. (3.12)

We note that for smaller p, i.e. slower DNF growth with γ, the optimal multiplexing
factor will be larger. With p = 0.5, the expression for SNR in (3.9) only increases with
increasing multiplexing factors, meaning that the optimal γ∗ would be as large as possible
given hardware constraints. We show in Appendix 7.3 the lower bound f(γ) ≥ γ0.5 regard-
less of optimization method or illumination sequence. The experimental p = 0.64 accurately
reflects the practical relationship, given that we experience limitations from imperfect opti-
mization methods. Part of the observed relationship may come from the increasing difficultly
of optimization as the decision space grows with γ.

The expression for optimal γ∗ also solidifies the intuition that a higher multiplexing
should be used for systems with high noise in order to increase detection SNR, while a lower
multiplexing is appropriate for less noisy systems. This result is in agreement with [41], in
which it was demonstrated that the choice of multiplexing factor depends on the relative
magnitude of the acquisition noise.

System Hardware and Software

Our system is built around an inverted microscope (TE300 Nikon) using a lateral motion
stage (Prior, H117). Images were acquired using a SCMOS camera (PCO.edge 5.5, PCO)
through hardware triggering, and illumination was provided by a high-power LED (M470L3,
Thorlabs) which was controlled by a micro-controller (Teensy 3.2, PJRC). Brightfield mea-
surements were illuminated using one of two sources: a custom LED illuminator with 40
blue-phosphor LEDs (VAOL-3LWY4, VCC), or a single, high-power LED source (Thorlabs
M470L3), both modulated using a simple single-transistor circuit through the same micro-
controller. The first illuminator was designed to have a broad spectrum for brightield imaging,
while the second was intended for fluorescence imaging, having a narrow spectral bandwidth.
For this project, we found it was necessary to adopt very simple LED circuitry to avoid elec-
tronic speed limitations associated with dimming (PWM) and serial control of LED driver
chips. A schematic and layout of our system is shown in Fig. 3.3A and a photograph in
Fig. 3.3C.

The micro-controller firmware used in this device was developed as part of a broader
open-source LED array firmware project [103]. Images were captured through the python
bindings of the Micro-Manager software [104], which were controlled through a Jupyter
notebook [105], enabling fast prototyping of both acquisition and reconstruction pipelines in
the same application. With the exception of our custom illumination device, everything in
our optical system is commercially available in combinations commonly available at many
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imaging centers. Therefore, our method is amenable to most traditional optical setups, and
can be implemented cheaply through the simple addition of our temporally coded light source
and open-source software tools.

All acquisitions in this work were performed using a 10×, 0.25NA objective, which had
a depth of field of approximately 8.5 µm. Because this depth-of-field was relatively large
compared to our sample, we were able to level the sample manually prior to acquisition
using adjustment screws present on the motion stage to ensure the sample remained in focus
across an approximately 20mm movement range. For larger areas or shallower depth of
field, we anticipate a more sophisticated leveling technique will be necessary, such as active
autofocus [106, 107]. In practice, the focal adjustment process required only a few minutes
for our 10× objective, and was stable between samples (requiring infrequent adjustment).

Results
Gigapixel Reconstruction

To demonstrate the performance benefit of our system, we performed a 1.18 gigapixel recon-
struction of a microscope slide plated with 4.7µm polystyrene fluorescent beads (Thermo-
Fisher) using the high-throughput coded illumination microscope shown in Fig. 3.3. Multi-
ple images were captured at spatial offsets, enabling a reconstruction with extend field of
view (FOV). Each scan pathway consisted of multiple 1D continuous scans structured in a
raster-scanning pattern (Fig 3.4B) to enable fast 2D scanning of the sample. For a com-
plete comparison, we acquired stop-and-stare, strobed illumination, and coded illumination
datasets serially, and performed image stitching and registration of the three datasets for
a direct comparison of image quality. The total acquisition time for the coded reconstruc-
tions of this size was 31.6 seconds, while a comparable stop-and-stare acquisition required
210.9 seconds. The computation time for coded-illumination reconstructions using (3.6) with
step-size α = 0.5 was approximately 30 minutes on a MacBook Pro (Apple) with attached
RX580 external GPU (Advanced Micro-Devices), or approximately 2 minutes when paral-
lelized across 18 EC2 p2.xlarge instances with Nvidia Titan GPUs (Amazon Web Services),
excluding data transfer to and from our local machine.

Method Comparison

To provide a complete comparison of our coded illumination method with existing high-
throughput imaging techniques, we sought to quantify the expected SNR for each method
based on relevant system parameters such as source illuminance, camera noise parame-
ters, and desired acquisition frame-rate. In conventional high-throughput imaging it is
well-understood that stop-and-stare strategy will provide higher SNR than imaging using
strobed illumination but is only feasible for low-frame rates due to mechanical limitations
of the motion stage. Therefore, at high frame-rates we restrict our comparison to strobed
illumination and coded illumination. Later, we perform a comprehensive analysis of these
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trate predicted SNR based on known sys-
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ues are the average of 3 SNR measure-
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erence. (Bottom) Selection of measure-
ments used to generate the above plot.
Scale bar is 25 µm.
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trade-offs; Fig. 3.8A provides a visual representation of where stop-and-stare is possible in
terms of mechanical parameters of the motion stage.

Using the experimental setup described in Fig 3.3 we compare acquisitions performed
under brightfield and fluorescence configurations while sweeping the output power of the LED
source. In each case, we measured the illuminance at the camera plane using an optical power
meter (Thorlabs). For each image and reconstruction, we computed the average imaging SNR
across three different regions of interest to produce an experimental estimate of the overall
imaging SNR of the scene. To ensure a fair comparison, we performed no prepossessing
on the data except for subtracting a known, constant offset from each measurement which
was characterized before acquisitions were performed and verified with the camera datasheet.
Reconstructions of measurements made using coded illumination were performed using the
reconstruction algorithm described in Section 3.2.

Fig. 3.7 shows that coded illumination can provide up to 10× higher SNR in low-
illumination situations, which are most relevant for fluorescence microscopy (illuminance
< 1000 lux). For brightfield microscopy, strobed illumination provides a higher SNR with-
out additional computational complexity associated with our coded illumination method.
The solid lines in Fig. 3.7 are theoretical predictions of reconstruction SNR for each method
based on our system parameters, which are generally in agreement with our experimental
data. The methods for computing these curves are described in the following section.

Component Analysis

In Section 3.2, we showed that the choice to use strobed or coded illumination depends
heavily on the illumination power of the source; however, other system parameters may also
affect this trade-off. In this section, we consider other parameters such as camera noise and
motion velocity and include an analysis of when stop-and-stare should be used as opposed to
continuous-scan methods (strobed illumination and coded illumination). As a first step, we
derive the expected photons per pixel, per second (J) we expect to measure in a transmission
microscope, incorporating system magnification (M), numerical aperture (NA), camera pixel
size (∆), mean wavelength (λ̄, and the photometric look-up table K(λ̄):

J = K(λ̄)λ̄ℏc · Ilux ∗ (NA)2 ∗ ( ∆
M

)2 (3.13)

Here, ℏ is Planck’s constant, c is the speed of light, Ilux is the source illuminance in lux,
and J is the photon flux per pixel-second. Given J , the mean signal s̄ is a function of the
illumination time tillum and the camera quantum efficiency Q:

s̄ = JQtillum (3.14)
Substituting (3.14) into (3.9), we can define the expected SNR as a function of these

parameters as well as the blur kernel h and camera readout noise σr:
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Figure 3.8: Limiting Analysis of Imaging System. A.) Analysis pipeline for predicting
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Xenon Lamp (Xe), and Metal-Halide Lamps (M-H) are shown for reference.

SNR =
JQtillum

f
√

JQtillum + σ2
r

(3.15)

(3.15) is used in the analysis of Fig. 3.7 and Fig. 3.8.
The parameters tillum and f are functions which change based on acquisition strategy.

For stop-and-stare and strobed acquisitions, we set f = 1, since no deconvolution is being
performed, while for coded acquisitions f depends on the parameter γ as derived in Sec-
tion 3.2. Similarly, tillum is set based on acquisition strategy and motion stage parameters.
For stop-and-stare illumination, tillum is proportional to the residual time after stage move-
ment, including stage maximum velocity (vstage), stage acceleration (astage), the field of view
of a single frame along the blur axis (FOV ), mechanical settle time (tstage), and desired
acquisition frame rate rframe:
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tillum =
1

rframe

− 2
vstage
astage

−
FOV − 0.5 ∗ v2stage

astage

vstage
. (3.16)

For strobed and coded illumination, the minimum pulse duration tillum is set by the
overlap fraction (O) between frames, the number of pixels along the blur direction, Npx, and
the multiplexing by γ (with strobed encoded by γ = 1):

tillum =
γ

rframe(1−O)Npx

. (3.17)

In (3.17), we implicitly calculate the velocity as the fastest speed where two frames may
overlap with O within a time set by rframe.

Derivations for the above relationships are provided in Appendix 7.3. With these the-
oretical solutions for tillum, we are able to derive closed-form solutions for expected SNR
as a function of acquisition rate with knowledge of our system parameters (Listed in Ap-
pendix 7.3), using the pipeline shown in Fig. 3.8B.

Our system analysis is divided into two parts; When stop-and-stare is possible given a
desired acquisition frame rate, it will always provide higher SNR than strobed or coded illu-
mination due to high photon counts compared to strobed illumination and no deconvolution
noise. Fig. 3.8A analyzes where stop-and-stare is both possible and optimal compared to
a continuous acquisition technique as a function of frame rate. If acquisition frame rate
is low or limited by other factors (such as sample stability), stop-and-stare will always be
optimal in terms of SNR. If a high-frame rate is desired, however, a continuous acquisition
strategy is optimal, so long as the illumination repetition rate of the source is fast enough
to accommodate sample velocity.

Fig. 3.8C describes the optimal continuous imaging technique as a function of illumi-
nance, imaging objectives, camera readout noise (σr, and camera quantum efficiency (QE).
Generally speaking, higher illuminance values favor strobed illumination (being shot-noise
limited), while lower illuminance values favor coded illumination (being read-noise limited).
Conversely, as read noise (σr) increases or camera QE decreases, coded illumination becomes
more beneficial. Practically, a camera with high read-noise with a low QE will favor coded il-
lumination more strongly (at higher source illuminance) than a high-end camera (such as the
PCO.edge 5.5 used in this study), where σr ≈ 3.7e− and QE ≈ 0.6). In addition, objectives
with a higher magnification and NA will generally favor coded illumination more strongly
due to the decreasing NA

Mag
ratio, although this is not necessarily true for all NA/magnification

combinations due to differing optical designs. It should be noted, however, that higher NA
values will require more sophisticated autofocusing methods than those presented in this
work. Example illuminance values for common microscope sources were calculated based on
estimated source power at 550nm [108].
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Figure 3.9: Limiting analysis of constraints imposed by the chemical fluorescence process,
using contrast-to-noise ratio as the figure of merit. A.) Photobleaching influences the choice
between coded and strobed illumination only when introducing a coding scheme would cause
photobleaching, corresponding to a thin area of strobed optimality near the photobleaching
limit. This plot assumes no background autofluorescence, so contrast-to-noise and SNR are
equivalent. B.) The amount of autofluorescence relative to the signal mean has a slight effect
on the optimality of strobed and coded illumination, but the effect is not strong relative to
the other parameters studied here. Generally, the presence of autofluorescence degrades
contrast-to-noise ratio significantly for all methods, for all illumination levels.

Biological Limitations

In fluorescence imaging, autofluorescence [109] and photobleaching [110] are primary con-
siderations when assessing system throughput. Photobleaching, the result of chemical inter-
actions of activated fluorophores with the surrounding medium, is of particular concern for
motion deblurring applications due to higher captured SNR compared to strobed acquisitions.
Practically, photobleaching can limit the maximum number of pulses which a sample may tol-
erate before exhibiting a non-linear response, causing strobed illumination to become a more
favorable option, even at low-light. However, the region where this condition occurs is small
(for the proposed system), and near the photobleaching limit (Fig. 3.9A). Autofluorescence
is also a well-studied process which can further degrade the quality of fluorescence images.
Autofluorescence affects contrast, which is best quantified using the contrast-to-noise ratio:

CNR =
γs̄0 − b̄

f
√

γs̄0 + b̄+ σ2
r

(3.18)

where b̄ is the mean background signal (autofluorescence) and all other variables are the
same as in (3.9). Note that in the absence of a background (b̄ = 0), CNR is equivalent to
SNR. Fig. 3.9B illustrates the relative optimality of strobed and coded illumination in the
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presence of background autofluorescence, as expressed as a fraction of the primary signal.
While significant, the lifetime of various fluorophores is not limiting at illumination speeds

presented in this work. Most endogenous fluorophores and fluorescent proteins have a lifetime
of less than 10ns, while organic dyes may have lifetimes of less than 100ns [111]. The fastest
illumination source used in this work had a repetition period of approximately 4µs, which
is 40× faster than fluorophore-limited update rate for organic dyes. Still, for future systems
using motion stages moving at high velocities (such as > 100mm

s
and high magnifications

(greater than 40×), it will become more important to consider the lifetime of the dyes used.
These same constraints would also apply to strobed imaging, but not stop-and-stare imaging
(which does not require high-speed signal modulation).

3.3 Summary
In this chapter, we have demonstrated a novel high-throughput imaging framework which
employs multi-frame motion deblurring using coded illumination. Through both experiment
and theoretical analysis, we have shown the applicability of our method for fluorescence mi-
croscopy and performed a comprehensive analysis of when our method makes sense in terms
of source power and other system parameters. These results indicate that coded illumina-
tion provides up to 10× higher SNR than conventional strobed illumination methods in low-
light situations while maintaining acquisition rates of 50 Megapixels per second, making our
method particularly well-suited for applications in drug-discovery and whole-slide imaging.
Our analysis of optimal kernel selection indicates that efficient illumination sequences can
be calculated quickly and cheaply using a simple random search, and our analysis of optimal
pulse length provides an approximate relationship between the length of a pulse sequence
and source illuminance. Further, our proposed multi-frame reconstruction algorithm pro-
duces good results using simple accelerated gradient descent with no regularization and can
be scaled to multiple cloud instances for fast data processing. Future work should address
improvements such as regularization, more complicated motion pathways, self-calibration,
and reconstructions using under-sampled data.



50

Chapter 4

Fabrication of Coded Illumination
Devices

In this chapter, we explore the design and fabrication of microscopes which employ coded
illumination and describe the design process for coded illumination devices used in this
dissertation. Illumination sources vary significantly between microscope setups based on
applications, capabilities, availability, and cost. Early microscope sources involved using a
candle or oil lamp for illumination. As early as 1665, Hooke used an oil lamp and water-filled
globe to focus an oil lamp onto a sample to be imaged using his early microscope [3]. These
methods (along with gas lamps) were used for centuries, until the carbon arc-lamp enabled
electronic illumination in the late 1800s. Around this time, Köhler provided a more complete
understanding of proper illumination collection to avoid imaging the source directly onto the
sample [112], which was widely adopted and continues to be used today (including this work).
As new lamp sources were invented (such as the Xenon arc lamp [113], tungsten lamp [114])
they found use in microscopy under the Köhler configuration.

The rise of the fluorescent microscope led to the development of light sources with
engineered spectral properties, which were designed to have sharp (temporally coherent),
non-overlapping excitation and emission spectra and high source power. Spatially coherent
sources were used to provide phase contrast [43, 44] by filtering spatially incoherent lamps
using a pinhole aperture. With the invention of the laser [115], spatially and temporally co-
herent illumination could be directly created and used at high power, improving the SNR of
both coherent methods and florescence imaging. This high degree of coherence also leads to
artifacts arising from random diffraction off of dust and edges in the optical system, limiting
its use for wide-field brightfield microscopy.

Illumination using light-emitting diodes (LEDs) has emerged as an energy-efficient and
low-cost alternative to lamp-based sources. As more diverse and efficient semiconductor
materials have been discovered, LED light sources have found greater usage for both fluo-
rescence and brightfield imaging. In addition, arrays of LEDs have been used to achieve
even greater light throughput [46], improve sectioning in confocal microscopy [116], and pro-
vide brightfield and darkfield contrast as well as 3D digital refocusing [45]. When paired
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with computation, LED arrays have found significant usage for quantitative phase imag-
ing [49, 70, 73], super-resolution imaging [13, 90], and high-throughput imaging [72]. These
devices have found widespread usage within the computational imaging community due to
their simple and low-cost implementation, fast switching, and relatively high light output.
However, conventional LED arrays suffer from low light-throughput at high angles due to
the angular emission profile of the sources and the large distances between the LED and
sample. In addition, high-throughput imaging systems (such as those used in Chapter 3)
require specific electornic designs to accomidate illumination repitation rates on the order of
megahertz.

In this chapter, we detail the design process and manufacture of several LED array
designs and discuss their performance in relevant use-cases and applications described in the
previous chapters of this dissertation.

4.1 Domed Illumination Devices for Coded
Illumination

Designing the ideal LED array source for optical microscopy is challenging, both in design
and manufacture. Several early implementations of the LED array microscope use a planar
off-the-shelf LED array such as the 32× 32 LED unit available from Adafruit [13,45]. While
these arrays are inexpensive and widely available, they have limited angular illumination
range, low light throughput, and introduce flickering artifacts due to their electronic design.
For high-angle high-speed FPM, a more specialized LED array becomes necessary. As we
showed previously in [73,117], a domed illuminator provides significantly higher intensity at
high-NA compared to a planar array. For a planar array, intensity at the sample I can be
related to the angle of illumination θ of the emitter by the equation:

Iθ ∝ cos(θ)4 (4.1)
where θ is the angle between the illumination vector and the optical axis. When the LEDs
are arranged in a domed shape, reducing the intensity falloff to:

Iθ ∝ cos(θ)1 (4.2)
The illumination throughput benefits are a result of two phenomena, shown in Fig. 4.2e.

The first is that off-axis LEDs in a planar array will have a larger LED-to-sample distance and
thus decreased intensity at the sample. For example, if we assume that each LED is a point
emitter, the intensity falloff due to increased distance can be expressed as I(θ) = I0 cos

2(θ),
where I0 is the intensity at the sample from the on-axis LED and θ is illumination angle.
The second improvement in light efficiency comes from the fact that LEDs have significant
angular variation in intensity (typically emitting more light in the forward direction). In
a planar array, the LEDs at higher angles provide less effective illumination, a problem
corrected by the dome geometry, where all LEDs are radially oriented. In both the domed
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Figure 4.1: Overview of dome designs from the Adafruit 32×32 planar LED array to the
proposed quasi-domed device. Our first iteration used a true domed geometry, increasing
illumination power at high angles, but was very difficult to fabricate. A second iteration led
to the quasi-domed array, which uses standard printed circuit board fabrication processes to
make the dome easy to fabricate while maintaining the benefits of a domed geometry.

and planar geometries we note that intensity further decreases with a final factor of cos(θ)
due to the smaller profile of objective window when viewed off-axis; combining these factors
and assuming a Lambertian (∼ cos(θ)) angular dependence for physical (non-point-source)
LEDs results in an expected intensity falloff of ∼ cos4(θ) for the planar geometry but only
∼ cos(θ) for the domed geometry, a vast improvement at high incidence angles. Thus, the
difference between geometries is proportional to cos3(θ), or a factor of > 50% at 40 degree
and 99% at 77-degree incidence, having a substantial impact on illumination throughput,
and therefore required exposure times to achieve a good SNR.

In most planar arrays (such as the Adafruit 32 × 32 array used in early work [13, 45]),
LEDs are uniformly spaced in Cartesian coordinates across a planar circuit board. When the
LED positions are projected onto numerical aperture (NA) coordinates this spacing becomes
tighter at high-angles, leading to an uneven sampling across the full range of illumination
angles. While having a tighter spacing is usually not a problem for computational imaging
applications such as differential phase contrast or Fourier ptychography, it is inefficient,
and may lead to unnecessarily long acquisition times. Using a domed geometry is more
amenable to creating a uniform LED pattern in angle (NA coordinates) due to geometry
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and will maintain the LED directionality at high LED angles.
The minimum LED spacing depends on the application. In Fourier Ptychography, for

example, early work [13,65,118] indicated that at least a 60% pupil overlap (0.4×NAobjective)
was necessary in order to properly recover the complex field at high resolution. This quantity
depends on the diameter of the pupil (and therefore numerical aperture of the objective);
systems with smaller, low-NA objectives will have tighter requirements on LED spacing.
The 60% overlap requirement is developed to provide at least 2× redundancy of information
to reconstruct both amplitude and phase from intensity measurements. Increased overlap
beyond this requirement may provide a benefit in terms of SNR, but this effect is difficult
to quantify due to the non-linear algorithm used for Fourier ptychographic reconstructions.
For DPC-based methods (See chapter 2) LED spacing is naturally restricted to less than
the objective NA, since only brightfield LEDs are used. The primary consideration for DPC
sources is having LEDs which illuminate at NA ≈ NAobjective for maximum phase contrast
at low-frequencies.

While an LED dome is clearly necessary for obtaining high illumination intensity at high
angles, practical limitations on manufacturing and assembly of non-planar circuit boards
make building these domes at low cost and large scale non-trivial. In the following sections,
we detail the design of a domed LED illuminator through several iterations of the design
and prototyping process.

3D-Printed Approach
The first iteration of domed illuminators was heavily inspired by the AWARE gigapixel cam-
era series [119–121], where hundreds of individual cameras were manually inserted into an
aluminum dome which enforced opto-mechanical constraints on directionality and position
through a hexagonal camera packing. With this inspiration, we designed and fabricated
a 3D-printed domed illuminator consisting of 508 individually addressable broad spectrum
(white) LEDs uniformly distributed across a domed surface. This first-generation device con-
sists of 4 major components: a hemispherical dome frame for mounting the LEDs, the LEDs
themselves, controller circuit boards and the sample stage. The dome mounting structure is
a rigid hemisphere designed to constrain the individual LEDs within an array of computa-
tionally positioned bores, aligning the LED with the radius vector to the sample center. This
hemisphere was designed with a 60mm radius in order to provide maximum intensity at the
sample, given our desired number of LEDs and a minimum distance between neighboring
LEDs. To pack these LEDs, we used a hexagonal packing pattern across a 77-degree cone
of angles with maximum NAillumination = 0.62.

The dome hemisphere scaffold was 3D printed (InterPro Models) to achieve the neces-
sary 100µm printing resolution for accurate LED positioning. The LED angular positions
were computed algorithmically to ensure uniform spacing across the dome, constrained by
a minimum 150µm distance between bores for mechanical rigidity and a maximum angular
separation of 3.85 degrees allowing for sufficient coherence area at the sample. This angular
spacing means that 38 LEDs make up the brightfield region for a common low-NA objective
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Figure 4.2: Domed LED Illuminator. (a) Visual comparison of a planar LED array with a
domed array. Since the intensity of a spherical wave drops as a function of the inverse square
of radius, the illumination at the sample depends on the distance between the LEDs and
the sample. In the planar case (left), LED distance r increases as a function of illumination
angle, causing weaker illumination at higher angles. A domed LED array (right) eliminates
this variation (r is constant). (b) Normalized mean pixel intensities measured at the sensor
for the planar and domed arrays. Intensity decreases as a function of angle in both cases,
but much more strongly in the case of the planar geometry. Values were normalized to the
central LED’s brightness in both cases. (c) Illumination pattern used to acquire darkfield
images with a 0.25 NA objective. (d) Illumination pattern used to generate differential
phase contrast images with a 0.25 NA objective. (e) Illustration of the arbitrary illumination
patterning capabilities of the device. (f) Plot illustrating the relative objective NA for several
common magnifications, as compared to our dome’s LED placement (small black circles). (g)
Normalized measured intensity falloff as a function of angle relative to the optical axis for
the domed and planar LED arrays. Falloff is proportional to cos(θ) for the domed geometry
and ∼ cos4(θ) for the planar geometry. Black lines are cos(θ) and cos4(θ) fits for the domed
and planar geometries, respectively.

(4× / 0.1NA), with even more for larger NA objectives, ensuring high quality digital refo-
cusing results across a large range of depth slices for all objectives. The 3mm through-hole,
white LEDs (Mouser 593-VAOL-3LWY4) were press fit into the dome and a rigid lateral con-
straint was provided by acrylic retaining inserts behind each individual LED. 508 of these
LEDs were soldered directly to controller boards arranged above the array, with insulated
leads to prevent electrical shorting.

Accounting for mechanical tolerances of the 3D printed dome and the LED epoxy lenses,
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manufacturing tolerances suggest that the maximum angular pointing error will be no greater
than ±4.8 degrees. This corresponds to a maximum intensity attenuation of only 1.2% due
to assembly variation and tolerances across all illumination angles. Our illumination is also
quite uniform across the field of view. The maximum field of view of our optical system has
a radius of 1.25mm, set by the eyepiece field-stop diameter of 10mm and assuming a 4×
objective. Given the 60mm radius of curvature of our dome, this corresponds to illumination
variation due to mechanical tolerances being less than 1% across the field of view for each
single LED illumination. While this result is quite good, the spread of intensities between
different LEDs is significantly larger (see Fig. 4.2g), as a result of combined mechanical,
electrical, and parts tolerances. Conveniently, a one-time calibration sweep of illumination
angles, taken with no sample present, is sufficient to allow computational removal of this
variation for all practical purposes.

The device used nine identical printed circuit boards placed in a fanned arrangement
above the dome, each containing four LED controller chips (Texas Instruments TLC5926)
serving up to 64 LEDs. These were controlled by a single Arduino Micro micro-controller,
which calculates the appropriate bit pattern based on serial commands from an included
Bluetooth transceiver. The array is fully addressable through a standard Bluetooth serial
link or USB interface. We operate the serial output at 115K baud and note that we can
update the entire pattern with approximately 100ms latency, although we predefine some of
the more complex LED illumination patterns and store them in the Arduino flash memory
to further improve acquisition time. Thus, our acquisition times are primarily limited by the
camera rather than the LED array control.

The dome’s power control board is tolerant of voltages between 7 and 20 VDC to allow
compatibility with a large range of power sources, including a standard 12V automotive
battery and a 100W wall-plug variable output power supply, as well as many commercially
available portable power supplies for consumer electronics. During regular usage, the device
requires no more than 2A of current, though it could potentially draw up to 4.8A of current
when all LEDs are illuminated. This is not a typical use case, however, since simultaneous
illumination inside and outside the objective NA amounts to an undesirable mixing of dark-
field and brightfield contrast. Noting that for 4×, 10×, and 20× objective configurations
there are more darkfield than brightfield LEDs, to reduce power consumption we perform
darkfield illumination by default using an annulus with a width equivalent to 0.15NA rather
than using all of the darkfield LEDs. This moderately reduces the contrast and resolution
of darkfield images but significantly reduces power use during the darkfield illumination cy-
cle. We note that the device can operate indefinitely without overheating issues for both
multi-contrast and digital refocusing under normal use.

The completed prototype is shown in Fig. 4.2. Overall, this prototype was very difficult
to manufacture because LEDs had to be inserted by hand, and the leads of each LED had to
be manually soldered to one of the 9 circuit boards above the dome. This 3D reconstruction
process required significant time and effort to ensure all of the LEDs were functional. The
designs of this illuminator were published publicly, but to our knowledge there were no
successful reproductions, owing to the difficult fabrication process.
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Figure 4.3: Quasi-dome programmable LED illuminator. (a) CAD model of LED flange
positions. (b) Assembled LED array quasi-dome displaying two half circles (center line of
LEDs are turned off). (c) Simulated intensity falloff of LED array considering all factors
(normalized). (d) Experimental normalized intensity falloff.

Quasi-Dome
In response to difficulties experienced in fabricating the 3D-printed dome, we developed a
quasi-domed LED array consisting of 5 panels (see Fig. 4.3a,b), each of which are standard
printed circuit boards (PCBs) with all components pre-assembled using standard manufactur-
ing techniques. This domed illuminator used multi-channel LEDs (Knightbright APTF1616
series) which have individual channel control without multiplexing using on-board LED con-
trollers (Texas Instruments TLC5955), connected in a serial daisy-chain (Fig. 4.4). This
electrical configuration enables 16-bit LED intensity control of each channel (using pulse-
width modulation) with fast pattern updates (10ms) due to high-speed serial control via a
Teensy 3.2 Microcontroller (PJRC). The software used to control this device was released as
the open-source Illuminate LED array firmware [103].

The LED flange geometry was selected to provide sufficient overlap of sample spectrum
areas for Fourier Ptychography. We selected 0.1 NA as our minimum objective numerical
aperture, commonly corresponding to a 4× objective. This spacing was used to select LED
positions with even spacing in Fourier space, lending to the large LED spacings on the
circuit boards at high angles. Fig 4.3d shows the experimental intensity fall-off of radially
projected LEDs as measured at the sensor, showing good agreement between theoretical
illumination falloff due to the cos(θ) term and experimental measurements. The use of color
LEDs enables color multiplexing, which was used to perform single-shot quantitative phase
imaging (cDPC) [81].

In general, this illumination source solves most of the problems with the illuminator
presented in the previous section. It provides more LEDs and simple and scalable fabrication
using conventional PCB fabrication techniques while maintaining the many benefits of a
domed geometry. For these reasons, the Quasi-dome geometry is practically superior to
both planar geometries and the dome presented in Section 4.1.
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Figure 4.4: Circuit schematic for Quasi-dome device. A chain of up to 40 TLC5955 chips
are connected in a daisy-chain configuration, having common Power (VCC), ground (GND),
Grayscale-clock (GS), serial clock (SCLK), and latch (LAT) pins. These are controlled by
a micro-controller upstream, which enables the control of up to 16×Nchips LEDs for Nchips

TLC5955 chips.

4.2 Coded Illumination Devices for High-Throughput
Microscopy

High throughput imaging using both strobed illumination and motion deblurring [97] re-
quires light sources to be extremely fast compared to the domed devices presented in the
previous section. In these systems, the sample is imaged and illuminated while being moved
continuously by a mechanical motion stage, without stopping. A key parameter of a high-
throughput illumination source is repetition rate, or the minimum pulse duration the source
can provide. This time must be less than the time required for the sample to move one ef-
fective pixel size (pixel size divided by magnification) while being scanned. Mathematically,
the source repetition period T is related to the motion velocity vmotion, camera pixel size ∆,
and system magnification M by the following relationship:

T ≤ ∆

Mvmotion

(4.3)

For practical systems (such as those described in Chapter 3), this threshold is on the order
of micro-seconds, which is 3-4 orders of magnitude faster than the LED domes described
in previous sections. For these applications, it was necessary to adopt very simple LED
circuitry to avoid electronic speed limitations associated with dimming (using pulse-width
modulation) and serial control of LED driver chips. As such, we adopt an extremely simple
circuit, consisting of only a micro-controller and transistor, to control an arbitrary number
of LED sources at very high speed, limited only by the clock-speed of the microcontroller.
The drawback of this configuration is that only binary illumination is possible, but binary
illumination is often optimal for both strobed and coded illumination (See Chapter 3).
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Figure 4.5: Circuit schematic for fast LED driver circuit. A transistor (NPN type) is used
to modulate a large current source for controlling many LEDs at once, which are connected
in serial. Resistor R0 is normally set to 1KΩ, and R1 is set such that the current is not
too large based on the VCC voltage. This circuit enables micro-controller limited illumi-
nation updates, although it does not allow per-channel dimming and supports only binary
illumination patterns.

For these applications, we developed two high-speed sources based on the same platform,
one for high-throughput brightfield and quantitative phase imaging, and one for fluorescence
imaging. The first device used 40 white (blue-phosphor) LED emitters (VAOL-3LWY4, VCC)
controlled by four transistor circuits to modulate 4 quadrants of a circle. The intention of this
design was to enable extremely fast brightfield (color) imaging, as well as quantitative phase
imaging using DPC. The second used a single, high-power LED source (Thorlabs M470L3)
modulated using a simple single-transistor circuit through the same micro-controller. Chro-
matic filters could be added to the illumination pathway and detection pathway to enable
fluorescence imaging, and this device was compatible with a wide range of LED sources due
to its modular design. Both of these devices used the same firmware as the micro-controller
firmware, which was designed to be modular to accommodate various LED arrays [103]. A
schematic of this high-speed circuit is shown in Fig. 4.5.
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4.3 Coded Illumination Devices for Portable
Microscopy

Optical microscopy is an important tool for disease screening and diagnosis throughout
the world. Significant resources have been devoted to developing portable and affordable
compact microscopes for remote clinical applications [122–133]. Compact microscopes based
on mobile phones, including CellScope [134,135], have demonstrated that microscopy can be
effectively performed outside of hospitals and diagnostic laboratories by minimally trained
healthcare workers, that images can be transmitted for confirmation of diagnosis, and that
phone-based computational analysis can be used to provide automated diagnosis.

Computational CellScope
Here, a new variation of the CellScope microscope is demonstrated which incorporates re-
cently developed techniques of computational illumination [45, 47, 65] using the LED dome
shown in Fig. 4.2 to enable new imaging modalities, including darkfield, phase imaging and
digital refocusing1. Using only the on-board processing power of a smartphone, our device
implements quantitative phase recovery using DPC, as well as lightfield digital refocusing,
so that a sample focus can be changed after the fact (without mechanically changing focus).

The flexibility and speed of the programmable LED array illuminator, as well as the
lack of moving parts and low cost, make the hardware very amenable to modification as a
CellScope attachment. In order for our device to be practically useful in the field, we have
here enforced the requirement that all of our processing and control be performed on the
smartphone, without use of a PC. Thus, the device can be field-deployable as a simple add-on
to CellScope, requiring only a 7V-20V DC power source which could be adapted to many
power sources, such as batteries, car batteries, or wall-outlets using commonly available
adapters. In the following sections we detail the design and performance of the hardware
and software of our new Computational CellScope device.

While our addition involves custom LED drive circuitry and a 3D printed structure, com-
plexity was kept low to preserve the low-cost nature of CellScope. Part counts, cost and
especially size may be further reduced in design-for-manufacture. The size of the illuminator
could be reduced to essentially the dimensions of the dome itself, and cost could be compa-
rable to the price of a modern smartphone, matching and improving upon the functionality
of a full-size microscope at a fraction of the cost.

1This work was developed in close collaboration with Daniel Fletcher, Mike D’Ambrosio, and Neil Switz
(Fletcher Lab, Bioengineering, UC Berkeley), as well as Lei Tian, Jared Rulison, Hurshal Patel, Nitin Sadras
and Aditya Gande (Waller Lab, EECS, UC Berkeley).
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Figure 4.6: Computational CellScope. a). Device observing a sample using a Nexus 4
smartphone. b). Optical schematic of the CellScope device with our custom-made domed
LED illuminator. c). CAD assembly of the dome. d). Assembled dome and control circuitry.

Multi-Contrast Imaging
To achieve brightfield, darkfield and phase contrast simultaneously, we time-multiplex images
taken with different LED patterns and post-process them on the smartphone to synthesize
pseudo-real-time multi-contrast imaging, as in [47]. Brightfield images correspond to illu-
mination by LEDs that lie within the cone of angles described by the objective numerical
aperture (NA). Darkfield images are obtained by illuminating the sample from angles be-
yond the angular acceptance of the objective (Fig. 4.2a) [45]. Since different objectives have
different NA, one must specify in the software which objective is being used, with larger
NA corresponding to a larger brightfield region of LEDs. Our dome is designed to enable
darkfield contrast for any objective of NA< 0.62, roughly corresponding to a typical 40×
objective.

Phase contrast can be achieved in a single-shot image by any asymmetric illumination
pattern [136,137]. Here, we choose to employ a differential phase contrast (DPC) scheme [63–
65,138], which requires two images having complementary illumination patterns, because it
gives good phase contrast at all spatial frequencies and can be quantitatively interpreted
as the gradient of sample phase. The method involves sequentially illuminating the sample
with the two opposite halves of the brightfield circle while capturing an intensity image for
each. For example, one may first take an image, IR, with only the right half of the LEDs
on and then a second image, IL, with only the left half of LEDs on (see Fig. 4.2b). The two
images are processed as follows to obtain brightfield and phase contrast:
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Figure 4.7: Image results compared to a standard microscope. Computational CellScope
acquires brightfield and darkfield images of similar quality to a standard upright microscope
(Nikon TE300) without the use of hardware inserts. Additionally, it enables phase imaging
using Differential Phase Contrast (DPC), which contains similar information to standard
phase contrast imaging, and can be inverted to obtain quantitative phase of the sample
(bottom row). Differences in color shades are caused by the relative differences in hue of
the halogen lamp and the white LEDs. Note the additional dark features in DIC results, as
compared to DPC, illustrating mixing of phase and absorption information in DIC. In the
right-most column, we show images for an unstained transparent sample, illustrating the
utility of phase imaging methods for label-free imaging.
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IBF = IL + IR, IDPC =
IL − IR
IL + IR

, (4.4)

where IBF is the brightfield image and IDPC is the phase contrast image. Since the LEDs
are mutually incoherent, adding the two images gives an equivalent brightfield image and
subtracting them produces phase contrast, due to asymmetric clipping in Fourier space.
The intensity of the DPC image can be shown to be approximately proportional to the
first derivative of phase along the direction of illumination asymmetry [63], and different
axes of rotation can be programmed by changing the LED array pattern accordingly. Typ-
ically, we capture an additional two images in order to compute both the left-right and
top-bottom phase derivative results representing both orthogonal directions. DPC images
are qualitatively similar to Differential Interference Contrast (DIC); however, the latter is
not a quantitative method. To obtain quantitative phase from DPC images, we solve the
inverse problem [64,139] using a simple deconvolution in Fourier space. Results for all of the
contrast modalities are shown in Fig. 4.7.

Thus, by acquiring four half-brightfield images and a single darkfield image for each time
point, we can synthesize brightfield, darkfield, and phase contrast modes in near real-time.
Users have the option of saving and post-processing time-multiplexed frames or viewing a
live multi-contrast display of the sample, though display speed is significantly faster in the
latter case due to limited file write speeds on the smartphone. We developed an application
to stream these four contrast modes size-by-side while updating each frame sequentially as
the illumination pattern cycles through the different patterns (Fig. 4.9b). The user may
touch any of the four images for a live full-screen display of that contrast mode only, and
the illumination pattern cycle will update to reflect this.

Some image results for each of the contrast modes are shown in Fig. 4.7, using different
objective magnifications and samples. For comparison, we show the same samples imaged in a
commercial inverted microscope with traditional hardware. Darkfield was obtained by using
a Ph3 condenser aperture in combination with objectives having NA smaller than the sine of
the half-angle of the Ph3 annulus inner diameter. Since DPC is not currently commercially
available, we instead compare our DPC phase contrast images to (similar-appearing) DIC.
Both provide images whose contrast is related to the first derivative of phase along a single
direction; however, DIC mixes absorption and birefringence information with phase, so that
dark features in the image may result from either absorption of the sample or phase contrast
interferences. In the DPC images, on the other hand, the image is related purely to the
sample phase distribution (see Fig. 4.7), which can be inverted to reveal quantitative phase,
as shown in the bottom row. Provided in a portable package, these multi-contrast video
and streaming methods have the potential to allow clinicians to view a sample with three
separate contrast methods at once, enhancing the information available for diagnosis and
disease discrimination.
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Digital Refocusing
For thick samples, our system can capture a different sequence of images in order to re-
cover 3D images and enable digital refocusing. In this case, we sequentially capture images
for each of the LEDs in the brightfield region. The resulting dataset is similar to limited
angle tomography with many angles, which provides depth sectioning from angular informa-
tion [140]. For simpler processing more amenable to mobile phone programming, we use a
lightfield approach here [16,45]. This involves a simple shift-and-add algorithm to digitally
refocus the image to different axial (z) planes. We calculate the digitally refocused intensity
image at a distance ∆z away from the physical focus plane as:

I∆z =
∑

all brightfield LEDs

Ii(x+∆z tan θx, y +∆z tan θy), (4.5)

where Ii denotes the intensity image for the ith LED, shifted according to its angle of illumi-
nation at the sample (θx, θy) and the desired refocus distance ∆z.

The number of individual LEDs making up the brightfield region roughly determines the
number of depth planes that can be accurately reconstructed, and the range of illumination
angles determines the axial resolution of the 3D result. Since a separate image is taken for
each illumination angle, both acquisition and processing time are a function of the numerical
aperture of the objective, as illustrated in Fig. 4.9. Acquisition speed was primarily limited
by the time required to save an image to the smartphone’s flash memory at full resolution
(8 Megapixels on the Nexus 4). This is important because data acquisition remains fast,
while processing can occur in the background. Using the same dataset, we can also calculate
3D phase contrast images by digitally refocusing the two halves of the brightfield region
separately [65]. It is expected that this mode of imaging intensity or phase in 3D with
no moving parts will give better diagnostic information for thick samples. Alternatively, it
could be used for correcting misfocus, obviating the need for automatic axial translation or
automated focus adjustment in long time-lapse studies.

Results are shown in Fig. 4.8 for digitally refocused images as compared to physically
refocused images on an inverted microscope (Nikon TE300), both with a 10× objective
(0.25 NA). The phase contrast images show the first derivative of phase along both the
vertical and horizontal directions, calculated from the same dataset using only the green
color channel. The algorithm successfully refocused features across 400µm depth of field,
limited by object thickness. Our refocusing achieves an axial resolution of approximately
5µm within ±50µm of physical focus position but degrades approximately linearly with
increasing refocus distance [65]. Processing time is approximately 1.5 minutes per depth
slice for a 10× objective.

Acquisition Software and Processing
It has previously been shown that using a smartphone as a microscope poses unique chal-
lenges intrinsic to the phone software [135]. Smartphone cameras may only allow minimal
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Figure 4.8: Digital refocusing on the Computational CellScope. Comparison of digital
refocusing to physical refocusing on a commercial microscope (Nikon TE300) of a house
fly wing sample (AmScope PS200) with a 10× objective. Digitally refocused phase contrast
images are also computed for both vertical and horizontal phase derivatives at different focus
depths.
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Figure 4.9: Android Application Workflow. a). Schematic of streaming multi-contrast LED
patterns. Here we vary the LED pattern in time and acquire and process images on the
smartphone, producing a streaming multi-contrast display of a sample without any further
post-processing. The user can touch any image to zoom in and stream an individual image.
Total cycle time is 2.3 seconds. b). Overview of workflow for digital refocusing mode.
Table shows example processing and acquisition times for a typical dataset reconstruction.
Axial Resolution is determined by the range of illumination angles sampled (defined by the
objective NA). The number of z-steps were chosen such that refocus blur does not exceed 20
pixels. Processing and acquisition time can be reduced by selecting fewer refocus planes or
by sparsely sampling LEDs, trading axial resolution for faster acquisition time.

quantitative control over standard imaging parameters (e.g. focus, exposure, gain), opting
for opaque automatic algorithms that simplify the user experience. To circumvent these
restrictions, we wrote a custom Android application that attempts to achieve the optimum
imaging characteristics with our coded illumination configuration. The software application
also initiates and handles the Bluetooth connection to the domed array, enabling synchro-
nized acquisition and array control through the standard Android API. Array control is thus
transparent to the end-user, requiring them to simply pair the phone with the illuminator
and press a connect button to initiate a Bluetooth connection. Our application was devel-
oped specifically for the Android platform and will be compatible with any phone running
Android OS version 4.0 or later. However, our algorithms were developed using the OpenCV
Library, which is cross-platform for iOS (Apple, Inc.) and other operating systems. Thus,
most of our application code is portable to other smartphone platforms with moderate de-
velopment effort. A screenshot of the acquisition and processing are shown in Fig. 4.9. The
user may choose to collect and synthesize any or all of darkfield, refocused brightfield and
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DPC images.
In our application, images were acquired using the standard Android API, which does

not provide an interface to set explicit exposure times, but supports only continuous auto-
exposure with predefined exposure offset values. To circumvent this issue, we included a short
pre-illumination sequence before each dataset acquisition to lock exposure at the appropriate
value and enforce the requirement that equal numbers of LEDs be chosen for each half-circle.
Finally, we incur significant latency between the camera shutter and the availability of the
frame to our application within the API, due to post-processing algorithms integral to the
phone and performed in the background (e.g. white balance and demosaicing). This severely
limits our acquisition speeds, which will likely be improved in newer versions of Android that
allow finer camera control through the API. Apple iOS offers a different camera API that
may also offer improvements in acquisition speed.

Data post-processing was performed in a standalone Android app, where image stacks
were loaded and processed on the phone. We employ a number of functions of the OpenCV
Imaging library for Android to perform most of our computation. Individual DPC images are
computed in less than a second, as demonstrated in our multi-contrast view mode. Digitally
refocusing an image into 21 depth planes (±100 µm range with 10 µm sectioning) requires
approximately 30 minutes of processing time, but the resulting 3D image stack can be in-
teracted with in real-time; all other computational imaging results are much faster (∼0.43
frames/sec). The long processing time is attributed to frequent loading and saving to the
smartphone’s internal storage. We note that significant improvement in processing speeds
for all of our algorithms is possible through implementation using the Android NDK and is
also expected as phone computational power increases with each product generation. These
performance metrics were calculated on a Nexus 5 smartphone (LG Electronics) and may
vary on other devices.

4.4 Summary
In this chapter, we presented several examples of the fabrication and design process for coded
illumination devices. These devices are each the result of many design iterations which incor-
porate the joint design of hardware and software - a key paradigm of computational imaging.
The recent development and commercialization of 3D-printing has enabled rapid prototyp-
ing of optical devices, enabling the fabrication and iteration of domed LED illuminators (As
show in in Section 4.1). However, due to practical fabrication limitations, we found that
reverting to more standardized printed circuit board (PCB) approach (Section 4.1) enabled
significantly improved manufacturability without significant performance degradation, en-
abling more rapid dissemination of domed LED illuminators around the world. We also
developed coded illumination prototypes with much higher temporal illumination resolution
for high-throughput imaging (Section 4.2), which required different design decisions to be
made to accommodate rapid temporal coding of LEDs. Finally, in Section 4.3 we described
a complete coded illumination solution for portable microscopy using a 3D-printed domed
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illuminator. This device enabled portable implementations of qualitative microscopy (dark-
field and brighfield), quantitative phase imaging using DPC, and 3D digital refocusing of
thick samples, all using only the existing smartphone and the addition of our domed illumi-
nator. This device demonstrates how flexible and amenable coded illumination devices can
be through example; future work could demonstrate an improved prototype which is fully
field-ready in terms of robustness and flexibility and could enable new applications such as
high-throughput imaging and fluorescence imaging.
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Chapter 5

Self-Calibration of Coded
Illumination Systems

In Chapter 1, we described a general computational imaging framework which consisted of
both a forward model generation step as well as a computational inversion. In all imaging
systems, the forward model is synthesized from the fundamental laws of light propagation
(e.g. Maxwell’s equations), the optical design of the system, and the accumulated error from
optical mis-alignment, dust, manufacturing imperfections, and other sources which can be
collectively referred to mis-calibration. While some of these imperfections can be removed
using simple processes (such as background subtraction), others, such as system aberrations,
are relatively complex, and need to be tolerated or removed using a more sophisticated
procedure.

5.1 Algorithmic Self-Calibration
The concept of algorithmic self-calibration (solving jointly for the reconstructed image and
the calibration parameters) has proven particularly useful in coherent computational imaging.
Examples include probe retrieval in Ptychography [141–144], source recovery for through-
focus phase imaging [145, 146], pupil and source recovery for Fourier Ptychography Mi-
croscopy (FPM) [147–149], and calibration-invariant inverse scattering models [150]. The
standard approach to self-calibration uses alternating projections (AP), which optimizes mul-
tiple variables serially, keeping other parameters fixed during each sub-iteration. The non-
convexity of AP provides no guarantee of global convergence, but in practice it works with suf-
ficiently diverse data. Self-calibration of aberrations has been demonstrated previously in an
LED array microscope for the cases of through-focus phase [151] and FPM [94,147,152–154],
but required a large number of images to be captured. For example, a typical FPM
setup [155] uses approximately 5× as many images as our system to achieve the equiva-
lent resolution.

Mathematically, a forward model A{·} can be made a function of any variable, including
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an arbitrary calibration vector c, with a simple modification of Eq. 1.6:

y = A{x; c}+ η (5.1)
In the case where A is differentiable with respect to c, it becomes possible to recover c

with knowledge of x through direct inversion or gradient methods, though this is only very
rarely the case. When x is unknown, it becomes necessary to solve for both x and c using an
alternating minimization. When c is the point spread function of the system (convolution
kernel), this becomes a blind deconvolution problem, which has been extensively studied in
both microscopy [156,157] and photography [158–161]. However, c can also represent system
aberrations [153], illumination parameters such as LED positions [148], or other parameters.

When A is differentiable with respect to both x (the object) and c (the PSF), it can be
solved by taking the gradient with respect to c and x in alternating steps. So long as each
gradient step is not too large (or is optimized locally using a line search), this alternating
minimization technique will not diverge, and will only improve the initial estimate of x and
c until convergence. However, this alternating approach is non-convex, and therefore is very
sensitive to initialization since there are many local minima.

5.2 Aberration Self-Calibration using Differential
Phase Contrast

System aberrations are nearly always present in optical systems and may be field-dependent
in some cases (such as low-magnification objectives). When performing DPC, these aberra-
tions can corrupt reconstructions due to model mis-match, especially at high frequencies. It
is well-known that aberrations arising from optical mis-alignments can be mostly classified
by a small number of Zernike Polynomials [162], which makes these functions particularly
well-suited for self-calibration.

In this section, we propose a method of algorithmic self-calibration for Differential
Phase Contrast (DPC) microscopy [49, 64, 68, 81, 136, 163], where we avoid the need for pre-
calibration by jointly recovering both the sample’s complex-field and the spatially-varying
aberrations of the system, directly from raw images1. The method is an extension of
illumination-based DPC microscopy [49,64], where images are captured with different source
patterns, then a reconstruction algorithm recovers the complex-field. Experiments are im-
plemented in a commercial brightfield microscope with a low-cost programmable LED array
light source, such that patterns can be switched quickly with no moving parts [13,49,94,164].
Among the wide variety of QPI methods, those which use partially coherent illumination,
like DPC, are advantageous since they provide 2× better resolution, higher light throughput
and reduced speckle [49, 56, 145, 165], as compared to coherent methods.

1This work was developed in close collaboration with fellow Ph.D. student Michael Chen (Waller Lab,
EECS, UC Berkeley).
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To efficiently recover both the complex field and system aberrations, we employ an AP
framework that uses 4 captured images for simultaneous phase retrieval and digital correction
of spatially-varying aberrations (Fig. 5.1). Three of the measurements are partially-coherent
conventional DPC images (with rotated half-circle sources); these provide good phase con-
trast, but poor aberration contrast. The fourth image uses single-LED (spatially coherent)
illumination; this provides aberration contrast, but alone cannot resolve the ambiguity be-
tween complex-field and pupil aberration [166]. Using both partially-coherent and coherent
images together improves sensitivity to aberrations without sacrificing the benefits of partial
coherence. We model the aberrations parametrically (with a Zernike basis [151, 162]) to
dramatically reduce the number of unknowns. In addition, by segmenting the field-of-view
(FOV), we are able to recover and digitally correct for spatially-varying aberrations across
the FOV.

SampleLED
Array

Bottom Top Right Single

Joint Estimation of
Complex-field & Pupil 

Camera

LED Array

Sensor

Source
Patterns

Field of View (Phase)

Region 1 Region 2

Region 3
Region 4

Amplitude Phase Aberration

Figure 5.1: Our LED array microscope captures 4 images with different illumination source
patterns (three half-circles and one single LED). The intensity images are used to simul-
taneously reconstruct both amplitude and phase of the sample, and to estimate the pupil
aberrations at each spatial location, which are then digitally corrected for. We show recon-
structions for 4 regions with different spatially-varying aberrations.
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Joint Estimation of Complex-Field and Aberrations
Our LED array microscope and data capture scheme are shown in Fig. 5.1. Quantitative
DPC (without aberration correction) requires a minimum of 3 intensity measurements to
reconstruct phase [81], though only two quantities (amplitude and phase) are reconstructed
at each pixel. Hence, there is significant redundancy in the data which may, in principle, be
used to solve for aberrations. Unfortunately, intensity images formed by partially-coherent
illumination do not exhibit significant aberration contrast. Hence, we modify the capture
scheme to add one additional measurement with spatially-coherent illumination (a single
on-axis LED). The example in Fig. 5.1 has a different aberration in each quadrant of the
FOV, and only the single-LED image displays visible differences in contrast for each region.
An off-axis LED would also provide the necessary coherent contrast, but the on-axis LED
provides higher intensity and better signal-to-noise ratio (SNR). Having achieved both phase
and aberration contrast with 1 on-axis and 3 half-circle sources, we use this dataset to
jointly recover both spatially-varying aberrations and the complex-field of the sample (with
resolution set by the incoherent diffraction limit).

The process of estimating the sample’s complex-field and the system’s aberrations simul-
taneously is a joint estimation large-scale nonlinear non-convex problem. To simplify, DPC
typically makes a weak scattering approximation which linearizes the forward model. This
approximation is generally valid for optically thin or index-matched samples, like biological
cells. Intensity measurements can then be related to absorption (µ) and phase (ϕ) of the
sample [49, 81] by simple convolutions. As derived in Appendix A, the DPC forward model
in matrix form is:

In = F−1 (diag(Hµ)Fµ+ i · diag(Hϕ)Fϕ) . (5.2)
Here, diag(x) denotes a diagonal matrix with diagonal values x, F and F−1 represent the
DFT and inverse DFT matrices, In is the vectorized normalized measured intensity (with the
DC term subtracted), and Hµ and Hϕ are vectorized transfer functions for absorption and
phase. If the source satisfies the Köhler illumination configuration, the transfer functions
can be numerically evaluated based on the cross-correlation property of Fourier transforms:

Hµ =
1

Io

[
F−1diag(O∗)F+ F−1diag(F∗P ∗)Fdiag(S)

]
P (5.3)

Hϕ =
1

Io

[
F−1diag(O∗)F− F−1diag(F∗P ∗)Fdiag(S)

]
P , (5.4)

where ∗ is the complex conjugate operation, Io is the total intensity of the source passing
through the system, S and P are the vectorized source and pupil, and O = Fdiag(S)P .
Typically, the space-invariant exit pupil P is a circular function with its radius determined
by numerical aperture (NA), and wavelength, λ. The phase of P is the pupil aberration we
wish to recover, modeled as a weighted sum of Zernike modes on spatial frequency coordinate
(u) [162]:
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P (c) = Circ
( λu

NA

) M∏
m=0

eicmZm , (5.5)

where M is the total number of Zernike modes and c contains the coefficients, cm, of each
orthogonal mode Zm. To recover spatially-varying aberrations, we solve for individual pupil
aberrations at different spatial regions across the FOV and assume the aberrations are locally
space-invariant within each region. Given Eqs. (5.2)-(5.5), an objective function for the joint
optimization of absorption, phase and pupil aberrations can be formulated as:

min
µ,ϕ,c

Ns∑
s=1

∥∥∥FIn,s − diag (Hµ,s(c))Fµ− i · diag (Hϕ,s(c))Fϕ
∥∥∥2

2
+ τR(µ,ϕ) , (5.6)

where s is the measurement index of each corresponding source pattern, Ns is the total
number of measurements, ∥ · ∥2 represents an ℓ2 norm, τ is a regularization parameter and R
is a regularization term that helps mitigate noise artifacts. It is inferred from Eq. (5.6) that
the aberration coefficients c are coupled with both µ and ϕ, so simultaneously optimizing
all variables does not guarantee convergence. An alternating projection update strategy
instead provides a non-divergence guarantee, as was previously used for phase-from-focus
joint source recovery [146]. Similarly, we iteratively solve for both the complex object and
system aberrations as two sub-problems.

Our alternating projections algorithm initializes c with zero. At the start of one iteration,
the Zernike coefficients c are fixed and a DPC deconvolution sub-procedure (Section 5.2) is
performed in order to update the estimates of amplitude, exp(µ), and phase, ϕ. This new
complex-field estimate is then held fixed while an aberration estimation procedure (Sec-
tion 5.2) is performed. After updating the aberration estimate based on this procedure, a
new iteration begins. Eventually, the objective function converges to a stationary point,
giving the final estimates of amplitude, phase, and aberration coefficients. In general, this
optimization strategy works as long as there exist enough diversity and redundancy in the
measurements.

DPC phase retrieval sub-procedure
The phase retrieval sub-procedure amounts to solving the conventional DPC inverse prob-
lem [49,81], except that it incorporates the current estimate of the Zernike coefficients ck at
iteration k:

µk+1,ϕk+1 = arg min
µ,ϕ

Ns∑
s=1

∥∥∥FIn,s−diag (Hµ,s(ck))Fµ− i ·diag (Hϕ,s(ck))Fϕ
∥∥∥2

2
+ τR(µ,ϕ) .

(5.7)
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The regularization term, R, should be chosen based on a priori information about the sam-
ple. For instance, Tikhonov regularization can mitigate noise, and the solution of Eq. (5.7)
can then be found using a non-iterative deconvolution [81]. If the gradients of the object
are relatively sparse, the Total Variation (TV) regularizer can be used to reduce noise with-
out degrading edges. Since the regularization term for TV is not differentiable, iterative
algorithms for solving Eq. (5.7) are needed. In this paper, we use the Alternating Direction
Method of Multipliers (ADMM) to implement TV regularization [34], typically requiring
about 20 iterations.

Aberration recovery sub-procedure
The aberration recovery sub-procedure uses a nonlinear optimization algorithm to update
the aberration estimate based on the newly updated complex-field, which is held fixed. The
sub-procedure is initialized with the Zernike coefficients estimate from the previous iteration,
ck. Mathematically, the sub-procedure problem is written as:

ck+1 = arg min
c

Ns∑
s=1

∥∥∥FIn,s − diag (Hµ,s(c))Fµk+1 − i · diag (Hϕ,s(c))Fϕk+1

∥∥∥2

2
. (5.8)

Equation (5.8) may be solved by a gradient descent (first-order optimization) approach, or
more sophisticated second-order optimization routines (e.g. Newton’s method [146]). All
of these require computation of the gradient of the objective function with respect to c. If
we define the cost function as f =

∑Ns

s=1 ∥εs∥22, in which εs = FIn,s − diag(Hµ,s)Fµk+1 −
i · diag(Hϕ,s)Fϕk+1 is the residual vector, the gradient becomes ∇cf =

∑Ns

s=1 [∂εs/∂c]
H εs,

where H denotes Hermitian transpose. Using Eqs. (5.3)-(5.5), the gradient can be calculated
analytically as:

∇cf =
i

Io
ZTdiag(P ∗)

Ns∑
s=1

[
F−1diag(Os)F

[
diag(F∗µ∗

k+1)− i diag(F∗ϕ∗
k+1)

]
+

diag(Ss)F−1diag(FP )F
[
diag(F∗µ∗

k+1) + i diag(F∗ϕ∗
k+1)

] ]
εs .

(5.9)

In this gradient, T denotes transpose and the Zernike basis, ZT = [Z0,Z1, . . . ,ZM ]T, contains
a finite number of modes where Z0 . . .ZM are the vectorized Zernike modes. For efficient
computation, we adopt the L-BFGS algorithm [167] and use the gradient in Eq. (5.9) to
solve this nonlinear optimization problem, which generally takes ∼ 10 iterations to converge.

Simulation results
To verify the performance of our joint estimation framework, we show simulation results
in Fig. 5.2. The system parameters were chosen to match our experimental setup (0.4NA,
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wavelength 514nm, 177 source LEDs), with the LED array placed sufficiently far away from
the sample such that the illumination from each LED is effectively spatially coherent (plane
wave) [13, 94, 153].

We compare our results with joint phase and aberration recovery FPM in Fig. 5.2. FPM
captures a separate image for each of the 177 LEDs, whereas DPC requires only 4 images
to reconstruct the same quantities. FPM intensity images are simulated by using different
tilted plane wave illuminations corresponding to each single LED. All the intensity images
contain the same pupil aberration, which is a weighted sum of the first 21 Zernike modes.
Our simulated DPC measurements are the sum of the intensity images from half-circle blocks
of LEDs on the top, bottom, or right regions of the LED array [49]. For all measurements,
we added synthesized noise using a Poisson distribution with a mean of ∼3000 photons
per pixel. Equation (5.6) was then solved with ℓ2 regularization using the 4 DPC images,
while we implemented the same algorithm in [90] to recover complex-field and aberrations
using FPM with the full 177 image dataset. In this setup, FPM could use as few as 32
images (illuminations from the outer-most annular LEDs only) to achieve the same spatial
frequency coverage as our DPC method. Therefore, we also include the results of FPM with
32 measurements for comparison.

Reconstructions from both FPM and our DPC algorithm match the ground truth (See
Fig. 5.2(b)); however, our method only requires 4 measurements, reducing acquisition time
and memory requirements. Figure 5.2(c) plots the normalized root-mean-square error (∥x−
xtrue∥2/∥xtrue∥2) at each iteration for both complex-field and pupil aberrations. FPM incurs
lower complex-field error than DPC, likely due to both the weak scattering approximation
and the larger dataset. As for the pupil aberration error, FPM performance varies signifi-
cantly with dataset size. While FPM with the full dataset outperforms the proposed DPC
framework, our method provides a better result than FPM with 32 images. This is because
FPM with fewer measurements has lower effective SNR, adding noise to the recovered pupil
aberration (inset of Fig. 5.2(b)). Our method requires significant computation since it solves
two optimization problems at each iteration, but the computation time is comparable to a
sequential FPM reconstruction. Both methods were implemented in MATLAB on a desktop
computer (Intel Core i7 CPU, Nvidia Tesla C2075 GPU). With a 650×584 pixel object, each
iteration took 2.2s for FPM and 2.5s for our DPC algorithm.

Experimental results
Experimentally, we use an LED array microscope with the illumination module replaced with
a custom-built LED array (λ = 0.514µm) [49,94]. A phase target (Benchmark Technologies),
which contains periodic patterns of continuous spatial frequencies, is imaged by a 20× 0.4NA
objective lens (Nikon, CFI Plan Achro) in a Nikon TE300 microscope and images are recorded
by a PCO.edge 5.5 sCMOS camera on the front port of the microscope (which adds 2×
magnification). To test the weak phase gradient assumption, phase images of 6 resolution
targets of different heights are recovered using DPC. After validating the reconstructed
phase values against theoretical ones, we find that DPC provides accurate results when the
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Figure 5.2: Performance of joint phase and aberrations estimation on a simulated dataset.
(a) Simulated FPM and DPC measurements. Red dashed circles indicate the NA of the
objective lens. (b) Joint estimation of optical field and pupil aberrations, comparing ground
truth, FPM and DPC measurements. (c) Errors for complex-field and aberrations at each
iteration.

phase of the sample is below 0.64 radians, then underestimates the phase values due to
breakdown of the approximation (see Visualization 1). We collect 177 measurements by
scanning individual LEDs within a maximum 0.4NA illumination angle. To provide a fair
comparison, we use the same measurements to synthesize the 4 images for our method. As
shown in Fig. 5.3(a), DPC measurements with half-circle source patterns have high resolution
and qualitatively reveal the phase gradients of the sample, while measurements with single-
LED illumination have lower resolution. Two single-LED image zoom-ins that contain the
same structure at different orientations are shown in Fig. 5.3(a). One has high contrast, while
the other does not, because of directional aberrations. By processing the images using the
FPM algorithm and the proposed method with TV regularization, we recover the phase of
the sample as shown in Fig. 5.3(b). The FPM and DPC reconstructions are similar and can
resolve features with period as small as λ/ (2×NA) = 0.643µm. In addition, both results
provide reliable quantitative phase of the sample. The refractive index of the binary phase
target is 1.52, with height of 100nm, resulting in ∼0.64 radians peak-to-valley. Looking at
the 1D cut-lines (taken along dashed lines) in Fig. 5.3(b), after subtracting the mean of each,
the reconstructions show good agreement with the ideal height.
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Pupil aberrations recovered by both FPM and DPC algorithms are in Fig. 5.3(c). While
we have no ground truth, aberrations estimated from FPM and DPC match well within the
4th radial degree of Zernike modes. The dominant aberration in the objective lens is the
8th Zernike mode (horizontal coma); this agrees with the evidence of directional aberration
mentioned above. One reason causing a difference between the reconstructed pupils is the
high-frequency fluctuation shown in the pupil aberration from FPM, which does not exist
in the low-order Zernike modes. Although high-order aberrations might be estimated with
more measurements to avoid overfitting, it’s usually enough to improve image quality by
correcting the low-order aberrations.

…
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Figure 5.3: (a) Experimental FPM and DPC measurements for different LED source pat-
terns. Zoomed regions at different orientations for coherent illumination are marked in cyan
and pink boxes, respectively. (b) Quantitative phase of a star target using FPM and DPC,
along with 1D cutlines for FPM (red) and DPC (blue) along the dashed lines. (c) Recon-
structed wavefront error function and the weights of each Zernike mode up to the 4th radial
degree.

To quantify the performance of our method, we introduced known defocus aberrations
using an axial motion stage (Thorlabs, MZS500-E). We translated the phase test target
across a range of known axial steps over a total range of 40µm. Each 2µm of translation,
the 4 images for our method were acquired using a 10× 0.25NA objective lens (Nikon, CFI
Plan Achro) at an acquisition rate of 20Hz. Quantitative phase reconstructions assuming
zero aberration, aberration-corrected phase images and the recovered aberrations are shown
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in Fig. 5.4(a). With increased defocus, the uncorrected phase results degrade. Though
our method also suffers from resolution degradation at large defocus distances (±20µm), it
provides better resolution than the uncorrected phase retrieval. For example, in Fig. 5.4(b)
the numbers in group 9 are resolved with pupil correction, while they are not readable in
the uncorrected result.

We can also recover the focus distances from the defocus term of the Zernike modes
and compare the estimated defocus values to known values (Fig. 5.4(c)). Since the Zernike
basis is normalized in a range from -1 to 1, the defocus value, d, at each time point, t, can
be evaluated as d(t) = c4(t) × λ/π/(1 − (1 − NA2)0.5). As expected, the predicted pupil
aberrations have quadratic form, which indicates that defocus dominates. Experimentally,
our method overestimates defocus values by a factor of 1.16. This discrepancy might originate
from mis-calibration of the experiment or parameters used in computation (e.g. wavelength,
NA of the objective lens, precision of the motion stage). This linear relationship between the
predicted positions and the true focus holds when the magnitude of defocus is less than 16
µm, ∼2× Depth of Field (DoF). However, the accuracy of aberration correction drops as the
defocus value exceeds 2× DoF, when the maximum phase difference in the pupil becomes
larger than 2π and the algorithm becomes more likely to converge to a local minimum.
From these experiments, we conclude that our method accurately estimates time-varying
aberrations within a total range of 4× DoF.

Our method is easily extended to account for spatially-varying aberrations, simply by
solving the joint estimation problem separately over different patches of the FOV. In order
to visualize spatially-varying aberrations, we prepared oil (Cargille, nD = 1.58) immersed
10µm polystyrene beads (Sigma-Aldrich) as our sample, which is assumed to be nearly
spatially invariant. The sample was imaged by a 4× 0.2NA objective lens (Nikon, CFI Plan
Apo Lambda) that has a FOV of 1.7 × 2.1mm. Four images were captured at 12.5Hz using
the same source patterns as in Fig. 5.3(a). Field-dependent aberrations are primarily caused
by two types of system imperfections. First, the incident angle of individual LEDs changes
from one FOV to another, since the relative position between the LEDs and the sample
at each FOV varies. Second, there exist spatially-varying aberrations native to the optical
system. To accommodate this spatial variance, we break the full FOV into small patches, and
apply the joint estimation algorithm on each patch independently. In this case, the incident
angle of individual LEDs and the aberrations are assumed invariant within the patch, which
is usually valid when the region is much smaller than the total FOV. In Fig. 5.5(a), the
full FOV is divided into 100 patches. Within each patch, the absorption, phase and pupil
aberration were recovered independently before being stitched together to form the full FOV
images. In practice, optimization for each patch converges in 20− 30 iterations.

Looking at the aberrations recovered, the center of the FOV is essentially aberration-free,
which is consistent with the fact that optical systems are usually optimized there. Therefore,
the absorption and phase images with pupil recovery are similar to that without aberration
correction. Aberrations are much stronger along the edges of the FOV, where the field
curvature blurs the image. Consequently, obvious differences occur between the normal DPC
and aberration-corrected DPC reconstructions at those patches. The recovered amplitude
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Figure 5.4: (a) Quantitative phase reconstructions of a USAF 1951 resolution target at
various defocus distances with and without aberration correction, and the corresponding
recovered aberrations (see Visualization 2). (b) Zoomed-in reconstructions at defocus of
10µm. (c) Known and experimentally-estimated defocus values from the 4th Zernike mode
over time.

(absorption) at the bottom right corner is dramatically changed after applying aberration
correction. Qualitatively, the uncorrected absorption at the edge of the field appears to
contain some phase information, leading to a shadow-like appearance; these artifacts are
removed with pupil recovery. In addition, while aberrated phase evaluated with Tikhonov
deconvolution suffered from high-frequency noise, phase with pupil correction shows reduced
noise due to the use of TV regularization.

In computational imaging systems, system aberrations can significantly degrade quanti-
tative phase and absorption reconstructions if not properly compensated. In order to correct
the aberration without conducting additional measurements to calibrate the system, joint
estimation of the sample and the pupil function is needed. While Fourier ptychography or
coded aperture imaging provides pupil recovery, these methods often require many measure-
ments. In this paper, we demonstrated a DPC-based phase retrieval technique that simulta-
neously recovers the system pupil function and quantitative phase and absorption of a sample
with only 4 intensity images. By combining 3 DPC images as well as 1 measurement made
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Figure 5.5: (a) Reconstructed absorption, phase and spatially-varying aberrations (recov-
ered pupil wavefronts for different regions of the field-of-view). (b) Comparison of results
with and without pupil estimation for central and edge regions of the field-of-view.

under coherent illumination, diffraction-limited field and aberration with arbitrary Zernike
orders were acquired through an alternating non-convex optimization. This method not only
reduces the data acquisition time, but also increases signal-to-noise ratio due to higher light
throughput compared to single-LED acquisition. The recovered system aberrations are gen-
eral to the system and may be used for image correction in other imaging modalities, such
as deconvolution of fluorescence images [168].
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5.3 Source Self-Calibration using Fourier
Ptychography

Computational imaging leverages the power of both optical hardware and computational
algorithms to reconstruct images from indirect measurements. In optical microscopy, pro-
grammable sources have been used for computational illumination techniques including multi-
contrast [45, 164], quantitative phase [13, 49, 65, 169] and super-resolution [13, 90, 170, 171].
Implementation is simple, requiring only an inexpensive source attachment for a commercial
microscope. However, these methods are also sensitive to experimental misalignment errors
and can suffer severe artifacts due to model mismatch. Extensive system calibration is needed
to ensure that the inverse algorithm is consistent with the experimental setup, which can be
time- and labor-intensive. This often requires significant user expertise, making the setup
less accessible to reproduction by non-experts and undermining the simplicity of the scheme.
Further, pre-calibration methods are not robust to changes in the system (e.g. bumping the
setup, changing objectives, sample-induced aberrations) and require precise knowledge of a
ground-truth test object.

Algorithmic self-calibration methods [147–149, 152–154, 172–180] eliminate the need for
pre-calibration and precise test objects by making calibration part of the inverse problem.
These methods jointly solve two inverse problems: one for the reconstructed image of the
object and the other for the calibration parameters. By recovering system calibration infor-
mation directly from captured data, the system becomes robust to dynamic changes in the
system.

Here, we focus on illumination angle self-calibration for Fourier Ptychographic Microscopy
(FPM) [13]. FPM is a coherent computational imaging method that reconstructs high-
resolution amplitude and phase across a wide field-of-view (FOV) from intensity images
captured with a low-resolution objective lens and a dynamically-coded illumination source.
Images captured with different illumination angles are combined computationally in an iter-
ative phase retrieval algorithm that constrains the measured intensity in the image domain
and pupil support in the Fourier domain. This algorithm can be described as stitching
together different sections of Fourier space (synthetic aperture imaging [181, 182]) coupled
with iterative phase retrieval. FPM has enabled fast in vitro capture via multiplexing [49,90],
fluorescence imaging [154], and 3D microscopy [139,183]. It requires significant redundancy
(pupil overlap) in the dataset [171,184], making it suitable for joint estimation self-calibration.

Self-calibration routines have previously been developed to solve for pupil aberrations [152,
153, 172], illumination angles [148, 173–176], LED intensity [147], sample motion [149], and
auto-focusing [177] in FPM. The state-of-the-art self-calibration method for illumination
angles is simulated annealing [148, 173], a joint estimation solution which (under proper
initialization) removes LED misalignment artifacts that usually manifest as low-frequency
noise. Unfortunately, because the simulated annealing procedure operates inside the FPM
algorithm iterative loop, it slows the run-time of the solver by an order of magnitude or more.
For 3D FPM (which is particularly sensitive to angle calibration [139]), the computational
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Figure 5.6: Illumination angles are calibrated by analyzing Fourier spectra. (a) A cheek cell
is illuminated at angle α and imaged with NAobj. (b) Brightfield images contain overlapping
circles in their Fourier spectra; darkfield images do not. (c) We perform a fast and efficient
brightfield calibration in pre-processing, then extrapolate the correction to darkfield images
and, finally, iteratively calibrate angles inside the FPM algorithm using a spectral correlation
calibration.

costs become infeasible.
Moreover, most self-calibration algorithms require a relatively close initial guess for the

calibration parameters. This is especially true when the problem is non-convex or if multiple
calibration variables are to be solved for (e.g. object, pupil, and angles of illumination). Of
the relevant calibration variables for FPM, illumination angles are the most prone to error,
due to shifts or rotations of the LED array [118], source instabilities [178, 185], non-planar
illuminator arrangements [73,79,168,186], or sample-induced aberrations [187,188]. Sample-
induced aberrations can also change the effective illumination angles dynamically, such as
when the sample is in a moving aqueous solution.

We propose here a two-pronged angle self-calibration method that uses both pre-processing
(brightfield calibration) and iterative joint estimation (spectral correlation calibration) that
is quicker and more robust to system changes than state-of-the-art calibration methods2. A

2This work was developed in close collaboration with fellow Ph.D. student Regina Eckert (Waller Lab,
EECS, UC Berkeley)
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circle-finding step prior to the FPM solver accurately identifies the angles of illumination in
the brightfield (BF) region. A transformation between the expected and BF calibrated angles
extrapolates the correction to illuminations in the darkfield (DF) region. Then, a local grid-
search-based algorithm inside the FPM solver further refines the angle estimates, with an op-
tional prior based on the illuminator geometry (Fig. 5.6). Our method is object-independent,
robust to coherent noise, and time-efficient, adding only seconds to the processing time. We
demonstrate on-line angle calibration for 2D and 3D FPM with 3 different source types: an
LED array, a galvanometer-steered laser, and a high-NA (max NAillum = 0.98) quasi-dome
illuminator [79].

Methods
The image formation process for a thin sample under off-axis spatially coherent plane wave
illumination can be described by:

Ii(r) = |O(r)e−i2πkir ∗ P (r)|2 = |F−1(Õ(k − ki)P̃ (k))|2, (5.10)
where ki is the spatial frequency of the incident light, P̃ (k) is the system pupil function,
Õ(k) is the object Fourier spectrum, and F is the 2D Fourier transformation operation, valid
for shift-invariant systems. Intensity images are captured at the sensor plane, corresponding
to auto-correlation in the Fourier domain:

Ĩi(k) = F(|O(r)e−i2πkir ∗ P (r)|2)
= Õ(k − ki)P̃ (k) ⋆ Õ(k − ki)P̃ (k),

(5.11)

where ∗ denotes convolution and ⋆ denotes auto-correlation. Õ(k − ki)P̃ (k) corresponds
to the shifted spectrum of the object within the circle |k| ≤ NAobj

λ
and 0 everywhere else.

The auto-correlation operation essentially scans two copies of Õ(k − ki)P̃ (k) across each
other, coherently summing at each shift to give Ĩi(k). Typically, the object spectrum has a
large zero-order (DC) term that decays sharply towards higher frequencies. In the brightfield
region, when the DC term at ki is within the pupil’s passband, the auto-correlation effectively
scans this DC term across the conjugate spectrum, giving high values where the DC term
overlaps with the conjugate pupil and negligible signal elsewhere. This interference between
the DC term and pupil in the auto-correlation creates two distinct circles centered at ki and
−ki in the intensity spectrum amplitude (Fig. 5.6). Hence, we can calibrate the illumination
angle by finding these circle centers. For darkfield images, the DC term is outside NAobj

λ

and so we do not observe clearly defined circles in |Ĩi| (Fig.5.6b), making calibration more
complicated.

Our algorithm relies on analysis of the raw intensity Fourier transform to recover illu-
mination angles. Fourier domain analysis of intensity images has been used previously to
deduce aberrations [189] and determine the center of diffraction patterns [190, 191] for sys-
tem calibration. We show here that the individual Fourier spectra can be used to accurately
determine illumination angles in both the brightfield and darkfield regime.
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Figure 5.7: Circular edge detection on brightfield images finds circle centers, giving illu-
mination angle calibration. (a,b) Comparison of uncalibrated (red) and calibrated (black)
illumination ki. The blue box in (b) indicates the search range for ki. (c,d) Ĩi along radial
lines, f(r, ϕn), and derivatives with respect to r. (e,f) E1 and E2, sums of the derivatives at
known radii R and R+ σ, peak near the correct center. Boxes show uncalibrated (red) and
calibrated (black) ki centers.

Brightfield Calibration
Locating the center of the circles in the amplitude of a Fourier spectrum is an image pro-
cessing problem. Previous work in finding circles in images uses the Hough transform, which
relies on an accurate edge detector as an initial step [192,193]. In practice, however, we find
that edge detectors do not function well on our datasets due to speckle noise, making the
Hough transform an unreliable tool for our purpose.

Intuitively, circular edge detection can be understood as performing edge detection (i.e.
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calculating image gradients) along a circular arc around a candidate center point in k-space
(the Fourier domain). To first approximation, we assume |Ĩi| is a binary function that is 1
inside the two circles and 0 everywhere else. Our goal is to find the strong binary edge in
order to locate the circle center. We need only consider one of the circles, since the intensity
image is real-valued and so its Fourier transform is symmetric. Based on information we have
about our illumination set-up, we expect the illumination spatial frequency (and therefore
circle center) for spectrum Ĩi to be at ki,0 = (kx,i,0, ky,i,0) (polar coordinates ki,0 = (di,0, θi,0))
(Fig. 5.7a). If this is the correct center k′

i, we expect there to be a sharp drop in |Ĩi| at
radius R along any radial line f(r, ϕn) out from k′

i (Fig. 5.7b). This amplitude edge will
appear as a peak at r = R in the first derivative of each radial line with respect to r, f ′(r, ϕn)
(Fig. 5.7d). Here (r, ϕn) are the polar coordinates of the radial line with respect to the center
ki, considering the nth of N radial lines.

We identify the correct k′
i by evaluating the summation of the first derivative around the

circular arc at r = R from several candidate ki = (di, θi) positions:

E1(R, di, θi) =
N∑

n=1

f ′(r = R, ϕn, di, θi). (5.12)

When ki is incorrect, the edges do not align and the derivative peaks do not add construc-
tively at R (Fig. 5.7c). The derivatives at R are all maximized only at the correct center k′

i

(Fig. 5.7d), creating a peak in E1 (Fig. 5.7e). This is analogous to applying a classic edge
filter in the radial direction from a candidate center and accumulating the gradient values
at radius R.

In order to bring our data closer to our binary image approximation, we divide out
the average spectrum meani(|Ĩi|) across all i spectra. Because the object remains constant
across images while the angles of illumination change, the average spectrum is similar in
form to the object’s auto-correlation spectrum, with a sharp central peak decaying towards
higher frequencies. The resulting normalized spectra contain near-constant circles on top of
background from higher-order terms. We then convolve with a Gaussian blur kernel with
standard deviation σ to remove speckle noise (Alg. 1.1-2). Experimentally, we choose σ = 2
pixels, which balances blurring speckle noise and maintaining the circular edge. Under this
model, the radial line f(r, ϕn) from our correct center k′

i can be modeled near the circular
edge as a binary step function convolved with a Gaussian:

f(r, ϕn, d
′
i, θ

′
i) = rect( r

2R
) ∗ 1√

2πσ
e

−r2

2σ2 . (5.13)

By differentiating through f ′′′(r, ϕn) and setting equal to zero, we find the peak of f ′(r, ϕn)
still occurs at r = R. Additionally, we find that the second derivative f ′′(r, ϕn) has a
maximum at r = R + σ. Experimentally, we have found that considering both the first and
second derivatives increases our accuracy and robustness to noise across a wide variety of
datasets. We therefore calculate a second derivative metric,
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E2(R + σ, di, θi) =
N∑

n=1

f ′′(r = R + σ, ϕn, di, θi), (5.14)

which is jointly considered with Eq. 5.12. We identify candidate centers ki that occur near
the peak of both E1 and E2 (Fig. 5.7e-f), then use a least-squares error metric to determine
the final calibrated k′

i (Alg. 1.5-9). In practice, we also only consider the non-overlapping
portion of the circle’s edge, bounding ϕ.

Until now, we have assumed that the precise radius R of the pupil is known. However, in
pixel units, R is dependent on the pixel size of the sensor, ps, and the system magnification,
mag:

R =
NAobj

λ

ps ∗M
mag

, (5.15)

as well as NAobj and λ, where Ĩi is dimension M ×M . Given that mag and NAobj are often
imprecisely known but are unchanged across all images, we calibrate the radius by finding
the R′ which gives the maximum gradient peak E1 across multiple images before calibrating
k′
i (Alg. 1.3). A random subset of images may be used to decrease computation time.

Algorithm 1 Brightfield Calibration
1: Ĩf ← |Ĩ|/meani(|Ĩi|) ▷ Divide out mean spectrum
2: Ĩf ← gauss(Ĩf , σ) ▷ Smooth speckle
3: R′ ← argmaxR E1(R, di, θi), subset (Ĩf,i) ▷ Calibrate radius
4: for ith image do ▷ Circular edge detection
5: ki,1 ← (di, θi) where E1 near max (within 0.1 std)
6: ki,2 ← (di, θi) where E2 near max
7: ki ← ki,1 ∩ ki,2 ▷ Consider both metrics
8: k′

i ← argminki
||Ii − F(Ĩi · P̃ (k − ki))||2 ▷ Evaluate ki

9: end for
10: A, ioutliers ← RANSAC(A = k′

i/ki,0) ▷ Identify outliers
11: k

(0)
inliers ← k′

inliers ▷ Initialize for FPM
12: k

(0)
outliers ← Akoutliers,0

13: k
(0)
darkfield ← Akdarkfield,0

Spectral Correlation Calibration
While the brightfield (BF) calibration method localizes illumination angles using intrinsic
contrast from each measurement, this contrast is not present in high-angle (darkfield) mea-
surements (Fig. 5.6b). Therefore, we additionally solve a more general joint estimation
problem to refine the initialization provided by BF calibration, where the object O(r), pupil



CHAPTER 5. SELF-CALIBRATION OF CODED ILLUMINATION SYSTEMS 86

P (k), and illumination angles ki are optimized within the FPM algorithm. At each inner
iteration, we estimate the ith illumination angle by minimizing the FPM objective function
with respect to illumination angle (Fig. 5.8a). This step finds the relative k-space location
of the current spectrum Ĩi relative to the overall object, providing an estimate k

(m)
i relative

to the other illuminator angles k
(m)
j , j ̸= i. We call this the spectral correlation method

because this optimization implicitly finds k
(m)
i which best aligns the ith spectrum with the

estimated object spectrum Õ(k)(m).
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Figure 5.8: BF calibration uses a fast pre-processing step to estimate illumination angles,
then SC calibration iteratively refines them within the FPM solver. (a) Algorithm block
diagram, (b) uncalibrated (red) and BF + SC calibrated (green) illumination angle map.
Insets are example search spaces, showing local convexity. (d) FPM convergence plot for
different methods.

Unlike previous joint estimation methods [148, 173], we constrain ki to exist on the
k-space grid defined by our image sampling. Our k-space resolution is band-limited by
the size of the image patch, s = (sx, sy), across which the illumination can be assumed
coherent. This coherent area size is determined by the van Cittert-Zernike theorem, which
can be simplified [194] to show that the coherence length lc of illumination with mean source
wavelength λ̄ produced by a source of size ρ at a distance R is determined by:

lc =
0.61Rλ̄

ρ
. (5.16)

For example, a 300µm wide LED placed 50mm above the sample with λ̄ = 530nm gives
lc = 53.8µm, which provides an upper bound on the size of image patch used in the FPM
reconstruction, (sx, sy) ≤ lc. This limitation imposes a minimum resolvable discretization of
illumination angles ∆k = 2

s
due to the Nyquist criterion. Since we cannot resolve finer angle

changes, we need only perform a local grid search over integer multiples of ∆k, which makes
our joint estimation SC method much faster than previous methods.

SC calibration is cast as an iterative optimization of discrete perturbations of the esti-
mated angle using a local grid search. At each FPM iteration, we solve for the optimal pertur-
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bation of illumination angle k
(m)
i over integer multiples n = (nx, ny) of k-space resolution-

limited steps ∆k such that the updated illumination position k
(m+1)
i = k

(m)
i + n · ∆k

minimizes the ℓ2 distance between the object and illumination angle estimates and measure-
ments,

argmin
n

||Ii − |O(m+1)e−i2π(k
(m)
i +n∆k)r ∗ P (m+1)|2||22

subject to n = (nx, ny), (nx, ny) ∈ [−1, 0, 1].
(5.17)

This grid search is performed iteratively within each sequential iteration of an FPM recon-
struction until ki converges, giving a lower reconstruction cost than BF calibration alone
(Fig. 5.8b-c).

The choice of n = (nx, ny) to search can be tuned to match the problem. In most ex-
perimental cases, we find that a search of the immediate locality of the current estimate
((nx, ny) ∈ [−1, 0, 1]) gives a good balance between speed and gradient performance when
paired with the close initialization from our BF calibration. A larger search range (e.g.
(nx, ny) ∈ [−2,−1, 0, 1, 2]) may be required in the presence of noise or without a close initial-
ization, but the number of points searched will increase with the square of the search range,
causing the algorithm to slow considerably.

Including prior information about the design of the illumination source can make our
calibration problem more well-posed. For example, we can include knowledge that an LED
array is a rigid, planar illuminator in our initial guess of the illumination angle map, ki,0.
By forcing the current estimates k

(m)
i to fit a transformation of this initial angle map at the

end of each FPM sub-iteration, we can use this knowledge to regularize our optimization
(Fig. 5.8a). The transformation model used depends on the specific illuminator. For example,
our quasi-dome LED array is composed of five circuit boards with precise LED positioning
within each board but variable board position relative to each other. Thus, imposing an
affine transformation from the angle map of each board to the current estimates k

(m)
i sig-

nificantly reduces the problem dimensionality and mitigates noise across LEDs, making the
reconstruction more stable.

Results
Planar LED Array

We first show experimental results from a conventional LED array illumination system with a
10×, 0.25 NA and a 4×, 0.1 NA objective lens at λ = 514nm and NAillum ≤ 0.455 (Fig. 5.9).
We compare reconstructions with simulated annealing, our BF pre-processing alone, and our
combined BF+SC calibration method. All methods were run in conjunction with EPRY
pupil reconstruction [153]. We include results with and without the SC calibration to illus-
trate that the BF calibration is sufficient to correct for most misalignment of the LED array
since we can accurately extrapolate LED positions to the darkfield region when the LEDs
fall on a planar grid. However, when using a low NA objective (NAobj ≤ 0.1), as in Fig. 5.9d,
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Figure 5.9: Experimental results with an LED array microscope, comparing reconstructions
with no calibration (average reconstruction time 132 seconds), simulated annealing (3453
s), our BF calibration (156 s), and our BF + SC calibration (295 s). (a) Amplitude re-
constructions of a USAF target in a well-aligned system. (b) Amplitude reconstructions of
the same USAF target with a drop of oil placed on top of the sample to simulate sample-
induced aberrations. (c) Phase reconstructions of a human cheek cell with computationally
misaligned illumination, and (d) a Siemens star phase target with experimentally misaligned
illumination.

the SC method becomes necessary because the BF calibration is only able to use 9 images
(compared to 69 brightfield images with a 10×, 0.25 NA objective, as in Fig. 5.9a-c).

Our method is object-independent, so can be used for phase and amplitude targets as
well as biological samples. All methods reconstruct similar quality results for the well-aligned
LED array with the USAF resolution target (Fig. 5.9a). To simulate an aqueous sample,
we place a drop of oil on top of the resolution target. The drop causes uneven changes in
the illumination, giving low-frequency artifacts in the uncalibrated and simulated annealing
cases which are corrected by our method (Fig. 5.9b). Our method is also able to recover a
5◦ rotation, 0.02 NA shift, and 1.1× scaled computationally-imposed misalignment on well-
aligned LED array data for a cheek cell (Fig. 5.9c), and gives a good reconstruction of an
experimentally misaligned LED array for a phase Siemens star (Benchmark Technologies,
Inc.) (Fig. 5.9d). In contrast to simulated annealing, which on average takes 26× as long to
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Figure 5.10: Experimental angle calibration in laser and high-NA quasi-dome illumination
systems. (a) Laser illumination is steered by a dual-axis galvanometer. The angled beam is
relayed to the sample by 4”, 80 mm focal length lenses. (b) Our calibration method removes
low-frequency reconstruction artifacts. (c) The quasi-dome illuminator enables up to 0.98
NAillum using programmable LEDs. (d) Our 1.23 NA reconstruction provides isotropic 425
nm resolution with BF + SC calibration.

process as FPM without calibration, our brightfield calibration only takes an additional 24
seconds of processing time and the combined calibration takes roughly only 2.25× as long
as no calibration.

Steered Laser

Laser illumination can be used instead of LED arrays to increase the coherence and light
efficiency of FPM [168,185]. In practice, laser systems are typically less rigidly aligned than
LED arrays, making them more difficult to calibrate. To verify the performance of our
method, we constructed a laser-based FPM system using a dual-axis galvanometer to steer
a 532 nm, 5 mW laser, which is focused on the sample by large condenser lenses (Fig. 5.10a).
This laser illumination system allows finer, more agile illumination control than an LED
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array, as well as higher light throughput. However, the laser illumination angle varies from
the expected value due to offsets in the dual-axis galvonometer mirrors, relay lens aberrations,
and mirror position mis-estimations when run at high speeds. Our method can correct for
these problems in a fraction of the time of previous methods (Fig. 5.10b).

Quasi-Dome

Since the FPM resolution limit is set by NAobj+NAillum, high-NA illuminators are needed for
large space-bandwidth product imaging [79, 195]. To achieve high-angle illumination with
sufficient signal-to-noise ratio in the darkfield region, the illuminators must become more
dome-like, rather than planar [73]. We previously developed a novel programmable quasi-
dome array made of five separate planar LED arrays that can illuminate up to 0.98 NA [79].
This device uses discrete LED control with RGB emitters (λ̄ = [475nm, 530nm, 630nm]) and
can be easily attached to most commercial inverted microscopes (Fig. 5.10c).

As with conventional LED arrays, we assume that the LEDs on each board are rigidly
placed as designed. However, each circuit board may have some relative shift, tilt, or rotation
since the final mating of the 5 boards is performed by hand. LEDs with high-angle incidence
are both harder to calibrate and more likely to suffer from mis-estimation due to the dome
geometry, so the theoretical reconstruction NA would be nearly impossible to reach without
self-calibration. Using our method, we obtain the theoretical resolution limit available to
the quasi-dome (Fig. 5.10d). The SC calibration is especially important in the quasi-dome
case since it usually has many darkfield LEDs.

Discussion
Our calibration method offers significant gains in speed and robustness as compared to
previous methods. BF calibration enables these capabilities by obtaining a good calibration
that needs to be calculated only once in pre-processing, reducing computation. Since an
estimation of a global shift in the illuminator based only on the brightfield images provides
such a close initialization for the rest of the illumination angles, we can use a quicker, easier
joint estimation computation in our SC calibration than would be otherwise possible. Jointly,
these two methods work together to create fast and accurate reconstructions.

We analyze the robustness of our method to illumination changes by simulating an object
illuminated by a grid of LEDs with NAillum < 0.41, with LEDs spaced at 0.041NA intervals.
We define the system to have λ = 532nm, with a 10×, 0.25 NA objective, a 2× system
magnification, and a camera with 6.5µm pixels. While the actual illumination angles in
the simulated data remain fixed, we perturb the expected angle of illumination in typical
misalignment patterns for LED arrays: rotation, shift, and scale (analogous to LED array
distance from sample). We then calibrate the unperturbed data with the perturbed expected
angles of illumination as our initial guess.

Our method recovers the actual illumination angles with error less than 0.005 NA for
rotations of−45◦ to 45◦ (Fig. 5.11a); shifts of -0.1 to 0.1 NA, or approximately a displacement
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Figure 5.11: Our calibration methods are robust to large mismatches between estimated and
actual LED array position. Simulation of misaligned illumination by (a) rotation, (b) shift,
and (c) scale. Our calibration recovers the illumination with <0.005 NA error for rotations
of −45◦ to 45◦, shifts of -0.1 to 0.1 NA, and scalings of 0.5× to 1.75× before diverging.

of +/- 2 LEDs (Fig. 5.11b); and scalings of 0.5× to 1.75× (or LED array height between
40-140 cm if the actual LED array height is 70 cm) (Fig. 5.11c). In these ranges, the average
error is 0.0024 NA, less than the k-space resolution of 0.0032 NA. Hence, our calibrated
angles are very close to the actual angles even when the input expected angles are extremely
far off. This result demonstrates that our method is robust to most mis-alignments in the
illumination scheme.

In summary, we have presented a novel two-part calibration method for recovering the illu-
mination angles of a computational illumination system for Fourier ptychography. We have
demonstrated how this self-calibrating method makes Fourier ptychographic microscopes
more robust to system changes and aberrations introduced by the sample. The method also
makes it possible to use high-angle illuminators, such as the quasi-dome, and non-rigid illu-
minators, such as laser-based systems, to their full potential. Our pre-processing brightfield
calibration further enables 3D multislice Fourier ptychography to reconstruct high-resolution
features across larger volumes than previously possible. These gains were all made with min-
imal additional computation, especially when compared to current state-of-the-art methods.
Efficient self-calibrating methods such as these are important to make computational imaging
methods more robust and available for broad use in the future.
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5.4 Summary
In computational imaging systems, mis-calibrations can significantly degrade reconstructions
if not properly compensated for. Here, we have presented two frameworks for algorithmic
self-calibration. In Section 5.2, we presented a novel method for performing self-calibration
of system aberrations using just four measurements - three half-circle (DPC) measurements
and one coherent (single-LED) measurement. These four measurements enable the recov-
ery of both the complex field of the object as well as spatially-variant system aberrations.
These aberrations can be acquired quickly and reconstructed using standard reconstruction
techniques such as ADMM. In Section 5.3, we presented a novel method for recovering
source illumination angles of planar, quasi-domed, and steered laser sources using an offline
(image-based) self-calibration algorithm, which is then refined using an online (FPM-based)
self-calibration algorithm. For devices subject to manufacturing variations (such as the quasi-
dome), these techniques are absolutely essential for high-resolution FPM reconstructions.

Owing to their non-convex formulations, self-calibration will never be as good as proper
physical calibration of the systems, when such calibration is possible. However, when mis-
calibration is suspected, these methods will always improve reconstruction quality compared
to the uncorrected case, and therefore should be used whenever possible. Practically, the per-
formance Quasi-dome presented in Section 4.1 is significantly improved using self-calibration
due to positioning error between printed circuit boards it is composed of. The open-source
code used in these sections is provided in the Appendix 7, Section 7.2.
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Chapter 6

Conclusion

Driving the performance limits of optical microscopy systems requires a unique blend of
both hardware and software innovations. Among a wide variety of techniques for probing
a sample, coded illumination using a programmable light source is advantageous due to
its simplicity and wide utility for various computational imaging techniques. In this work,
we proposed a variety of techniques which take advantage of programmable illumination to
enable label-free contrast, quantitative imaging, and high-throughput imaging at relatively
low cost and complexity on existing optical systems. We have leveraged novel hardware and
computational techniques to push performance boundaries in critical areas, such as label-free
imaging and neuropathology. Further, we have put significant effort towards quantifying
when computational techniques do not provide benefit, acknowledging limiting cases where
conventional methods are still state-of-the-art. Taken together, the methods presented in
this work illustrate the capabilities of a computational imaging system, and offer evidence
of the impact these systems could have on the broader microscopy community.

Phase

Measurement

3D Printed Insert

0

14

rad

In Chapter 2 we described differential phase con-
trast (DPC), a quantitative phase imaging method
which uses partially coherent illumination to recover
the complex field of a thin (weak) object. We then in-
troduced a single-shot variant of DPC which uses color-
multiplexed illumination to recover the linearized op-
tical field from a single measurement. Our hardware
requirements are simple, inexpensive, and compatible
with most commercial microscopes through of the use of
a color camera and a simple color filter insert placed at
the back focal plane of the condenser lens, the same po-
sition as many removable phase contrast annulus rings.
Unlike phase contrast and DIC, our method does not
require special objectives or prisms, which reduces our
hardware costs to that of the 3D printed filter itself. In
addition, we can use our quantitative phase and amplitude methods to synthesize phase con-
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trast and DIC images digitally, matching the functionality of existing phase imaging systems
at a fraction of the cost. Finally, we presented a framework for analyzing the source design
for DPC-based system in terms of SNR and explored source calibration and measurement
count as examples of this analysis.

Deblurring

In Chapter 3, we introduced the concept of high-
throughput imaging, and described conventional meth-
ods for obtaining images with a wide field-of-view and
high resolution. After discussing the limitations of ex-
isting methods, we proposed a novel coded illumination
technique where measurements are acquired while the
sample is in motion, which is synchronized with multi-
ple illumination pulses during each exposure to intro-
duce a known motion blur. These images, which have
higher SNR than images captured at the same speed un-
der strobed illumination, are then computationally de-
blurred to recover the static object at high speed while
maintaining the SNR of much slower acquisition meth-
ods. We compare our technique to existing methods,
stop-and-stare and strobed illumination, which require

a significantly longer acquisition time or produce images with significantly lower SNR, respec-
tively. Using a generalized framework for predicting the reconstruction SNR of measurements
acquired using each method, we show, through both theory and experiment, that our coded
illumination technique can produce images with up to 10× the SNR of strobed acquisitions,
at significantly faster acquisition rates than images captured under strobed illumination.
of this benefit is not constant across system parameters such
as camera readout noise and illumination power. To quantify
how our method compares to existing methods, we perform an
analysis of the relative performance of our method compared
to conventional high-throughput imaging techniques such as
strobed illumination or stop-and-stare. For low-light situa-
tions such as fluorescence imaging, our method is uniquely
suited to provide faster imaging at higher SNR than existing
methods.

In Chapter 4, we detail the design and fabrication of coded
illumination devices for the computational microscopy appli-
cations presented in this dissertation. We begin by defining
the common design requirements of programmable illumination devices, focusing on pro-
grammable LED arrays as our primary application due to their low cost and wide availabil-
ity. We then describe several design iterations of a programmable LED dome which enables
high-angle coded illumination. In the first design iteration, we designed and fabricated a
3D-printed LED dome which was carefully assembled by hand, requiring several months of
fabrication. This device was intended to be used with CellScope, a portable microscope
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platform which uses a smartphone to capture and process images for telemedicine applica-
tions. In the second design iteration, we designed and developed a LED quasi-dome which
uses 5 printed-circuit boards arranged in a dome-like structure. This device requires signifi-
cantly less time and effort to assemble and provides RGB illumination across 581 LEDs up
to 0.9NA. The ease of manufacturing has enabled the wide distribution of these devices to
collaborators around the world. Finally, we describe the Computational CellScope platform
in greater detail, which implements coded illumination on a portable platform to perform
digital refocusing using light-field methods, quantitative phase imaging, and multi-contrast
imaging.

Recovered Aberrations

+ + +

In Chapter 5, two methods for self-calibration of
computational imaging systems are described. Compu-
tational imaging methods are uniquely susceptible to
mis-calibration since the inferred forward model is often
assumed to be ideally calibrated. In reality, the forward
model is a function of the optical physics and optical de-
sign (which can be inferred), as well as mis-calibration,
which cannot be assumed to be negligible in many sys-
tems. We first discuss a technique for performing aber-
ration self-calibration using differential phase contrast.
Our method employs an alternating-minimization ap-
proach to solve for both the complex field of the object
as well as the aberrations, which are projected into a
Zernike basis. This method is non-convex, but is differ-
entiable, and guaranteed not to diverge so long as an

appropriate step size is used. Further, we use a patch-wise solver to solve for aberrations
across the field, revealing spatially variant aberration functions. We verify our method by
solving for the defocus aberration when introducing a known defocus term. Our method re-
quires only a single coherent measurement, in addition to three DPC measurements for recov-
ering the object’s complex field. Next, we presented a method for performing self-calibration
of LED positions in both the brightfield and darkfield regions for Fourier ptychography. Af-
ter performing a brightfield calibration method, we employ a novel gradient-based technique
for solving for the homography between printed circuit boards in a quasi-dome device. This
technique makes the alternating minimization process much more stable and enables high-
NA Fourier ptychography with resolution below 450nm. While a good hardware system
alignment is most effective, these self-calibration techniques can mitigate mis-calibration
when this is not possible.
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6.1 Entrepreneurship in Computational Microscopy
During my time at Berkeley I was fortunate to benefit from the many resources for en-
trepreneurship on campus. Along with fellow lab member Michael Chen and my advisor
Laura Waller, I founded Spectral Coded Illumination, Inc. in early 2017 with the purpose
of bridging the gap between the scientific publication of our prototypes and the large-scale
distribution of LED dome prototypes. The initial motivation to form this venture came
from the early Quasi-dome prototype presented in Chapter ??, Section ??, which brought
significant interest from both collaborators and visitors from industry. After quickly dis-
tributing our initial production run of 10 Quasi-domes through the Waller Lab, we saw a
need in both industry and academia for functional LED dome prototypes and sought to use
our knowledge in this area to drive progress in our research field at a larger scale. We be-
gan by getting involved on through campus programs, including the NSF I-Corps program,
the Citris Foundry, Berkeley Skydeck, and the Bakar Innovation Fellows program, which
allowed us to meet other entrepreneurs in the sciences and better understand how to build
a successful scientific venture. For the past 2.5 years we have continued to sell LED domes
and provide consulting services in areas related to our research for the past two and a half
years, selling over 15 LED arrays across the United States and in Europe, to customers in
both industry and academia.

I view this experience as a critical component of my education at Berkeley, as it allowed
me to view my research with a broader view, and to understand the effort and technical
challenges which come with commercializing and scaling up a research proposal. While the
direct motivations for forming a corporation can be quite different from academic research, I
have found that my underlying motivation for both ventures has been the same: to accelerate
the pace of scientific discovery through the development of novel imaging methods and
hardware. Having a start-up motivated me to align my research to be more useful for the
field at-large, which has been very useful in the later stages of my education.

6.2 Proposed Future Work
As my time at Berkeley comes to a close, there are still many open questions which I find
interesting and would like to pursue, given the opportunity. In the future, I hope that
myself or someone else will have the time and a motivation to explore a few of the following
proposals.

The first, and most general, is the application of a task-based imaging paradigm to the
applications discussed in this work. In each of the previous chapters, we have quantified
the quality of our reconstructions using system parameters such as signal-to-noise ratio, ac-
quisition throughput (space-bandwidth rate), resolving power and field of view. Rarely is
emphasis placed on the quality of these images towards a specific task, such as cell count-
ing, pathogen recognition, or disease diagnosis. Conventionally the field of computational
imaging has tended to focus on imaging system performance, but I believe that defining a
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differentiable performance metric (cost function) which is relevant to the imaging task would
be extremely interesting. As a first step, I would propose cell-counting as a metric. Recent
work from the machine learning community has proposed optimizing network layers for the
counting and classification of cells [196, 197]. Including programmable hardware elements
(such as LED arrays which could introduce different contrast) into the learning pipeline could
provide significant improvements in counting accuracy and performance.

A second, more specific future direction, is the application of compressed sensing to solve
under-determined motion deblurring problems for slide-scanning and digital pathology appli-
cations. Currently, the volume of data required for large-scale imaging (e.g. neuropathology)
can make acquisition times and data storage difficult or infeasible. If data acquisition pro-
cessing requirements were lower, acquisitions could be made much faster, and large-scale
imaging analysis could be more readily performed. For a compressed-sensing acquisition to
perform well, the aliasing introduced by undersampling should be incoherent with a domain
in which the sample is sparse. An acquisition with a random forward operator is one example
of such a forward model, because this matrix is incoherent with every other matrix. While it
is very difficult to design a truly random forward operator in this problem, we have control
over the structure of our forward operator through the illumination sequence as well as the
motion pathway. So long as this acquisition introduces incoherent aliasing, we have some
hope of reconstructing a sparse object from an under-determined system. To accomplish
this, I would propose optimizing the entire pipeline using an unrolled network, which allows
us to differentiate with simple parameters such as step size as well as more complicated
parameters, such as the sparsifying operator or acquisition strategy. Using large amounts of
training data, we could then generate a principled acquisition and reconstruction strategy
together which would enhance the capabilities of high-throughput acquisitions well-beyond
those presented in this work.

A third future direction is active imaging, or the active determination of acquisition
trajectories based on current image data. These trajectories need not span Cartesian space,
but could also include LED angle, defocused positions, or other metrics. A key component
to these methods being advantageous would be that the sample should be localized, meaning
that most of the densely sampled data is unnecessary, and that the learning process should
be fast, so that the compute + scan time does not exceed the time to densely scan a sample.
An obvious example of this would be multi-well plates, where a microscope may perform
a fast scan over many wells which aliases them together, then uses this blurred data to
determine which wells are worth imaging more closely at high-resolution for quantification.
Such a technique could speed up acquisitions significantly for many applications.

In terms of fabrication of LED devices, I believe that engineering improvements in the
power supply of the devices as well as a more careful layout of the high-speed traces (such as
serial clock and pulse-width-modulation clock) would enable imaging with shorter exposure
times. In addition, a more compact portable microscope device incorporating a PCB-based
LED array would be much more robust than the current Computational CellScope device,
enabling wider distribution to collaborators around the world.

I have made much of my existing code available under the BSD open-source license at
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repositories listed in Appendix, Section 7.2. I hope that these examples and this dissertation
will inspire others to iterate and advance the field of computational imaging.
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Chapter 7

Appendix

7.1 Quantitative Phase Imaging
DPC System Parameters

Parameter Value
Objective Mag / NA 10× /0.25NA
Illumination Power See table 7.1

Camera Readout Noise 3.7 e−

Camera Quantum Efficiency 60%
Camera Pixel Size 6.5µm

Number of Brightfield LEDs 72

LED Illuminance Values for DPC Analysis
This section describes measured LED power values for a range of common LEDs. Each of
these measurements was made at the sample plane using an optical power-meter (Thorlabs
PM100D) at a distance of 50mm from the LED.

LED Mfg.
Part Number

LED
Type

Illuminance Comment

VCC /
VAOL-3LWY4

Through-
hole

1000.42 Lux Used in Computational CellScope [73]

Knightbright /
APTF1616SEEZ

SMD (Red) 2738 Lux
(Green) 4666 Lux
(Blue) 3500 Lux

Used for Quasi-Dome [198]

VCC /
VAOL-3LWY4

Through-
hole

1000.42 Lux Used for High-Throughput Fluores-
cence Imaging (Chapter 3)
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7.2 Open-Source Code
Most of the source code used for these methods is available publicly through the following
repositories. Each project is licensed under the BSD 3-clause license.

Repository Description URL
llops GPU-acceleration library with

numpy-like syntax and interchange-
able backends. Also supports
auto-differentiation and latex
rendering through the operators
submodule.

https://github.com/zfphil/llops

comptic Computational microscopy library
for python, including common func-
tions for simulating optical systems.
Also included scripts for acquisition
using micro-manager.

https://github.com/zfphil/comptic

pydpc Python implementation of DPC al-
gorithm, including simulation, pro-
cessing real data, and aberration re-
covery. Also included analysis tools
for analyzing SNR in DPC systems.

https://github.com/zfphil/pydpc

pyfpm Python implementation of FPM al-
gorithm, including simulation, pro-
cessing real data, aberration recov-
ery, and source recovery.

https://github.com/zfphil/pyfpm

htdeblur Python implementation of motion
deblur algorithm. Also includes sys-
tem analysis tools for convolutional
forward models.

https://github.com/zfphil/htdeblur

illuminate LED array firmware with standard-
ized API

https://github.com/zfphil/
illuminate

illuminate
controller

High-level interfaces for controlling
LED arrays, including MATLAB,
python, micro-manager, and GUI in-
terfaces.

https://github.com/zfphil/
illuminate_controller

https://github.com/zfphil/llops
https://github.com/zfphil/comptic
https://github.com/zfphil/pydpc
https://github.com/zfphil/pyfpm
https://github.com/zfphil/htdeblur
https://github.com/zfphil/illuminate
https://github.com/zfphil/illuminate
https://github.com/zfphil/illuminate_controller
https://github.com/zfphil/illuminate_controller
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7.3 High-Throughput System Analysis
Derivation of SNR Expression
In this section we derive the expression for the SNR of a recovered image. Considering the
additive noise acquisition model, y = Ax+ η, the recovered image x̂ is given by:

x̂ = A†y = x+A†η .

In what follows, we assume only that η is zero mean with covariance σ2
ηI,

Defining the mean of the recovered object µ = E[x̂], as well as the covariance Σ =
E[(x̂−x)(x̂−x)H], we calculate the imaging SNR using the root mean squared error (RMSE):

SNR =
1
m

∑m
i=1 µi√

1
m
Tr(Σ)

.

Assuming zero-mean noise, the numerator is simply the average object signal s̄. Expanding
the covariance term in the denominator,

Σ = E[A†η(A†η)H] = σ2
ηA

†(A†)H ,

where we apply the assumption that the covariance of η is σ2
ηI. Then,

Tr(A†(A†)H) =
m∑
i=1

1

σi(A)2
=

1

σ1(A)2

m∑
i=1

σ1(A)2

σi(A)2
.

Thus we have that

SNR =
s̄

1
σ1(A)

√
1
m

∑m
i=1

σ1(A)
σi(A)

· ση

:=
σ1(A)s̄

fση

,

where f is the general definition of the deconvolution noise factor. This expression is consis-
tent with the definition in (3.8) for convolutional operators, where we note that the singular
values are given by the power spectrum of the kernel h. Further, we note that in this case
σ1(A) = γ since that is the DC component of a non-negative signal.

Multi-frame Decomposition
We consider the case of a multiframe operator with the same blur kernel h used in every
frame. In this case, the forward operator has the form

A =

W1
...

Wn

B := WB .



CHAPTER 7. APPENDIX 102

Following the derivation of SNR from the previous section, we compute Tr(A†(A†)H). First,

A† = (BHWHWB)−1BHWH = B−1(WHW)−1WH ,

assuming that B and WHW are invertible. Then we have that

Tr(A†(A†)H) = Tr(B−1(WHW)−1WHW(WHW)−HB−H)

= Tr(B−1(WHW)−1B−1) = Tr((WHW)−1B−2) .

We now consider the form of WHW =
∑n

j=1W
H
j Wj. Each WH

j Wj is a square diagonal
matrix with either a 0 or 1 for each diagonal entry, depending on whether the corresponding
pixel is included in the window. Thus the sum WHW is a diagonal matrix with the ith
diagonal value given by the number of times pixel i is included in the windows {W1, ...,Wn},
a quantity we denote as ci =

∑n
j=1Wjei where {ei} are the standard basis vectors.

Before we proceed further, note that for any matrices M and D with non-negative entries
and D diagonal,

Tr(DM) =
∑
i

DiiMii ≤ max
i

Dii · Tr(M) .

We can therefore conclude that

Tr(A†(A†)H) ≤ max
i

1

ci
· Tr(B−2) =

1

mini ci
·

m∑
i=1

1

|h̃|2i
.

Thus we see that the expression for the covariance is decreased by a factor of at least the
square root of minimum coverage. This corresponds to the lower bound on the SNR:

SNR ≥
√

min
i

ci ·
γs̄

fση

.

Where f is defined as in (3.8).

Blur Kernel Optimization
In this section we discuss the reformulation of the optimization problem in (3.10) as a smooth
objective with convex constraints. Recall that the optimization problem has the form

min
h

√√√√ 1

m

m∑
i=0

maxi |h̃|2i
|h̃|2i

s.t. 0 ≤ hi ≤ 1 ∀ i,
∑
i

hi = γ .

First, note that by definition h̃ = Fh where F represents the discrete Fourier transform
(DFT) matrix. Then, we know that maxi |h̃|2i is the DC component of the signal, which is
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equal to γ and therefore fixed for any feasible h. Therefore, the blur kernel which maxi-
mizes (3.10) is the same as the one that maximizes

min
h

m∑
i=0

1

(FH
i h)

2
s.t. 0 ≤ hi ≤ 1,

∑
i

hi = γ ,

where Fi represents columns of the DFT matrix.
It is possible to use projected gradient methods because the objective function is smooth

nearly everywhere and the constraints are convex. At each iteration, there is a gradient step
followed by a projection step. The gradient step is defined as

h̃k+1 = hk + αk

m∑
i=0

2

(FH
i h

k)3
· Fi ,

for potentially changing step size αk. The projection step is defined as

hk+1 = ΠS(h̃k+1) ,

where S is the intersection of the box constraint {0 ≤ hi ≤ 1} and the simplex constraint
{
∑

i hi = γ}. Efficient methods for this projection exist [199].

Fundamental DNF Limits
There are fundamental limits on how SNR can be improved by coded illumination. We
examine a fundamental lower bound on the DNF to demonstrate this.

Recall that
f 2 = max

i
|h̃|2i ·

1

m

m∑
i=1

1

|h̃|2i
.

Then, note that 1
m

∑m
i=1

1
|h̃|2i

is the reciprocal of the harmonic mean of {|h̃|21, ..., |h̃|2m}. Since
the harmonic mean is always less than the arithmetic mean, we have that

1

m

m∑
i=1

1

|h̃|2i
≥ 1

1
m

∑m
i=1 |h̃|2i

.

Next, we apply Parseval’s and have 1
m

∑m
i=1 |h̃|2i =

∑m
i=1 h

2
i . Additionally, maxi |h̃|i is the

DC component of the signal, which is specified by the constraint
∑m

i=1 hi = γ. As a result,

f 2 ≥ γ2∑m
i=1 h

2
i

.

Finally, we see that

max
h∈[0,1]m

m∑
i=1

h2
i :

m∑
i=1

hi = γ
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is achieved for binary h and has the maximum value γ. Therefore,

f 2 ≥ γ2∑m
i=1 h

2
i

≥ γ2

γ
= γ .

That is, the DNF grows at a rate of at least √γ. As a result, the best achievable SNR
(using (3.9)) is

SNR ≤
√
γs̄0√

γs̄0 + σ2
r

=
√
s̄0

√
γs̄0

γs̄0 + σ2
r

,

This upper bound on SNR increases with γ. In Methods Section 3.2, we discuss an exact
closed form for f(γ) that yields an expression for optimal multiplexing.

However, if σr is much smaller than the total captured signal, i.e. σr ≪ γs̄0, the SNR
will not increase with γ, and in fact its maximum value,

SNR ≤
√
s̄0

is achieved by strobed illumination (i.e. γ = 1). In other words, when signal is large com-
pared with readout noise, strobed will be optimal, regardless of the illumination optimization
method.

Derivation of Illumination Throughput
Stop-and-Stare

In the stop-and-stare acquisition strategy, the sample is illuminated for the full dwell time
(tsns), which is set by motion stage parameters such as maximum velocity, acceleration,
and the necessary stage settle time (vstage, astage, and tsettle respectively), as well as cam-
era readout (treadout). These parameters are related to frame rate rframe by the following
relationship:

tsns =
1

rframe

−max(treadout, 2taccel + tmove)

Note that this equation assumes perfect hardware synchronization and instantaneous
acceleration (∂a

∂t
=∞). The variables taccel and tmove are defined as:

taccel =
vstage
astage

tmove =
dframe − 0.5 ∗ astage ∗ t2accel

vstage

Here the expression dframe = FOV ∗ (1 − O) is the distance between frames, which is
determined by the field-of-view of a single frame (FOV ) and inter-frame overlap fraction O.
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Combining terms, we arrive at an expression for tsns:

tsns =
1

rframe

−max(treadout, 2
vstage
astage

− dframe − 0.5 ∗ astage ∗ t2accel
vstage

)

When camera readout time treadout is short, tsns can be simplified to:

tsns =
1

rframe

− 2
vstage
astage

−
dframe − 0.5 ∗ v2stage

astage

vstage

Strobed Illumination

The maximum pulse duration for strobed illumination is related to the time required to move
a distance of one effective pixel size ∆

M
at a velocity vstage:

tstrobe =
∆
M

vstage

The stage velocity vstage may be bounded by the motion stage hardware (vmax) or by the
field of view of the microscope (FOV ):

vstage = min(vmax, rframeFOV )

Coded Illumination

The calculation of tcoded for coded illumination is synonymous to the strobed illumination
case, weighted by the multiplexing coefficient used to generate the illumination sequence (γ),
and using the vstage calculation from the strobed subsection:

tcoded =
γ∆
M

vstage
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System Parameters
Parameter Value

Maximum Motion Stage Velocity 40m
s

Motion Stage Acceleration 400m
s2

Motion Stage Settle Time 0.1s
Objective Mag / NA 10× /0.25NA

Frame Overlap 20%
Illumination Power 600

Camera Readout Time 26ms
Camera Readout Noise 3.7 e−

Camera Quantum Efficiency 60%
Camera Pixel Size 6.5µm

Fluorophore Quantum Yield 79% lux
Illumination repetition Rate 250kHz
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