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On the Necessity of Non-Shannon Information Inequalities for
Storage Overhead Constrained PIR and Network Coding

Hua Sun and Syed A. Jafar

Abstract

We show that to characterize the capacity of storage overhead constrained private informa-
tion retrieval (PIR) with only 2 messages, and 2 databases, non-Shannon information inequalities
are necessary.

As a by-product of this result, we construct the smallest instance, to our knowledge, of a
network coding capacity problem that requires non-Shannon inequalities.

Hua Sun (email: huas2@uci.edu) and Syed A. Jafar (email: syed@uci.edu) are with the Center of Pervasive
Communications and Computing (CPCC) in the Department of Electrical Engineering and Computer Science (EECS)
at the University of California Irvine.



1 Introduction

There is much recent interest in exploring the fundamental limits of private information retrieval
(PIR) protocols. PIR originates from theoretical computer science and its main theme is to protect
the user’s intention or preference, in contrast to the common theme of protecting the content of
information in cryptography. The importance of PIR is further understored due to the discov-
ery of its fundamental connections to a broad range of questions across a diverse array of fields,
such as blind interference alignment, locally decodable codes, batch codes, and secure multi-party
computation.

PIR is the problem of retrieving one out of K messages from N distributed databases (each
stores all K message) in a way that each database learns no information about which message is
being retrieved in the information theoretic sense. The rate of a PIR scheme is the ratio of the
number of bits of the desired message over the total number of bits downloaded from all databases.
The maximum rate is the capacity of PIR. The capacity of PIR and its variants is characterized
recently, including LPIR, TPIR, RPIR, TRPIR, SPIR, MDS-PIR, MDS-SPIR, MPIR, MTPIR.
Notably, the capacity of MDS-TPIR is still open and a conjectured is made in [1].

Precise capacity characterizations are rare not only in the broad area of network information
theory but also within the special class of (noiseless) network coding problems for a variety of
reasons. A common hurdle in finding optimal achievable schemes is the lack of understanding of
non-linear coding schemes, which are often necessary [2, 3, 4]. A similar challenge on the converse
side lies in the need for non-Shannon information inequalities [5, 6, 7, 8], of which there are infinitely
many that remain unknown [9, 10]. Incidentally, the task of finding the strongest possible lower and
upper bound on capacity, even when restricted to linear coding schemes and Shannon inequalities,
quickly becomes prohibitively complex for larger networks due to the explosive growth in the
number of parameters.

In light of the challenges, it is quite remarkable that precise capacity characterizations have
been possible for the PIR problem [11], and for its variants such as LPIR [12], TPIR [13], RPIR
[13], SPIR [14], MDS-PIR [15] and MDS-SPIR [16], MPIR [17], MTPIR [17]. Indeed, for these
capacity results, linear coding schemes are sufficient, only Shannon information inequalities are
required and even when the network size becomes arbitrarily large, the complexity of the proofs
is kept in check by the symmetries inherent in the problem that facilitate inductive and recursive
reasoning. It is a matter of some curiosity as to how far such a pattern of fortuitous outcomes could
continue for capacity studies of other variants of PIR. Motivated by this curiosity, in this work we
explore the capacity of an important variants of PIR — storage overhead constrained PIR (OPIR).

1.1 OPIR

Classical PIR assumes replicated databases, i.e., each database stores all the messages. For larger
datasets, replication schemes incur substantial storage costs. Coding has been shown to be an
effective way to reduce the storage costs in distributed data storage systems. Applications of
coding to reduce the storage overhead for PIR have attracted attention recently [18, 19, 20, 21, 22,
23, 24, 15, 25, 16]. The approaches of these works fall into two decomposition based ones. One
approach trivializes the storage code design and then studies optimal PIR protocols. That is, we
fix the storage code and study the fundamental limits of all possible PIR schemes subject to the
given storage code. One particular case that has been studied extensively is that each message
is separately MDS-coded. Notably, subject to such separate MDS-coded storage, the capacity of
both PIR and SPIR (MDS-PIR and MDS-SPIR problem) has been characterized [15, 16]. The



MDS-TPIR problem is studied in [21] and [1]. Intriguingly, the capacity of MDS-TPIR is still open
and is conjectured in [1]. The other approach is to focus only on the storage codes and combine the
codes with known PIR protocols. That is, we focus on the design of a special class of storage code
that can be combined with any linear PIR protocols. The defining property of this class of storage
code is that for each message, there exists a number of disjoint decoding groups (of databases), so
that for each group, we may send the same query to the databases in that group (such that privacy
is preserved because each query is independent of the desired message index), then because of the
linearity of the PIR protocols, we can combine the answers using the decoding rule of the storage
code to obtain the desired message (such that correctness is guaranteed as well). One downside of
this approach is that when we have a small number of databases (say 2), the choices of separating
the databases to disjoint groups are limited. Another fundamental hurdle may be the necessity of
non-linear PIR protocols, which is not known yet, however, [17] contains an example where non-
linear PIR protocols are useful, although in an extended form of PIR - MPIR. The strong aspect of
this approach is that all linear PIR protocols can be used (even those that have not been invented
yet) to combine with qualified storage codes (such a separation based approach is also flexible).

To understand the fundamental limits without restricting the class of coding schemes or to
known PIR protocols, we consider the capacity of PIR with storage overhead constraints (OPIR).
Here our contribution is based on the simple K = N = 2 setting, where we show that non-Shannon
inequalities are necessary to characterize the capacity of OPIR.

1.2 Network Coding

As a by-product of the result for OPIR, we find the simplest (to our knowledge) example of a
network coding capacity problem where non-Shannon information inequalities are necessary. This
open problem could be of independent interest.

Wi, W
Source: Wy, W
Link
Capacities\ F, P G1, Gz
1 1\ 1 l \
F1 F2 Gl GQ
OO 0o
0 o S ) = (e%e)

'M v\>

Destinations: VT/l Wl VT/Q VT/2

Al hl Az A2
(a) (b)

Figure 1: A simple network coding instance whose capacity characterization requires non-Shannon inequali-
ties. v =5/3. (b) is an equivalent representation of (a), where the random variables inside a node represents
that it has or wants.

As shown in Figure 1, the constructed network instance contains 2 messages, 1 source, 4 destina-
tions and 6 intermediate nodes (in two layers), which can be described by only 6 random variables



(2 for messages and 4 for transmitted signals). The network structure (e.g., the number of mes-
sages, the number of links, the number of nodes, network topology) is the simplest known whose
rate characterization requires non-Shannon inequalities [5, 7, 6, 8].

This simple network relates to a number of problems studied in prior network coding literature.
For example, for a broadcast setting with 2 messages, 1 source and 2 destinations such that one
destination is interested in one of the two messages, respectively, the capacity of arbitrary network
topology is characterized in [26], where cut set outer bounds are tight. This result generalizes to
the setting with common messages as well. Our example differs in that we have more destinations
(4), out of which 2 have the same demand (compound setting). Another related class of problem
is the combination network, where we have 1 source on the top, 1 layer of intermediate nodes
and a number of destinations on the bottom. The capacity of each link is assumed to be 1.
Combination network is first studied in the multicast setting, where unbounded gain of network
coding versus routing is analyzed. More general message settings are studied in [27], and only
Shannon inequalities are used in the converse arguments. Our example differs in that we have one
more layer of intermediate nodes and the edge capacities are no longer restricted to 1. Note that
for all networks discussed above, the converse only lies on Shannon inequalities. Therefore, the
differences between our example and prior studied instances, e.g., diverse edge capacities, one more
layer of intermediate nodes, overlapping demands, are essential for the necessity of non-Shannon
inequalities.

Information inequalities lay down all rules that are obeyed by Shannon information measure-
ments (entropy, joint entropy, conditional entropy and (conditional) mutual information). Shannon
inequalities are a class of information inequalities that satisfy sub-modularity. All other inequal-
ities are termed non-Shannon information inequalities, which remain largely a mystery. Beyond
the natural application in characterizing network capacities, information inequalities are useful in
counting in combinatorics, database theory and secret sharing in cryptography. The necessity of
non-Shannon inequalities is a strong indicator for a hard problem as our understanding of non-
Shannon inequalities is still very limited. The most well known approach of finding non-Shannon
inequalities is to consider Shannon inequalities in a larger space and then project back to the origi-
nal space. We do not understand the fundamental limits of this approach. All known non-Shannon
inequalities essentially follow from this copy-and-project approach. A representative fact about
non-Shannon inequalities that shows the depth is that there are an infinite number of non-Shannon
inequalities and the region is not polyhedral. The network coding instance we find and its connec-
tion to OPIR shows the theoretical depth and central important of the PIR problem in information
theory.

2 Storage Overhead Constrained Private Information Retrieval

(OPIR)

In this work, we only consider the setting with K = 2 messages and N = 2 databases. We first
introduce the problem formulation in this simple setting.

2.1 Problem Statement

Consider K = 2 independent messages Wy, Ws of size L bits each.

H(W1,Ws) = H(Wy) + H(Wa), (1)



H(W1) = H(W;) = L. (2)

There are N = 2 databases. Let S,, denote the information about the message realizations that
is stored at the nt* database.

H(S,|Wy,W3) =0,Vn € {1,2} (3)
Define the (normalized) storage overhead o, for the n'* database as follows,

JAN H(Sh)
an = (4)

For replication based schemes, each database stores all messages, so S, = (W1, Ws), H(S,) = 2L,
and «, = 2. Replication is no longer possible if the storage overhead constraint requires o, < 2.

Let us use F to denote a random variable privately generated by the user, whose realization is
not available to the databases. F represents the randomness in the strategies followed by the user.
Similarly, G is a random variable that determines the random strategies followed by the databases,
and whose realizations are assumed to be known to all the databases and the user without loss of
generality. The random strategies are generated offline, i.e., before the realizations of the messages
or the desired message index are known.

H(0,F,G, Wy, Wa)
= H)+ HF)+ H(G)+ H(Wy) + H(W>) (5)

A user privately generates 6 uniformly from {1,2} and wishes to retrieve Wy while keeping 6 a

secret from each database. Suppose § = k. In order to retrieve Wy, k € {1,2} privately, the user

(k] k]
1

privately generates N = 2 random queries, Q5.

HQM, QW F) =0, vke{1,2} (6)

The user sends query QL{“ I to the nth database, Vn € {1,2}. Upon receiving Qgﬁ ], the n" database
generates an answering string A%C !, Without loss of generality, we assume that the answering string
is a function of Qlf ], the stored information S, and the random variable G.

H(AM|QH 5, G) = 0. (7)

Each database returns to the user its answer AL’C ].

From all the information that is now available to the user (A[lk],A[Qk], gk],Q[Qk],F), the user
decodes the desired message W}, according to a decoding rule that is specified by the PIR scheme.
Let P, denote the probability of error achieved with the specified decoding rule.

To protect the user’s privacy, the K = 2 strategies must be indistinguishable (identically dis-
tributed) from the perspective of any individual database, i.e., the following privacy constraint
must be satisfied.

[Privacy] (Q), A, G, 8,) ~ (QF), AP, G, S,),vn € {1,2} (8)

where X ~ Y denotes that random variables X and Y are identically distributed.



The PIR rate characterizes how many bits of desired information are retrieved per downloaded
bit and is defined as follows.

L
R=— )
where D is the expected value of the total number of bits downloaded by the user from all the
databases.
A rate R is said to be e-error achievable if there exists a sequence of PIR schemes, indexed by
L, each of rate greater than or equal to R, for which P, — 0 as L — oo. Note that for such a
sequence of PIR schemes, from Fano’s inequality we must have

[Correctness| o(L) = %H(Wk\A[lk],A[Qk], [lk],Q[Qk],F,G)
9 Lrwal Al F.6), vke1,2) (10)

where any function of L, say f(L) is said to be o(L) if limy_,~ f(L)/L = 0. The supremum of
e-error achievable rates is called the e-error capacity C..

A rate R is said to be zero-error achievable if there exists (for some L) a PIR scheme of rate
greater than or equal to R for which P, = 0. The supremum of zero-error achievable rates is called
the zero-error capacity C,. From the definitions, it is evident that

C, < Ce (11)

2.2 OPIR Capacity Characterization needs non-Shannon Inequalities

We consider the capacity of OPIR when we have K = 2 messages, N = 2 databases, and the
storage overhead is 5/4 per database (i.e., @1 = as = 5/4). We show that non-Shannon inequalities
are necessary to settle this OPIR capacity problem. This result is stated in the following theorem.

Theorem 1 For OPIR with K = 2 messages, N = 2 databases, and storage overhead o =
ag = 5/4, Shannon inequalities indicate that the rate of 2/3 is achievable, while Zhang-Yeung
non-Shannon inequality shows that the rate satisfies R < 64/97 < 2/3.

The proof is presented next.

2.3 Proof of Theorem 1

We prove the result under e-error framework and that under zero-error framework follows from
(11). Let us make the following simplifying assumptions without loss of generality.

1. We assume that the PIR scheme is symmetric, in that

HANF ) = HAYF G) = HAPF, G) (12)
H(S)) = H(S9) (13)

Given any (asymmetric) PIR scheme that retrieves messages of size L, a symmetric PIR
scheme with the same rate and storage overhead that retrieves messages of size N L is obtained
by repeating the original scheme N times, and in the n* repetition shifting the database
indices cyclically by n. This symmetrization process is described in Theorem 3 of [17].



2. We assume that Q[ll] = [12}, i.e., the query for the first database is chosen without the
knowledge of the desired message index. There is no loss of generality in this assumption
because of the privacy constraint, which requires that Q[le] is independent of 8. Note that this
also means that A[ll} = A[lz]. Therefore, the PIR problem is described by 7 random variables
F,G, Wy, Ws, A[ll],A[Ql], A[QQ}. Note that the queries are functions of F, from (6).

We then want to show that

1. R = 2/3 does not violate the constraints by Shannon inequalities, i.e., Shannon inequalities
indicate that R = 2/3 is achievable.

2. However, Zhang-Yeung non-Shannon type inequality shows that R < 64/97 < 2/3 . Therefore
R = 2/3 is not achievable.

Next we prove the above two statements.

Proof of Statement 1

Statement 1 is proved by assuming that R = 2/3 and giving an assignment on the joint entropies

of all subsets of random variables (F,G,Wl,Wg,A[ll],A[;],A[;]) that satisfies all sub-modularity

constraints. As a result, Shannon inequalities only can not rule out the possibility that R = 2/3.
The assignment is as follows. We assume G is deterministic so that we only need to consider the

6 remaining random variables. We denote a, a1, as each as an arbitrary element in {A[ll], A[zl} , A[QQ]}

(and ay, ag are distinct), b, by, by each as an arbitrary element in {Wi, Wa} (and by, by are distinct).
Terms in 1 variable: H(F) =1, H(a) = 3L/4,H(b) = L
Terms in 2 variables: H(F, A) = H(A) + 1, where |A| =1, A C {W1, WQ,A[ll],A[;], A[22]}
H(by,be) = 2L, H(a,b) =3L/2
H(ay,az) = 5L/4 if (a1, a2) = (A, AP, and 3L/2 otherwise
Terms in 3 variables: H(F, A) = H(A) + 1, where |A| =2, A C {W1, WQ,A[ll],A[;], A[QQ]}
H(ay,as,b) = 3L/2,if from a1, as, we can decode b
and all other terms equal 2L
Terms in 4 variables: H(F, A) = H(A) + 1, where |A| =3, A C {W3, Wy, A[ll],A[Ql], A[QZ}}
all other terms equal 2L.
Terms in 5, 6 variables: H(Wy, Wo, Agl],A[;], A[QQ}) =2L
H(F,A) = H(A) + 1, where |A| = 4,5, A c {Wy, Wy, A", Al A2

We are ready to prove that Shannon inequalities (sub-modularity constraints) are all satisfied.
Shannon inequalities require that for arbitrary two sets of random variables A, B,

H(A) + H(B) > H(AUB) + H(AN B) (14)

We need to verify that (14) holds for all choices of A, B C {IF, Wy, Wy, A[11}7A[21],A[22]}.
Without loss of generality, we assume that the carnality of A is no greater than the cardinality
of B, ie., |A] < |B|. It is easily seen that (14) holds when AN B = () or A C B. Henceforth, we



consider only the cases where A intersects with, but does not belong to B. We then must have
|A| > 2. Note also that when H(B) = 2L or H(A) = 2L, we have H(AU B) = 2L and (14) follows
trivially. Henceforth, we consider only the cases where H(A) # 2L and H(B) # 2L. All possible
cases are listed in the following.

We first consider the cases where F ¢ A and IF ¢ B.

o |[A| =2,|B| =2,3: We must have |[ANB|=1and H(ANB) < L.
1. HA)=H(B)=3L/2: HLA)+ H(B)=3L> H(AUB)+ H(ANB).

2. H(A) = 5L/4,H(B) = 3L/2: In this case, H(AN B) = H(a) = 3L/4, so that
H(A)+ H(B) = 11L/A = 2L + 3L/4 > H(AUB) + H(AN B).

3. H(A) =3L/2,H(B) = 5L/4: Same as 2.
4. H(A) = H(B) =5L/4: AN B ={ and (14) follows.
o |A| = |B| = 3: We must have H(A) = H(B) = 3L/2. In this case, H(AU B) = 2L and
H(ANB) = H(a) =3L/4, so that (14) holds.
Next, we consider the cases where F € A and F ¢ B. Then we wish to prove that

H(F,A/F) + H(B) > H(F, A/FU B) + H(A/FN B) (15)

where A/c represent the set that consists of elements in A, with ¢ € A excluded. Note that

H(F,C) =1+ H(C) for arbitrary C C {W7, Wa, A[lu,A[Ql], A[QZ]}, so it is equivalent to prove that

H(A/F) + H(B) > H(A/FU B) + H(A/F N B) (16)

and we have the case where F does not belong to the two sets, so that the proof follows from that
presented above. The cases where F ¢ A and F € B follow from symmetry.
Finally, we consider the cases where F € A and F € B. Similarly, noting that H(F,C) =

1+ H(C) for arbitrary C C {Wy, W, Agl],A[Ql], A[;}}, we wish to prove that

H(F,A/F)+ H(F,B/F) > H(F,A/FUB/F)+ H(A/FnN B/F) (17)
< H(A/F)+ H(B/F) > H(A/FUB/F)+ H(A/FN B/F) (18)

where again we boil down to the cases that have been considered. The proof is complete.

Proof of Statement 2

Let us start with a useful lemma.

Lemma 1
HAN W, F, ), HAZ Wy, F,G), HAZ WL, F,G) < L(/R-1)+o(L) (19)
HAN WL F,G), HAZ WL, F,G), HAZ Wy, F,G) > L(2-1/R)+o(L) (20)
HAN W, AR F ), HAZ W, AN F.G) > L(5-3/R)+o(L) (21)
1(AY; APy F,G), 1(AL; AP W, F,G) < L(4/R—6) + o(L) (22)



Proof: We first prove (19). From (47) in Lemma 2 of [17] we have

LA/R—1)+oL) > I(WyaY A w F o) (23)

O 1w Al Ay FLG) (24)

DO gal A, F.G) (25)

= L(1/R—1)+oIL) > HAMW,F G) (26)
and L(1/R—1)+oL) > HAMW,F,G) (27)
= H(AJW\,F,G) (28)

where (28) follows from the derivations in (76) to (81) in [17]. Symmetrically, from (26), it follows
that H(AZ|Ws,F,G) < L(1/R — 1) + o(L).
We next prove (20). From (73) in [17], we have
L < HAYWF,G)+ HAM W, F,G) (29)
Combining (26), (27) and (29), we have shown that

L2-1/R) +oL) < HAMW, F G) (30)
L2—-1/R)+o(L) < HAY W, F,G) T HAZ W, F,G) (31)

Symmetrically, from (30), it follows that H(A[QQ] W2, F,G) > L(2—1/R) + o(L).
We proceed to prove (21). We only prove H(A[Ql]\Wl,A[;],IF, G) > L(5—3/R) + o(L) and the
other inequality follows from symmetry. From Shannon inequalities (sub-modularity), we have

H(A[;] ’ A[22] ’Wla IF) G)

> qHAN Al F,6) + HAN, Al AR Wy F ) + HAY WL F,G) (32)
(25)(10)(31) SRR
> —L(1/R—1)+ HAZ AW AP Wy /Wy, F,G)+ L(2—1/R) +0o(L)  (33)
> H(W2[W1,F,G) + L(3 - 2/R) + o(L) (34)
G L4 —2/R) +o(L) (35)
= H(AN Wy, AR F 6) = HAY, AZ\wy, F,6) — HAZ )W, F,G) (36)
(28)
> L(4—2/R) - L(1/R —1) 4+ o(L) = L(5 — 3/R) + o(L) (37)
(22) are direct consequences of (19) to (21). [ |

Using Zhang-Yeung non-Shannon Inequality

Equipped with Lemma 1, we are ready to call Zhang-Yeung non-Shannon inequality [28] to produce
the desired bound on R.

1(AY; APIF, G)
1 1
< 51r(W1;W2|1F,<c;)+§1(W1;A L APF G) + (A[Zl],AQ]|W1,IF G) + (A[Ql],A21|W2,]F G)



(22)(5) 1
< I AY AP G) + 2L(4/R — 6) + o(L)
= H(APIF,G) + HAYF,G) - H(AS, AP F, )
1 1
< SHAY APIF.G) - SH(AY, AP WL F,G) +2L(4/R - 6) + o(L)
S
< SH(AY,AY(F.G) — L(2 — 1/R) + 2L(4/R — 6) + o(L)
1
= §H(A[2”,A[22] IF,G) + L(9/R — 14) + o(L)
= H(AY, ADF,G)
2
> 3 |L(4—9/R)+ H(ANF, G) + HAZIF,G)| + o(L)

—~
=

=  L(28—16/R)/3+ o(L)
5L/4 > L(28 —16/R)/3 + o(L)

Let L go to infinity, then we have R < 64/97 < 2/3.

3 Network Coding

Inspired by the OPIR capacity result presented as above, we find the simplest (to our knowledge)
example of a network coding capacity problem (shown in Figure 2) where non-Shannon information
inequalities are necessary. The network coding instance is constructed by translating the simplest
decoding structure for the OPIR problem. Let us start with the problem formulation, specified for
the network instance in Figure 2.

Link
Capacities\ Fi, R G1, G2
A LN
F1 F2 G1 G2
(0] oo o0
(o'e] 0o 60 0 o o
A \\ |
Destinations: VT/l W1 \7\72 \7\72
Al Al Az Az
(a) (b)

Figure 2: (a) A network coding instance. v = 5/3. (b) An equivalent representation. A square represents
a node. The random variables inside a node represent those it has (wants).
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3.1 Problem Statement

The problem statement and definitions are standard Shannon theoretic [29], which we briefly sum-
marize below. There are two independent messages W1, Wa, each of which is uniform over the index
set {1,2,--- ,Q”R}. The source node S wishes to send W; to destination nodes Dy, Do and W5 to
D3, Dy, respectively, through n channel uses. The network topology is depicted in Figure 2(a). Over
each channel use, a random variable is sent over each link, and the entropy of the random variable
can not exceed the capacity of that link. v = 5/3. The random variable sent on the outgoing link of
a node is a deterministic function of the random variables that are received through the incoming
links over current and previous channel uses. From all the random variables received over all n
channel uses, each destination can recover the desired message either with vanishing probability of
error or zero-error. The supreme of the achievable rate R is the capacity C,(C¢) under zero error
(vanishing probability of error).

3.2 Necessity of Non-Shannon Inequalities

We show that to characterize the capacity of the network coding instance in Figure 2, non-Shannon
inequalities are necessary. This result is stated in the following theorem.

Theorem 2 For the Network Coding instance shown in Figure 2, Shannon inequalities indicate that
R = 4/3 is achievable, while Zhang-Yeung non-Shannon inequality shows that R < 37/28 < 4/3.

The proof is presented next.

3.3 Proof of Theorem 2

We prove the result under e-error framework and that under zero-error framework follows. It is
easy to see that the network coding instance can be equivalently represented as shown in Figure
2(b), where the random variables that a node has (wants) are shown inside the node. F}* represents
the stack of F} over all n channel uses and other notations are defined similarly. The following
entropy constraints are satisfied without loss of generality.

HWy,Wa) = H(Wh)+ H(W2) (47)

H(W;)=H(W,;) = nR (48)

H(FY', F3,GY,G3|[Wi,Wa) = 0 (49)
H(Wi|F', GY) = o(n) (50)

HWh|F3,Gy) = o(n) (51)

HWs|FY',Gy) = o(n) (52)

HWs|F3,GY) = o(n) (53)

H(F, F?) = H(GY,Gy) = 5n/3 (54)
H(F')=H(GY)=H(Fy)=H(G3) = n (55)

We want to show that

1. R = 4/3 does not violate the constraints by Shannon inequalities, i.e., Shannon inequalities
indicate that R = 4/3 is achievable.

11



2. However, Zhang-Yeung non-Shannon type inequality shows that R < 21/16 < 4/3 . Therefore
R = 4/3 is not achievable.

Next we prove the above two statements.

Proof of Statement 1

Statement 1 is proved by assuming that R = 4/3 and giving an assignment on the joint entropies of
all subsets of random variables (W1, Wa, F{', F3', GT, GY) that satisfy all sub-modularity constraints.
Therefore Shannon inequalities only can not rule out the possibility that R = 4/3.

The assignment is as follows. We denote a, a1, az each as an arbitrary element in {F}*, G}, Fj', G5}
(and a1, ag are distinct), b, by, by each as an arbitrary element in {Wi, Wa} (and by, by are distinct).

Terms in 1 variable: H(a) = n, H(b) = 4n/3
Terms in 2 variables: H (b1, b2) = 8n/3, H(a,b) = 2n

H(ay,a2) = 5n/3 if (a1,a2) = (f1, f2) or (g1,92), and 2n otherwise
Terms in 3 variables: H (a1, ag,b) = 2n,if from a;, a2, we can decode b

and all other terms equal 8n/3

Terms in 4 or more variables: all terms equal 8n/3.

We are ready to prove that Shannon inequalities (sub-modularity constraints) are all satisfied.
Shannon inequalities require that for arbitrary two sets of random variables A, B,

H(A)+ H(B) > H(AUB) + H(AN B) (56)

We need to verify that (56) holds for all choices of A, B C {W1, Wa, f1, f2, 91, 92}. Without loss of
generality, we assume that the carnality of A is smaller than the cardinality of B, i.e., |[A| < |B.
It is easily seen that (56) holds when AN B = () or A C B. Henceforth, we consider only the
cases where A intersects with, but does not belong to B. We then must have |A| > 2. Note also
that when H(B) = 8n/3 or H(A) = 8n/3, we have H(AU B) = 8n/3 and (56) follows trivially.
Henceforth, we consider only the cases where H(A) # 8n/3 and H(B) # 8n/3. All possible cases
are listed in the following.

e [A| =2,|B| =2,3: We must have |ANB|=1and H(ANB) <4n/3.
1. HHA)=H(B)=2n: H(A)+ H(B) =4n > H(AUB)+ H(AN B).

2. H(A) =5n/3,H(B) = 2n: In this case, H(ANB) = H(a) = n, so that H(A)+H(B) =
11n/3=8n/3+n> H(AUB)+ H(ANB).

3. H(A) =2n,H(B) = 5n/3: Same as 2.
4. H(A) = H(B) =5n/3: AN B = and (56) follows.

e |A| = |B| = 3: We must have H(A) = H(B) = 2n. In this case, H(AU B) = 8n/3 and
H(ANB)=H(b) =4n/3 or H(AN B) = H(a) = n, so that (56) holds.
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Proof of Statement 2

Let us start with a useful lemma.

Lemma 2
H(GT|Wh), H(Gy|Wh), H(FT'|Wh), H(FZ[W1) < n(2—R)+o(n)
H(GT|Wh), H(Gy|Wh), H(FT'|Wh), H(FZ'[W1) = n(2R —2) + o(n)
H(GT|W2), H(Gy|Wa), H(F['|Ws), H(F3'[W2) < n(2—R)+o(n)
H(GT|W2), H(Gy|Wa), H(FT'|Ws), H(F3'|[W2) < n(2R—2)+o(n)
H(G}|\W1,GY), H(GS|Ws,GY) > n(5R—6)+ o(n)
I(GY; G5 |Wh), I(GT; G5 |[W2) < n(8—6R)+o(n)
Proof: We first prove (57).
o @ HEN + HEGY
> H(F',GY)
D gEp G W) + o(n)
= H(Wh)+ H(F, GT|W1) + o(n)
@ R+ H(FP, G W) + o(n)
= H(F'|W1) < n(2-R)+o(n), HGT|W1) <n(2— R)+o(n)
= (Symmetry) : H(F}|W1) < n(2—R)+o(n), HG5|W1) <n(2—-R)+o(n

We next prove (58).

H(F{'|Whi) + H(Gy|Wy) > H(F, Gy|Wh)
52
® H(FP, G, W W) + o(n)
> H(Wa|W7) + o(n)
(47)(48)

nR 4+ o(n)
= (Symmetry) : H(F3'|Wh)+ H(G}|Wh) >  nR+o(n)

Combining (68), (69) and (73), (74), we have the desired equality (58). From (57)(58), we have

(59)(60), by symmetry.

We proceed to prove (61). We only prove H(G}|W1,G5) > n(5R — 6) + o(n) and the other

inequality follows from symmetry. From Shannon inequalities (sub-modularity), we have

H(GY,Gy|[Wh) > —H(GY, FI'|Wh) + H(F{', GT, G3[Wh) + H(GT[W1)
(67)(52)(58)
> —n(2 = R) + H(F{', GT, G5, W2|[W1) + n(2R — 2) + o(n)
> H(W3|W1) +n(3R —4) 4+ o(n)
WS 4n(R = 1) + o(n)
H(GY{|W1,G3) = H(GY,G3|Wh) — H(G3|[Wh)
(57)

dn(R—1) —n(2 - R) +o(n) =n(5R — 6) + o(n)
(62) are direct consequences of (57) to (61).
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Using Zhang-Yeung non-Shannon Inequality

Equipped with Lemma 1, we are ready to call Zhang-Yeung non-Shannon inequality [28] to produce
the desired bound on R.

1 1 3 1
I(GY;Gy) < SI(WisWa) + SI(Wis 6T, G3) + S 1(GT G [Wh) + S1(GY; G2 [Wa)

1
VGG < SHWGELGE) + 20(8 - 6R) + o(n)

1 1
= H(GY) + H(Gy) - H(GY,Gz) = SH(GY,Gy) - JH(GY, G3|Wh) +2n(8 — 6R) + o(n)
1
< §H( T,Gy) —2n(R—1)+2n(8 — 6R) + o(n)

1
= iH( T.GY)+2n(9 —TR) + o(n)

= H(G}.GY) > (TR 9)+ H(G}) + H(GY)] +oln)

) 90(14R — 16)/3 + o(n)
) 5n0/3 > 20(14R - 16)/3 + o(n)

Let n go to infinity, then we have R < 37/28 < 4/3.

4 Conclusion

We show that the capacity characterization of OPIR requires non-Shannon inequalities in general.
We also construct a closely related network coding instance that requires non-Shannon inequalities.
These results, along with the connection between PIR and network coding, indicate the central
importance of PIR in information theory.

The dual of the OPIR capacity problem is the minimum storage overhead problem of PIR for
a given rate. In this context, we may similarly show the necessity of non-Shannon inequalities. In
particular, consider the PIR problems with K = 2 messages, N = 2 databases, and rate R = 2/3
(capacity achieving), the best outer bound by all Shannon inequalities on the minimum storage
overhead is that () > 5/4 and Zhang-Yeung non-Shannon inequality produces a tighter bound,
a1(ag) > 4/3. Further, [17] shows that the minimum storage overhead of all linear PIR schemes
is that ag(ag) = 3/2. As a consequence, the minimum storage overhead problem is still open and
we either need non-linear schemes, or to prove the optimality of linear schemes, we need stronger
non-Shanonn inequalities.
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