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Pleiotropic effect of a novel mutation in GCNT2 causing
congenital cataract and a rare adult i blood group phenotype
Sek-Shir Cheong1, Sarah Hull2, Benjamin Jones3, Ravinder Chana2, Nicole Thornton3, Vincent Plagnol4, Anthony T Moore1,2,5

and Alison J Hardcastle1

Mutations in GCNT2 have been associated with the rare adult i blood group phenotype with or without congenital cataract. We
report a novel homozygous frameshift mutation c.1163_1166delATCA, p.(Asn388Argfs*20) as the cause of congenital cataract in
two affected siblings. Blood group typing confirmed that both affected males have the rare adult i phenotype, supporting the
hypothesis that the partial association of I/i phenotype and congenital cataract is due to the differential expression of GCNT2
isoforms.

Human Genome Variation (2017) 4, 17004; doi:10.1038/hgv.2017.4; published online 16 February 2017

Congenital cataracts (CCs) account for 3–5% of visual impairment
in children in the United Kingdom,1 with a prevalence of 1–6 per
10,000 births, at least 50% of which are inherited.2,3

CC can be inherited as an isolated phenotype, in combination
with other ocular features including microphthalmia/anophthal-
mia and aniridia,4,5 or as a syndromic condition associated with a
broad range of extra-ocular phenotypes, such as developmental
delay, skeletal defects and dental anomalies.6,7 Identification
of the genetic cause of CCs is challenging due to genetic
heterogeneity,2 and in some cases establishing genotype–
phenotype correlation is hindered by intrafamilial phenotypic
variability and variable disease progression.7,8

The human blood group I and i antigens are carbohydrate
structures on glycoproteins and glycolipids on the cell surface,
which were first discovered on human red blood cells.9 These
antigens were subsequently identified in other tissues including
reticulocytes and lens epithelium.10 The phenotype of I/i blood
group is determined by the presence of I or i antigens and the
expression of these antigens is developmentally regulated;
i antigens are predominant on fetal red blood cells, whereas
adult human red blood cells fully express I antigens with a very
low level of i antigens. The conversion of i to I occurs during the
first 18 months after birth as a result of the expression of
the I-branching enzyme, β-1,6-N-acetylglucosaminyltransferase 2
(encoded by GCNT2), which adds a GlcNAc-β-1–6 branch onto the
poly-GlcNAc chains.11,12 Therefore, absence of this enzyme gives
rise to the adult i phenotype, a rare autosomal recessive
condition.13,14

The association of recessive mutations in the GCNT2 gene
with CC and the rare adult i phenotype has been reported in 11
families, of differing ethnic origin (Table 1).10,15–19 In this study, we
identified a novel homozygous GCNT2 frameshift mutation in a
reportedly non-consanguineous Caucasian family with CC by
whole-exome sequencing (WES), and subsequent I and i blood
typing confirmed an adult i phenotype.
A reportedly non-consanguineous three-generation Caucasian

family comprising two affected brothers, II:2 and II:3, was recruited

to the study (Figure 1a). Patient (II:2), now age 40 years, was noted
in early infancy to have reduced vision. Examination under
anesthesia was performed at the age of 4 months, which
identified pendular nystagmus and bilateral lamellar cataracts.
Initial management was with pupil dilatation using guttae
atropine 0.5% in each eye. At 10 months of age, cataract surgery
was performed with lens aspiration, which left him aphakic.
Contact lens refractive correction was subsequently used. Further
treatment included two left lens surgical capsulotomies at the age
of 2 and 17 years, right occlusion therapy for left amblyopia and
squint surgery for left esotropia at the age of 2 years. At the age of
3 years, the first recorded uniocular visual acuity was 6/24 Snellen
(right eye, RE), and 4/60 (left eye, LE). At last review, at 40 years
old, visual acuity was 6/60 (RE), and 6/24 (LE) with refractive
correction of +13.25/− 2.25 × 105 (RE), +14.75/ − 1.25 × 170 (LE).
Patient (II:3), now age 39 years, was noted at 2 months of age by

his mother to have nystagmus and a white reflex. Central lens
opacities were found with abnormal posterior curvature of the
lens, and normal fundi. Lens aspiration was performed in the left
eye at 7 months of age, and in the right eye at 10 months of age
with soft contact lens refractive correction afterwards. Further
procedures included left needle capsulotomy at 8 months of age,
left laser capsulotomy at the age of 15 years, secondary sulcus
intraocular lens in the right eye at the age of 19 years and in the
left eye at 29 years of age. Axial lengths on B scan ultrasound prior
to lens insertion demonstrated long axial lengths of 27.88 mm
(RE), 29.31 mm (LE) and refractive errors of +10.50/− 1.00 × 10 (RE),
and +10.00/− 2.00 × 15 (LE). At the age of 29 years, Snellen visual
acuity was 6/36 in both eyes. Fundus examinations and
electroretinogram were normal in both siblings and there was
no evidence of anterior segment dysgeneses or glaucoma.
Both parents were examined. Their mother (I:2) had subtle

lamellar lens opacities at the age of 61 years. However, given her
age and prevalence of cataracts in the general population at that
age, these findings could be age-related. Their deceased father
(I:1) was unilaterally aphakic (trauma-related), the other lens was
clear. Both affected siblings had uncomplicated births and were
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well with normal development. All investigations were conducted
in accordance with the principles of the Declaration of Helsinki.
The study was approved by the local ethics committees at
Moorfields Eye Hospital, UK. After written informed consent was
obtained from all subjects, blood samples were donated and
genomic DNA was extracted from peripheral blood lymphocytes
using conventional methodologies. Patients were clinically
assessed by experienced ophthalmologists. Inheritance of CC
was consistent with recessive disease (Figure 1a).
WES was performed for individual II:3 using Nimblegen

sequence capture (v2) and a HiSeq2000 sequencer (Illumina, San
Diego, CA, USA). Reads were aligned to the hg19 human reference
sequence using Novoalign (Novocraft, www.novocraft.com) ver-
sion 2.05. The ANNOVAR tool (OpenBioinformatics, www.open
bioinformatics.org/annovar/) was used to annotate sequence
variants. Filtering was performed to identify variants with a minor
allele frequency ⩽ 0.005 in 1000 Genomes Project (www.1000gen
omes.org/), the National Heart, Lung, and Blood Institute Exome
Sequencing Project Exome Variant Server (http://evs.gs.washing

ton.edu/EVS/), Exome Aggregation Consortium database (http://
exac.broadinstitute.org/) and our internal University College
London exomes consortium database comprising of 1,980
exomes. Variants were then cross-referenced with CatMap
(http://cat-map.wustl.edu/) for variants in known cataract genes.
WES data were also analyzed by ExomeDepth20 to identify any
potential causative exonic copy number variations. The GCNT2
variant in exon 3 was tested for segregation in the affected males
(II:2 and II:3), their mother (I:2) and the children of individual II:2
(III:1 and III:2) by direct sequencing. Primer sequences are available
on request. GCNT2 cDNA is numbered in accordance with Ensembl
transcript ID ENST00000316170, with +1 corresponding to the A of
the ATG translation initiation codon.
WES analysis of individual II:3 identified a unique homozygous

4-bp deletion in GCNT2 (Figure 1b), predicted to cause a frameshift
mutation, c.1163_1166delATCA, p.(Asn388Argfs*20). Copy number
variation analysis of this WES data did not identify any potential
exonic copy number variations in any genes associated with CC,
and excluded copy number variations at the GCNT2 locus. Direct

Figure 1. Novel homozygous GCNT2 frameshift mutation in a CC family. (a) Pedigree of the study family with two affected siblings. Shaded
squares denote affected males; dotted circles, carrier females; dotted square, carrier male. Arrowhead indicates proband in the family.
(b) Exome sequence alignments of control (top panel) and individual II:3 (bottom panel) viewed using Integrative Genomics Viewer
(https://www.broadinstitute.org/igv/) shows a 4-bp deletion in exon 3 of the GCNT2 gene in the proband (indicated by dashed box).
Nucleotide sequences and corresponding amino acid residues are shown below the exome data tracks. (c) Sequence electropherograms
demonstrate segregation of the GCNT2 mutation. The proband (II:3) and his affected brother (II:2) are homozygous for the 4-bp deletion. Their
mother (I:2) and the children of II:2 (III:1 and III:2) are carriers for the mutation. Control sequence electropherogram is shown above I:2
sequence. The exon 3 mutation is predicted to cause a frameshift [c.1163_1166delATCA, p.(Asn388Argfs*20)]. GCNT2 cDNA is numbered in
accordance with Ensembl transcript ID ENST00000316170, with +1 corresponding to the A of the ATG translation initiation codon.
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sequencing of GCNT2 exon 3 confirmed that both affected males
are homozygous for the frameshift mutation, whereas their
mother (I:2) and two children (III:1 and III:2) of affected male II:2
are carriers (Figure 1c).
GCNT2 has three isoforms, GCNT2-A, GCNT2-B and GCNT2-C,

which are alternatively spliced with a different exon 1 (refs 10,16)
(Figure 2). These isoforms are differentially expressed, with only
transcript GCNT2-B expressed in lens epithelial cells and GCNT2-C
in reticulocytes. Differential expression of GCNT2 isoforms has
been proposed as a potential mechanism for the absence of CC in
some patients with an adult i blood group.10

The mutation identified in this family is located in exon 3, and is
therefore present in all three GCNT2 isoforms (Figure 2), suggest-
ing these individuals may also have an adult i blood group. Blood
samples were collected in EDTA tubes for I/i blood group typing
for individuals II:2 (age 40 years) and II:3 (age 39 years).
Monoclonal anti-I (HIRO-245) from the Japanese Red Cross, and
polyclonal anti-i (P.E.) from the in-house reference collection were
tested by standard direct agglutination tube technique and scored
according to Marsh.21 Expression of i antigen was assessed by
titration, using a base dilution of 1:40 and then doubling dilutions.
An example of adult cells with normal I expression (L2325-8) and
adult i cells (074-214RF) from the in-house reference collection
were included as controls.
Our finding confirmed that both affected individuals have the

adult i phenotype, thereby establishing the association of the
homozygous GCNT2 frameshift mutation p.(Asn388Argfs*20) with
CC and the adult i phenotype in this family.
Thus, in this study, we describe the first report of the association of

GCNT2mutation with CC and rare adult i phenotype in the Caucasian
population, and our data support the hypothesis that differentially
expressed GCNT2 isoforms account for the partial association of the
adult i phenotype with CC, irrespective of ethnicity.

HGV DATABASE
The relevant data from this Data Report are hosted at the Human
Genome Variation Database at http://dx.doi.org/10.6084/m9.fig
share.hgv.952.
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