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Abstract

This paper considers the problem of distribution estimation for the studentized sample mean

in the context of Long Memory and Negative Memory time series dynamics, adopting the

fixed-bandwidth approach now popular in the econometrics literature. The distribution theory

complements the Short Memory results of Kiefer and Vogelsang (2005). In particular, our

results highlight the dependence on the employed kernel, whether or not the taper is nonzero

at the boundary, and most importantly whether or not the process has short memory. We also

demonstrate that small-bandwidth approaches fail when long memory or negative memory is

present since the limiting distribution is either a point mass at zero or degenerate. Extensive

numerical work provides approximations to the quantiles of the asymptotic distribution for

a range of tapers and memory parameters; these quantiles can be used in practice for the

construction of confidence intervals and hypothesis tests for the mean of the time series.
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1 Introduction

This paper considers the asymptotics of estimates of the variance of the sample mean constructed

from a tapered sum of sample autocovariances, when the underlying data generating process (DGP)

exhibits either short or long memory. As in Kiefer and Vogelsang (2002, 2005), we work out the

so-called fixed b asymptotics, i.e., the case that bandwidth is a fixed proportion of sample size. In

Kiefer, Vogelsang, and Bunzel (2000) results are obtained for the Bartlett kernel, which show that

the limiting numerator and denominator are independent. However, this is not true in the case of

long/intermediate memory, and more generally is not true when other kernels are used.

We study the situation that we have a sample Y = {Y1, Y2, · · · , Yn} from a strictly stationary

time series with mean EYt = µ, autocovariance γh = Cov(Yt, Yt+h), and integrable spectral density

function f(λ) =
∑

h γhe−ihλ. Memory strength can be parameterized through the partial sums of

autocovariances: ∑
|h|<n

γh ∼ CL(n)nβ, (1)

where in general An ∼ Bn denotes An/Bn → 1 as n → ∞. In (1), C is a positive constant, and

L is slowly varying at infinity (Embrechts, Klüppelberg, and Mikosch, 1997), with a limit that can

be zero, one, or infinity. Then β and L parametrize memory as follows: 1 > β > 0 or β = 0

and L tending to infinity correspond to long memory (LM) in which case f(0) = ∞; β = 0 and

L tending to unity correspond to the usual short memory (SM) where 0 < f(0) < ∞; finally,

−1 < β < 0 or β = 0 and L tending to zero correspond to the less-studied case where f(0) = 0

which we will denoted by negative memory (NM). In this context, Brockwell and Davis (1991) used

the terminology “intermediate memory”, whereas others have used “anti-persistence” (Lieberman

and Phillips, 2006) or “negative dependence” (Samorodnitsky and Taqqu, 1994) due to negative

correlations; our choice of terminology follows these latter authors. These definitions encompass

ARFIMA models (Hosking, 1981), FEXP models (Beran (1993, 1994)), and fractional Gaussian

Noise models. Some authors prefer to parametrize memory in terms of the rate of explosion of f

or 1/f at frequency zero, but it is more convenient for us to work in the time domain; see Palma

(2007) for a recent overview.

We stipulate β < 1 to ensure stationarity, and β > −1 to ensure that Yt is not over-differenced,

i.e., equal to the first difference of another stationary process. The SM case was covered in Kiefer

and Vogelsang (2005) who used the Bartlett kernel for smoothing; our results provide extensions to

LM and NM DGPs with a variety of kernels. The chief problem of interest is to properly normalize

the partial sums Sn =
∑n

t=1 Yt, which have finite-sample variance Vn. In general Vn grows at a rate

dependent on β (e.g., see Taqqu (1975)), which makes the problem of normalization more tricky.

Supposing that V
−1/2
n (Sn − nµ) converges weakly to a nondegenerate distribution, it is of interest

to develop an estimate of Vn that can be plugged in. We consider an estimator VΛ,M based on a
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tapered sum of sample autocovariances and bandwidth M , which grows at the same asymptotic

rate as Vn.

Our main asymptotic result is contained in Section 2; it is the derivation of the limiting dis-

tribution of the studentized sample mean under different dependence structures, i.e., value of β in

(1), and using any kernel from a general family of kernels. Since in practice β will be unknown, it

must be estimated and plugged in. Aside from β, the limiting distribution is pivotal, facilitating

the construction of confidence intervals and hypothesis tests. Interestingly—and conveniently—,

the slowly varying function L in (1) does not affect the asymptotic distribution. Section 3 con-

tains some additional theoretical results that are pertinent to understanding the impact of NM and

LM. Section 4 investigates numerically the limiting distribution of the studentized sample mean,

and presents tables of critical values that can be used by practitioners. Section 5 presents our

conclusions, and technical proofs are deferred to the Appendix.

2 Asymptotic Results

As in Kiefer and Vogelsang (2005), let the bandwidth M be proportional to sample size n, i.e.,

M = bn with b ∈ (0, 1]. We first introduce the following notation: the sample autocovariance is

γ̃k = n−1
∑n−k

t=1 (Yt+k−Y )(Yt−Y ) for 0 ≤ k < n, and Y the sample mean. Also let Ŝi =
∑i

t=1(Yt−Y )

(so that Ŝn = 0), and define the tapered sum of autocovariances by VΛ,M =
∑

h Λ(h/M)γ̃h, where

Λ is a taper.

We consider tapers Λ(x) from the following general family:

{Λ is an even function with support on [-1,1] such that Λ(x) = 1 for |x| ≤ c, for some c ∈ [0, 1).

Furthermore, Λ is continuous everywhere and twice continuously differentiable on (c, 1) ∪ (−1,−c).}
(2)

The above class of tapers includes the family of ‘flat-top’ kernels of Politis (2005) where c > 0, the

Bartlett kernel (letting c = 0 and a linear decay of Λ), as well as other kernels considered in Kiefer

and Vogelsang (2005).

A derivative of Λ from the left (with respect to x) is denoted Λ̇−, whereas from the right is Λ̇+;

the second derivative is Λ̈. The greatest integer function is denoted by [·]. With this notation, the

following basic proposition is presented.
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Proposition 1 Let Λ be a kernel from family (2), and assume (1) with |β| < 1. Then

nVΛ,M =
n∑

i,j=1

ŜiŜj

(
2Λ

(
i − j

M

)
− Λ

(
i − j + 1

M

)
− Λ

(
i − j − 1

M

))

= − 2
bn

n−[cbn]∑
i=1

ŜiŜi+[cbn]

(
Λ̇+(c) +

1
2bn

Λ̈(c) + O(n−2)
)

− 1
b2n2

∑
[cbn]<|i−j|<[bn]

ŜiŜj

(
Λ̈

( |i − j|
bn

)
+ O(n−1)

)
+

2
bn

n−[bn]∑
i=1

ŜiŜi+[bn]

(
Λ̇−(1) + O(n−1)

)
.

Remark 1 In case the taper is continuously differentiable at c, Λ̇+(c) = 0 and the second derivative

becomes dominant in the first term, which can then be recombined with the second term to yield

− 1
b2n2

∑
[cbn]≤|i−j|<[bn]

ŜiŜj

(
Λ̈

( |i − j|
bn

)
+ O(n−1)

)
.

Likewise, if there is no kink at |x| = 1, then Λ̇−(1) = 0 and the third term vanishes completely.

Since we want the asymptotics of nVΛ,M , we need functional limit theorems for the partial sums,

since Ŝi = Si − i/n Sn. To that end we suppose that

V −1/2
n

(
S[nr] − [nr]µ

) L=⇒ B(r) (3)

in the sense that the corresponding probability measures on D[0, 1] (the space of functions on [0, 1]

that are right continuous with left limits, endowed with the Skorohod topology – Taniguchi and

Kakizawa (2000)) converge weakly. Here B(·) is a Fractional Brownian Motion (FBM) process of

parameter (β + 1)/2 (Samorodnitsky and Taqqu, 1994).

Sufficient conditions for (3) include linearity and a moment condition (see Theorem 5.2.4 of

Taniguchi and Kakizawa (2000)), as well as supposing that the process is an instantaneous func-

tional of a long memory Gaussian (see Theorem 5.1 of Taqqu (1975)). In the interest of brevity

we will henceforth assume that (3) holds, from which it follows that Ŝ[rn]/
√

Vn converges weakly

to the process B̃(r) = B(r) − rB(1), which is a Fractional Brownian Bridge (FBB). Then we may

conclude the following result:

Theorem 1 Let Λ be a kernel from family (2), and suppose that {Yt} is a DGP such that (3)

holds. Also assume that (1) holds with |β| < 1. Then

Sn − nµ√
nVΛ,M

L=⇒ B(1)√
Q(b)

(4)

as n → ∞, where Q(b) is defined by

− 2
b
Λ̇+(c)

∫ 1−cb

0
B̃(r)B̃(r + cb) dr − 1

b2

∫
cb<|r−s|<b

B̃(r)B̃(s)Λ̈
( |r − s|

b

)
drds

+
2
b
Λ̇−(1)

∫ 1−b

0
B̃(r)B̃(r + b) dr.
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Interestingly, the limit Q(b) does not depend at all on the slowly varying function L that appears

in (1), and thus L does not affect the asymptotic distribution of the studentized sample mean.

Remark 2 Note that B(1) and Q(b) in (4) will not be independent except in special cases. Such

a special case is the set-up of Kiefer, Vogelsang and Bunzel (2000) who consider the case that

b = 1 and c = 0, the kernel is the Bartlett, and β = 0. Then Q(1) = 2
∫ 1
0 B̃2(r) dr, and B(1) is

independent of B̃(r) because the covariance of B(1) and B̃(r) is zero in that case. However, in

general,

Cov
(
B(1), B̃(r)

)
= −r +

(
1 + rβ+1 − (1 − r)β+1

)
/2

which is nonzero unless of course β = 0. So, in general (say when β 	= 0 and/or the kernel is

not the Bartlett) B(1) and Q(b) will be dependent. However, it is a simple matter to determine

the limiting distribution of (4) numerically for any given value of β, and any choice of taper and

bandwidth b.

Example 1 The trapezoidal taper is the benchmark flat-top taper whose use was proposed by

Politis and Romano (1995); it is defined by

ΛT,c(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |x| ≤ c

|x|−1
c−1 if c < |x| ≤ 1

0 else.

Hence the second derivative for |x| ∈ (c, 1] is zero, and

Q(b) =
2

b(c − 1)

(∫ 1−b

0
B̃(r)B̃(r + b) dr −

∫ 1−cb

0
B̃(r)B̃(r + cb) dr

)
.

3 Theoretical Properties

We next discuss a few of the theoretical properties of Q(b), which shed light on why the β = 0 case

is so different from the LM and NM cases. Using the abbreviation

A(x) = 2
∫ 1−x

0
B̃(r)B̃(r + x) dr,

we can re-express Q(b) as

Q(b) = −1
b

∫ 1

c
Λ̈(x)A(bx) dx +

1
b

(
Λ̇−(1)A(b) − Λ̇+(c)A(cb)

)
. (5)

The following proposition provides the first moment of Q(b).
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Proposition 2 Under the conditions of Theorem 1,

E[A(x)] =
2

(β + 2)(β + 3)

(
(1 − x)β+3 − xβ+3 + 1

)
+

1
3
(x3 − 1) +

1
β + 2

(
2x + βxβ+2 − (β + 2)xβ+1

)
.

Denoting this function by g(x),

E[Q(b)] = −1
b

∫ 1

c
Λ̈(x)g(bx) dx +

1
b

(
Λ̇−(1)g(b) − Λ̇+(c)g(cb)

)
=

∫ 1

c
Λ̇(x)ġ(bx) dx,

where ġ is an integrable function for β > −1 and is given by

ġ(x) = − 2
β + 2

(
(1 − x)β+2 + xβ+2

)
+ x2 +

1
β + 2

(
2 + (β + 2)xβ(βx − β − 1)

)
.

Moreover,

lim
b→0

E[Q(b)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 β > 0

1 − Λ(1) β = 0

∞ β < 0

. (6)

Example 1 Continuing the example of the trapezoidal taper, the mean is calculated to be

E[Q(b)] =
2

(β + 2)(β + 3)(1 − c)b

[
(1 − cb)β+3 − (1 − b)β+3 − bβ+3(cβ+3 − 1)

]
− b2

3
(1 + c + c2)

+
1

(β + 2)(β + 3)

[
2(c − 1) + bβ+1β(cβ+2 − 1) − bβ(β + 2)(cβ+1 − 1)

]
.

Hence the small bandwidth behavior is given by

lim
b→0

E[Q(b)] = lim
b→0

bβ 1 − cβ+1

1 − c
,

which equals ∞, one, or zero depending on whether the DGP is NM (β < 0), SM (β = 0), or LM

(β > 0).

More generally, by (6) we see that the small b mean of Q(b) is ∞, 1−Λ(1), or zero depending on

whether the DGP is NM, SM, or LM. Since Q(b) is in the denominator of the limiting distribution

in (4), this implies a small-bandwidth limiting distribution of zero, normal (standard normal if

Λ(1) = 0), or infinity (informally speaking) for the self-normalized statistic (4) in the cases NM,

SM, or LM respectively.

Mean calculations for other tapers, such as Parzen, Bohman, Daniell, etc., are quite involved

and are not included here. However, when β = 0 the results of Proposition 2 reduce to those of

Kiefer and Vogelsang (2005), but extended to include flat-top tapers as well as tapers with Λ(1) 	= 0

(that are not included in their Definition 1). Letting µ0 =
∫ 1
0 Λ(x) dx and µ1 =

∫ 1
0 Λ(x)x dx, we

obtain for the β = 0 case that

E[Q(b)] = 1 − Λ−(1) + 2b (Λ−(1) − µ0) + 2b2 (µ1 − Λ−(1)/2) .
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We compute these expectations for several tapers whose definition is standard; see e.g. Bohman

(1960), Priestley (1981) or Politis (2005).

Trapezoidal : 1 − b(1 + c) + b2(1 + c + c2)/3

Parzen : 1 − 3b/4 + 7b2/40

Modified Quadratic Spectral : 1 − 3/π2 + b
(
9/π2 − 3ζ

)
+ 3b2/π2

Daniell : 1 − 2ζb + 4b2/π2

Tukey-Hanning : 1 − b + b2
(
1/2 − 2/π2

)
Bohman : 1 − 8b/π2 + 2b2/π2,

where ζ =
∫ 1
0 sin(πx)/(πx) dx ≈ .589. We wanted to include the Quadratic Spectral (QS) taper

so that our results would be in conformity with Kiefer and Vogelsang (2005) – and also because

it has some optimality properties among second order kernels (Priestley, 1981) – but the natural

domain of this taper is R. Therefore in restricting its support to [−1, 1] we are greatly modifying its

properties; the resulting restricted QS taper will be referred to as the Modified Quadratic Spectral

(MQS), with formula given by 3(sin(πx)/(πx)− cos(πx))/(πx)2 for x ∈ [−1, 1] and zero for |x| > 1.

Then the MQS has a small-bandwidth bias, since E[Q(0)] = 1 − 3/π2; this is due to the fact that

Λ(±1) = 3/π2. This bias causes an inflation to the variance of the limiting distribution, such that

the limit is normal with variance 1.4367, rather than unity.

4 Numerical results

In this section we investigate the distribution B(1)/
√

Q(b) of eq. (4) for various choices of β, b,

and taper. Following Kiefer and Vogelsang (2005), we calculate upper quantiles of this distribution

using the device or regressing on a convenient function of b for fixed taper, α-level, and β; these

quantiles can then be used to construct confidence intervals or to find critical values for hypothesis

tests regarding the mean. Since the distribution of B(1)/
√

Q(b) is symmetric for all |β| < 1, it is

sufficient to consider the upper quantiles. However, there are some differences in our presentation

from Kiefer and Vogelsang (2005), which we discuss below; we also present some discussion on the

simulation of Q(b) since the details are non-trivial.

In Kiefer and Vogelsang (2005) each quantile is approximated by a cubic function of b but

with the intercept (which corresponds to b = 0) set equal to the normal quantiles. As noted in

the previous section, this is inappropriate for the MQS kernel, unless one first rescales the normal

distribution by
√

1.4367. Moreover, since in the NM and LM cases we may expect the small-

bandwidth case (b = 0) to correspond to zero and infinity respectively, it is nonsensical to fix the

intercept when β 	= 0. For coherency of results, neither do we fix the intercept when β = 0.

Next, we consider an appropriate function to regress our quantiles on. When regressing on a
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cubic function, the intercept differed substantially from the normal quantiles in the β = 0 case for

several of our tapers. This is due to increased variation in the quantile function for higher values

of b; this heteroscedasticity is stabilized by taking the logarithm of the quantiles. When the log-

quantile is regressed on a quintic polynomial, the resulting intercepts actually corresponds to the

normal quantiles (when exponentiated). Therefore for all values of β, we regress the log-quantiles

on a quintic function of b, namely

cv(b) = exp{a0 + a1b + a2b
2 + a3b

3 + a4b
4 + a5b

5}

and report the corresponding coefficients a0, a1, · · · , a5, as well as the R2 between the log-quantile

and the above cv(b).

Note that the log of the normal quantiles at level .90, .95, .975, and .99 are given by .248,

.498, .673, and .844; these can be compared with the cv(b) corresponding to the coefficients given

in the entries of our Tables 1–9 which correspond to different values of the memory parameter

β = −.8,−.6,−.4,−.2, 0, .2, .4, .6, .8.

For each value of β, the entries of the appropriate table were obtained by simulating 50,000

sample-paths of a FBB of length 1,000, and computing B(1)/
√

Q(b) for 50 choices of b (evenly

spaced between .02 and 1.0) and one of eight tapers. The tapers considered are: Bartlett, Parzen,

Daniell, Modified Quadratic Spectral, Tukey-Hanning, Bohman, Trapezoidal (c = .25), and Trape-

zoidal (c = .5).

Before summarizing the results, we comment on the method of simulation. The best approach

is to discretize (5) starting with a discretization of A(x). For N the chosen mesh size, let Aj for

j = 0, · · · , N be defined by

Aj =
2
N

N−[bj]∑
k=1

WkWk+[bj],

where [·] is the greatest integer function, and Wk is a discretization of FBB. Let Xj+1 = B(j +

1/N) − B(j/N) be an increment of FBM; then computation shows that this time series (for fixed

N) is stationary with autocovariance function

γ(h) =
1
2

(
h + 1

N

)β+1

−
(

h

N

)β+1

+
1
2

∣∣∣∣h − 1
N

∣∣∣∣β+1

; (7)

cf. Hall, Jing, and Lahiri (1998). Hence the cumulation of the Xj time series (with initial

condition B(0) = 0) will be a discrete sampling from FBM, and the FBB is then obtained by

Wk = B(k/N) − k
N B(1), for k = 1, · · · , N . Hence the first step is to generate a Gaussian time

series with autocovariance function (7)1, then cumulate to get the FBM, and finally obtain the
1Simply find the corresponding N ×N Toeplitz covariance matrix, compute the square root (or Cholesky factor),

and right multiply by a standard normal Gaussian vector.
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FBB. As a result, Aj is an approximation to A(bj/N). We plug these Aj into a discretization of

(5) utilizing the trapezoidal rule:

Q̂(b) = − 1
bN

⎛
⎝1

2
Λ̈(0)A0 +

N−1∑
j=1

Λ̈(j/N)Aj +
1
2
Λ̈(1)AN

⎞
⎠

+
1
b

(
Λ̇−(1)AN − Λ̇+(c)A[cN ]

)
.

Surprisingly, using the trapezoidal rule reduced substantial bias that arose in using the left-hand and

right-hand integral discretization techniques; this bias was identified using the exact expectation

for β = 0 from Section 3. In our simulations we used N = 1000, and had 50,000 repetitions for each

choice of b, β, and taper. Each of these 50 × 9 × 8 = 360 simulations required one to two hours of

computing time on a 3.20 GHz processor (with 3 GB RAM), though the Trapezoidal kernels went

much faster. The code was written in R.

The results in the tables demonstrate the sensitivity of these critical values to β; in particular,

the cost of falsely assuming β = 0 is acute for small bandwidth (b ≈ 0). When β > 0, there is a

change in the shape of the quantile function as b increases; initially the quantiles start out high,

then they drop down a bit, and then rise steadily. This is reflected in the large positive value of

the a2 coefficient, and is consistent with the results of Proposition 2. But when β < 0 there is a

downward facing parabolic shape, reflected in the negative values of a2. The variation of results

between tapers is not as great (excepting the biased MQS taper).

5 Conclusion

The paper at hand investigates the distribution of the studentized sample mean in the context

of NM and LM time series dynamics, adopting the fixed-bandwidth approach now popular in

the econometrics literature. We derive the limiting distribution in Theorem 1, thus generalizing

the results of Kiefer and Vogelsang (2005) not only to different dependence structures but also

employing kernels other than the Bartlett. Our results highlight the influence of the kernel – e.g.,

whether or not the taper is nonzero at the boundary of its support – and the influence of the DGP’s

type of memory. Notably, the cost of using the SM quantiles when NM or LM is present increases

with |β|. A main finding from our calculations – see (6) – is that small-bandwidth approaches

are doomed to failure when NM or LM is present, since the limiting distribution of the usual

studentized sample mean is either a point mass at zero or degenerate; this provides further support

for the fixed-bandwidth approach to hypothesis testing and confidence intervals for the mean.

If the practitioner suspects that the time series is NM or LM, it is important to get an accurate

estimate of β, say β̂, so that the correct critical values can be used. There is a large literature on

the estimation of the memory parameter β; available methods are either parametric (e.g., Giraitis

and Taqqu (1999)), semiparametric (Giraitis and Surgailis (1990) and Hurvich (2002)), or even
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nonparametric (McElroy and Politis (2007)). Once estimator β̂ is obtained, it will–of course–

not be exactly equal to one of the values −.8,−.6,−.4,−.2, 0, .2, .4, .6, .8 considered in our Tables.

Interpolation between the two closest β values (or regression using more than two values) can then

be used to get the desired quantile corresponding to the estimated β; in this way the tables of this

paper can be used for practical data analysis.

Appendix

Proof of Proposition 1. For shorthand let Wt = Yt − Y . Then using summation by parts as in

Kiefer and Vogelsang (2002, 2005),

nVΛ,M =
∑
|h|<n

Λ(h/M)
n−|h|∑
t=1

WtWt+|h|

=
n∑

i,j=1

WiWjΛ
( |i − j|

bn

)

=
n∑

i=1

Wi

⎡
⎣n−1∑

j=1

(
Λ

(
i − j

bn

)
− Λ

(
i − j − 1

bn

))
Ŝj

⎤
⎦

=
n∑

i,j=1

ŜiŜj

(
2Λ

(
i − j

bn

)
− Λ

(
i − j + 1

bn

)
− Λ

(
i − j − 1

bn

))
.

Consider 2Λ
(

h
bn

)−Λ
(

h+1
bn

)−Λ
(

h−1
bn

)
. If [cbn] < h < [bn], then the approximation −b−2n−2Λ̈

(
h
bn

)
holds. If h = [cbn], we obtain 2Λ(c)−Λ(c+1/bn)−1+o(1) = −Λ̇+(c)/bn− Λ̈(c)/(2b2n2)+O(n−3).

Finally, if h = [bn] we obtain −Λ(1− 1/bn) + o(1) = Λ̇−(1)/bn + O(n−2). This completes the proof

of the Proposition. �

Proof of Theorem 1. This follows at once from Proposition 1 and (3), noting that V
−1/2
n (Sn −

nµ) L=⇒ B(1) jointly with V
−1/2
n Ŝi tending to B̃(i/n). The second order terms in nVΛ,M in

Proposition 1 drop out, and the summations become integrals. In the case that Λ̇+(c) = 0, we can

apply Remark 1 and extend the integral to |r − s| = cb. Since this set has measure zero, it has no

impact on the final limit Q(b). �

Proof of Proposition 2. The expectation of A(x) hinges on the mean of B̃(r)B̃(r + x), which

by the definition of FBM is

1
2

(
rβ+1 + (1 − r)(r + x)β+1 − xβ+1 + r

(
(1 − r − x)β+1 − 1

)
− (r + x)(1 + rβ+1 − (1 − r)β+1 − 2r)

)
.

Integrating and consolidating yields the stated expression for g(x), and the derivative follows at

once. The expressions for Q(b) follow from (5) and integration by parts. As for (6), if β > 0 we can
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use the Dominated Convergence Theorem (DCT) to obtain the limit
∫ 1
c Λ̇(x)ġ(0) dx, which is zero

since ġ(0) = 0. If β = 0, we easily find ġ(x) = −(1 − x)2, and the result follows again by the DCT.

But if β < 0, observe that all terms in ġ are bounded except −(β + 1)xβ . Therefore this term in

ġ(bx) yields −(β + 1)bβ times integrable functions, and hence the mean tends to infinity at rate bβ

(the minus sign is accounted for by the remaining factor
∫ 1
c Λ̇(x)xβ dx). �
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a0 a1 a2 a3 a4 a5 R2

Bartlett

.90 -1.410 9.695 -34.317 63.846 -56.797 19.224 .9967

.95 -1.159 9.540 -33.465 61.782 -54.575 18.368 .9967

.975 -.989 9.551 -33.931 63.595 -56.951 19.394 .9962

.99 -.821 9.559 -34.378 65.216 -58.973 20.242 .9959

Parzen

.90 -1.088 9.058 -31.482 58.387 -51.795 17.500 .9974

.95 -.836 8.988 -31.152 58.112 -51.685 17.473 .9977

.975 -.660 8.888 -30.478 57.181 -51.128 17.358 .9977

.99 -.482 8.776 -29.408 54.918 -48.646 16.293 .9977

MQS

.90 -.677 8.967 -30.305 57.247 -51.862 17.976 .9980

.95 -.429 9.080 -30.216 58.663 -54.848 19.513 .9982

.975 -.245 8.963 -27.897 54.380 -51.698 18.600 .9985

.99 -.066 8.690 -21.987 40.008 -37.625 13.511 .9984

Daniell

.90 -.886 9.137 -31.976 62.030 -57.255 20.026 .9980

.95 -.639 9.258 -32.272 64.311 -60.716 21.521 .9985

.975 -.460 9.236 -31.493 64.633 -62.641 22.520 .9987

.99 -.292 9.309 -28.922 59.095 -57.544 20.579 .9989

TH

.90 -.965 9.154 -31.898 60.325 -54.196 18.450 .9981

.95 -.711 8.981 -30.533 57.708 -51.621 17.423 .9982

.975 -.540 9.037 -30.177 57.385 -51.260 17.140 .9986

.99 -.365 8.904 -27.993 52.779 -46.490 15.213 .9985

Bohman

.90 -1.061 9.140 -32.077 60.142 -53.690 18.173 .9973

.95 -.813 9.137 -32.048 60.617 -54.452 18.516 .9975

.975 -.631 8.904 -30.504 57.451 -51.337 17.342 .9976

.99 -.449 8.667 -28.566 53.245 -47.195 15.836 .9981

Trap, c = 1/4

.90 -.834 9.584 -32.394 60.973 -55.547 19.461 .9977

.95 -.582 9.698 -31.018 58.153 -53.808 19.238 .9980

.975 -.411 9.890 -28.377 50.514 -46.053 16.487 .9984

.99 -.277 11.191 -27.825 42.499 -34.758 11.667 .9984

Trap, c = 1/2

.90 -.673 9.486 -32.366 56.970 -46.597 14.423 .9963

.95 -.393 9.760 -31.125 51.790 -40.265 11.905 .9954

.975 -.196 10.965 -34.642 56.959 -44.042 13.001 .9946

.99 .025 13.887 -48.143 85.364 -71.414 22.810 .9932

Table 1: Fixed-b asymptotic critical value function coefficients for cv(b) = exp{a0 + a1b + a2b
2 +

a3b
3 +a4b

4 +a5b
5}. The memory parameter is β = −.8. The R2 indicates the fit of the polynomial

through the log simulated asymptotic critical values.
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a0 a1 a2 a3 a4 a5 R2

Bartlett

.90 -1.012 7.763 -27.159 51.464 -46.627 16.011 .9978

.95 -.753 7.591 -25.846 48.185 -43.152 14.688 .9977

.975 -.575 7.547 -25.412 47.203 -42.182 14.326 .9978

.99 -.413 7.785 -26.355 49.255 -44.355 15.195 .9980

Parzen

.90 -.884 7.153 -23.675 44.017 -39.242 13.285 .9982

.95 -.635 7.250 -23.778 44.531 -39.935 13.587 .9985

.975 -.453 7.175 -22.618 41.672 -36.891 12.421 .9985

.99 -.287 7.370 -22.841 42.420 -37.866 12.833 .9985

MQS

.90 -.545 7.522 -23.534 44.649 -40.780 14.150 .9992

.95 -.296 7.765 -23.605 46.104 -43.555 15.511 .9990

.975 -.115 7.804 -21.481 41.398 -39.392 14.091 .9992

.99 .058 7.882 -17.119 30.182 -28.503 10.285 .9992

Daniell

.90 -.749 7.718 -25.650 50.491 -47.222 16.607 .9990

.95 -.497 7.864 -25.312 50.594 -47.965 16.951 .9991

.975 -.318 7.908 -24.092 49.067 -47.536 16.987 .9991

.99 -.129 7.719 -20.079 41.198 -41.320 15.086 .9993

TH

.90 -.800 7.478 -24.359 45.544 -40.432 13.550 .9986

.95 -.537 7.360 -22.948 42.980 -38.284 12.847 .9987

.975 -.357 7.390 -22.061 41.235 -36.498 12.094 .9985

.99 -.194 7.656 -21.750 40.837 -36.068 11.796 .9985

Bohman

.90 -.859 7.113 -23.061 41.989 -36.565 12.094 .9981

.95 -.611 7.255 -23.462 43.321 -38.150 12.722 .9984

.975 -.433 7.242 -22.837 42.356 -37.586 12.636 .9986

.99 -.267 7.595 -24.227 46.306 -42.110 14.404 .9989

Trap, c = 1/4

.90 -.703 7.580 -21.985 39.914 -36.015 12.562 .9986

.95 -.462 7.918 -20.946 37.280 -34.251 12.281 .9987

.975 -.289 8.111 -17.620 27.583 -24.416 8.836 .9989

.99 -.138 8.800 -13.560 12.129 -6.481 1.916 .9992

Trap, c = 1/2

.90 -.632 8.738 -27.311 46.583 -37.689 11.616 .9983

.95 -.401 10.023 -30.596 50.310 -39.324 11.730 .9982

.975 -.257 11.979 -37.015 60.362 -46.841 13.896 .9984

.99 -.142 15.826 -52.471 88.995 -71.582 21.961 .9975

Table 2: Fixed-b asymptotic critical value function coefficients for cv(b) = exp{a0 + a1b + a2b
2 +

a3b
3 +a4b

4 +a5b
5}. The memory parameter is β = −.6. The R2 indicates the fit of the polynomial

through the log simulated asymptotic critical values.
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a0 a1 a2 a3 a4 a5 R2

Bartlett

.90 -.548 4.971 -15.265 28.021 -24.666 8.258 .9982

.95 -.303 5.119 -15.335 28.184 -24.810 8.285 .9981

.975 -.134 5.357 -15.893 29.589 -26.420 8.961 .9984

.99 .030 5.703 -17.068 32.980 -30.438 10.584 .9984

Parzen

.90 -.884 7.153 -23.675 44.017 -39.242 13.285 .9988

.95 -.635 7.250 -23.778 44.531 -39.935 13.587 .9990

.975 -.453 7.175 -22.618 41.672 -36.891 12.421 .9991

.99 -.287 7.370 -22.841 42.420 -37.866 12.833 .9991

MQS

.90 -.251 5.222 -13.989 26.530 -24.577 8.645 .9993

.95 -.003 5.550 -14.401 28.960 -28.566 10.523 .9994

.975 .171 5.690 -12.799 25.863 -26.536 10.083 .9992

.99 .345 5.696 -8.054 13.768 -14.639 5.831 .9991

Daniell

.90 -.454 5.414 -15.575 30.209 -28.085 9.789 .9992

.95 -.211 5.785 -16.648 34.425 -33.912 12.329 .9994

.975 -.036 6.066 -16.851 36.392 -37.125 13.716 .9995

.99 .143 6.120 -14.225 31.851 -34.370 13.121 .9991

TH

.90 -.498 5.245 -15.184 27.980 -24.708 8.271 .9994

.95 -.237 5.188 -13.539 23.827 -20.015 6.328 .9993

.975 -.048 5.171 -12.380 21.587 -17.777 5.394 .9993

.99 .122 5.376 -12.083 22.611 -20.255 6.672 .9991

Bohman

.90 -.539 5.127 -15.803 29.174 -25.769 8.643 .9991

.95 -.295 5.273 -15.534 28.105 -24.288 7.945 .9991

.975 -.112 5.303 -14.869 26.455 -22.462 7.186 .9989

.99 .056 5.557 -15.377 28.275 -24.893 8.218 .9987

Trap, c = 1/4

.90 -.445 5.591 -14.035 25.320 -22.995 8.031 .9991

.95 -.191 5.663 -11.543 19.585 -18.153 6.573 .9991

.975 -.000 5.379 -5.462 3.761 -2.357 1.006 .9992

.99 .154 5.722 .794 -16.005 18.875 -6.737 .9990

Trap, c = 1/2

.90 -.413 6.810 -18.394 29.252 -22.409 6.584 .9990

.95 -.179 7.759 -18.945 25.890 -16.438 3.774 .9992

.975 -.043 9.522 -23.601 31.248 -18.877 4.001 .9992

.99 .058 12.974 -35.633 51.040 -34.468 8.747 .9988

Table 3: Fixed-b asymptotic critical value function coefficients for cv(b) = exp{a0 + a1b + a2b
2 +

a3b
3 +a4b

4 +a5b
5}. The memory parameter is β = −.4. The R2 indicates the fit of the polynomial

through the log simulated asymptotic critical values.
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a0 a1 a2 a3 a4 a5 R2

Bartlett

.90 -.165 3.086 -8.381 15.691 -14.494 5.076 .9986

.95 .081 3.258 -8.480 15.584 -14.397 5.076 .9988

.975 .250 3.491 -8.662 15.075 -13.387 4.580 .9990

.99 .413 3.724 -8.620 14.000 -11.913 3.973 .9990

Parzen

.90 -.163 2.860 -7.703 14.503 -13.032 4.422 .9994

.95 .091 2.911 -7.215 13.556 -12.297 4.225 .9993

.975 .259 3.229 -8.037 15.247 -13.879 4.761 .9993

.99 .416 3.788 -10.190 20.591 -19.695 7.012 .9990

MQS

.90 .083 3.188 -6.488 13.145 -12.965 4.737 .9996

.95 .337 3.290 -5.215 11.095 -11.872 4.547 .9996

.975 .523 3.166 -2.064 4.408 -6.124 2.673 .9992

.99 .688 3.438 .735 -2.004 -1.028 1.266 .9993

Daniell

.90 -.105 3.170 -7.261 15.668 -16.037 5.999 .9995

.95 .144 3.378 -7.095 16.661 -18.260 7.074 .9997

.975 .316 3.704 -7.338 18.579 -21.425 8.466 .9996

.99 .502 3.657 -4.141 12.201 -16.082 6.637 .9993

TH

.90 -.133 2.951 -6.407 11.770 -10.420 3.451 .9993

.95 .112 3.251 -6.895 13.147 -11.902 3.961 .9994

.975 .291 3.421 -6.629 12.989 -11.997 3.995 .9993

.99 .475 3.311 -3.716 6.061 -4.497 .920 .9991

Bohman

.90 -.539 5.127 -15.803 29.174 -25.769 8.643 .9991

.95 -.295 5.273 -15.534 28.105 -24.288 7.945 .9991

.975 -.112 5.303 -14.869 26.455 -22.462 7.186 .9989

.99 .056 5.557 -15.377 28.275 -24.893 8.218 .9987

Trap, c = 1/4

.90 -.145 2.692 -6.294 11.131 -9.625 3.195 .9991

.95 .105 2.868 -6.480 11.652 -10.155 3.347 .9993

.975 .286 2.902 -5.529 9.128 -7.418 2.281 .9994

.99 .449 3.204 -5.746 9.418 -7.755 2.430 .9991

Trap, c = 1/2

.90 -.089 3.928 -5.118 2.540 2.157 -1.851 .9993

.95 .152 4.594 -4.067 -3.820 10.383 -5.238 .9993

.975 .294 5.949 -6.122 -4.369 13.688 -7.053 .9991

.99 .378 9.279 -16.717 11.008 3.580 -4.670 .9984

Table 4: Fixed-b asymptotic critical value function coefficients for cv(b) = exp{a0 + a1b + a2b
2 +

a3b
3 +a4b

4 +a5b
5}. The memory parameter is β = −.2. The R2 indicates the fit of the polynomial

through the log simulated asymptotic critical values.
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a0 a1 a2 a3 a4 a5 R2

Bartlett

.90 .255 .779 1.109 -2.802 2.468 -.801 .9991

.95 .514 .833 1.611 -4.016 3.441 -1.053 .9994

.975 .679 1.195 .644 -2.276 1.703 -.383 .9992

.99 .841 1.692 -.962 .852 -1.392 .772 .9988

Parzen

.90 .250 .825 -.614 2.014 -2.408 .962 .9992

.95 .496 1.015 -.771 2.405 -2.977 1.258 .9993

.975 .677 1.115 -.654 2.496 -3.302 1.405 .9993

.99 .847 1.311 -.317 1.458 -2.149 .942 .9992

MQS

.90 .438 1.238 .441 1.139 -2.917 1.498 .9997

.95 .695 1.363 1.203 1.082 -4.550 2.541 .9997

.975 .876 1.537 2.116 .460 -5.544 3.298 .9996

.99 1.067 1.218 8.389 -14.561 8.976 -1.856 .9994

Daniell

.90 .262 1.137 .239 1.891 -3.834 1.871 .9994

.95 .509 1.433 .041 3.174 -5.702 2.572 .9996

.975 .684 1.851 -1.483 9.764 -15.082 6.709 .9994

.99 .855 2.069 .037 8.223 -15.706 7.448 .9992

TH

.90 .250 1.032 .063 .591 -.853 .270 .9995

.95 .492 1.372 -.599 2.455 -2.996 1.092 .9994

.975 .671 1.439 .579 -.452 .291 -.322 .9992

.99 .849 1.585 1.549 -1.738 .926 -.470 .9990

Bohman

.90 .256 .607 1.287 -2.477 2.052 -.632 .9993

.95 .500 .921 .277 .236 -1.014 .569 .9994

.975 .671 1.215 -.291 1.393 -2.117 .934 .9994

.99 .841 1.466 -.287 1.335 -2.240 1.043 .9990

Trap, c = 1/4

.90 .262 .785 4.191 -7.571 5.633 -1.549 .9996

.95 .521 .752 6.507 -11.099 6.913 -1.347 .9997

.975 .709 .598 11.065 -21.668 16.119 -4.177 .9995

.99 .916 -.310 23.179 -52.791 47.640 -15.519 .9991

Trap, c = 1/2

.90 .244 1.686 3.454 -11.828 13.346 -5.171 .9994

.95 .483 2.158 5.704 -20.594 23.550 -9.124 .9992

.975 .629 3.244 5.448 -25.184 30.560 -12.131 .9986

.99 .738 5.472 1.321 -23.692 33.088 -13.879 .9974

Table 5: Fixed-b asymptotic critical value function coefficients for cv(b) = exp{a0 + a1b + a2b
2 +

a3b
3 + a4b

4 + a5b
5}. The memory parameter is β = 0. The R2 indicates the fit of the polynomial

through the log simulated asymptotic critical values.
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a0 a1 a2 a3 a4 a5 R2

Bartlett

.90 .678 -1.228 8.798 -17.402 15.833 -5.465 .9982

.95 .924 -.980 8.748 -17.899 16.428 -5.681 .9983

.975 1.102 -.785 8.857 -18.730 17.348 -6.011 .9980

.99 1.263 -.377 8.496 -19.142 18.051 -6.247 .9976

Parzen

.90 .675 -1.183 6.788 -11.619 9.471 -2.943 .9973

.95 .935 -1.250 8.194 -14.956 12.879 -4.222 .9984

.975 1.103 -.943 7.500 -13.557 11.640 -3.840 .9977

.99 1.278 -.764 7.907 -14.653 12.713 -4.220 .9985

MQS

.90 .835 -.987 9.276 -16.213 13.433 -4.367 .9993

.95 1.093 -.912 10.392 -17.119 12.665 -3.649 .9993

.975 1.271 -.685 10.946 -16.575 10.091 -2.155 .9991

.99 1.460 -.988 16.481 -28.237 19.684 -5.002 .9993

Daniell

.90 .658 -1.124 9.621 -17.263 14.728 -4.917 .9992

.95 .902 -.650 8.070 -11.860 7.578 -1.845 .9994

.975 1.067 -.070 5.907 -4.639 -1.606 1.945 .9993

.99 1.235 .359 5.943 -3.232 -4.180 2.957 .9991

TH

.90 .654 -1.013 7.605 -13.186 11.180 -3.735 .9991

.95 .900 -.742 7.409 -12.634 10.684 -3.654 .9992

.975 1.087 -.887 10.176 -19.760 18.529 -6.779 .9995

.99 1.247 -.258 8.206 -13.893 11.531 -3.967 .9992

Bohman

.90 .677 -1.228 7.315 -12.822 10.920 -3.610 .9980

.95 .930 -1.158 8.247 -15.692 14.442 -5.127 .9984

.975 1.110 -1.100 9.074 -17.817 16.763 -6.062 .9986

.99 1.282 -.887 9.685 -19.742 18.804 -6.798 .9989

Trap, c = 1/4

.90 .656 -1.274 11.419 -20.659 17.395 -5.636 .9995

.95 .909 -1.121 12.425 -20.792 15.108 -4.116 .9994

.975 1.100 -1.334 16.315 -27.904 19.471 -4.818 .9993

.99 1.293 -1.859 25.179 -49.569 40.033 -11.772 .9991

Trap, c = 1/2

.90 .620 -.760 13.406 -30.443 29.705 -10.622 .9990

.95 .867 -.531 17.119 -42.306 42.653 -15.443 .9992

.975 1.026 .039 19.961 -53.867 56.460 -20.869 .9986

.99 1.153 1.659 19.677 -61.712 68.686 -26.239 .9967

Table 6: Fixed-b asymptotic critical value function coefficients for cv(b) = exp{a0 + a1b + a2b
2 +

a3b
3 + a4b

4 + a5b
5}. The memory parameter is β = .2. The R2 indicates the fit of the polynomial

through the log simulated asymptotic critical values.

18



a0 a1 a2 a3 a4 a5 R2

Bartlett

.90 1.104 -3.019 15.728 -30.162 26.842 -9.049 .9954

.95 1.351 -2.627 14.613 -27.628 23.920 -7.842 .9965

.975 1.531 -2.409 14.789 -28.729 25.142 -8.281 .9963

.99 1.709 -2.101 14.812 -30.042 27.025 -9.095 .9965

Parzen

.90 1.136 -3.363 15.645 -29.784 27.309 -9.562 .9943

.95 1.392 -3.289 16.238 -31.119 28.526 -9.973 .9961

.975 1.564 -2.934 14.954 -27.573 24.385 -8.291 .9974

.99 1.741 -2.791 15.530 -28.655 24.889 -8.226 .9980

MQS

.90 1.256 -3.089 17.470 -31.882 27.623 -9.217 .9990

.95 1.496 -2.476 15.224 -24.382 17.734 -4.916 .9987

.975 1.682 -2.231 15.118 -21.643 12.673 -2.493 .9989

.99 1.863 -1.991 16.537 -22.569 10.943 -1.172 .9987

Daniell

.90 1.062 -2.741 14.916 -25.881 21.416 -6.881 .9986

.95 1.306 -2.252 13.259 -20.056 13.581 -3.446 .9986

.975 1.474 -1.781 11.895 -14.905 6.753 -.656 .9989

.99 1.644 -1.197 10.263 -7.591 -3.776 3.918 .9987

TH

.90 1.092 -3.055 15.551 -28.336 24.703 -8.265 .9986

.95 1.341 -2.795 15.587 -28.752 25.601 -8.838 .9989

.975 1.523 -2.589 15.643 -28.386 24.954 -8.590 .9991

.99 1.678 -1.821 12.830 -20.526 15.971 -5.055 .9987

Bohman

.90 1.113 -2.924 13.161 -23.281 20.076 -6.706 .9969

.95 1.366 -2.843 13.789 -24.493 20.927 -6.892 .9980

.975 1.544 -2.680 14.144 -25.600 22.243 -7.471 .9985

.99 1.718 -2.499 14.851 -27.475 24.114 -8.161 .9985

Trap, c = 1/4

.90 1.057 -3.070 17.831 -32.526 28.366 -9.580 .9991

.95 1.324 -3.142 19.916 -35.013 28.510 -8.993 .9990

.975 1.524 -3.295 22.595 -38.112 28.001 -7.668 .9991

.99 1.713 -3.461 27.486 -46.762 32.295 -7.720 .9990

Trap, c = 1/2

.90 1.018 -2.753 20.574 -42.682 39.933 -13.986 .9980

.95 1.280 -2.831 25.667 -56.902 54.651 -19.299 .9981

.975 1.454 -2.577 29.791 -69.788 68.183 -24.089 .9975

.99 1.591 -1.448 32.541 -84.222 86.443 -31.450 .9961

Table 7: Fixed-b asymptotic critical value function coefficients for cv(b) = exp{a0 + a1b + a2b
2 +

a3b
3 + a4b

4 + a5b
5}. The memory parameter is β = .4. The R2 indicates the fit of the polynomial

through the log simulated asymptotic critical values.
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a0 a1 a2 a3 a4 a5 R2

Bartlett

.90 1.581 -4.639 21.813 -41.475 36.907 -12.449 .9908

.95 1.842 -4.533 22.555 -43.441 38.659 -12.996 .9940

.975 2.020 -4.279 22.699 -44.664 40.180 -13.602 .9935

.99 2.203 -4.122 23.940 -49.053 45.372 -15.725 .9933

Parzen

.90 1.644 -5.144 21.626 -39.643 34.880 -11.724 .9898

.95 1.895 -4.967 21.913 -40.801 36.433 -12.435 .9935

.975 2.077 -4.852 22.435 -42.248 38.014 -13.062 .9960

.99 2.255 -4.709 23.233 -44.332 40.117 -13.823 .9963

MQS

.90 1.708 -4.643 22.859 -41.553 36.144 -12.111 .9977

.95 1.966 -4.419 23.174 -40.957 34.251 -11.106 .9983

.975 2.147 -4.114 22.973 -38.266 29.377 -8.782 .9990

.99 2.353 -4.372 26.798 -43.682 31.147 -8.421 .9987

Daniell

.90 1.536 -4.717 22.867 -41.670 36.201 -12.087 .9978

.95 1.783 -4.131 20.435 -34.012 26.739 -8.190 .9980

.975 1.953 -3.603 18.659 -27.611 18.188 -4.548 .9985

.99 2.130 -2.984 16.299 -17.793 4.532 1.353 .9983

TH

.90 1.558 -4.705 21.826 -40.980 37.089 -12.868 .9959

.95 1.814 -4.413 21.256 -38.959 34.540 -11.845 .9973

.975 2.000 -4.331 22.640 -42.946 39.376 -13.940 .9981

.99 2.175 -3.968 22.813 -43.576 40.497 -14.673 .9979

Bohman

.90 1.630 -5.310 23.627 -45.094 40.975 -14.138 .9914

.95 1.876 -4.954 22.863 -43.646 39.735 -13.777 .9956

.975 2.042 -4.396 20.579 -37.843 33.359 -11.307 .9964

.99 2.210 -3.993 20.186 -37.623 33.474 -11.422 .9968

Trap, c = 1/4

.90 1.517 -4.739 23.822 -43.753 38.407 -12.924 .9985

.95 1.773 -4.530 24.069 -41.863 34.278 -10.861 .9985

.975 1.967 -4.646 26.758 -45.659 35.436 -10.562 .9987

.99 2.160 -5.018 33.266 -59.748 47.282 -14.159 .9985

Trap, c = 1/2

.90 1.461 -4.441 25.863 -50.195 44.941 -15.243 .9978

.95 1.728 -4.675 31.834 -66.064 60.887 -20.851 .9981

.975 1.911 -4.647 37.297 -82.432 78.629 -27.508 .9978

.99 2.086 -4.392 44.662 -106.439 105.577 -37.756 .9965

Table 8: Fixed-b asymptotic critical value function coefficients for cv(b) = exp{a0 + a1b + a2b
2 +

a3b
3 + a4b

4 + a5b
5}. The memory parameter is β = .6. The R2 indicates the fit of the polynomial

through the log simulated asymptotic critical values.
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a0 a1 a2 a3 a4 a5 R2

Bartlett

.90 2.196 -6.339 28.370 -54.069 48.616 -16.617 .9877

.95 2.452 -6.094 28.774 -55.811 50.527 -17.327 .9899

.975 2.630 -5.656 27.583 -53.102 47.269 -15.916 .9911

.99 2.805 -5.249 27.490 -53.850 47.896 -15.985 .9925

Parzen

.90 2.250 -6.557 27.165 -50.915 45.660 -15.554 .9817

.95 2.511 -6.289 26.375 -48.600 42.854 -14.379 .9871

.975 2.687 -5.961 25.733 -47.273 41.528 -13.902 .9901

.99 2.875 -5.785 26.058 -48.010 42.185 -14.135 .9931

MQS

.90 2.295 -6.125 28.550 -53.038 47.183 -16.090 .9970

.95 2.556 -5.853 28.468 -51.183 43.742 -14.440 .9976

.975 2.730 -5.281 26.155 -42.562 32.023 -9.344 .9983

.99 2.923 -5.081 27.386 -42.506 28.889 -7.383 .9978

Daniell

.90 2.125 -6.016 26.961 -48.723 42.362 -14.186 .9944

.95 2.376 -5.507 25.200 -42.918 34.972 -11.101 .9959

.975 2.543 -4.915 23.144 -36.322 26.759 -7.776 .9969

.99 2.715 -4.177 20.261 -25.867 12.992 -1.991 .9972

TH

.90 2.176 -6.434 28.150 -52.233 46.427 -15.759 .9937

.95 2.427 -6.032 27.289 -50.164 44.346 -15.066 .9957

.975 2.606 -5.717 27.165 -49.951 44.163 -15.056 .9968

.99 2.792 -5.549 28.861 -55.266 51.102 -18.263 .9972

Bohman

.90 2.232 -6.458 26.538 -48.330 42.122 -14.000 .9832

.95 2.483 -6.131 25.956 -47.290 41.298 -13.792 .9893

.975 2.660 -5.842 25.649 -46.988 41.296 -13.904 .9912

.99 2.848 -5.830 27.495 -51.674 46.060 -15.649 .9943

Trap, c = 1/4

.90 2.100 -6.029 27.619 -49.835 43.346 -14.471 .9975

.95 2.363 -5.865 28.190 -49.156 40.910 -13.157 .9982

.975 2.549 -5.620 28.272 -46.086 34.587 -9.967 .9984

.99 2.743 -5.630 31.008 -48.080 31.387 -7.170 .9983

Trap, c = 1/2

.90 2.034 -5.835 29.821 -55.220 47.814 -15.820 .9969

.95 2.302 -5.938 34.591 -67.807 60.418 -20.294 .9976

.975 2.509 -6.417 42.426 -88.224 80.751 -27.361 .9974

.99 2.691 -6.549 52.279 -118.432 114.355 -40.187 .9970

Table 9: Fixed-b asymptotic critical value function coefficients for cv(b) = exp{a0 + a1b + a2b
2 +

a3b
3 + a4b

4 + a5b
5}. The memory parameter is β = .8. The R2 indicates the fit of the polynomial

through the log simulated asymptotic critical values.
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